1 /* 2 * Copyright (c) 2009 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Alex Hornung <ahornung@gmail.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/time.h> 37 #include <sys/kernel.h> 38 #include <sys/lock.h> 39 #include <sys/fcntl.h> 40 #include <sys/proc.h> 41 #include <sys/priv.h> 42 #include <sys/signalvar.h> 43 #include <sys/vnode.h> 44 #include <sys/uio.h> 45 #include <sys/mount.h> 46 #include <sys/file.h> 47 #include <sys/fcntl.h> 48 #include <sys/namei.h> 49 #include <sys/dirent.h> 50 #include <sys/malloc.h> 51 #include <sys/stat.h> 52 #include <sys/reg.h> 53 #include <vm/vm_pager.h> 54 #include <vm/vm_zone.h> 55 #include <vm/vm_object.h> 56 #include <sys/filio.h> 57 #include <sys/ttycom.h> 58 #include <sys/tty.h> 59 #include <sys/diskslice.h> 60 #include <sys/sysctl.h> 61 #include <sys/devfs.h> 62 #include <sys/pioctl.h> 63 #include <vfs/fifofs/fifo.h> 64 65 #include <machine/limits.h> 66 67 #include <sys/buf2.h> 68 #include <sys/sysref2.h> 69 #include <sys/mplock2.h> 70 #include <vm/vm_page2.h> 71 72 MALLOC_DECLARE(M_DEVFS); 73 #define DEVFS_BADOP (void *)devfs_badop 74 75 static int devfs_badop(struct vop_generic_args *); 76 static int devfs_access(struct vop_access_args *); 77 static int devfs_inactive(struct vop_inactive_args *); 78 static int devfs_reclaim(struct vop_reclaim_args *); 79 static int devfs_readdir(struct vop_readdir_args *); 80 static int devfs_getattr(struct vop_getattr_args *); 81 static int devfs_setattr(struct vop_setattr_args *); 82 static int devfs_readlink(struct vop_readlink_args *); 83 static int devfs_print(struct vop_print_args *); 84 85 static int devfs_nresolve(struct vop_nresolve_args *); 86 static int devfs_nlookupdotdot(struct vop_nlookupdotdot_args *); 87 static int devfs_nmkdir(struct vop_nmkdir_args *); 88 static int devfs_nsymlink(struct vop_nsymlink_args *); 89 static int devfs_nrmdir(struct vop_nrmdir_args *); 90 static int devfs_nremove(struct vop_nremove_args *); 91 92 static int devfs_spec_open(struct vop_open_args *); 93 static int devfs_spec_close(struct vop_close_args *); 94 static int devfs_spec_fsync(struct vop_fsync_args *); 95 96 static int devfs_spec_read(struct vop_read_args *); 97 static int devfs_spec_write(struct vop_write_args *); 98 static int devfs_spec_ioctl(struct vop_ioctl_args *); 99 static int devfs_spec_poll(struct vop_poll_args *); 100 static int devfs_spec_kqfilter(struct vop_kqfilter_args *); 101 static int devfs_spec_strategy(struct vop_strategy_args *); 102 static void devfs_spec_strategy_done(struct bio *); 103 static int devfs_spec_freeblks(struct vop_freeblks_args *); 104 static int devfs_spec_bmap(struct vop_bmap_args *); 105 static int devfs_spec_advlock(struct vop_advlock_args *); 106 static void devfs_spec_getpages_iodone(struct bio *); 107 static int devfs_spec_getpages(struct vop_getpages_args *); 108 109 110 static int devfs_specf_close(struct file *); 111 static int devfs_specf_read(struct file *, struct uio *, struct ucred *, int); 112 static int devfs_specf_write(struct file *, struct uio *, struct ucred *, int); 113 static int devfs_specf_stat(struct file *, struct stat *, struct ucred *); 114 static int devfs_specf_kqfilter(struct file *, struct knote *); 115 static int devfs_specf_poll(struct file *, int, struct ucred *); 116 static int devfs_specf_ioctl(struct file *, u_long, caddr_t, 117 struct ucred *, struct sysmsg *); 118 static __inline int sequential_heuristic(struct uio *, struct file *); 119 120 extern struct lock devfs_lock; 121 122 static int mpsafe_reads, mpsafe_writes, mplock_reads, mplock_writes; 123 124 /* 125 * devfs vnode operations for regular files 126 */ 127 struct vop_ops devfs_vnode_norm_vops = { 128 .vop_default = vop_defaultop, 129 .vop_access = devfs_access, 130 .vop_advlock = DEVFS_BADOP, 131 .vop_bmap = DEVFS_BADOP, 132 .vop_close = vop_stdclose, 133 .vop_getattr = devfs_getattr, 134 .vop_inactive = devfs_inactive, 135 .vop_ncreate = DEVFS_BADOP, 136 .vop_nresolve = devfs_nresolve, 137 .vop_nlookupdotdot = devfs_nlookupdotdot, 138 .vop_nlink = DEVFS_BADOP, 139 .vop_nmkdir = devfs_nmkdir, 140 .vop_nmknod = DEVFS_BADOP, 141 .vop_nremove = devfs_nremove, 142 .vop_nrename = DEVFS_BADOP, 143 .vop_nrmdir = devfs_nrmdir, 144 .vop_nsymlink = devfs_nsymlink, 145 .vop_open = vop_stdopen, 146 .vop_pathconf = vop_stdpathconf, 147 .vop_print = devfs_print, 148 .vop_read = DEVFS_BADOP, 149 .vop_readdir = devfs_readdir, 150 .vop_readlink = devfs_readlink, 151 .vop_reclaim = devfs_reclaim, 152 .vop_setattr = devfs_setattr, 153 .vop_write = DEVFS_BADOP, 154 .vop_ioctl = DEVFS_BADOP 155 }; 156 157 /* 158 * devfs vnode operations for character devices 159 */ 160 struct vop_ops devfs_vnode_dev_vops = { 161 .vop_default = vop_defaultop, 162 .vop_access = devfs_access, 163 .vop_advlock = devfs_spec_advlock, 164 .vop_bmap = devfs_spec_bmap, 165 .vop_close = devfs_spec_close, 166 .vop_freeblks = devfs_spec_freeblks, 167 .vop_fsync = devfs_spec_fsync, 168 .vop_getattr = devfs_getattr, 169 .vop_getpages = devfs_spec_getpages, 170 .vop_inactive = devfs_inactive, 171 .vop_open = devfs_spec_open, 172 .vop_pathconf = vop_stdpathconf, 173 .vop_print = devfs_print, 174 .vop_poll = devfs_spec_poll, 175 .vop_kqfilter = devfs_spec_kqfilter, 176 .vop_read = devfs_spec_read, 177 .vop_readdir = DEVFS_BADOP, 178 .vop_readlink = DEVFS_BADOP, 179 .vop_reclaim = devfs_reclaim, 180 .vop_setattr = devfs_setattr, 181 .vop_strategy = devfs_spec_strategy, 182 .vop_write = devfs_spec_write, 183 .vop_ioctl = devfs_spec_ioctl 184 }; 185 186 struct vop_ops *devfs_vnode_dev_vops_p = &devfs_vnode_dev_vops; 187 188 struct fileops devfs_dev_fileops = { 189 .fo_read = devfs_specf_read, 190 .fo_write = devfs_specf_write, 191 .fo_ioctl = devfs_specf_ioctl, 192 .fo_poll = devfs_specf_poll, 193 .fo_kqfilter = devfs_specf_kqfilter, 194 .fo_stat = devfs_specf_stat, 195 .fo_close = devfs_specf_close, 196 .fo_shutdown = nofo_shutdown 197 }; 198 199 /* 200 * These two functions are possibly temporary hacks for 201 * devices (aka the pty code) which want to control the 202 * node attributes themselves. 203 * 204 * XXX we may ultimately desire to simply remove the uid/gid/mode 205 * from the node entirely. 206 */ 207 static __inline void 208 node_sync_dev_get(struct devfs_node *node) 209 { 210 cdev_t dev; 211 212 if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) { 213 node->uid = dev->si_uid; 214 node->gid = dev->si_gid; 215 node->mode = dev->si_perms; 216 } 217 } 218 219 static __inline void 220 node_sync_dev_set(struct devfs_node *node) 221 { 222 cdev_t dev; 223 224 if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) { 225 dev->si_uid = node->uid; 226 dev->si_gid = node->gid; 227 dev->si_perms = node->mode; 228 } 229 } 230 231 /* 232 * generic entry point for unsupported operations 233 */ 234 static int 235 devfs_badop(struct vop_generic_args *ap) 236 { 237 return (EIO); 238 } 239 240 241 static int 242 devfs_access(struct vop_access_args *ap) 243 { 244 struct devfs_node *node = DEVFS_NODE(ap->a_vp); 245 int error; 246 247 if (!devfs_node_is_accessible(node)) 248 return ENOENT; 249 node_sync_dev_get(node); 250 error = vop_helper_access(ap, node->uid, node->gid, 251 node->mode, node->flags); 252 253 return error; 254 } 255 256 257 static int 258 devfs_inactive(struct vop_inactive_args *ap) 259 { 260 struct devfs_node *node = DEVFS_NODE(ap->a_vp); 261 262 if (node == NULL || (node->flags & DEVFS_NODE_LINKED) == 0) 263 vrecycle(ap->a_vp); 264 return 0; 265 } 266 267 268 static int 269 devfs_reclaim(struct vop_reclaim_args *ap) 270 { 271 struct devfs_node *node; 272 struct vnode *vp; 273 int locked; 274 275 /* 276 * Check if it is locked already. if not, we acquire the devfs lock 277 */ 278 if (!(lockstatus(&devfs_lock, curthread)) == LK_EXCLUSIVE) { 279 lockmgr(&devfs_lock, LK_EXCLUSIVE); 280 locked = 1; 281 } else { 282 locked = 0; 283 } 284 285 /* 286 * Get rid of the devfs_node if it is no longer linked into the 287 * topology. 288 */ 289 vp = ap->a_vp; 290 if ((node = DEVFS_NODE(vp)) != NULL) { 291 node->v_node = NULL; 292 if ((node->flags & DEVFS_NODE_LINKED) == 0) 293 devfs_freep(node); 294 } 295 296 if (locked) 297 lockmgr(&devfs_lock, LK_RELEASE); 298 299 /* 300 * v_rdev needs to be properly released using v_release_rdev 301 * Make sure v_data is NULL as well. 302 */ 303 vp->v_data = NULL; 304 v_release_rdev(vp); 305 return 0; 306 } 307 308 309 static int 310 devfs_readdir(struct vop_readdir_args *ap) 311 { 312 struct devfs_node *dnode = DEVFS_NODE(ap->a_vp); 313 struct devfs_node *node; 314 int cookie_index; 315 int ncookies; 316 int error2; 317 int error; 318 int r; 319 off_t *cookies; 320 off_t saveoff; 321 322 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_readdir() called!\n"); 323 324 if (ap->a_uio->uio_offset < 0 || ap->a_uio->uio_offset > INT_MAX) 325 return (EINVAL); 326 if ((error = vn_lock(ap->a_vp, LK_EXCLUSIVE | LK_RETRY)) != 0) 327 return (error); 328 329 if (!devfs_node_is_accessible(dnode)) { 330 vn_unlock(ap->a_vp); 331 return ENOENT; 332 } 333 334 lockmgr(&devfs_lock, LK_EXCLUSIVE); 335 336 saveoff = ap->a_uio->uio_offset; 337 338 if (ap->a_ncookies) { 339 ncookies = ap->a_uio->uio_resid / 16 + 1; /* Why / 16 ?? */ 340 if (ncookies > 256) 341 ncookies = 256; 342 cookies = kmalloc(256 * sizeof(off_t), M_TEMP, M_WAITOK); 343 cookie_index = 0; 344 } else { 345 ncookies = -1; 346 cookies = NULL; 347 cookie_index = 0; 348 } 349 350 nanotime(&dnode->atime); 351 352 if (saveoff == 0) { 353 r = vop_write_dirent(&error, ap->a_uio, dnode->d_dir.d_ino, 354 DT_DIR, 1, "."); 355 if (r) 356 goto done; 357 if (cookies) 358 cookies[cookie_index] = saveoff; 359 saveoff++; 360 cookie_index++; 361 if (cookie_index == ncookies) 362 goto done; 363 } 364 365 if (saveoff == 1) { 366 if (dnode->parent) { 367 r = vop_write_dirent(&error, ap->a_uio, 368 dnode->parent->d_dir.d_ino, 369 DT_DIR, 2, ".."); 370 } else { 371 r = vop_write_dirent(&error, ap->a_uio, 372 dnode->d_dir.d_ino, 373 DT_DIR, 2, ".."); 374 } 375 if (r) 376 goto done; 377 if (cookies) 378 cookies[cookie_index] = saveoff; 379 saveoff++; 380 cookie_index++; 381 if (cookie_index == ncookies) 382 goto done; 383 } 384 385 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) { 386 if ((node->flags & DEVFS_HIDDEN) || 387 (node->flags & DEVFS_INVISIBLE)) { 388 continue; 389 } 390 391 /* 392 * If the node type is a valid devfs alias, then we make sure that the 393 * target isn't hidden. If it is, we don't show the link in the 394 * directory listing. 395 */ 396 if ((node->node_type == Plink) && (node->link_target != NULL) && 397 (node->link_target->flags & DEVFS_HIDDEN)) 398 continue; 399 400 if (node->cookie < saveoff) 401 continue; 402 403 saveoff = node->cookie; 404 405 error2 = vop_write_dirent(&error, ap->a_uio, node->d_dir.d_ino, 406 node->d_dir.d_type, 407 node->d_dir.d_namlen, 408 node->d_dir.d_name); 409 410 if (error2) 411 break; 412 413 saveoff++; 414 415 if (cookies) 416 cookies[cookie_index] = node->cookie; 417 ++cookie_index; 418 if (cookie_index == ncookies) 419 break; 420 } 421 422 done: 423 lockmgr(&devfs_lock, LK_RELEASE); 424 vn_unlock(ap->a_vp); 425 426 ap->a_uio->uio_offset = saveoff; 427 if (error && cookie_index == 0) { 428 if (cookies) { 429 kfree(cookies, M_TEMP); 430 *ap->a_ncookies = 0; 431 *ap->a_cookies = NULL; 432 } 433 } else { 434 if (cookies) { 435 *ap->a_ncookies = cookie_index; 436 *ap->a_cookies = cookies; 437 } 438 } 439 return (error); 440 } 441 442 443 static int 444 devfs_nresolve(struct vop_nresolve_args *ap) 445 { 446 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp); 447 struct devfs_node *node, *found = NULL; 448 struct namecache *ncp; 449 struct vnode *vp = NULL; 450 int error = 0; 451 int len; 452 int depth; 453 454 ncp = ap->a_nch->ncp; 455 len = ncp->nc_nlen; 456 457 if (!devfs_node_is_accessible(dnode)) 458 return ENOENT; 459 460 lockmgr(&devfs_lock, LK_EXCLUSIVE); 461 462 if ((dnode->node_type != Proot) && (dnode->node_type != Pdir)) { 463 error = ENOENT; 464 cache_setvp(ap->a_nch, NULL); 465 goto out; 466 } 467 468 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) { 469 if (len == node->d_dir.d_namlen) { 470 if (!memcmp(ncp->nc_name, node->d_dir.d_name, len)) { 471 found = node; 472 break; 473 } 474 } 475 } 476 477 if (found) { 478 depth = 0; 479 while ((found->node_type == Plink) && (found->link_target)) { 480 if (depth >= 8) { 481 devfs_debug(DEVFS_DEBUG_SHOW, "Recursive link or depth >= 8"); 482 break; 483 } 484 485 found = found->link_target; 486 ++depth; 487 } 488 489 if (!(found->flags & DEVFS_HIDDEN)) 490 devfs_allocv(/*ap->a_dvp->v_mount, */ &vp, found); 491 } 492 493 if (vp == NULL) { 494 error = ENOENT; 495 cache_setvp(ap->a_nch, NULL); 496 goto out; 497 498 } 499 KKASSERT(vp); 500 vn_unlock(vp); 501 cache_setvp(ap->a_nch, vp); 502 vrele(vp); 503 out: 504 lockmgr(&devfs_lock, LK_RELEASE); 505 506 return error; 507 } 508 509 510 static int 511 devfs_nlookupdotdot(struct vop_nlookupdotdot_args *ap) 512 { 513 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp); 514 515 *ap->a_vpp = NULL; 516 if (!devfs_node_is_accessible(dnode)) 517 return ENOENT; 518 519 lockmgr(&devfs_lock, LK_EXCLUSIVE); 520 if (dnode->parent != NULL) { 521 devfs_allocv(ap->a_vpp, dnode->parent); 522 vn_unlock(*ap->a_vpp); 523 } 524 lockmgr(&devfs_lock, LK_RELEASE); 525 526 return ((*ap->a_vpp == NULL) ? ENOENT : 0); 527 } 528 529 530 static int 531 devfs_getattr(struct vop_getattr_args *ap) 532 { 533 struct devfs_node *node = DEVFS_NODE(ap->a_vp); 534 struct vattr *vap = ap->a_vap; 535 struct partinfo pinfo; 536 int error = 0; 537 538 #if 0 539 if (!devfs_node_is_accessible(node)) 540 return ENOENT; 541 #endif 542 node_sync_dev_get(node); 543 544 lockmgr(&devfs_lock, LK_EXCLUSIVE); 545 546 /* start by zeroing out the attributes */ 547 VATTR_NULL(vap); 548 549 /* next do all the common fields */ 550 vap->va_type = ap->a_vp->v_type; 551 vap->va_mode = node->mode; 552 vap->va_fileid = DEVFS_NODE(ap->a_vp)->d_dir.d_ino ; 553 vap->va_flags = 0; 554 vap->va_blocksize = DEV_BSIZE; 555 vap->va_bytes = vap->va_size = 0; 556 557 vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0]; 558 559 vap->va_atime = node->atime; 560 vap->va_mtime = node->mtime; 561 vap->va_ctime = node->ctime; 562 563 vap->va_nlink = 1; /* number of references to file */ 564 565 vap->va_uid = node->uid; 566 vap->va_gid = node->gid; 567 568 vap->va_rmajor = 0; 569 vap->va_rminor = 0; 570 571 if ((node->node_type == Pdev) && node->d_dev) { 572 reference_dev(node->d_dev); 573 vap->va_rminor = node->d_dev->si_uminor; 574 release_dev(node->d_dev); 575 } 576 577 /* For a softlink the va_size is the length of the softlink */ 578 if (node->symlink_name != 0) { 579 vap->va_bytes = vap->va_size = node->symlink_namelen; 580 } 581 582 /* 583 * For a disk-type device, va_size is the size of the underlying 584 * device, so that lseek() works properly. 585 */ 586 if ((node->d_dev) && (dev_dflags(node->d_dev) & D_DISK)) { 587 bzero(&pinfo, sizeof(pinfo)); 588 error = dev_dioctl(node->d_dev, DIOCGPART, (void *)&pinfo, 589 0, proc0.p_ucred, NULL); 590 if ((error == 0) && (pinfo.media_blksize != 0)) { 591 vap->va_size = pinfo.media_size; 592 } else { 593 vap->va_size = 0; 594 error = 0; 595 } 596 } 597 598 lockmgr(&devfs_lock, LK_RELEASE); 599 600 return (error); 601 } 602 603 604 static int 605 devfs_setattr(struct vop_setattr_args *ap) 606 { 607 struct devfs_node *node = DEVFS_NODE(ap->a_vp); 608 struct vattr *vap; 609 int error = 0; 610 611 if (!devfs_node_is_accessible(node)) 612 return ENOENT; 613 node_sync_dev_get(node); 614 615 lockmgr(&devfs_lock, LK_EXCLUSIVE); 616 617 vap = ap->a_vap; 618 619 if (vap->va_uid != (uid_t)VNOVAL) { 620 if ((ap->a_cred->cr_uid != node->uid) && 621 (!groupmember(node->gid, ap->a_cred))) { 622 error = priv_check(curthread, PRIV_VFS_CHOWN); 623 if (error) 624 goto out; 625 } 626 node->uid = vap->va_uid; 627 } 628 629 if (vap->va_gid != (uid_t)VNOVAL) { 630 if ((ap->a_cred->cr_uid != node->uid) && 631 (!groupmember(node->gid, ap->a_cred))) { 632 error = priv_check(curthread, PRIV_VFS_CHOWN); 633 if (error) 634 goto out; 635 } 636 node->gid = vap->va_gid; 637 } 638 639 if (vap->va_mode != (mode_t)VNOVAL) { 640 if (ap->a_cred->cr_uid != node->uid) { 641 error = priv_check(curthread, PRIV_VFS_ADMIN); 642 if (error) 643 goto out; 644 } 645 node->mode = vap->va_mode; 646 } 647 648 out: 649 node_sync_dev_set(node); 650 nanotime(&node->ctime); 651 lockmgr(&devfs_lock, LK_RELEASE); 652 653 return error; 654 } 655 656 657 static int 658 devfs_readlink(struct vop_readlink_args *ap) 659 { 660 struct devfs_node *node = DEVFS_NODE(ap->a_vp); 661 int ret; 662 663 if (!devfs_node_is_accessible(node)) 664 return ENOENT; 665 666 lockmgr(&devfs_lock, LK_EXCLUSIVE); 667 ret = uiomove(node->symlink_name, node->symlink_namelen, ap->a_uio); 668 lockmgr(&devfs_lock, LK_RELEASE); 669 670 return ret; 671 } 672 673 674 static int 675 devfs_print(struct vop_print_args *ap) 676 { 677 return (0); 678 } 679 680 static int 681 devfs_nmkdir(struct vop_nmkdir_args *ap) 682 { 683 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp); 684 struct devfs_node *node; 685 686 if (!devfs_node_is_accessible(dnode)) 687 return ENOENT; 688 689 if ((dnode->node_type != Proot) && (dnode->node_type != Pdir)) 690 goto out; 691 692 lockmgr(&devfs_lock, LK_EXCLUSIVE); 693 devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Pdir, 694 ap->a_nch->ncp->nc_name, dnode, NULL); 695 696 if (*ap->a_vpp) { 697 node = DEVFS_NODE(*ap->a_vpp); 698 node->flags |= DEVFS_USER_CREATED; 699 cache_setunresolved(ap->a_nch); 700 cache_setvp(ap->a_nch, *ap->a_vpp); 701 } 702 lockmgr(&devfs_lock, LK_RELEASE); 703 out: 704 return ((*ap->a_vpp == NULL) ? ENOTDIR : 0); 705 } 706 707 static int 708 devfs_nsymlink(struct vop_nsymlink_args *ap) 709 { 710 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp); 711 struct devfs_node *node; 712 size_t targetlen; 713 714 if (!devfs_node_is_accessible(dnode)) 715 return ENOENT; 716 717 ap->a_vap->va_type = VLNK; 718 719 if ((dnode->node_type != Proot) && (dnode->node_type != Pdir)) 720 goto out; 721 722 lockmgr(&devfs_lock, LK_EXCLUSIVE); 723 devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Plink, 724 ap->a_nch->ncp->nc_name, dnode, NULL); 725 726 targetlen = strlen(ap->a_target); 727 if (*ap->a_vpp) { 728 node = DEVFS_NODE(*ap->a_vpp); 729 node->flags |= DEVFS_USER_CREATED; 730 node->symlink_namelen = targetlen; 731 node->symlink_name = kmalloc(targetlen + 1, M_DEVFS, M_WAITOK); 732 memcpy(node->symlink_name, ap->a_target, targetlen); 733 node->symlink_name[targetlen] = '\0'; 734 cache_setunresolved(ap->a_nch); 735 cache_setvp(ap->a_nch, *ap->a_vpp); 736 } 737 lockmgr(&devfs_lock, LK_RELEASE); 738 out: 739 return ((*ap->a_vpp == NULL) ? ENOTDIR : 0); 740 } 741 742 static int 743 devfs_nrmdir(struct vop_nrmdir_args *ap) 744 { 745 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp); 746 struct devfs_node *node; 747 struct namecache *ncp; 748 int error = ENOENT; 749 750 ncp = ap->a_nch->ncp; 751 752 if (!devfs_node_is_accessible(dnode)) 753 return ENOENT; 754 755 lockmgr(&devfs_lock, LK_EXCLUSIVE); 756 757 if ((dnode->node_type != Proot) && (dnode->node_type != Pdir)) 758 goto out; 759 760 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) { 761 if (ncp->nc_nlen != node->d_dir.d_namlen) 762 continue; 763 if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen)) 764 continue; 765 766 /* 767 * only allow removal of user created dirs 768 */ 769 if ((node->flags & DEVFS_USER_CREATED) == 0) { 770 error = EPERM; 771 goto out; 772 } else if (node->node_type != Pdir) { 773 error = ENOTDIR; 774 goto out; 775 } else if (node->nchildren > 2) { 776 error = ENOTEMPTY; 777 goto out; 778 } else { 779 if (node->v_node) 780 cache_inval_vp(node->v_node, CINV_DESTROY); 781 devfs_unlinkp(node); 782 error = 0; 783 break; 784 } 785 } 786 787 cache_setunresolved(ap->a_nch); 788 cache_setvp(ap->a_nch, NULL); 789 790 out: 791 lockmgr(&devfs_lock, LK_RELEASE); 792 return error; 793 } 794 795 static int 796 devfs_nremove(struct vop_nremove_args *ap) 797 { 798 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp); 799 struct devfs_node *node; 800 struct namecache *ncp; 801 int error = ENOENT; 802 803 ncp = ap->a_nch->ncp; 804 805 if (!devfs_node_is_accessible(dnode)) 806 return ENOENT; 807 808 lockmgr(&devfs_lock, LK_EXCLUSIVE); 809 810 if ((dnode->node_type != Proot) && (dnode->node_type != Pdir)) 811 goto out; 812 813 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) { 814 if (ncp->nc_nlen != node->d_dir.d_namlen) 815 continue; 816 if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen)) 817 continue; 818 819 /* 820 * only allow removal of user created stuff (e.g. symlinks) 821 */ 822 if ((node->flags & DEVFS_USER_CREATED) == 0) { 823 error = EPERM; 824 goto out; 825 } else if (node->node_type == Pdir) { 826 error = EISDIR; 827 goto out; 828 } else { 829 if (node->v_node) 830 cache_inval_vp(node->v_node, CINV_DESTROY); 831 devfs_unlinkp(node); 832 error = 0; 833 break; 834 } 835 } 836 837 cache_setunresolved(ap->a_nch); 838 cache_setvp(ap->a_nch, NULL); 839 840 out: 841 lockmgr(&devfs_lock, LK_RELEASE); 842 return error; 843 } 844 845 846 static int 847 devfs_spec_open(struct vop_open_args *ap) 848 { 849 struct vnode *vp = ap->a_vp; 850 struct vnode *orig_vp = NULL; 851 struct devfs_node *node = DEVFS_NODE(vp); 852 struct devfs_node *newnode; 853 cdev_t dev, ndev = NULL; 854 int error = 0; 855 856 if (node) { 857 if (node->d_dev == NULL) 858 return ENXIO; 859 if (!devfs_node_is_accessible(node)) 860 return ENOENT; 861 } 862 863 if ((dev = vp->v_rdev) == NULL) 864 return ENXIO; 865 866 if (node && ap->a_fp) { 867 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_open: -1.1-\n"); 868 lockmgr(&devfs_lock, LK_EXCLUSIVE); 869 870 ndev = devfs_clone(dev, node->d_dir.d_name, node->d_dir.d_namlen, 871 ap->a_mode, ap->a_cred); 872 if (ndev != NULL) { 873 newnode = devfs_create_device_node( 874 DEVFS_MNTDATA(vp->v_mount)->root_node, 875 ndev, NULL, NULL); 876 /* XXX: possibly destroy device if this happens */ 877 878 if (newnode != NULL) { 879 dev = ndev; 880 devfs_link_dev(dev); 881 882 devfs_debug(DEVFS_DEBUG_DEBUG, 883 "parent here is: %s, node is: |%s|\n", 884 ((node->parent->node_type == Proot) ? 885 "ROOT!" : node->parent->d_dir.d_name), 886 newnode->d_dir.d_name); 887 devfs_debug(DEVFS_DEBUG_DEBUG, 888 "test: %s\n", 889 ((struct devfs_node *)(TAILQ_LAST(DEVFS_DENODE_HEAD(node->parent), devfs_node_head)))->d_dir.d_name); 890 891 /* 892 * orig_vp is set to the original vp if we cloned. 893 */ 894 /* node->flags |= DEVFS_CLONED; */ 895 devfs_allocv(&vp, newnode); 896 orig_vp = ap->a_vp; 897 ap->a_vp = vp; 898 } 899 } 900 lockmgr(&devfs_lock, LK_RELEASE); 901 } 902 903 devfs_debug(DEVFS_DEBUG_DEBUG, 904 "devfs_spec_open() called on %s! \n", 905 dev->si_name); 906 907 /* 908 * Make this field valid before any I/O in ->d_open 909 */ 910 if (!dev->si_iosize_max) 911 dev->si_iosize_max = DFLTPHYS; 912 913 if (dev_dflags(dev) & D_TTY) 914 vsetflags(vp, VISTTY); 915 916 vn_unlock(vp); 917 error = dev_dopen(dev, ap->a_mode, S_IFCHR, ap->a_cred); 918 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 919 920 /* 921 * Clean up any cloned vp if we error out. 922 */ 923 if (error) { 924 if (orig_vp) { 925 vput(vp); 926 ap->a_vp = orig_vp; 927 /* orig_vp = NULL; */ 928 } 929 return error; 930 } 931 932 /* 933 * This checks if the disk device is going to be opened for writing. 934 * It will be only allowed in the cases where securelevel permits it 935 * and it's not mounted R/W. 936 */ 937 if ((dev_dflags(dev) & D_DISK) && (ap->a_mode & FWRITE) && 938 (ap->a_cred != FSCRED)) { 939 940 /* Very secure mode. No open for writing allowed */ 941 if (securelevel >= 2) 942 return EPERM; 943 944 /* 945 * If it is mounted R/W, do not allow to open for writing. 946 * In the case it's mounted read-only but securelevel 947 * is >= 1, then do not allow opening for writing either. 948 */ 949 if (vfs_mountedon(vp)) { 950 if (!(dev->si_mountpoint->mnt_flag & MNT_RDONLY)) 951 return EBUSY; 952 else if (securelevel >= 1) 953 return EPERM; 954 } 955 } 956 957 if (dev_dflags(dev) & D_TTY) { 958 if (dev->si_tty) { 959 struct tty *tp; 960 tp = dev->si_tty; 961 if (!tp->t_stop) { 962 devfs_debug(DEVFS_DEBUG_DEBUG, 963 "devfs: no t_stop\n"); 964 tp->t_stop = nottystop; 965 } 966 } 967 } 968 969 970 if (vn_isdisk(vp, NULL)) { 971 if (!dev->si_bsize_phys) 972 dev->si_bsize_phys = DEV_BSIZE; 973 vinitvmio(vp, IDX_TO_OFF(INT_MAX), PAGE_SIZE, -1); 974 } 975 976 vop_stdopen(ap); 977 #if 0 978 if (node) 979 nanotime(&node->atime); 980 #endif 981 982 if (orig_vp) 983 vn_unlock(vp); 984 985 /* Ugly pty magic, to make pty devices appear once they are opened */ 986 if (node && (node->flags & DEVFS_PTY) == DEVFS_PTY) 987 node->flags &= ~DEVFS_INVISIBLE; 988 989 if (ap->a_fp) { 990 ap->a_fp->f_type = DTYPE_VNODE; 991 ap->a_fp->f_flag = ap->a_mode & FMASK; 992 ap->a_fp->f_ops = &devfs_dev_fileops; 993 ap->a_fp->f_data = vp; 994 } 995 996 return 0; 997 } 998 999 1000 static int 1001 devfs_spec_close(struct vop_close_args *ap) 1002 { 1003 struct devfs_node *node = DEVFS_NODE(ap->a_vp); 1004 struct proc *p = curproc; 1005 struct vnode *vp = ap->a_vp; 1006 cdev_t dev = vp->v_rdev; 1007 int error = 0; 1008 int needrelock; 1009 1010 devfs_debug(DEVFS_DEBUG_DEBUG, 1011 "devfs_spec_close() called on %s! \n", 1012 dev->si_name); 1013 1014 /* 1015 * A couple of hacks for devices and tty devices. The 1016 * vnode ref count cannot be used to figure out the 1017 * last close, but we can use v_opencount now that 1018 * revoke works properly. 1019 * 1020 * Detect the last close on a controlling terminal and clear 1021 * the session (half-close). 1022 */ 1023 if (dev) 1024 reference_dev(dev); 1025 1026 if (p && vp->v_opencount <= 1 && vp == p->p_session->s_ttyvp) { 1027 p->p_session->s_ttyvp = NULL; 1028 vrele(vp); 1029 } 1030 1031 /* 1032 * Vnodes can be opened and closed multiple times. Do not really 1033 * close the device unless (1) it is being closed forcibly, 1034 * (2) the device wants to track closes, or (3) this is the last 1035 * vnode doing its last close on the device. 1036 * 1037 * XXX the VXLOCK (force close) case can leave vnodes referencing 1038 * a closed device. This might not occur now that our revoke is 1039 * fixed. 1040 */ 1041 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -1- \n"); 1042 if (dev && ((vp->v_flag & VRECLAIMED) || 1043 (dev_dflags(dev) & D_TRACKCLOSE) || 1044 (vp->v_opencount == 1))) { 1045 /* 1046 * Unlock around dev_dclose() 1047 */ 1048 needrelock = 0; 1049 if (vn_islocked(vp)) { 1050 needrelock = 1; 1051 vn_unlock(vp); 1052 } 1053 error = dev_dclose(dev, ap->a_fflag, S_IFCHR); 1054 1055 /* 1056 * Ugly pty magic, to make pty devices disappear again once 1057 * they are closed 1058 */ 1059 if (node && (node->flags & DEVFS_PTY) == DEVFS_PTY) 1060 node->flags |= DEVFS_INVISIBLE; 1061 1062 if (needrelock) 1063 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1064 } else { 1065 error = 0; 1066 } 1067 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -2- \n"); 1068 1069 /* 1070 * Track the actual opens and closes on the vnode. The last close 1071 * disassociates the rdev. If the rdev is already disassociated or 1072 * the opencount is already 0, the vnode might have been revoked 1073 * and no further opencount tracking occurs. 1074 */ 1075 if (dev) 1076 release_dev(dev); 1077 if (vp->v_opencount > 0) 1078 vop_stdclose(ap); 1079 return(error); 1080 1081 } 1082 1083 1084 static int 1085 devfs_specf_close(struct file *fp) 1086 { 1087 struct vnode *vp = (struct vnode *)fp->f_data; 1088 int error; 1089 1090 get_mplock(); 1091 fp->f_ops = &badfileops; 1092 error = vn_close(vp, fp->f_flag); 1093 rel_mplock(); 1094 1095 return (error); 1096 } 1097 1098 1099 /* 1100 * Device-optimized file table vnode read routine. 1101 * 1102 * This bypasses the VOP table and talks directly to the device. Most 1103 * filesystems just route to specfs and can make this optimization. 1104 * 1105 * MPALMOSTSAFE - acquires mplock 1106 */ 1107 static int 1108 devfs_specf_read(struct file *fp, struct uio *uio, 1109 struct ucred *cred, int flags) 1110 { 1111 struct devfs_node *node; 1112 struct vnode *vp; 1113 int ioflag; 1114 int error; 1115 cdev_t dev; 1116 1117 KASSERT(uio->uio_td == curthread, 1118 ("uio_td %p is not td %p", uio->uio_td, curthread)); 1119 1120 if (uio->uio_resid == 0) 1121 return 0; 1122 1123 vp = (struct vnode *)fp->f_data; 1124 if (vp == NULL || vp->v_type == VBAD) 1125 return EBADF; 1126 1127 node = DEVFS_NODE(vp); 1128 1129 if ((dev = vp->v_rdev) == NULL) 1130 return EBADF; 1131 1132 /* only acquire mplock for devices that require it */ 1133 if (!(dev_dflags(dev) & D_MPSAFE_READ)) { 1134 atomic_add_int(&mplock_reads, 1); 1135 get_mplock(); 1136 } else { 1137 atomic_add_int(&mpsafe_reads, 1); 1138 } 1139 1140 reference_dev(dev); 1141 1142 if ((flags & O_FOFFSET) == 0) 1143 uio->uio_offset = fp->f_offset; 1144 1145 ioflag = 0; 1146 if (flags & O_FBLOCKING) { 1147 /* ioflag &= ~IO_NDELAY; */ 1148 } else if (flags & O_FNONBLOCKING) { 1149 ioflag |= IO_NDELAY; 1150 } else if (fp->f_flag & FNONBLOCK) { 1151 ioflag |= IO_NDELAY; 1152 } 1153 if (flags & O_FBUFFERED) { 1154 /* ioflag &= ~IO_DIRECT; */ 1155 } else if (flags & O_FUNBUFFERED) { 1156 ioflag |= IO_DIRECT; 1157 } else if (fp->f_flag & O_DIRECT) { 1158 ioflag |= IO_DIRECT; 1159 } 1160 ioflag |= sequential_heuristic(uio, fp); 1161 1162 error = dev_dread(dev, uio, ioflag); 1163 1164 release_dev(dev); 1165 if (node) 1166 nanotime(&node->atime); 1167 if ((flags & O_FOFFSET) == 0) 1168 fp->f_offset = uio->uio_offset; 1169 fp->f_nextoff = uio->uio_offset; 1170 1171 if (!(dev_dflags(dev) & D_MPSAFE_READ)) 1172 rel_mplock(); 1173 1174 return (error); 1175 } 1176 1177 1178 static int 1179 devfs_specf_write(struct file *fp, struct uio *uio, 1180 struct ucred *cred, int flags) 1181 { 1182 struct devfs_node *node; 1183 struct vnode *vp; 1184 int ioflag; 1185 int error; 1186 cdev_t dev; 1187 1188 KASSERT(uio->uio_td == curthread, 1189 ("uio_td %p is not p %p", uio->uio_td, curthread)); 1190 1191 vp = (struct vnode *)fp->f_data; 1192 if (vp == NULL || vp->v_type == VBAD) 1193 return EBADF; 1194 1195 node = DEVFS_NODE(vp); 1196 1197 if (vp->v_type == VREG) 1198 bwillwrite(uio->uio_resid); 1199 1200 vp = (struct vnode *)fp->f_data; 1201 1202 if ((dev = vp->v_rdev) == NULL) 1203 return EBADF; 1204 1205 /* only acquire mplock for devices that require it */ 1206 if (!(dev_dflags(dev) & D_MPSAFE_WRITE)) { 1207 atomic_add_int(&mplock_writes, 1); 1208 get_mplock(); 1209 } else { 1210 atomic_add_int(&mpsafe_writes, 1); 1211 } 1212 1213 reference_dev(dev); 1214 1215 if ((flags & O_FOFFSET) == 0) 1216 uio->uio_offset = fp->f_offset; 1217 1218 ioflag = IO_UNIT; 1219 if (vp->v_type == VREG && 1220 ((fp->f_flag & O_APPEND) || (flags & O_FAPPEND))) { 1221 ioflag |= IO_APPEND; 1222 } 1223 1224 if (flags & O_FBLOCKING) { 1225 /* ioflag &= ~IO_NDELAY; */ 1226 } else if (flags & O_FNONBLOCKING) { 1227 ioflag |= IO_NDELAY; 1228 } else if (fp->f_flag & FNONBLOCK) { 1229 ioflag |= IO_NDELAY; 1230 } 1231 if (flags & O_FBUFFERED) { 1232 /* ioflag &= ~IO_DIRECT; */ 1233 } else if (flags & O_FUNBUFFERED) { 1234 ioflag |= IO_DIRECT; 1235 } else if (fp->f_flag & O_DIRECT) { 1236 ioflag |= IO_DIRECT; 1237 } 1238 if (flags & O_FASYNCWRITE) { 1239 /* ioflag &= ~IO_SYNC; */ 1240 } else if (flags & O_FSYNCWRITE) { 1241 ioflag |= IO_SYNC; 1242 } else if (fp->f_flag & O_FSYNC) { 1243 ioflag |= IO_SYNC; 1244 } 1245 1246 if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)) 1247 ioflag |= IO_SYNC; 1248 ioflag |= sequential_heuristic(uio, fp); 1249 1250 error = dev_dwrite(dev, uio, ioflag); 1251 1252 release_dev(dev); 1253 if (node) { 1254 nanotime(&node->atime); 1255 nanotime(&node->mtime); 1256 } 1257 1258 if ((flags & O_FOFFSET) == 0) 1259 fp->f_offset = uio->uio_offset; 1260 fp->f_nextoff = uio->uio_offset; 1261 1262 if (!(dev_dflags(dev) & D_MPSAFE_WRITE)) 1263 rel_mplock(); 1264 return (error); 1265 } 1266 1267 1268 static int 1269 devfs_specf_stat(struct file *fp, struct stat *sb, struct ucred *cred) 1270 { 1271 struct vnode *vp; 1272 struct vattr vattr; 1273 struct vattr *vap; 1274 u_short mode; 1275 cdev_t dev; 1276 int error; 1277 1278 vp = (struct vnode *)fp->f_data; 1279 if (vp == NULL || vp->v_type == VBAD) 1280 return EBADF; 1281 1282 error = vn_stat(vp, sb, cred); 1283 if (error) 1284 return (error); 1285 1286 vap = &vattr; 1287 error = VOP_GETATTR(vp, vap); 1288 if (error) 1289 return (error); 1290 1291 /* 1292 * Zero the spare stat fields 1293 */ 1294 sb->st_lspare = 0; 1295 sb->st_qspare1 = 0; 1296 sb->st_qspare2 = 0; 1297 1298 /* 1299 * Copy from vattr table ... or not in case it's a cloned device 1300 */ 1301 if (vap->va_fsid != VNOVAL) 1302 sb->st_dev = vap->va_fsid; 1303 else 1304 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0]; 1305 1306 sb->st_ino = vap->va_fileid; 1307 1308 mode = vap->va_mode; 1309 mode |= S_IFCHR; 1310 sb->st_mode = mode; 1311 1312 if (vap->va_nlink > (nlink_t)-1) 1313 sb->st_nlink = (nlink_t)-1; 1314 else 1315 sb->st_nlink = vap->va_nlink; 1316 1317 sb->st_uid = vap->va_uid; 1318 sb->st_gid = vap->va_gid; 1319 sb->st_rdev = dev2udev(DEVFS_NODE(vp)->d_dev); 1320 sb->st_size = vap->va_bytes; 1321 sb->st_atimespec = vap->va_atime; 1322 sb->st_mtimespec = vap->va_mtime; 1323 sb->st_ctimespec = vap->va_ctime; 1324 1325 /* 1326 * A VCHR and VBLK device may track the last access and last modified 1327 * time independantly of the filesystem. This is particularly true 1328 * because device read and write calls may bypass the filesystem. 1329 */ 1330 if (vp->v_type == VCHR || vp->v_type == VBLK) { 1331 dev = vp->v_rdev; 1332 if (dev != NULL) { 1333 if (dev->si_lastread) { 1334 sb->st_atimespec.tv_sec = dev->si_lastread; 1335 sb->st_atimespec.tv_nsec = 0; 1336 } 1337 if (dev->si_lastwrite) { 1338 sb->st_atimespec.tv_sec = dev->si_lastwrite; 1339 sb->st_atimespec.tv_nsec = 0; 1340 } 1341 } 1342 } 1343 1344 /* 1345 * According to www.opengroup.org, the meaning of st_blksize is 1346 * "a filesystem-specific preferred I/O block size for this 1347 * object. In some filesystem types, this may vary from file 1348 * to file" 1349 * Default to PAGE_SIZE after much discussion. 1350 */ 1351 1352 sb->st_blksize = PAGE_SIZE; 1353 1354 sb->st_flags = vap->va_flags; 1355 1356 error = priv_check_cred(cred, PRIV_VFS_GENERATION, 0); 1357 if (error) 1358 sb->st_gen = 0; 1359 else 1360 sb->st_gen = (u_int32_t)vap->va_gen; 1361 1362 sb->st_blocks = vap->va_bytes / S_BLKSIZE; 1363 1364 return (0); 1365 } 1366 1367 1368 static int 1369 devfs_specf_kqfilter(struct file *fp, struct knote *kn) 1370 { 1371 struct vnode *vp; 1372 int error; 1373 cdev_t dev; 1374 1375 get_mplock(); 1376 1377 vp = (struct vnode *)fp->f_data; 1378 if (vp == NULL || vp->v_type == VBAD) { 1379 error = EBADF; 1380 goto done; 1381 } 1382 if ((dev = vp->v_rdev) == NULL) { 1383 error = EBADF; 1384 goto done; 1385 } 1386 reference_dev(dev); 1387 1388 error = dev_dkqfilter(dev, kn); 1389 1390 release_dev(dev); 1391 1392 done: 1393 rel_mplock(); 1394 return (error); 1395 } 1396 1397 1398 static int 1399 devfs_specf_poll(struct file *fp, int events, struct ucred *cred) 1400 { 1401 struct devfs_node *node; 1402 struct vnode *vp; 1403 int error; 1404 cdev_t dev; 1405 1406 get_mplock(); 1407 1408 vp = (struct vnode *)fp->f_data; 1409 if (vp == NULL || vp->v_type == VBAD) { 1410 error = EBADF; 1411 goto done; 1412 } 1413 node = DEVFS_NODE(vp); 1414 1415 if ((dev = vp->v_rdev) == NULL) { 1416 error = EBADF; 1417 goto done; 1418 } 1419 reference_dev(dev); 1420 error = dev_dpoll(dev, events); 1421 1422 release_dev(dev); 1423 1424 #if 0 1425 if (node) 1426 nanotime(&node->atime); 1427 #endif 1428 done: 1429 rel_mplock(); 1430 return (error); 1431 } 1432 1433 1434 /* 1435 * MPALMOSTSAFE - acquires mplock 1436 */ 1437 static int 1438 devfs_specf_ioctl(struct file *fp, u_long com, caddr_t data, 1439 struct ucred *ucred, struct sysmsg *msg) 1440 { 1441 struct devfs_node *node; 1442 struct vnode *vp; 1443 struct vnode *ovp; 1444 cdev_t dev; 1445 int error; 1446 struct fiodname_args *name_args; 1447 size_t namlen; 1448 const char *name; 1449 1450 vp = ((struct vnode *)fp->f_data); 1451 1452 if ((dev = vp->v_rdev) == NULL) 1453 return EBADF; /* device was revoked */ 1454 1455 reference_dev(dev); 1456 1457 node = DEVFS_NODE(vp); 1458 1459 devfs_debug(DEVFS_DEBUG_DEBUG, 1460 "devfs_specf_ioctl() called! for dev %s\n", 1461 dev->si_name); 1462 1463 if (com == FIODTYPE) { 1464 *(int *)data = dev_dflags(dev) & D_TYPEMASK; 1465 error = 0; 1466 goto out; 1467 } else if (com == FIODNAME) { 1468 name_args = (struct fiodname_args *)data; 1469 name = dev->si_name; 1470 namlen = strlen(name) + 1; 1471 1472 devfs_debug(DEVFS_DEBUG_DEBUG, 1473 "ioctl, got: FIODNAME for %s\n", name); 1474 1475 if (namlen <= name_args->len) 1476 error = copyout(dev->si_name, name_args->name, namlen); 1477 else 1478 error = EINVAL; 1479 1480 devfs_debug(DEVFS_DEBUG_DEBUG, 1481 "ioctl stuff: error: %d\n", error); 1482 goto out; 1483 } 1484 1485 /* only acquire mplock for devices that require it */ 1486 if (!(dev_dflags(dev) & D_MPSAFE_IOCTL)) 1487 get_mplock(); 1488 1489 error = dev_dioctl(dev, com, data, fp->f_flag, ucred, msg); 1490 1491 #if 0 1492 if (node) { 1493 nanotime(&node->atime); 1494 nanotime(&node->mtime); 1495 } 1496 #endif 1497 1498 if (!(dev_dflags(dev) & D_MPSAFE_IOCTL)) 1499 rel_mplock(); 1500 1501 if (com == TIOCSCTTY) { 1502 devfs_debug(DEVFS_DEBUG_DEBUG, 1503 "devfs_specf_ioctl: got TIOCSCTTY on %s\n", 1504 dev->si_name); 1505 } 1506 if (error == 0 && com == TIOCSCTTY) { 1507 struct proc *p = curthread->td_proc; 1508 struct session *sess; 1509 1510 devfs_debug(DEVFS_DEBUG_DEBUG, 1511 "devfs_specf_ioctl: dealing with TIOCSCTTY on %s\n", 1512 dev->si_name); 1513 if (p == NULL) { 1514 error = ENOTTY; 1515 goto out; 1516 } 1517 sess = p->p_session; 1518 1519 /* 1520 * Do nothing if reassigning same control tty 1521 */ 1522 if (sess->s_ttyvp == vp) { 1523 error = 0; 1524 goto out; 1525 } 1526 1527 /* 1528 * Get rid of reference to old control tty 1529 */ 1530 ovp = sess->s_ttyvp; 1531 vref(vp); 1532 sess->s_ttyvp = vp; 1533 if (ovp) 1534 vrele(ovp); 1535 } 1536 1537 out: 1538 release_dev(dev); 1539 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_specf_ioctl() finished! \n"); 1540 return (error); 1541 } 1542 1543 1544 static int 1545 devfs_spec_fsync(struct vop_fsync_args *ap) 1546 { 1547 struct vnode *vp = ap->a_vp; 1548 int error; 1549 1550 if (!vn_isdisk(vp, NULL)) 1551 return (0); 1552 1553 /* 1554 * Flush all dirty buffers associated with a block device. 1555 */ 1556 error = vfsync(vp, ap->a_waitfor, 10000, NULL, NULL); 1557 return (error); 1558 } 1559 1560 static int 1561 devfs_spec_read(struct vop_read_args *ap) 1562 { 1563 struct devfs_node *node; 1564 struct vnode *vp; 1565 struct uio *uio; 1566 cdev_t dev; 1567 int error; 1568 1569 vp = ap->a_vp; 1570 dev = vp->v_rdev; 1571 uio = ap->a_uio; 1572 node = DEVFS_NODE(vp); 1573 1574 if (dev == NULL) /* device was revoked */ 1575 return (EBADF); 1576 if (uio->uio_resid == 0) 1577 return (0); 1578 1579 vn_unlock(vp); 1580 error = dev_dread(dev, uio, ap->a_ioflag); 1581 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1582 1583 if (node) 1584 nanotime(&node->atime); 1585 1586 return (error); 1587 } 1588 1589 /* 1590 * Vnode op for write 1591 * 1592 * spec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, 1593 * struct ucred *a_cred) 1594 */ 1595 static int 1596 devfs_spec_write(struct vop_write_args *ap) 1597 { 1598 struct devfs_node *node; 1599 struct vnode *vp; 1600 struct uio *uio; 1601 cdev_t dev; 1602 int error; 1603 1604 vp = ap->a_vp; 1605 dev = vp->v_rdev; 1606 uio = ap->a_uio; 1607 node = DEVFS_NODE(vp); 1608 1609 KKASSERT(uio->uio_segflg != UIO_NOCOPY); 1610 1611 if (dev == NULL) /* device was revoked */ 1612 return (EBADF); 1613 1614 vn_unlock(vp); 1615 error = dev_dwrite(dev, uio, ap->a_ioflag); 1616 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1617 1618 if (node) { 1619 nanotime(&node->atime); 1620 nanotime(&node->mtime); 1621 } 1622 1623 return (error); 1624 } 1625 1626 /* 1627 * Device ioctl operation. 1628 * 1629 * spec_ioctl(struct vnode *a_vp, int a_command, caddr_t a_data, 1630 * int a_fflag, struct ucred *a_cred, struct sysmsg *msg) 1631 */ 1632 static int 1633 devfs_spec_ioctl(struct vop_ioctl_args *ap) 1634 { 1635 struct vnode *vp = ap->a_vp; 1636 struct devfs_node *node; 1637 cdev_t dev; 1638 1639 if ((dev = vp->v_rdev) == NULL) 1640 return (EBADF); /* device was revoked */ 1641 node = DEVFS_NODE(vp); 1642 1643 #if 0 1644 if (node) { 1645 nanotime(&node->atime); 1646 nanotime(&node->mtime); 1647 } 1648 #endif 1649 1650 return (dev_dioctl(dev, ap->a_command, ap->a_data, ap->a_fflag, 1651 ap->a_cred, ap->a_sysmsg)); 1652 } 1653 1654 /* 1655 * spec_poll(struct vnode *a_vp, int a_events, struct ucred *a_cred) 1656 */ 1657 /* ARGSUSED */ 1658 static int 1659 devfs_spec_poll(struct vop_poll_args *ap) 1660 { 1661 struct vnode *vp = ap->a_vp; 1662 struct devfs_node *node; 1663 cdev_t dev; 1664 1665 if ((dev = vp->v_rdev) == NULL) 1666 return (EBADF); /* device was revoked */ 1667 node = DEVFS_NODE(vp); 1668 1669 #if 0 1670 if (node) 1671 nanotime(&node->atime); 1672 #endif 1673 1674 return (dev_dpoll(dev, ap->a_events)); 1675 } 1676 1677 /* 1678 * spec_kqfilter(struct vnode *a_vp, struct knote *a_kn) 1679 */ 1680 /* ARGSUSED */ 1681 static int 1682 devfs_spec_kqfilter(struct vop_kqfilter_args *ap) 1683 { 1684 struct vnode *vp = ap->a_vp; 1685 struct devfs_node *node; 1686 cdev_t dev; 1687 1688 if ((dev = vp->v_rdev) == NULL) 1689 return (EBADF); /* device was revoked (EBADF) */ 1690 node = DEVFS_NODE(vp); 1691 1692 #if 0 1693 if (node) 1694 nanotime(&node->atime); 1695 #endif 1696 1697 return (dev_dkqfilter(dev, ap->a_kn)); 1698 } 1699 1700 /* 1701 * Convert a vnode strategy call into a device strategy call. Vnode strategy 1702 * calls are not limited to device DMA limits so we have to deal with the 1703 * case. 1704 * 1705 * spec_strategy(struct vnode *a_vp, struct bio *a_bio) 1706 */ 1707 static int 1708 devfs_spec_strategy(struct vop_strategy_args *ap) 1709 { 1710 struct bio *bio = ap->a_bio; 1711 struct buf *bp = bio->bio_buf; 1712 struct buf *nbp; 1713 struct vnode *vp; 1714 struct mount *mp; 1715 int chunksize; 1716 int maxiosize; 1717 1718 if (bp->b_cmd != BUF_CMD_READ && LIST_FIRST(&bp->b_dep) != NULL) 1719 buf_start(bp); 1720 1721 /* 1722 * Collect statistics on synchronous and asynchronous read 1723 * and write counts for disks that have associated filesystems. 1724 */ 1725 vp = ap->a_vp; 1726 KKASSERT(vp->v_rdev != NULL); /* XXX */ 1727 if (vn_isdisk(vp, NULL) && (mp = vp->v_rdev->si_mountpoint) != NULL) { 1728 if (bp->b_cmd == BUF_CMD_READ) { 1729 if (bp->b_flags & BIO_SYNC) 1730 mp->mnt_stat.f_syncreads++; 1731 else 1732 mp->mnt_stat.f_asyncreads++; 1733 } else { 1734 if (bp->b_flags & BIO_SYNC) 1735 mp->mnt_stat.f_syncwrites++; 1736 else 1737 mp->mnt_stat.f_asyncwrites++; 1738 } 1739 } 1740 1741 /* 1742 * Device iosize limitations only apply to read and write. Shortcut 1743 * the I/O if it fits. 1744 */ 1745 if ((maxiosize = vp->v_rdev->si_iosize_max) == 0) { 1746 devfs_debug(DEVFS_DEBUG_DEBUG, 1747 "%s: si_iosize_max not set!\n", 1748 dev_dname(vp->v_rdev)); 1749 maxiosize = MAXPHYS; 1750 } 1751 #if SPEC_CHAIN_DEBUG & 2 1752 maxiosize = 4096; 1753 #endif 1754 if (bp->b_bcount <= maxiosize || 1755 (bp->b_cmd != BUF_CMD_READ && bp->b_cmd != BUF_CMD_WRITE)) { 1756 dev_dstrategy_chain(vp->v_rdev, bio); 1757 return (0); 1758 } 1759 1760 /* 1761 * Clone the buffer and set up an I/O chain to chunk up the I/O. 1762 */ 1763 nbp = kmalloc(sizeof(*bp), M_DEVBUF, M_INTWAIT|M_ZERO); 1764 initbufbio(nbp); 1765 buf_dep_init(nbp); 1766 BUF_LOCKINIT(nbp); 1767 BUF_LOCK(nbp, LK_EXCLUSIVE); 1768 BUF_KERNPROC(nbp); 1769 nbp->b_vp = vp; 1770 nbp->b_flags = B_PAGING | (bp->b_flags & B_BNOCLIP); 1771 nbp->b_data = bp->b_data; 1772 nbp->b_bio1.bio_done = devfs_spec_strategy_done; 1773 nbp->b_bio1.bio_offset = bio->bio_offset; 1774 nbp->b_bio1.bio_caller_info1.ptr = bio; 1775 1776 /* 1777 * Start the first transfer 1778 */ 1779 if (vn_isdisk(vp, NULL)) 1780 chunksize = vp->v_rdev->si_bsize_phys; 1781 else 1782 chunksize = DEV_BSIZE; 1783 chunksize = maxiosize / chunksize * chunksize; 1784 #if SPEC_CHAIN_DEBUG & 1 1785 devfs_debug(DEVFS_DEBUG_DEBUG, 1786 "spec_strategy chained I/O chunksize=%d\n", 1787 chunksize); 1788 #endif 1789 nbp->b_cmd = bp->b_cmd; 1790 nbp->b_bcount = chunksize; 1791 nbp->b_bufsize = chunksize; /* used to detect a short I/O */ 1792 nbp->b_bio1.bio_caller_info2.index = chunksize; 1793 1794 #if SPEC_CHAIN_DEBUG & 1 1795 devfs_debug(DEVFS_DEBUG_DEBUG, 1796 "spec_strategy: chain %p offset %d/%d bcount %d\n", 1797 bp, 0, bp->b_bcount, nbp->b_bcount); 1798 #endif 1799 1800 dev_dstrategy(vp->v_rdev, &nbp->b_bio1); 1801 1802 if (DEVFS_NODE(vp)) { 1803 nanotime(&DEVFS_NODE(vp)->atime); 1804 nanotime(&DEVFS_NODE(vp)->mtime); 1805 } 1806 1807 return (0); 1808 } 1809 1810 /* 1811 * Chunked up transfer completion routine - chain transfers until done 1812 */ 1813 static 1814 void 1815 devfs_spec_strategy_done(struct bio *nbio) 1816 { 1817 struct buf *nbp = nbio->bio_buf; 1818 struct bio *bio = nbio->bio_caller_info1.ptr; /* original bio */ 1819 struct buf *bp = bio->bio_buf; /* original bp */ 1820 int chunksize = nbio->bio_caller_info2.index; /* chunking */ 1821 int boffset = nbp->b_data - bp->b_data; 1822 1823 if (nbp->b_flags & B_ERROR) { 1824 /* 1825 * An error terminates the chain, propogate the error back 1826 * to the original bp 1827 */ 1828 bp->b_flags |= B_ERROR; 1829 bp->b_error = nbp->b_error; 1830 bp->b_resid = bp->b_bcount - boffset + 1831 (nbp->b_bcount - nbp->b_resid); 1832 #if SPEC_CHAIN_DEBUG & 1 1833 devfs_debug(DEVFS_DEBUG_DEBUG, 1834 "spec_strategy: chain %p error %d bcount %d/%d\n", 1835 bp, bp->b_error, bp->b_bcount, 1836 bp->b_bcount - bp->b_resid); 1837 #endif 1838 kfree(nbp, M_DEVBUF); 1839 biodone(bio); 1840 } else if (nbp->b_resid) { 1841 /* 1842 * A short read or write terminates the chain 1843 */ 1844 bp->b_error = nbp->b_error; 1845 bp->b_resid = bp->b_bcount - boffset + 1846 (nbp->b_bcount - nbp->b_resid); 1847 #if SPEC_CHAIN_DEBUG & 1 1848 devfs_debug(DEVFS_DEBUG_DEBUG, 1849 "spec_strategy: chain %p short read(1) " 1850 "bcount %d/%d\n", 1851 bp, bp->b_bcount - bp->b_resid, bp->b_bcount); 1852 #endif 1853 kfree(nbp, M_DEVBUF); 1854 biodone(bio); 1855 } else if (nbp->b_bcount != nbp->b_bufsize) { 1856 /* 1857 * A short read or write can also occur by truncating b_bcount 1858 */ 1859 #if SPEC_CHAIN_DEBUG & 1 1860 devfs_debug(DEVFS_DEBUG_DEBUG, 1861 "spec_strategy: chain %p short read(2) " 1862 "bcount %d/%d\n", 1863 bp, nbp->b_bcount + boffset, bp->b_bcount); 1864 #endif 1865 bp->b_error = 0; 1866 bp->b_bcount = nbp->b_bcount + boffset; 1867 bp->b_resid = nbp->b_resid; 1868 kfree(nbp, M_DEVBUF); 1869 biodone(bio); 1870 } else if (nbp->b_bcount + boffset == bp->b_bcount) { 1871 /* 1872 * No more data terminates the chain 1873 */ 1874 #if SPEC_CHAIN_DEBUG & 1 1875 devfs_debug(DEVFS_DEBUG_DEBUG, 1876 "spec_strategy: chain %p finished bcount %d\n", 1877 bp, bp->b_bcount); 1878 #endif 1879 bp->b_error = 0; 1880 bp->b_resid = 0; 1881 kfree(nbp, M_DEVBUF); 1882 biodone(bio); 1883 } else { 1884 /* 1885 * Continue the chain 1886 */ 1887 boffset += nbp->b_bcount; 1888 nbp->b_data = bp->b_data + boffset; 1889 nbp->b_bcount = bp->b_bcount - boffset; 1890 if (nbp->b_bcount > chunksize) 1891 nbp->b_bcount = chunksize; 1892 nbp->b_bio1.bio_done = devfs_spec_strategy_done; 1893 nbp->b_bio1.bio_offset = bio->bio_offset + boffset; 1894 1895 #if SPEC_CHAIN_DEBUG & 1 1896 devfs_debug(DEVFS_DEBUG_DEBUG, 1897 "spec_strategy: chain %p offset %d/%d bcount %d\n", 1898 bp, boffset, bp->b_bcount, nbp->b_bcount); 1899 #endif 1900 1901 dev_dstrategy(nbp->b_vp->v_rdev, &nbp->b_bio1); 1902 } 1903 } 1904 1905 /* 1906 * spec_freeblks(struct vnode *a_vp, daddr_t a_addr, daddr_t a_length) 1907 */ 1908 static int 1909 devfs_spec_freeblks(struct vop_freeblks_args *ap) 1910 { 1911 struct buf *bp; 1912 1913 /* 1914 * XXX: This assumes that strategy does the deed right away. 1915 * XXX: this may not be TRTTD. 1916 */ 1917 KKASSERT(ap->a_vp->v_rdev != NULL); 1918 if ((dev_dflags(ap->a_vp->v_rdev) & D_CANFREE) == 0) 1919 return (0); 1920 bp = geteblk(ap->a_length); 1921 bp->b_cmd = BUF_CMD_FREEBLKS; 1922 bp->b_bio1.bio_offset = ap->a_offset; 1923 bp->b_bcount = ap->a_length; 1924 dev_dstrategy(ap->a_vp->v_rdev, &bp->b_bio1); 1925 return (0); 1926 } 1927 1928 /* 1929 * Implement degenerate case where the block requested is the block 1930 * returned, and assume that the entire device is contiguous in regards 1931 * to the contiguous block range (runp and runb). 1932 * 1933 * spec_bmap(struct vnode *a_vp, off_t a_loffset, 1934 * off_t *a_doffsetp, int *a_runp, int *a_runb) 1935 */ 1936 static int 1937 devfs_spec_bmap(struct vop_bmap_args *ap) 1938 { 1939 if (ap->a_doffsetp != NULL) 1940 *ap->a_doffsetp = ap->a_loffset; 1941 if (ap->a_runp != NULL) 1942 *ap->a_runp = MAXBSIZE; 1943 if (ap->a_runb != NULL) { 1944 if (ap->a_loffset < MAXBSIZE) 1945 *ap->a_runb = (int)ap->a_loffset; 1946 else 1947 *ap->a_runb = MAXBSIZE; 1948 } 1949 return (0); 1950 } 1951 1952 1953 /* 1954 * Special device advisory byte-level locks. 1955 * 1956 * spec_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, 1957 * struct flock *a_fl, int a_flags) 1958 */ 1959 /* ARGSUSED */ 1960 static int 1961 devfs_spec_advlock(struct vop_advlock_args *ap) 1962 { 1963 return ((ap->a_flags & F_POSIX) ? EINVAL : EOPNOTSUPP); 1964 } 1965 1966 static void 1967 devfs_spec_getpages_iodone(struct bio *bio) 1968 { 1969 bio->bio_buf->b_cmd = BUF_CMD_DONE; 1970 wakeup(bio->bio_buf); 1971 } 1972 1973 /* 1974 * spec_getpages() - get pages associated with device vnode. 1975 * 1976 * Note that spec_read and spec_write do not use the buffer cache, so we 1977 * must fully implement getpages here. 1978 */ 1979 static int 1980 devfs_spec_getpages(struct vop_getpages_args *ap) 1981 { 1982 vm_offset_t kva; 1983 int error; 1984 int i, pcount, size; 1985 struct buf *bp; 1986 vm_page_t m; 1987 vm_ooffset_t offset; 1988 int toff, nextoff, nread; 1989 struct vnode *vp = ap->a_vp; 1990 int blksiz; 1991 int gotreqpage; 1992 1993 error = 0; 1994 pcount = round_page(ap->a_count) / PAGE_SIZE; 1995 1996 /* 1997 * Calculate the offset of the transfer and do sanity check. 1998 */ 1999 offset = IDX_TO_OFF(ap->a_m[0]->pindex) + ap->a_offset; 2000 2001 /* 2002 * Round up physical size for real devices. We cannot round using 2003 * v_mount's block size data because v_mount has nothing to do with 2004 * the device. i.e. it's usually '/dev'. We need the physical block 2005 * size for the device itself. 2006 * 2007 * We can't use v_rdev->si_mountpoint because it only exists when the 2008 * block device is mounted. However, we can use v_rdev. 2009 */ 2010 if (vn_isdisk(vp, NULL)) 2011 blksiz = vp->v_rdev->si_bsize_phys; 2012 else 2013 blksiz = DEV_BSIZE; 2014 2015 size = (ap->a_count + blksiz - 1) & ~(blksiz - 1); 2016 2017 bp = getpbuf(NULL); 2018 kva = (vm_offset_t)bp->b_data; 2019 2020 /* 2021 * Map the pages to be read into the kva. 2022 */ 2023 pmap_qenter(kva, ap->a_m, pcount); 2024 2025 /* Build a minimal buffer header. */ 2026 bp->b_cmd = BUF_CMD_READ; 2027 bp->b_bcount = size; 2028 bp->b_resid = 0; 2029 bp->b_runningbufspace = size; 2030 if (size) { 2031 runningbufspace += bp->b_runningbufspace; 2032 ++runningbufcount; 2033 } 2034 2035 bp->b_bio1.bio_offset = offset; 2036 bp->b_bio1.bio_done = devfs_spec_getpages_iodone; 2037 2038 mycpu->gd_cnt.v_vnodein++; 2039 mycpu->gd_cnt.v_vnodepgsin += pcount; 2040 2041 /* Do the input. */ 2042 vn_strategy(ap->a_vp, &bp->b_bio1); 2043 2044 crit_enter(); 2045 2046 /* We definitely need to be at splbio here. */ 2047 while (bp->b_cmd != BUF_CMD_DONE) 2048 tsleep(bp, 0, "spread", 0); 2049 2050 crit_exit(); 2051 2052 if (bp->b_flags & B_ERROR) { 2053 if (bp->b_error) 2054 error = bp->b_error; 2055 else 2056 error = EIO; 2057 } 2058 2059 /* 2060 * If EOF is encountered we must zero-extend the result in order 2061 * to ensure that the page does not contain garabge. When no 2062 * error occurs, an early EOF is indicated if b_bcount got truncated. 2063 * b_resid is relative to b_bcount and should be 0, but some devices 2064 * might indicate an EOF with b_resid instead of truncating b_bcount. 2065 */ 2066 nread = bp->b_bcount - bp->b_resid; 2067 if (nread < ap->a_count) 2068 bzero((caddr_t)kva + nread, ap->a_count - nread); 2069 pmap_qremove(kva, pcount); 2070 2071 gotreqpage = 0; 2072 for (i = 0, toff = 0; i < pcount; i++, toff = nextoff) { 2073 nextoff = toff + PAGE_SIZE; 2074 m = ap->a_m[i]; 2075 2076 m->flags &= ~PG_ZERO; 2077 2078 /* 2079 * NOTE: vm_page_undirty/clear_dirty etc do not clear the 2080 * pmap modified bit. pmap modified bit should have 2081 * already been cleared. 2082 */ 2083 if (nextoff <= nread) { 2084 m->valid = VM_PAGE_BITS_ALL; 2085 vm_page_undirty(m); 2086 } else if (toff < nread) { 2087 /* 2088 * Since this is a VM request, we have to supply the 2089 * unaligned offset to allow vm_page_set_valid() 2090 * to zero sub-DEV_BSIZE'd portions of the page. 2091 */ 2092 vm_page_set_valid(m, 0, nread - toff); 2093 vm_page_clear_dirty_end_nonincl(m, 0, nread - toff); 2094 } else { 2095 m->valid = 0; 2096 vm_page_undirty(m); 2097 } 2098 2099 if (i != ap->a_reqpage) { 2100 /* 2101 * Just in case someone was asking for this page we 2102 * now tell them that it is ok to use. 2103 */ 2104 if (!error || (m->valid == VM_PAGE_BITS_ALL)) { 2105 if (m->valid) { 2106 if (m->flags & PG_WANTED) { 2107 vm_page_activate(m); 2108 } else { 2109 vm_page_deactivate(m); 2110 } 2111 vm_page_wakeup(m); 2112 } else { 2113 vm_page_free(m); 2114 } 2115 } else { 2116 vm_page_free(m); 2117 } 2118 } else if (m->valid) { 2119 gotreqpage = 1; 2120 /* 2121 * Since this is a VM request, we need to make the 2122 * entire page presentable by zeroing invalid sections. 2123 */ 2124 if (m->valid != VM_PAGE_BITS_ALL) 2125 vm_page_zero_invalid(m, FALSE); 2126 } 2127 } 2128 if (!gotreqpage) { 2129 m = ap->a_m[ap->a_reqpage]; 2130 devfs_debug(DEVFS_DEBUG_WARNING, 2131 "spec_getpages:(%s) I/O read failure: (error=%d) bp %p vp %p\n", 2132 devtoname(vp->v_rdev), error, bp, bp->b_vp); 2133 devfs_debug(DEVFS_DEBUG_WARNING, 2134 " size: %d, resid: %d, a_count: %d, valid: 0x%x\n", 2135 size, bp->b_resid, ap->a_count, m->valid); 2136 devfs_debug(DEVFS_DEBUG_WARNING, 2137 " nread: %d, reqpage: %d, pindex: %lu, pcount: %d\n", 2138 nread, ap->a_reqpage, (u_long)m->pindex, pcount); 2139 /* 2140 * Free the buffer header back to the swap buffer pool. 2141 */ 2142 relpbuf(bp, NULL); 2143 return VM_PAGER_ERROR; 2144 } 2145 /* 2146 * Free the buffer header back to the swap buffer pool. 2147 */ 2148 relpbuf(bp, NULL); 2149 if (DEVFS_NODE(ap->a_vp)) 2150 nanotime(&DEVFS_NODE(ap->a_vp)->mtime); 2151 return VM_PAGER_OK; 2152 } 2153 2154 static __inline 2155 int 2156 sequential_heuristic(struct uio *uio, struct file *fp) 2157 { 2158 /* 2159 * Sequential heuristic - detect sequential operation 2160 */ 2161 if ((uio->uio_offset == 0 && fp->f_seqcount > 0) || 2162 uio->uio_offset == fp->f_nextoff) { 2163 /* 2164 * XXX we assume that the filesystem block size is 2165 * the default. Not true, but still gives us a pretty 2166 * good indicator of how sequential the read operations 2167 * are. 2168 */ 2169 int tmpseq = fp->f_seqcount; 2170 2171 tmpseq += (uio->uio_resid + BKVASIZE - 1) / BKVASIZE; 2172 if (tmpseq > IO_SEQMAX) 2173 tmpseq = IO_SEQMAX; 2174 fp->f_seqcount = tmpseq; 2175 return(fp->f_seqcount << IO_SEQSHIFT); 2176 } 2177 2178 /* 2179 * Not sequential, quick draw-down of seqcount 2180 */ 2181 if (fp->f_seqcount > 1) 2182 fp->f_seqcount = 1; 2183 else 2184 fp->f_seqcount = 0; 2185 return(0); 2186 } 2187 2188 extern SYSCTL_NODE(_vfs, OID_AUTO, devfs, CTLFLAG_RW, 0, "devfs"); 2189 2190 SYSCTL_INT(_vfs_devfs, OID_AUTO, mpsafe_writes, CTLFLAG_RD, &mpsafe_writes, 2191 0, "mpsafe writes"); 2192 SYSCTL_INT(_vfs_devfs, OID_AUTO, mplock_writes, CTLFLAG_RD, &mplock_writes, 2193 0, "non-mpsafe writes"); 2194 SYSCTL_INT(_vfs_devfs, OID_AUTO, mpsafe_reads, CTLFLAG_RD, &mpsafe_reads, 2195 0, "mpsafe reads"); 2196 SYSCTL_INT(_vfs_devfs, OID_AUTO, mplock_reads, CTLFLAG_RD, &mplock_reads, 2197 0, "non-mpsafe reads"); 2198