1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 2009 The DragonFly Project. All rights reserved. 5 * 6 * This code is derived from software contributed to The DragonFly Project 7 * by Alex Hornung <ahornung@gmail.com> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in 17 * the documentation and/or other materials provided with the 18 * distribution. 19 * 3. Neither the name of The DragonFly Project nor the names of its 20 * contributors may be used to endorse or promote products derived 21 * from this software without specific, prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 */ 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/time.h> 39 #include <sys/kernel.h> 40 #include <sys/lock.h> 41 #include <sys/fcntl.h> 42 #include <sys/proc.h> 43 #include <sys/priv.h> 44 #include <sys/signalvar.h> 45 #include <sys/vnode.h> 46 #include <sys/uio.h> 47 #include <sys/mount.h> 48 #include <sys/file.h> 49 #include <sys/fcntl.h> 50 #include <sys/namei.h> 51 #include <sys/dirent.h> 52 #include <sys/malloc.h> 53 #include <sys/stat.h> 54 #include <sys/reg.h> 55 #include <vm/vm_pager.h> 56 #include <vm/vm_zone.h> 57 #include <vm/vm_object.h> 58 #include <sys/filio.h> 59 #include <sys/ttycom.h> 60 #include <sys/tty.h> 61 #include <sys/diskslice.h> 62 #include <sys/sysctl.h> 63 #include <sys/devfs.h> 64 #include <sys/pioctl.h> 65 #include <vfs/fifofs/fifo.h> 66 67 #include <machine/limits.h> 68 69 #include <sys/buf2.h> 70 #include <sys/sysref2.h> 71 #include <sys/mplock2.h> 72 #include <vm/vm_page2.h> 73 74 MALLOC_DECLARE(M_DEVFS); 75 #define DEVFS_BADOP (void *)devfs_vop_badop 76 77 static int devfs_vop_badop(struct vop_generic_args *); 78 static int devfs_vop_access(struct vop_access_args *); 79 static int devfs_vop_inactive(struct vop_inactive_args *); 80 static int devfs_vop_reclaim(struct vop_reclaim_args *); 81 static int devfs_vop_readdir(struct vop_readdir_args *); 82 static int devfs_vop_getattr(struct vop_getattr_args *); 83 static int devfs_vop_setattr(struct vop_setattr_args *); 84 static int devfs_vop_readlink(struct vop_readlink_args *); 85 static int devfs_vop_print(struct vop_print_args *); 86 87 static int devfs_vop_nresolve(struct vop_nresolve_args *); 88 static int devfs_vop_nlookupdotdot(struct vop_nlookupdotdot_args *); 89 static int devfs_vop_nmkdir(struct vop_nmkdir_args *); 90 static int devfs_vop_nsymlink(struct vop_nsymlink_args *); 91 static int devfs_vop_nrmdir(struct vop_nrmdir_args *); 92 static int devfs_vop_nremove(struct vop_nremove_args *); 93 94 static int devfs_spec_open(struct vop_open_args *); 95 static int devfs_spec_close(struct vop_close_args *); 96 static int devfs_spec_fsync(struct vop_fsync_args *); 97 98 static int devfs_spec_read(struct vop_read_args *); 99 static int devfs_spec_write(struct vop_write_args *); 100 static int devfs_spec_ioctl(struct vop_ioctl_args *); 101 static int devfs_spec_kqfilter(struct vop_kqfilter_args *); 102 static int devfs_spec_strategy(struct vop_strategy_args *); 103 static void devfs_spec_strategy_done(struct bio *); 104 static int devfs_spec_freeblks(struct vop_freeblks_args *); 105 static int devfs_spec_bmap(struct vop_bmap_args *); 106 static int devfs_spec_advlock(struct vop_advlock_args *); 107 static void devfs_spec_getpages_iodone(struct bio *); 108 static int devfs_spec_getpages(struct vop_getpages_args *); 109 110 static int devfs_fo_close(struct file *); 111 static int devfs_fo_read(struct file *, struct uio *, struct ucred *, int); 112 static int devfs_fo_write(struct file *, struct uio *, struct ucred *, int); 113 static int devfs_fo_stat(struct file *, struct stat *, struct ucred *); 114 static int devfs_fo_kqfilter(struct file *, struct knote *); 115 static int devfs_fo_ioctl(struct file *, u_long, caddr_t, 116 struct ucred *, struct sysmsg *); 117 static __inline int sequential_heuristic(struct uio *, struct file *); 118 119 extern struct lock devfs_lock; 120 121 /* 122 * devfs vnode operations for regular files. All vnode ops are MPSAFE. 123 */ 124 struct vop_ops devfs_vnode_norm_vops = { 125 .vop_default = vop_defaultop, 126 .vop_access = devfs_vop_access, 127 .vop_advlock = DEVFS_BADOP, 128 .vop_bmap = DEVFS_BADOP, 129 .vop_close = vop_stdclose, 130 .vop_getattr = devfs_vop_getattr, 131 .vop_inactive = devfs_vop_inactive, 132 .vop_ncreate = DEVFS_BADOP, 133 .vop_nresolve = devfs_vop_nresolve, 134 .vop_nlookupdotdot = devfs_vop_nlookupdotdot, 135 .vop_nlink = DEVFS_BADOP, 136 .vop_nmkdir = devfs_vop_nmkdir, 137 .vop_nmknod = DEVFS_BADOP, 138 .vop_nremove = devfs_vop_nremove, 139 .vop_nrename = DEVFS_BADOP, 140 .vop_nrmdir = devfs_vop_nrmdir, 141 .vop_nsymlink = devfs_vop_nsymlink, 142 .vop_open = vop_stdopen, 143 .vop_pathconf = vop_stdpathconf, 144 .vop_print = devfs_vop_print, 145 .vop_read = DEVFS_BADOP, 146 .vop_readdir = devfs_vop_readdir, 147 .vop_readlink = devfs_vop_readlink, 148 .vop_reclaim = devfs_vop_reclaim, 149 .vop_setattr = devfs_vop_setattr, 150 .vop_write = DEVFS_BADOP, 151 .vop_ioctl = DEVFS_BADOP 152 }; 153 154 /* 155 * devfs vnode operations for character devices. All vnode ops are MPSAFE. 156 */ 157 struct vop_ops devfs_vnode_dev_vops = { 158 .vop_default = vop_defaultop, 159 .vop_access = devfs_vop_access, 160 .vop_advlock = devfs_spec_advlock, 161 .vop_bmap = devfs_spec_bmap, 162 .vop_close = devfs_spec_close, 163 .vop_freeblks = devfs_spec_freeblks, 164 .vop_fsync = devfs_spec_fsync, 165 .vop_getattr = devfs_vop_getattr, 166 .vop_getpages = devfs_spec_getpages, 167 .vop_inactive = devfs_vop_inactive, 168 .vop_open = devfs_spec_open, 169 .vop_pathconf = vop_stdpathconf, 170 .vop_print = devfs_vop_print, 171 .vop_kqfilter = devfs_spec_kqfilter, 172 .vop_read = devfs_spec_read, 173 .vop_readdir = DEVFS_BADOP, 174 .vop_readlink = DEVFS_BADOP, 175 .vop_reclaim = devfs_vop_reclaim, 176 .vop_setattr = devfs_vop_setattr, 177 .vop_strategy = devfs_spec_strategy, 178 .vop_write = devfs_spec_write, 179 .vop_ioctl = devfs_spec_ioctl 180 }; 181 182 /* 183 * devfs file pointer operations. All fileops are MPSAFE. 184 */ 185 struct vop_ops *devfs_vnode_dev_vops_p = &devfs_vnode_dev_vops; 186 187 struct fileops devfs_dev_fileops = { 188 .fo_read = devfs_fo_read, 189 .fo_write = devfs_fo_write, 190 .fo_ioctl = devfs_fo_ioctl, 191 .fo_kqfilter = devfs_fo_kqfilter, 192 .fo_stat = devfs_fo_stat, 193 .fo_close = devfs_fo_close, 194 .fo_shutdown = nofo_shutdown 195 }; 196 197 /* 198 * These two functions are possibly temporary hacks for devices (aka 199 * the pty code) which want to control the node attributes themselves. 200 * 201 * XXX we may ultimately desire to simply remove the uid/gid/mode 202 * from the node entirely. 203 * 204 * MPSAFE - sorta. Theoretically the overwrite can compete since they 205 * are loading from the same fields. 206 */ 207 static __inline void 208 node_sync_dev_get(struct devfs_node *node) 209 { 210 cdev_t dev; 211 212 if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) { 213 node->uid = dev->si_uid; 214 node->gid = dev->si_gid; 215 node->mode = dev->si_perms; 216 } 217 } 218 219 static __inline void 220 node_sync_dev_set(struct devfs_node *node) 221 { 222 cdev_t dev; 223 224 if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) { 225 dev->si_uid = node->uid; 226 dev->si_gid = node->gid; 227 dev->si_perms = node->mode; 228 } 229 } 230 231 /* 232 * generic entry point for unsupported operations 233 */ 234 static int 235 devfs_vop_badop(struct vop_generic_args *ap) 236 { 237 return (EIO); 238 } 239 240 241 static int 242 devfs_vop_access(struct vop_access_args *ap) 243 { 244 struct devfs_node *node = DEVFS_NODE(ap->a_vp); 245 int error; 246 247 if (!devfs_node_is_accessible(node)) 248 return ENOENT; 249 node_sync_dev_get(node); 250 error = vop_helper_access(ap, node->uid, node->gid, 251 node->mode, node->flags); 252 253 return error; 254 } 255 256 257 static int 258 devfs_vop_inactive(struct vop_inactive_args *ap) 259 { 260 struct devfs_node *node = DEVFS_NODE(ap->a_vp); 261 262 if (node == NULL || (node->flags & DEVFS_NODE_LINKED) == 0) 263 vrecycle(ap->a_vp); 264 return 0; 265 } 266 267 268 static int 269 devfs_vop_reclaim(struct vop_reclaim_args *ap) 270 { 271 struct devfs_node *node; 272 struct vnode *vp; 273 int locked; 274 275 /* 276 * Check if it is locked already. if not, we acquire the devfs lock 277 */ 278 if (!(lockstatus(&devfs_lock, curthread)) == LK_EXCLUSIVE) { 279 lockmgr(&devfs_lock, LK_EXCLUSIVE); 280 locked = 1; 281 } else { 282 locked = 0; 283 } 284 285 /* 286 * Get rid of the devfs_node if it is no longer linked into the 287 * topology. 288 */ 289 vp = ap->a_vp; 290 if ((node = DEVFS_NODE(vp)) != NULL) { 291 node->v_node = NULL; 292 if ((node->flags & DEVFS_NODE_LINKED) == 0) 293 devfs_freep(node); 294 } 295 296 if (locked) 297 lockmgr(&devfs_lock, LK_RELEASE); 298 299 /* 300 * v_rdev needs to be properly released using v_release_rdev 301 * Make sure v_data is NULL as well. 302 */ 303 vp->v_data = NULL; 304 v_release_rdev(vp); 305 return 0; 306 } 307 308 309 static int 310 devfs_vop_readdir(struct vop_readdir_args *ap) 311 { 312 struct devfs_node *dnode = DEVFS_NODE(ap->a_vp); 313 struct devfs_node *node; 314 int cookie_index; 315 int ncookies; 316 int error2; 317 int error; 318 int r; 319 off_t *cookies; 320 off_t saveoff; 321 322 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_readdir() called!\n"); 323 324 if (ap->a_uio->uio_offset < 0 || ap->a_uio->uio_offset > INT_MAX) 325 return (EINVAL); 326 if ((error = vn_lock(ap->a_vp, LK_EXCLUSIVE | LK_RETRY)) != 0) 327 return (error); 328 329 if (!devfs_node_is_accessible(dnode)) { 330 vn_unlock(ap->a_vp); 331 return ENOENT; 332 } 333 334 lockmgr(&devfs_lock, LK_EXCLUSIVE); 335 336 saveoff = ap->a_uio->uio_offset; 337 338 if (ap->a_ncookies) { 339 ncookies = ap->a_uio->uio_resid / 16 + 1; /* Why / 16 ?? */ 340 if (ncookies > 256) 341 ncookies = 256; 342 cookies = kmalloc(256 * sizeof(off_t), M_TEMP, M_WAITOK); 343 cookie_index = 0; 344 } else { 345 ncookies = -1; 346 cookies = NULL; 347 cookie_index = 0; 348 } 349 350 nanotime(&dnode->atime); 351 352 if (saveoff == 0) { 353 r = vop_write_dirent(&error, ap->a_uio, dnode->d_dir.d_ino, 354 DT_DIR, 1, "."); 355 if (r) 356 goto done; 357 if (cookies) 358 cookies[cookie_index] = saveoff; 359 saveoff++; 360 cookie_index++; 361 if (cookie_index == ncookies) 362 goto done; 363 } 364 365 if (saveoff == 1) { 366 if (dnode->parent) { 367 r = vop_write_dirent(&error, ap->a_uio, 368 dnode->parent->d_dir.d_ino, 369 DT_DIR, 2, ".."); 370 } else { 371 r = vop_write_dirent(&error, ap->a_uio, 372 dnode->d_dir.d_ino, 373 DT_DIR, 2, ".."); 374 } 375 if (r) 376 goto done; 377 if (cookies) 378 cookies[cookie_index] = saveoff; 379 saveoff++; 380 cookie_index++; 381 if (cookie_index == ncookies) 382 goto done; 383 } 384 385 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) { 386 if ((node->flags & DEVFS_HIDDEN) || 387 (node->flags & DEVFS_INVISIBLE)) { 388 continue; 389 } 390 391 /* 392 * If the node type is a valid devfs alias, then we make 393 * sure that the target isn't hidden. If it is, we don't 394 * show the link in the directory listing. 395 */ 396 if ((node->node_type == Plink) && (node->link_target != NULL) && 397 (node->link_target->flags & DEVFS_HIDDEN)) 398 continue; 399 400 if (node->cookie < saveoff) 401 continue; 402 403 saveoff = node->cookie; 404 405 error2 = vop_write_dirent(&error, ap->a_uio, node->d_dir.d_ino, 406 node->d_dir.d_type, 407 node->d_dir.d_namlen, 408 node->d_dir.d_name); 409 410 if (error2) 411 break; 412 413 saveoff++; 414 415 if (cookies) 416 cookies[cookie_index] = node->cookie; 417 ++cookie_index; 418 if (cookie_index == ncookies) 419 break; 420 } 421 422 done: 423 lockmgr(&devfs_lock, LK_RELEASE); 424 vn_unlock(ap->a_vp); 425 426 ap->a_uio->uio_offset = saveoff; 427 if (error && cookie_index == 0) { 428 if (cookies) { 429 kfree(cookies, M_TEMP); 430 *ap->a_ncookies = 0; 431 *ap->a_cookies = NULL; 432 } 433 } else { 434 if (cookies) { 435 *ap->a_ncookies = cookie_index; 436 *ap->a_cookies = cookies; 437 } 438 } 439 return (error); 440 } 441 442 443 static int 444 devfs_vop_nresolve(struct vop_nresolve_args *ap) 445 { 446 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp); 447 struct devfs_node *node, *found = NULL; 448 struct namecache *ncp; 449 struct vnode *vp = NULL; 450 int error = 0; 451 int len; 452 int depth; 453 454 ncp = ap->a_nch->ncp; 455 len = ncp->nc_nlen; 456 457 if (!devfs_node_is_accessible(dnode)) 458 return ENOENT; 459 460 lockmgr(&devfs_lock, LK_EXCLUSIVE); 461 462 if ((dnode->node_type != Proot) && (dnode->node_type != Pdir)) { 463 error = ENOENT; 464 cache_setvp(ap->a_nch, NULL); 465 goto out; 466 } 467 468 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) { 469 if (len == node->d_dir.d_namlen) { 470 if (!memcmp(ncp->nc_name, node->d_dir.d_name, len)) { 471 found = node; 472 break; 473 } 474 } 475 } 476 477 if (found) { 478 depth = 0; 479 while ((found->node_type == Plink) && (found->link_target)) { 480 if (depth >= 8) { 481 devfs_debug(DEVFS_DEBUG_SHOW, "Recursive link or depth >= 8"); 482 break; 483 } 484 485 found = found->link_target; 486 ++depth; 487 } 488 489 if (!(found->flags & DEVFS_HIDDEN)) 490 devfs_allocv(/*ap->a_dvp->v_mount, */ &vp, found); 491 } 492 493 if (vp == NULL) { 494 error = ENOENT; 495 cache_setvp(ap->a_nch, NULL); 496 goto out; 497 498 } 499 KKASSERT(vp); 500 vn_unlock(vp); 501 cache_setvp(ap->a_nch, vp); 502 vrele(vp); 503 out: 504 lockmgr(&devfs_lock, LK_RELEASE); 505 506 return error; 507 } 508 509 510 static int 511 devfs_vop_nlookupdotdot(struct vop_nlookupdotdot_args *ap) 512 { 513 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp); 514 515 *ap->a_vpp = NULL; 516 if (!devfs_node_is_accessible(dnode)) 517 return ENOENT; 518 519 lockmgr(&devfs_lock, LK_EXCLUSIVE); 520 if (dnode->parent != NULL) { 521 devfs_allocv(ap->a_vpp, dnode->parent); 522 vn_unlock(*ap->a_vpp); 523 } 524 lockmgr(&devfs_lock, LK_RELEASE); 525 526 return ((*ap->a_vpp == NULL) ? ENOENT : 0); 527 } 528 529 530 static int 531 devfs_vop_getattr(struct vop_getattr_args *ap) 532 { 533 struct devfs_node *node = DEVFS_NODE(ap->a_vp); 534 struct vattr *vap = ap->a_vap; 535 struct partinfo pinfo; 536 int error = 0; 537 538 #if 0 539 if (!devfs_node_is_accessible(node)) 540 return ENOENT; 541 #endif 542 node_sync_dev_get(node); 543 544 lockmgr(&devfs_lock, LK_EXCLUSIVE); 545 546 /* start by zeroing out the attributes */ 547 VATTR_NULL(vap); 548 549 /* next do all the common fields */ 550 vap->va_type = ap->a_vp->v_type; 551 vap->va_mode = node->mode; 552 vap->va_fileid = DEVFS_NODE(ap->a_vp)->d_dir.d_ino ; 553 vap->va_flags = 0; 554 vap->va_blocksize = DEV_BSIZE; 555 vap->va_bytes = vap->va_size = 0; 556 557 vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0]; 558 559 vap->va_atime = node->atime; 560 vap->va_mtime = node->mtime; 561 vap->va_ctime = node->ctime; 562 563 vap->va_nlink = 1; /* number of references to file */ 564 565 vap->va_uid = node->uid; 566 vap->va_gid = node->gid; 567 568 vap->va_rmajor = 0; 569 vap->va_rminor = 0; 570 571 if ((node->node_type == Pdev) && node->d_dev) { 572 reference_dev(node->d_dev); 573 vap->va_rminor = node->d_dev->si_uminor; 574 release_dev(node->d_dev); 575 } 576 577 /* For a softlink the va_size is the length of the softlink */ 578 if (node->symlink_name != 0) { 579 vap->va_bytes = vap->va_size = node->symlink_namelen; 580 } 581 582 /* 583 * For a disk-type device, va_size is the size of the underlying 584 * device, so that lseek() works properly. 585 */ 586 if ((node->d_dev) && (dev_dflags(node->d_dev) & D_DISK)) { 587 bzero(&pinfo, sizeof(pinfo)); 588 error = dev_dioctl(node->d_dev, DIOCGPART, (void *)&pinfo, 589 0, proc0.p_ucred, NULL); 590 if ((error == 0) && (pinfo.media_blksize != 0)) { 591 vap->va_size = pinfo.media_size; 592 } else { 593 vap->va_size = 0; 594 error = 0; 595 } 596 } 597 598 lockmgr(&devfs_lock, LK_RELEASE); 599 600 return (error); 601 } 602 603 604 static int 605 devfs_vop_setattr(struct vop_setattr_args *ap) 606 { 607 struct devfs_node *node = DEVFS_NODE(ap->a_vp); 608 struct vattr *vap; 609 uid_t cur_uid; 610 gid_t cur_gid; 611 mode_t cur_mode; 612 int error = 0; 613 614 if (!devfs_node_is_accessible(node)) 615 return ENOENT; 616 node_sync_dev_get(node); 617 618 lockmgr(&devfs_lock, LK_EXCLUSIVE); 619 620 vap = ap->a_vap; 621 622 if ((vap->va_uid != (uid_t)VNOVAL) || (vap->va_gid != (gid_t)VNOVAL)) { 623 cur_uid = node->uid; 624 cur_gid = node->gid; 625 cur_mode = node->mode; 626 error = vop_helper_chown(ap->a_vp, vap->va_uid, vap->va_gid, 627 ap->a_cred, &cur_uid, &cur_gid, &cur_mode); 628 if (error) 629 goto out; 630 631 if (node->uid != cur_uid || node->gid != cur_gid) { 632 node->uid = cur_uid; 633 node->gid = cur_gid; 634 node->mode = cur_mode; 635 } 636 } 637 638 if (vap->va_mode != (mode_t)VNOVAL) { 639 cur_mode = node->mode; 640 error = vop_helper_chmod(ap->a_vp, vap->va_mode, ap->a_cred, 641 node->uid, node->gid, &cur_mode); 642 if (error == 0 && node->mode != cur_mode) { 643 node->mode = cur_mode; 644 } 645 } 646 647 out: 648 node_sync_dev_set(node); 649 nanotime(&node->ctime); 650 lockmgr(&devfs_lock, LK_RELEASE); 651 652 return error; 653 } 654 655 656 static int 657 devfs_vop_readlink(struct vop_readlink_args *ap) 658 { 659 struct devfs_node *node = DEVFS_NODE(ap->a_vp); 660 int ret; 661 662 if (!devfs_node_is_accessible(node)) 663 return ENOENT; 664 665 lockmgr(&devfs_lock, LK_EXCLUSIVE); 666 ret = uiomove(node->symlink_name, node->symlink_namelen, ap->a_uio); 667 lockmgr(&devfs_lock, LK_RELEASE); 668 669 return ret; 670 } 671 672 673 static int 674 devfs_vop_print(struct vop_print_args *ap) 675 { 676 return (0); 677 } 678 679 static int 680 devfs_vop_nmkdir(struct vop_nmkdir_args *ap) 681 { 682 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp); 683 struct devfs_node *node; 684 685 if (!devfs_node_is_accessible(dnode)) 686 return ENOENT; 687 688 if ((dnode->node_type != Proot) && (dnode->node_type != Pdir)) 689 goto out; 690 691 lockmgr(&devfs_lock, LK_EXCLUSIVE); 692 devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Pdir, 693 ap->a_nch->ncp->nc_name, dnode, NULL); 694 695 if (*ap->a_vpp) { 696 node = DEVFS_NODE(*ap->a_vpp); 697 node->flags |= DEVFS_USER_CREATED; 698 cache_setunresolved(ap->a_nch); 699 cache_setvp(ap->a_nch, *ap->a_vpp); 700 } 701 lockmgr(&devfs_lock, LK_RELEASE); 702 out: 703 return ((*ap->a_vpp == NULL) ? ENOTDIR : 0); 704 } 705 706 static int 707 devfs_vop_nsymlink(struct vop_nsymlink_args *ap) 708 { 709 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp); 710 struct devfs_node *node; 711 size_t targetlen; 712 713 if (!devfs_node_is_accessible(dnode)) 714 return ENOENT; 715 716 ap->a_vap->va_type = VLNK; 717 718 if ((dnode->node_type != Proot) && (dnode->node_type != Pdir)) 719 goto out; 720 721 lockmgr(&devfs_lock, LK_EXCLUSIVE); 722 devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Plink, 723 ap->a_nch->ncp->nc_name, dnode, NULL); 724 725 targetlen = strlen(ap->a_target); 726 if (*ap->a_vpp) { 727 node = DEVFS_NODE(*ap->a_vpp); 728 node->flags |= DEVFS_USER_CREATED; 729 node->symlink_namelen = targetlen; 730 node->symlink_name = kmalloc(targetlen + 1, M_DEVFS, M_WAITOK); 731 memcpy(node->symlink_name, ap->a_target, targetlen); 732 node->symlink_name[targetlen] = '\0'; 733 cache_setunresolved(ap->a_nch); 734 cache_setvp(ap->a_nch, *ap->a_vpp); 735 } 736 lockmgr(&devfs_lock, LK_RELEASE); 737 out: 738 return ((*ap->a_vpp == NULL) ? ENOTDIR : 0); 739 } 740 741 static int 742 devfs_vop_nrmdir(struct vop_nrmdir_args *ap) 743 { 744 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp); 745 struct devfs_node *node; 746 struct namecache *ncp; 747 int error = ENOENT; 748 749 ncp = ap->a_nch->ncp; 750 751 if (!devfs_node_is_accessible(dnode)) 752 return ENOENT; 753 754 lockmgr(&devfs_lock, LK_EXCLUSIVE); 755 756 if ((dnode->node_type != Proot) && (dnode->node_type != Pdir)) 757 goto out; 758 759 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) { 760 if (ncp->nc_nlen != node->d_dir.d_namlen) 761 continue; 762 if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen)) 763 continue; 764 765 /* 766 * only allow removal of user created dirs 767 */ 768 if ((node->flags & DEVFS_USER_CREATED) == 0) { 769 error = EPERM; 770 goto out; 771 } else if (node->node_type != Pdir) { 772 error = ENOTDIR; 773 goto out; 774 } else if (node->nchildren > 2) { 775 error = ENOTEMPTY; 776 goto out; 777 } else { 778 if (node->v_node) 779 cache_inval_vp(node->v_node, CINV_DESTROY); 780 devfs_unlinkp(node); 781 error = 0; 782 break; 783 } 784 } 785 786 cache_setunresolved(ap->a_nch); 787 cache_setvp(ap->a_nch, NULL); 788 789 out: 790 lockmgr(&devfs_lock, LK_RELEASE); 791 return error; 792 } 793 794 static int 795 devfs_vop_nremove(struct vop_nremove_args *ap) 796 { 797 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp); 798 struct devfs_node *node; 799 struct namecache *ncp; 800 int error = ENOENT; 801 802 ncp = ap->a_nch->ncp; 803 804 if (!devfs_node_is_accessible(dnode)) 805 return ENOENT; 806 807 lockmgr(&devfs_lock, LK_EXCLUSIVE); 808 809 if ((dnode->node_type != Proot) && (dnode->node_type != Pdir)) 810 goto out; 811 812 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) { 813 if (ncp->nc_nlen != node->d_dir.d_namlen) 814 continue; 815 if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen)) 816 continue; 817 818 /* 819 * only allow removal of user created stuff (e.g. symlinks) 820 */ 821 if ((node->flags & DEVFS_USER_CREATED) == 0) { 822 error = EPERM; 823 goto out; 824 } else if (node->node_type == Pdir) { 825 error = EISDIR; 826 goto out; 827 } else { 828 if (node->v_node) 829 cache_inval_vp(node->v_node, CINV_DESTROY); 830 devfs_unlinkp(node); 831 error = 0; 832 break; 833 } 834 } 835 836 cache_setunresolved(ap->a_nch); 837 cache_setvp(ap->a_nch, NULL); 838 839 out: 840 lockmgr(&devfs_lock, LK_RELEASE); 841 return error; 842 } 843 844 845 static int 846 devfs_spec_open(struct vop_open_args *ap) 847 { 848 struct vnode *vp = ap->a_vp; 849 struct vnode *orig_vp = NULL; 850 struct devfs_node *node = DEVFS_NODE(vp); 851 struct devfs_node *newnode; 852 cdev_t dev, ndev = NULL; 853 int error = 0; 854 855 if (node) { 856 if (node->d_dev == NULL) 857 return ENXIO; 858 if (!devfs_node_is_accessible(node)) 859 return ENOENT; 860 } 861 862 if ((dev = vp->v_rdev) == NULL) 863 return ENXIO; 864 865 if (node && ap->a_fp) { 866 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_open: -1.1-\n"); 867 lockmgr(&devfs_lock, LK_EXCLUSIVE); 868 869 ndev = devfs_clone(dev, node->d_dir.d_name, node->d_dir.d_namlen, 870 ap->a_mode, ap->a_cred); 871 if (ndev != NULL) { 872 newnode = devfs_create_device_node( 873 DEVFS_MNTDATA(vp->v_mount)->root_node, 874 ndev, NULL, NULL); 875 /* XXX: possibly destroy device if this happens */ 876 877 if (newnode != NULL) { 878 dev = ndev; 879 devfs_link_dev(dev); 880 881 devfs_debug(DEVFS_DEBUG_DEBUG, 882 "parent here is: %s, node is: |%s|\n", 883 ((node->parent->node_type == Proot) ? 884 "ROOT!" : node->parent->d_dir.d_name), 885 newnode->d_dir.d_name); 886 devfs_debug(DEVFS_DEBUG_DEBUG, 887 "test: %s\n", 888 ((struct devfs_node *)(TAILQ_LAST(DEVFS_DENODE_HEAD(node->parent), devfs_node_head)))->d_dir.d_name); 889 890 /* 891 * orig_vp is set to the original vp if we cloned. 892 */ 893 /* node->flags |= DEVFS_CLONED; */ 894 devfs_allocv(&vp, newnode); 895 orig_vp = ap->a_vp; 896 ap->a_vp = vp; 897 } 898 } 899 lockmgr(&devfs_lock, LK_RELEASE); 900 } 901 902 devfs_debug(DEVFS_DEBUG_DEBUG, 903 "devfs_spec_open() called on %s! \n", 904 dev->si_name); 905 906 /* 907 * Make this field valid before any I/O in ->d_open 908 */ 909 if (!dev->si_iosize_max) 910 /* XXX: old DFLTPHYS == 64KB dependency */ 911 dev->si_iosize_max = min(MAXPHYS,64*1024); 912 913 if (dev_dflags(dev) & D_TTY) 914 vsetflags(vp, VISTTY); 915 916 /* 917 * Open underlying device 918 */ 919 vn_unlock(vp); 920 error = dev_dopen(dev, ap->a_mode, S_IFCHR, ap->a_cred); 921 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 922 923 /* 924 * Clean up any cloned vp if we error out. 925 */ 926 if (error) { 927 if (orig_vp) { 928 vput(vp); 929 ap->a_vp = orig_vp; 930 /* orig_vp = NULL; */ 931 } 932 return error; 933 } 934 935 /* 936 * This checks if the disk device is going to be opened for writing. 937 * It will be only allowed in the cases where securelevel permits it 938 * and it's not mounted R/W. 939 */ 940 if ((dev_dflags(dev) & D_DISK) && (ap->a_mode & FWRITE) && 941 (ap->a_cred != FSCRED)) { 942 943 /* Very secure mode. No open for writing allowed */ 944 if (securelevel >= 2) 945 return EPERM; 946 947 /* 948 * If it is mounted R/W, do not allow to open for writing. 949 * In the case it's mounted read-only but securelevel 950 * is >= 1, then do not allow opening for writing either. 951 */ 952 if (vfs_mountedon(vp)) { 953 if (!(dev->si_mountpoint->mnt_flag & MNT_RDONLY)) 954 return EBUSY; 955 else if (securelevel >= 1) 956 return EPERM; 957 } 958 } 959 960 if (dev_dflags(dev) & D_TTY) { 961 if (dev->si_tty) { 962 struct tty *tp; 963 tp = dev->si_tty; 964 if (!tp->t_stop) { 965 devfs_debug(DEVFS_DEBUG_DEBUG, 966 "devfs: no t_stop\n"); 967 tp->t_stop = nottystop; 968 } 969 } 970 } 971 972 973 if (vn_isdisk(vp, NULL)) { 974 if (!dev->si_bsize_phys) 975 dev->si_bsize_phys = DEV_BSIZE; 976 vinitvmio(vp, IDX_TO_OFF(INT_MAX), PAGE_SIZE, -1); 977 } 978 979 vop_stdopen(ap); 980 #if 0 981 if (node) 982 nanotime(&node->atime); 983 #endif 984 985 /* 986 * If we replaced the vp the vop_stdopen() call will have loaded 987 * it into fp->f_data and vref()d the vp, giving us two refs. So 988 * instead of just unlocking it here we have to vput() it. 989 */ 990 if (orig_vp) 991 vput(vp); 992 993 /* Ugly pty magic, to make pty devices appear once they are opened */ 994 if (node && (node->flags & DEVFS_PTY) == DEVFS_PTY) 995 node->flags &= ~DEVFS_INVISIBLE; 996 997 if (ap->a_fp) { 998 KKASSERT(ap->a_fp->f_type == DTYPE_VNODE); 999 KKASSERT((ap->a_fp->f_flag & FMASK) == (ap->a_mode & FMASK)); 1000 ap->a_fp->f_ops = &devfs_dev_fileops; 1001 KKASSERT(ap->a_fp->f_data == (void *)vp); 1002 } 1003 1004 return 0; 1005 } 1006 1007 1008 static int 1009 devfs_spec_close(struct vop_close_args *ap) 1010 { 1011 struct devfs_node *node; 1012 struct proc *p = curproc; 1013 struct vnode *vp = ap->a_vp; 1014 cdev_t dev = vp->v_rdev; 1015 int error = 0; 1016 int needrelock; 1017 1018 if (dev) 1019 devfs_debug(DEVFS_DEBUG_DEBUG, 1020 "devfs_spec_close() called on %s! \n", 1021 dev->si_name); 1022 else 1023 devfs_debug(DEVFS_DEBUG_DEBUG, 1024 "devfs_spec_close() called, null vode!\n"); 1025 1026 /* 1027 * A couple of hacks for devices and tty devices. The 1028 * vnode ref count cannot be used to figure out the 1029 * last close, but we can use v_opencount now that 1030 * revoke works properly. 1031 * 1032 * Detect the last close on a controlling terminal and clear 1033 * the session (half-close). 1034 */ 1035 if (dev) 1036 reference_dev(dev); 1037 1038 if (p && vp->v_opencount <= 1 && vp == p->p_session->s_ttyvp) { 1039 p->p_session->s_ttyvp = NULL; 1040 vrele(vp); 1041 } 1042 1043 /* 1044 * Vnodes can be opened and closed multiple times. Do not really 1045 * close the device unless (1) it is being closed forcibly, 1046 * (2) the device wants to track closes, or (3) this is the last 1047 * vnode doing its last close on the device. 1048 * 1049 * XXX the VXLOCK (force close) case can leave vnodes referencing 1050 * a closed device. This might not occur now that our revoke is 1051 * fixed. 1052 */ 1053 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -1- \n"); 1054 if (dev && ((vp->v_flag & VRECLAIMED) || 1055 (dev_dflags(dev) & D_TRACKCLOSE) || 1056 (vp->v_opencount == 1))) { 1057 /* 1058 * Ugly pty magic, to make pty devices disappear again once 1059 * they are closed. 1060 */ 1061 node = DEVFS_NODE(ap->a_vp); 1062 if (node && (node->flags & DEVFS_PTY)) 1063 node->flags |= DEVFS_INVISIBLE; 1064 1065 /* 1066 * Unlock around dev_dclose(), unless the vnode is 1067 * undergoing a vgone/reclaim (during umount). 1068 */ 1069 needrelock = 0; 1070 if ((vp->v_flag & VRECLAIMED) == 0 && vn_islocked(vp)) { 1071 needrelock = 1; 1072 vn_unlock(vp); 1073 } 1074 1075 /* 1076 * WARNING! If the device destroys itself the devfs node 1077 * can disappear here. 1078 * 1079 * WARNING! vn_lock() will fail if the vp is in a VRECLAIM, 1080 * which can occur during umount. 1081 */ 1082 error = dev_dclose(dev, ap->a_fflag, S_IFCHR); 1083 /* node is now stale */ 1084 1085 if (needrelock) { 1086 if (vn_lock(vp, LK_EXCLUSIVE | LK_RETRY) != 0) { 1087 panic("devfs_spec_close: vnode %p " 1088 "unexpectedly could not be relocked", 1089 vp); 1090 } 1091 } 1092 } else { 1093 error = 0; 1094 } 1095 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -2- \n"); 1096 1097 /* 1098 * Track the actual opens and closes on the vnode. The last close 1099 * disassociates the rdev. If the rdev is already disassociated or 1100 * the opencount is already 0, the vnode might have been revoked 1101 * and no further opencount tracking occurs. 1102 */ 1103 if (dev) 1104 release_dev(dev); 1105 if (vp->v_opencount > 0) 1106 vop_stdclose(ap); 1107 return(error); 1108 1109 } 1110 1111 1112 static int 1113 devfs_fo_close(struct file *fp) 1114 { 1115 struct vnode *vp = (struct vnode *)fp->f_data; 1116 int error; 1117 1118 fp->f_ops = &badfileops; 1119 error = vn_close(vp, fp->f_flag); 1120 1121 return (error); 1122 } 1123 1124 1125 /* 1126 * Device-optimized file table vnode read routine. 1127 * 1128 * This bypasses the VOP table and talks directly to the device. Most 1129 * filesystems just route to specfs and can make this optimization. 1130 * 1131 * MPALMOSTSAFE - acquires mplock 1132 */ 1133 static int 1134 devfs_fo_read(struct file *fp, struct uio *uio, 1135 struct ucred *cred, int flags) 1136 { 1137 struct devfs_node *node; 1138 struct vnode *vp; 1139 int ioflag; 1140 int error; 1141 cdev_t dev; 1142 1143 KASSERT(uio->uio_td == curthread, 1144 ("uio_td %p is not td %p", uio->uio_td, curthread)); 1145 1146 if (uio->uio_resid == 0) 1147 return 0; 1148 1149 vp = (struct vnode *)fp->f_data; 1150 if (vp == NULL || vp->v_type == VBAD) 1151 return EBADF; 1152 1153 node = DEVFS_NODE(vp); 1154 1155 if ((dev = vp->v_rdev) == NULL) 1156 return EBADF; 1157 1158 reference_dev(dev); 1159 1160 if ((flags & O_FOFFSET) == 0) 1161 uio->uio_offset = fp->f_offset; 1162 1163 ioflag = 0; 1164 if (flags & O_FBLOCKING) { 1165 /* ioflag &= ~IO_NDELAY; */ 1166 } else if (flags & O_FNONBLOCKING) { 1167 ioflag |= IO_NDELAY; 1168 } else if (fp->f_flag & FNONBLOCK) { 1169 ioflag |= IO_NDELAY; 1170 } 1171 if (flags & O_FBUFFERED) { 1172 /* ioflag &= ~IO_DIRECT; */ 1173 } else if (flags & O_FUNBUFFERED) { 1174 ioflag |= IO_DIRECT; 1175 } else if (fp->f_flag & O_DIRECT) { 1176 ioflag |= IO_DIRECT; 1177 } 1178 ioflag |= sequential_heuristic(uio, fp); 1179 1180 error = dev_dread(dev, uio, ioflag); 1181 1182 release_dev(dev); 1183 if (node) 1184 nanotime(&node->atime); 1185 if ((flags & O_FOFFSET) == 0) 1186 fp->f_offset = uio->uio_offset; 1187 fp->f_nextoff = uio->uio_offset; 1188 1189 return (error); 1190 } 1191 1192 1193 static int 1194 devfs_fo_write(struct file *fp, struct uio *uio, 1195 struct ucred *cred, int flags) 1196 { 1197 struct devfs_node *node; 1198 struct vnode *vp; 1199 int ioflag; 1200 int error; 1201 cdev_t dev; 1202 1203 KASSERT(uio->uio_td == curthread, 1204 ("uio_td %p is not p %p", uio->uio_td, curthread)); 1205 1206 vp = (struct vnode *)fp->f_data; 1207 if (vp == NULL || vp->v_type == VBAD) 1208 return EBADF; 1209 1210 node = DEVFS_NODE(vp); 1211 1212 if (vp->v_type == VREG) 1213 bwillwrite(uio->uio_resid); 1214 1215 vp = (struct vnode *)fp->f_data; 1216 1217 if ((dev = vp->v_rdev) == NULL) 1218 return EBADF; 1219 1220 reference_dev(dev); 1221 1222 if ((flags & O_FOFFSET) == 0) 1223 uio->uio_offset = fp->f_offset; 1224 1225 ioflag = IO_UNIT; 1226 if (vp->v_type == VREG && 1227 ((fp->f_flag & O_APPEND) || (flags & O_FAPPEND))) { 1228 ioflag |= IO_APPEND; 1229 } 1230 1231 if (flags & O_FBLOCKING) { 1232 /* ioflag &= ~IO_NDELAY; */ 1233 } else if (flags & O_FNONBLOCKING) { 1234 ioflag |= IO_NDELAY; 1235 } else if (fp->f_flag & FNONBLOCK) { 1236 ioflag |= IO_NDELAY; 1237 } 1238 if (flags & O_FBUFFERED) { 1239 /* ioflag &= ~IO_DIRECT; */ 1240 } else if (flags & O_FUNBUFFERED) { 1241 ioflag |= IO_DIRECT; 1242 } else if (fp->f_flag & O_DIRECT) { 1243 ioflag |= IO_DIRECT; 1244 } 1245 if (flags & O_FASYNCWRITE) { 1246 /* ioflag &= ~IO_SYNC; */ 1247 } else if (flags & O_FSYNCWRITE) { 1248 ioflag |= IO_SYNC; 1249 } else if (fp->f_flag & O_FSYNC) { 1250 ioflag |= IO_SYNC; 1251 } 1252 1253 if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)) 1254 ioflag |= IO_SYNC; 1255 ioflag |= sequential_heuristic(uio, fp); 1256 1257 error = dev_dwrite(dev, uio, ioflag); 1258 1259 release_dev(dev); 1260 if (node) { 1261 nanotime(&node->atime); 1262 nanotime(&node->mtime); 1263 } 1264 1265 if ((flags & O_FOFFSET) == 0) 1266 fp->f_offset = uio->uio_offset; 1267 fp->f_nextoff = uio->uio_offset; 1268 1269 return (error); 1270 } 1271 1272 1273 static int 1274 devfs_fo_stat(struct file *fp, struct stat *sb, struct ucred *cred) 1275 { 1276 struct vnode *vp; 1277 struct vattr vattr; 1278 struct vattr *vap; 1279 u_short mode; 1280 cdev_t dev; 1281 int error; 1282 1283 vp = (struct vnode *)fp->f_data; 1284 if (vp == NULL || vp->v_type == VBAD) 1285 return EBADF; 1286 1287 error = vn_stat(vp, sb, cred); 1288 if (error) 1289 return (error); 1290 1291 vap = &vattr; 1292 error = VOP_GETATTR(vp, vap); 1293 if (error) 1294 return (error); 1295 1296 /* 1297 * Zero the spare stat fields 1298 */ 1299 sb->st_lspare = 0; 1300 sb->st_qspare1 = 0; 1301 sb->st_qspare2 = 0; 1302 1303 /* 1304 * Copy from vattr table ... or not in case it's a cloned device 1305 */ 1306 if (vap->va_fsid != VNOVAL) 1307 sb->st_dev = vap->va_fsid; 1308 else 1309 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0]; 1310 1311 sb->st_ino = vap->va_fileid; 1312 1313 mode = vap->va_mode; 1314 mode |= S_IFCHR; 1315 sb->st_mode = mode; 1316 1317 if (vap->va_nlink > (nlink_t)-1) 1318 sb->st_nlink = (nlink_t)-1; 1319 else 1320 sb->st_nlink = vap->va_nlink; 1321 1322 sb->st_uid = vap->va_uid; 1323 sb->st_gid = vap->va_gid; 1324 sb->st_rdev = dev2udev(DEVFS_NODE(vp)->d_dev); 1325 sb->st_size = vap->va_bytes; 1326 sb->st_atimespec = vap->va_atime; 1327 sb->st_mtimespec = vap->va_mtime; 1328 sb->st_ctimespec = vap->va_ctime; 1329 1330 /* 1331 * A VCHR and VBLK device may track the last access and last modified 1332 * time independantly of the filesystem. This is particularly true 1333 * because device read and write calls may bypass the filesystem. 1334 */ 1335 if (vp->v_type == VCHR || vp->v_type == VBLK) { 1336 dev = vp->v_rdev; 1337 if (dev != NULL) { 1338 if (dev->si_lastread) { 1339 sb->st_atimespec.tv_sec = dev->si_lastread; 1340 sb->st_atimespec.tv_nsec = 0; 1341 } 1342 if (dev->si_lastwrite) { 1343 sb->st_atimespec.tv_sec = dev->si_lastwrite; 1344 sb->st_atimespec.tv_nsec = 0; 1345 } 1346 } 1347 } 1348 1349 /* 1350 * According to www.opengroup.org, the meaning of st_blksize is 1351 * "a filesystem-specific preferred I/O block size for this 1352 * object. In some filesystem types, this may vary from file 1353 * to file" 1354 * Default to PAGE_SIZE after much discussion. 1355 */ 1356 1357 sb->st_blksize = PAGE_SIZE; 1358 1359 sb->st_flags = vap->va_flags; 1360 1361 error = priv_check_cred(cred, PRIV_VFS_GENERATION, 0); 1362 if (error) 1363 sb->st_gen = 0; 1364 else 1365 sb->st_gen = (u_int32_t)vap->va_gen; 1366 1367 sb->st_blocks = vap->va_bytes / S_BLKSIZE; 1368 1369 return (0); 1370 } 1371 1372 1373 static int 1374 devfs_fo_kqfilter(struct file *fp, struct knote *kn) 1375 { 1376 struct vnode *vp; 1377 int error; 1378 cdev_t dev; 1379 1380 vp = (struct vnode *)fp->f_data; 1381 if (vp == NULL || vp->v_type == VBAD) { 1382 error = EBADF; 1383 goto done; 1384 } 1385 if ((dev = vp->v_rdev) == NULL) { 1386 error = EBADF; 1387 goto done; 1388 } 1389 reference_dev(dev); 1390 1391 error = dev_dkqfilter(dev, kn); 1392 1393 release_dev(dev); 1394 1395 done: 1396 return (error); 1397 } 1398 1399 /* 1400 * MPALMOSTSAFE - acquires mplock 1401 */ 1402 static int 1403 devfs_fo_ioctl(struct file *fp, u_long com, caddr_t data, 1404 struct ucred *ucred, struct sysmsg *msg) 1405 { 1406 struct devfs_node *node; 1407 struct vnode *vp; 1408 struct vnode *ovp; 1409 cdev_t dev; 1410 int error; 1411 struct fiodname_args *name_args; 1412 size_t namlen; 1413 const char *name; 1414 1415 vp = ((struct vnode *)fp->f_data); 1416 1417 if ((dev = vp->v_rdev) == NULL) 1418 return EBADF; /* device was revoked */ 1419 1420 reference_dev(dev); 1421 1422 node = DEVFS_NODE(vp); 1423 1424 devfs_debug(DEVFS_DEBUG_DEBUG, 1425 "devfs_fo_ioctl() called! for dev %s\n", 1426 dev->si_name); 1427 1428 if (com == FIODTYPE) { 1429 *(int *)data = dev_dflags(dev) & D_TYPEMASK; 1430 error = 0; 1431 goto out; 1432 } else if (com == FIODNAME) { 1433 name_args = (struct fiodname_args *)data; 1434 name = dev->si_name; 1435 namlen = strlen(name) + 1; 1436 1437 devfs_debug(DEVFS_DEBUG_DEBUG, 1438 "ioctl, got: FIODNAME for %s\n", name); 1439 1440 if (namlen <= name_args->len) 1441 error = copyout(dev->si_name, name_args->name, namlen); 1442 else 1443 error = EINVAL; 1444 1445 devfs_debug(DEVFS_DEBUG_DEBUG, 1446 "ioctl stuff: error: %d\n", error); 1447 goto out; 1448 } 1449 1450 error = dev_dioctl(dev, com, data, fp->f_flag, ucred, msg); 1451 1452 #if 0 1453 if (node) { 1454 nanotime(&node->atime); 1455 nanotime(&node->mtime); 1456 } 1457 #endif 1458 if (com == TIOCSCTTY) { 1459 devfs_debug(DEVFS_DEBUG_DEBUG, 1460 "devfs_fo_ioctl: got TIOCSCTTY on %s\n", 1461 dev->si_name); 1462 } 1463 if (error == 0 && com == TIOCSCTTY) { 1464 struct proc *p = curthread->td_proc; 1465 struct session *sess; 1466 1467 devfs_debug(DEVFS_DEBUG_DEBUG, 1468 "devfs_fo_ioctl: dealing with TIOCSCTTY on %s\n", 1469 dev->si_name); 1470 if (p == NULL) { 1471 error = ENOTTY; 1472 goto out; 1473 } 1474 sess = p->p_session; 1475 1476 /* 1477 * Do nothing if reassigning same control tty 1478 */ 1479 if (sess->s_ttyvp == vp) { 1480 error = 0; 1481 goto out; 1482 } 1483 1484 /* 1485 * Get rid of reference to old control tty 1486 */ 1487 ovp = sess->s_ttyvp; 1488 vref(vp); 1489 sess->s_ttyvp = vp; 1490 if (ovp) 1491 vrele(ovp); 1492 } 1493 1494 out: 1495 release_dev(dev); 1496 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_fo_ioctl() finished! \n"); 1497 return (error); 1498 } 1499 1500 1501 static int 1502 devfs_spec_fsync(struct vop_fsync_args *ap) 1503 { 1504 struct vnode *vp = ap->a_vp; 1505 int error; 1506 1507 if (!vn_isdisk(vp, NULL)) 1508 return (0); 1509 1510 /* 1511 * Flush all dirty buffers associated with a block device. 1512 */ 1513 error = vfsync(vp, ap->a_waitfor, 10000, NULL, NULL); 1514 return (error); 1515 } 1516 1517 static int 1518 devfs_spec_read(struct vop_read_args *ap) 1519 { 1520 struct devfs_node *node; 1521 struct vnode *vp; 1522 struct uio *uio; 1523 cdev_t dev; 1524 int error; 1525 1526 vp = ap->a_vp; 1527 dev = vp->v_rdev; 1528 uio = ap->a_uio; 1529 node = DEVFS_NODE(vp); 1530 1531 if (dev == NULL) /* device was revoked */ 1532 return (EBADF); 1533 if (uio->uio_resid == 0) 1534 return (0); 1535 1536 vn_unlock(vp); 1537 error = dev_dread(dev, uio, ap->a_ioflag); 1538 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1539 1540 if (node) 1541 nanotime(&node->atime); 1542 1543 return (error); 1544 } 1545 1546 /* 1547 * Vnode op for write 1548 * 1549 * spec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, 1550 * struct ucred *a_cred) 1551 */ 1552 static int 1553 devfs_spec_write(struct vop_write_args *ap) 1554 { 1555 struct devfs_node *node; 1556 struct vnode *vp; 1557 struct uio *uio; 1558 cdev_t dev; 1559 int error; 1560 1561 vp = ap->a_vp; 1562 dev = vp->v_rdev; 1563 uio = ap->a_uio; 1564 node = DEVFS_NODE(vp); 1565 1566 KKASSERT(uio->uio_segflg != UIO_NOCOPY); 1567 1568 if (dev == NULL) /* device was revoked */ 1569 return (EBADF); 1570 1571 vn_unlock(vp); 1572 error = dev_dwrite(dev, uio, ap->a_ioflag); 1573 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1574 1575 if (node) { 1576 nanotime(&node->atime); 1577 nanotime(&node->mtime); 1578 } 1579 1580 return (error); 1581 } 1582 1583 /* 1584 * Device ioctl operation. 1585 * 1586 * spec_ioctl(struct vnode *a_vp, int a_command, caddr_t a_data, 1587 * int a_fflag, struct ucred *a_cred, struct sysmsg *msg) 1588 */ 1589 static int 1590 devfs_spec_ioctl(struct vop_ioctl_args *ap) 1591 { 1592 struct vnode *vp = ap->a_vp; 1593 struct devfs_node *node; 1594 cdev_t dev; 1595 1596 if ((dev = vp->v_rdev) == NULL) 1597 return (EBADF); /* device was revoked */ 1598 node = DEVFS_NODE(vp); 1599 1600 #if 0 1601 if (node) { 1602 nanotime(&node->atime); 1603 nanotime(&node->mtime); 1604 } 1605 #endif 1606 1607 return (dev_dioctl(dev, ap->a_command, ap->a_data, ap->a_fflag, 1608 ap->a_cred, ap->a_sysmsg)); 1609 } 1610 1611 /* 1612 * spec_kqfilter(struct vnode *a_vp, struct knote *a_kn) 1613 */ 1614 /* ARGSUSED */ 1615 static int 1616 devfs_spec_kqfilter(struct vop_kqfilter_args *ap) 1617 { 1618 struct vnode *vp = ap->a_vp; 1619 struct devfs_node *node; 1620 cdev_t dev; 1621 1622 if ((dev = vp->v_rdev) == NULL) 1623 return (EBADF); /* device was revoked (EBADF) */ 1624 node = DEVFS_NODE(vp); 1625 1626 #if 0 1627 if (node) 1628 nanotime(&node->atime); 1629 #endif 1630 1631 return (dev_dkqfilter(dev, ap->a_kn)); 1632 } 1633 1634 /* 1635 * Convert a vnode strategy call into a device strategy call. Vnode strategy 1636 * calls are not limited to device DMA limits so we have to deal with the 1637 * case. 1638 * 1639 * spec_strategy(struct vnode *a_vp, struct bio *a_bio) 1640 */ 1641 static int 1642 devfs_spec_strategy(struct vop_strategy_args *ap) 1643 { 1644 struct bio *bio = ap->a_bio; 1645 struct buf *bp = bio->bio_buf; 1646 struct buf *nbp; 1647 struct vnode *vp; 1648 struct mount *mp; 1649 int chunksize; 1650 int maxiosize; 1651 1652 if (bp->b_cmd != BUF_CMD_READ && LIST_FIRST(&bp->b_dep) != NULL) 1653 buf_start(bp); 1654 1655 /* 1656 * Collect statistics on synchronous and asynchronous read 1657 * and write counts for disks that have associated filesystems. 1658 */ 1659 vp = ap->a_vp; 1660 KKASSERT(vp->v_rdev != NULL); /* XXX */ 1661 if (vn_isdisk(vp, NULL) && (mp = vp->v_rdev->si_mountpoint) != NULL) { 1662 if (bp->b_cmd == BUF_CMD_READ) { 1663 if (bp->b_flags & BIO_SYNC) 1664 mp->mnt_stat.f_syncreads++; 1665 else 1666 mp->mnt_stat.f_asyncreads++; 1667 } else { 1668 if (bp->b_flags & BIO_SYNC) 1669 mp->mnt_stat.f_syncwrites++; 1670 else 1671 mp->mnt_stat.f_asyncwrites++; 1672 } 1673 } 1674 1675 /* 1676 * Device iosize limitations only apply to read and write. Shortcut 1677 * the I/O if it fits. 1678 */ 1679 if ((maxiosize = vp->v_rdev->si_iosize_max) == 0) { 1680 devfs_debug(DEVFS_DEBUG_DEBUG, 1681 "%s: si_iosize_max not set!\n", 1682 dev_dname(vp->v_rdev)); 1683 maxiosize = MAXPHYS; 1684 } 1685 #if SPEC_CHAIN_DEBUG & 2 1686 maxiosize = 4096; 1687 #endif 1688 if (bp->b_bcount <= maxiosize || 1689 (bp->b_cmd != BUF_CMD_READ && bp->b_cmd != BUF_CMD_WRITE)) { 1690 dev_dstrategy_chain(vp->v_rdev, bio); 1691 return (0); 1692 } 1693 1694 /* 1695 * Clone the buffer and set up an I/O chain to chunk up the I/O. 1696 */ 1697 nbp = kmalloc(sizeof(*bp), M_DEVBUF, M_INTWAIT|M_ZERO); 1698 initbufbio(nbp); 1699 buf_dep_init(nbp); 1700 BUF_LOCK(nbp, LK_EXCLUSIVE); 1701 BUF_KERNPROC(nbp); 1702 nbp->b_vp = vp; 1703 nbp->b_flags = B_PAGING | (bp->b_flags & B_BNOCLIP); 1704 nbp->b_data = bp->b_data; 1705 nbp->b_bio1.bio_done = devfs_spec_strategy_done; 1706 nbp->b_bio1.bio_offset = bio->bio_offset; 1707 nbp->b_bio1.bio_caller_info1.ptr = bio; 1708 1709 /* 1710 * Start the first transfer 1711 */ 1712 if (vn_isdisk(vp, NULL)) 1713 chunksize = vp->v_rdev->si_bsize_phys; 1714 else 1715 chunksize = DEV_BSIZE; 1716 chunksize = maxiosize / chunksize * chunksize; 1717 #if SPEC_CHAIN_DEBUG & 1 1718 devfs_debug(DEVFS_DEBUG_DEBUG, 1719 "spec_strategy chained I/O chunksize=%d\n", 1720 chunksize); 1721 #endif 1722 nbp->b_cmd = bp->b_cmd; 1723 nbp->b_bcount = chunksize; 1724 nbp->b_bufsize = chunksize; /* used to detect a short I/O */ 1725 nbp->b_bio1.bio_caller_info2.index = chunksize; 1726 1727 #if SPEC_CHAIN_DEBUG & 1 1728 devfs_debug(DEVFS_DEBUG_DEBUG, 1729 "spec_strategy: chain %p offset %d/%d bcount %d\n", 1730 bp, 0, bp->b_bcount, nbp->b_bcount); 1731 #endif 1732 1733 dev_dstrategy(vp->v_rdev, &nbp->b_bio1); 1734 1735 if (DEVFS_NODE(vp)) { 1736 nanotime(&DEVFS_NODE(vp)->atime); 1737 nanotime(&DEVFS_NODE(vp)->mtime); 1738 } 1739 1740 return (0); 1741 } 1742 1743 /* 1744 * Chunked up transfer completion routine - chain transfers until done 1745 * 1746 * NOTE: MPSAFE callback. 1747 */ 1748 static 1749 void 1750 devfs_spec_strategy_done(struct bio *nbio) 1751 { 1752 struct buf *nbp = nbio->bio_buf; 1753 struct bio *bio = nbio->bio_caller_info1.ptr; /* original bio */ 1754 struct buf *bp = bio->bio_buf; /* original bp */ 1755 int chunksize = nbio->bio_caller_info2.index; /* chunking */ 1756 int boffset = nbp->b_data - bp->b_data; 1757 1758 if (nbp->b_flags & B_ERROR) { 1759 /* 1760 * An error terminates the chain, propogate the error back 1761 * to the original bp 1762 */ 1763 bp->b_flags |= B_ERROR; 1764 bp->b_error = nbp->b_error; 1765 bp->b_resid = bp->b_bcount - boffset + 1766 (nbp->b_bcount - nbp->b_resid); 1767 #if SPEC_CHAIN_DEBUG & 1 1768 devfs_debug(DEVFS_DEBUG_DEBUG, 1769 "spec_strategy: chain %p error %d bcount %d/%d\n", 1770 bp, bp->b_error, bp->b_bcount, 1771 bp->b_bcount - bp->b_resid); 1772 #endif 1773 } else if (nbp->b_resid) { 1774 /* 1775 * A short read or write terminates the chain 1776 */ 1777 bp->b_error = nbp->b_error; 1778 bp->b_resid = bp->b_bcount - boffset + 1779 (nbp->b_bcount - nbp->b_resid); 1780 #if SPEC_CHAIN_DEBUG & 1 1781 devfs_debug(DEVFS_DEBUG_DEBUG, 1782 "spec_strategy: chain %p short read(1) " 1783 "bcount %d/%d\n", 1784 bp, bp->b_bcount - bp->b_resid, bp->b_bcount); 1785 #endif 1786 } else if (nbp->b_bcount != nbp->b_bufsize) { 1787 /* 1788 * A short read or write can also occur by truncating b_bcount 1789 */ 1790 #if SPEC_CHAIN_DEBUG & 1 1791 devfs_debug(DEVFS_DEBUG_DEBUG, 1792 "spec_strategy: chain %p short read(2) " 1793 "bcount %d/%d\n", 1794 bp, nbp->b_bcount + boffset, bp->b_bcount); 1795 #endif 1796 bp->b_error = 0; 1797 bp->b_bcount = nbp->b_bcount + boffset; 1798 bp->b_resid = nbp->b_resid; 1799 } else if (nbp->b_bcount + boffset == bp->b_bcount) { 1800 /* 1801 * No more data terminates the chain 1802 */ 1803 #if SPEC_CHAIN_DEBUG & 1 1804 devfs_debug(DEVFS_DEBUG_DEBUG, 1805 "spec_strategy: chain %p finished bcount %d\n", 1806 bp, bp->b_bcount); 1807 #endif 1808 bp->b_error = 0; 1809 bp->b_resid = 0; 1810 } else { 1811 /* 1812 * Continue the chain 1813 */ 1814 boffset += nbp->b_bcount; 1815 nbp->b_data = bp->b_data + boffset; 1816 nbp->b_bcount = bp->b_bcount - boffset; 1817 if (nbp->b_bcount > chunksize) 1818 nbp->b_bcount = chunksize; 1819 nbp->b_bio1.bio_done = devfs_spec_strategy_done; 1820 nbp->b_bio1.bio_offset = bio->bio_offset + boffset; 1821 1822 #if SPEC_CHAIN_DEBUG & 1 1823 devfs_debug(DEVFS_DEBUG_DEBUG, 1824 "spec_strategy: chain %p offset %d/%d bcount %d\n", 1825 bp, boffset, bp->b_bcount, nbp->b_bcount); 1826 #endif 1827 1828 dev_dstrategy(nbp->b_vp->v_rdev, &nbp->b_bio1); 1829 return; 1830 } 1831 1832 /* 1833 * Fall through to here on termination. biodone(bp) and 1834 * clean up and free nbp. 1835 */ 1836 biodone(bio); 1837 BUF_UNLOCK(nbp); 1838 uninitbufbio(nbp); 1839 kfree(nbp, M_DEVBUF); 1840 } 1841 1842 /* 1843 * spec_freeblks(struct vnode *a_vp, daddr_t a_addr, daddr_t a_length) 1844 */ 1845 static int 1846 devfs_spec_freeblks(struct vop_freeblks_args *ap) 1847 { 1848 struct buf *bp; 1849 1850 /* 1851 * XXX: This assumes that strategy does the deed right away. 1852 * XXX: this may not be TRTTD. 1853 */ 1854 KKASSERT(ap->a_vp->v_rdev != NULL); 1855 if ((ap->a_vp->v_rdev->si_flags & SI_CANFREE) == 0) 1856 return (0); 1857 bp = geteblk(ap->a_length); 1858 bp->b_cmd = BUF_CMD_FREEBLKS; 1859 bp->b_bio1.bio_offset = ap->a_offset; 1860 bp->b_bcount = ap->a_length; 1861 dev_dstrategy(ap->a_vp->v_rdev, &bp->b_bio1); 1862 return (0); 1863 } 1864 1865 /* 1866 * Implement degenerate case where the block requested is the block 1867 * returned, and assume that the entire device is contiguous in regards 1868 * to the contiguous block range (runp and runb). 1869 * 1870 * spec_bmap(struct vnode *a_vp, off_t a_loffset, 1871 * off_t *a_doffsetp, int *a_runp, int *a_runb) 1872 */ 1873 static int 1874 devfs_spec_bmap(struct vop_bmap_args *ap) 1875 { 1876 if (ap->a_doffsetp != NULL) 1877 *ap->a_doffsetp = ap->a_loffset; 1878 if (ap->a_runp != NULL) 1879 *ap->a_runp = MAXBSIZE; 1880 if (ap->a_runb != NULL) { 1881 if (ap->a_loffset < MAXBSIZE) 1882 *ap->a_runb = (int)ap->a_loffset; 1883 else 1884 *ap->a_runb = MAXBSIZE; 1885 } 1886 return (0); 1887 } 1888 1889 1890 /* 1891 * Special device advisory byte-level locks. 1892 * 1893 * spec_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, 1894 * struct flock *a_fl, int a_flags) 1895 */ 1896 /* ARGSUSED */ 1897 static int 1898 devfs_spec_advlock(struct vop_advlock_args *ap) 1899 { 1900 return ((ap->a_flags & F_POSIX) ? EINVAL : EOPNOTSUPP); 1901 } 1902 1903 /* 1904 * NOTE: MPSAFE callback. 1905 */ 1906 static void 1907 devfs_spec_getpages_iodone(struct bio *bio) 1908 { 1909 bio->bio_buf->b_cmd = BUF_CMD_DONE; 1910 wakeup(bio->bio_buf); 1911 } 1912 1913 /* 1914 * spec_getpages() - get pages associated with device vnode. 1915 * 1916 * Note that spec_read and spec_write do not use the buffer cache, so we 1917 * must fully implement getpages here. 1918 */ 1919 static int 1920 devfs_spec_getpages(struct vop_getpages_args *ap) 1921 { 1922 vm_offset_t kva; 1923 int error; 1924 int i, pcount, size; 1925 struct buf *bp; 1926 vm_page_t m; 1927 vm_ooffset_t offset; 1928 int toff, nextoff, nread; 1929 struct vnode *vp = ap->a_vp; 1930 int blksiz; 1931 int gotreqpage; 1932 1933 error = 0; 1934 pcount = round_page(ap->a_count) / PAGE_SIZE; 1935 1936 /* 1937 * Calculate the offset of the transfer and do sanity check. 1938 */ 1939 offset = IDX_TO_OFF(ap->a_m[0]->pindex) + ap->a_offset; 1940 1941 /* 1942 * Round up physical size for real devices. We cannot round using 1943 * v_mount's block size data because v_mount has nothing to do with 1944 * the device. i.e. it's usually '/dev'. We need the physical block 1945 * size for the device itself. 1946 * 1947 * We can't use v_rdev->si_mountpoint because it only exists when the 1948 * block device is mounted. However, we can use v_rdev. 1949 */ 1950 if (vn_isdisk(vp, NULL)) 1951 blksiz = vp->v_rdev->si_bsize_phys; 1952 else 1953 blksiz = DEV_BSIZE; 1954 1955 size = (ap->a_count + blksiz - 1) & ~(blksiz - 1); 1956 1957 bp = getpbuf_kva(NULL); 1958 kva = (vm_offset_t)bp->b_data; 1959 1960 /* 1961 * Map the pages to be read into the kva. 1962 */ 1963 pmap_qenter(kva, ap->a_m, pcount); 1964 1965 /* Build a minimal buffer header. */ 1966 bp->b_cmd = BUF_CMD_READ; 1967 bp->b_bcount = size; 1968 bp->b_resid = 0; 1969 bsetrunningbufspace(bp, size); 1970 1971 bp->b_bio1.bio_offset = offset; 1972 bp->b_bio1.bio_done = devfs_spec_getpages_iodone; 1973 1974 mycpu->gd_cnt.v_vnodein++; 1975 mycpu->gd_cnt.v_vnodepgsin += pcount; 1976 1977 /* Do the input. */ 1978 vn_strategy(ap->a_vp, &bp->b_bio1); 1979 1980 crit_enter(); 1981 1982 /* We definitely need to be at splbio here. */ 1983 while (bp->b_cmd != BUF_CMD_DONE) 1984 tsleep(bp, 0, "spread", 0); 1985 1986 crit_exit(); 1987 1988 if (bp->b_flags & B_ERROR) { 1989 if (bp->b_error) 1990 error = bp->b_error; 1991 else 1992 error = EIO; 1993 } 1994 1995 /* 1996 * If EOF is encountered we must zero-extend the result in order 1997 * to ensure that the page does not contain garabge. When no 1998 * error occurs, an early EOF is indicated if b_bcount got truncated. 1999 * b_resid is relative to b_bcount and should be 0, but some devices 2000 * might indicate an EOF with b_resid instead of truncating b_bcount. 2001 */ 2002 nread = bp->b_bcount - bp->b_resid; 2003 if (nread < ap->a_count) 2004 bzero((caddr_t)kva + nread, ap->a_count - nread); 2005 pmap_qremove(kva, pcount); 2006 2007 gotreqpage = 0; 2008 for (i = 0, toff = 0; i < pcount; i++, toff = nextoff) { 2009 nextoff = toff + PAGE_SIZE; 2010 m = ap->a_m[i]; 2011 2012 m->flags &= ~PG_ZERO; 2013 2014 /* 2015 * NOTE: vm_page_undirty/clear_dirty etc do not clear the 2016 * pmap modified bit. pmap modified bit should have 2017 * already been cleared. 2018 */ 2019 if (nextoff <= nread) { 2020 m->valid = VM_PAGE_BITS_ALL; 2021 vm_page_undirty(m); 2022 } else if (toff < nread) { 2023 /* 2024 * Since this is a VM request, we have to supply the 2025 * unaligned offset to allow vm_page_set_valid() 2026 * to zero sub-DEV_BSIZE'd portions of the page. 2027 */ 2028 vm_page_set_valid(m, 0, nread - toff); 2029 vm_page_clear_dirty_end_nonincl(m, 0, nread - toff); 2030 } else { 2031 m->valid = 0; 2032 vm_page_undirty(m); 2033 } 2034 2035 if (i != ap->a_reqpage) { 2036 /* 2037 * Just in case someone was asking for this page we 2038 * now tell them that it is ok to use. 2039 */ 2040 if (!error || (m->valid == VM_PAGE_BITS_ALL)) { 2041 if (m->valid) { 2042 if (m->flags & PG_REFERENCED) { 2043 vm_page_activate(m); 2044 } else { 2045 vm_page_deactivate(m); 2046 } 2047 vm_page_wakeup(m); 2048 } else { 2049 vm_page_free(m); 2050 } 2051 } else { 2052 vm_page_free(m); 2053 } 2054 } else if (m->valid) { 2055 gotreqpage = 1; 2056 /* 2057 * Since this is a VM request, we need to make the 2058 * entire page presentable by zeroing invalid sections. 2059 */ 2060 if (m->valid != VM_PAGE_BITS_ALL) 2061 vm_page_zero_invalid(m, FALSE); 2062 } 2063 } 2064 if (!gotreqpage) { 2065 m = ap->a_m[ap->a_reqpage]; 2066 devfs_debug(DEVFS_DEBUG_WARNING, 2067 "spec_getpages:(%s) I/O read failure: (error=%d) bp %p vp %p\n", 2068 devtoname(vp->v_rdev), error, bp, bp->b_vp); 2069 devfs_debug(DEVFS_DEBUG_WARNING, 2070 " size: %d, resid: %d, a_count: %d, valid: 0x%x\n", 2071 size, bp->b_resid, ap->a_count, m->valid); 2072 devfs_debug(DEVFS_DEBUG_WARNING, 2073 " nread: %d, reqpage: %d, pindex: %lu, pcount: %d\n", 2074 nread, ap->a_reqpage, (u_long)m->pindex, pcount); 2075 /* 2076 * Free the buffer header back to the swap buffer pool. 2077 */ 2078 relpbuf(bp, NULL); 2079 return VM_PAGER_ERROR; 2080 } 2081 /* 2082 * Free the buffer header back to the swap buffer pool. 2083 */ 2084 relpbuf(bp, NULL); 2085 if (DEVFS_NODE(ap->a_vp)) 2086 nanotime(&DEVFS_NODE(ap->a_vp)->mtime); 2087 return VM_PAGER_OK; 2088 } 2089 2090 static __inline 2091 int 2092 sequential_heuristic(struct uio *uio, struct file *fp) 2093 { 2094 /* 2095 * Sequential heuristic - detect sequential operation 2096 */ 2097 if ((uio->uio_offset == 0 && fp->f_seqcount > 0) || 2098 uio->uio_offset == fp->f_nextoff) { 2099 /* 2100 * XXX we assume that the filesystem block size is 2101 * the default. Not true, but still gives us a pretty 2102 * good indicator of how sequential the read operations 2103 * are. 2104 */ 2105 int tmpseq = fp->f_seqcount; 2106 2107 tmpseq += (uio->uio_resid + BKVASIZE - 1) / BKVASIZE; 2108 if (tmpseq > IO_SEQMAX) 2109 tmpseq = IO_SEQMAX; 2110 fp->f_seqcount = tmpseq; 2111 return(fp->f_seqcount << IO_SEQSHIFT); 2112 } 2113 2114 /* 2115 * Not sequential, quick draw-down of seqcount 2116 */ 2117 if (fp->f_seqcount > 1) 2118 fp->f_seqcount = 1; 2119 else 2120 fp->f_seqcount = 0; 2121 return(0); 2122 } 2123