1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 2009 The DragonFly Project. All rights reserved. 5 * 6 * This code is derived from software contributed to The DragonFly Project 7 * by Alex Hornung <ahornung@gmail.com> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in 17 * the documentation and/or other materials provided with the 18 * distribution. 19 * 3. Neither the name of The DragonFly Project nor the names of its 20 * contributors may be used to endorse or promote products derived 21 * from this software without specific, prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 */ 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/time.h> 39 #include <sys/kernel.h> 40 #include <sys/lock.h> 41 #include <sys/fcntl.h> 42 #include <sys/proc.h> 43 #include <sys/priv.h> 44 #include <sys/signalvar.h> 45 #include <sys/vnode.h> 46 #include <sys/uio.h> 47 #include <sys/mount.h> 48 #include <sys/file.h> 49 #include <sys/fcntl.h> 50 #include <sys/namei.h> 51 #include <sys/dirent.h> 52 #include <sys/malloc.h> 53 #include <sys/stat.h> 54 #include <sys/reg.h> 55 #include <vm/vm_pager.h> 56 #include <vm/vm_zone.h> 57 #include <vm/vm_object.h> 58 #include <sys/filio.h> 59 #include <sys/ttycom.h> 60 #include <sys/tty.h> 61 #include <sys/diskslice.h> 62 #include <sys/sysctl.h> 63 #include <sys/devfs.h> 64 #include <sys/pioctl.h> 65 #include <vfs/fifofs/fifo.h> 66 67 #include <machine/limits.h> 68 69 #include <sys/buf2.h> 70 #include <sys/sysref2.h> 71 #include <sys/mplock2.h> 72 #include <vm/vm_page2.h> 73 74 MALLOC_DECLARE(M_DEVFS); 75 #define DEVFS_BADOP (void *)devfs_vop_badop 76 77 static int devfs_vop_badop(struct vop_generic_args *); 78 static int devfs_vop_access(struct vop_access_args *); 79 static int devfs_vop_inactive(struct vop_inactive_args *); 80 static int devfs_vop_reclaim(struct vop_reclaim_args *); 81 static int devfs_vop_readdir(struct vop_readdir_args *); 82 static int devfs_vop_getattr(struct vop_getattr_args *); 83 static int devfs_vop_setattr(struct vop_setattr_args *); 84 static int devfs_vop_readlink(struct vop_readlink_args *); 85 static int devfs_vop_print(struct vop_print_args *); 86 87 static int devfs_vop_nresolve(struct vop_nresolve_args *); 88 static int devfs_vop_nlookupdotdot(struct vop_nlookupdotdot_args *); 89 static int devfs_vop_nmkdir(struct vop_nmkdir_args *); 90 static int devfs_vop_nsymlink(struct vop_nsymlink_args *); 91 static int devfs_vop_nrmdir(struct vop_nrmdir_args *); 92 static int devfs_vop_nremove(struct vop_nremove_args *); 93 94 static int devfs_spec_open(struct vop_open_args *); 95 static int devfs_spec_close(struct vop_close_args *); 96 static int devfs_spec_fsync(struct vop_fsync_args *); 97 98 static int devfs_spec_read(struct vop_read_args *); 99 static int devfs_spec_write(struct vop_write_args *); 100 static int devfs_spec_ioctl(struct vop_ioctl_args *); 101 static int devfs_spec_kqfilter(struct vop_kqfilter_args *); 102 static int devfs_spec_strategy(struct vop_strategy_args *); 103 static void devfs_spec_strategy_done(struct bio *); 104 static int devfs_spec_freeblks(struct vop_freeblks_args *); 105 static int devfs_spec_bmap(struct vop_bmap_args *); 106 static int devfs_spec_advlock(struct vop_advlock_args *); 107 static void devfs_spec_getpages_iodone(struct bio *); 108 static int devfs_spec_getpages(struct vop_getpages_args *); 109 110 static int devfs_fo_close(struct file *); 111 static int devfs_fo_read(struct file *, struct uio *, struct ucred *, int); 112 static int devfs_fo_write(struct file *, struct uio *, struct ucred *, int); 113 static int devfs_fo_stat(struct file *, struct stat *, struct ucred *); 114 static int devfs_fo_kqfilter(struct file *, struct knote *); 115 static int devfs_fo_ioctl(struct file *, u_long, caddr_t, 116 struct ucred *, struct sysmsg *); 117 static __inline int sequential_heuristic(struct uio *, struct file *); 118 119 extern struct lock devfs_lock; 120 121 /* 122 * devfs vnode operations for regular files. All vnode ops are MPSAFE. 123 */ 124 struct vop_ops devfs_vnode_norm_vops = { 125 .vop_default = vop_defaultop, 126 .vop_access = devfs_vop_access, 127 .vop_advlock = DEVFS_BADOP, 128 .vop_bmap = DEVFS_BADOP, 129 .vop_close = vop_stdclose, 130 .vop_getattr = devfs_vop_getattr, 131 .vop_inactive = devfs_vop_inactive, 132 .vop_ncreate = DEVFS_BADOP, 133 .vop_nresolve = devfs_vop_nresolve, 134 .vop_nlookupdotdot = devfs_vop_nlookupdotdot, 135 .vop_nlink = DEVFS_BADOP, 136 .vop_nmkdir = devfs_vop_nmkdir, 137 .vop_nmknod = DEVFS_BADOP, 138 .vop_nremove = devfs_vop_nremove, 139 .vop_nrename = DEVFS_BADOP, 140 .vop_nrmdir = devfs_vop_nrmdir, 141 .vop_nsymlink = devfs_vop_nsymlink, 142 .vop_open = vop_stdopen, 143 .vop_pathconf = vop_stdpathconf, 144 .vop_print = devfs_vop_print, 145 .vop_read = DEVFS_BADOP, 146 .vop_readdir = devfs_vop_readdir, 147 .vop_readlink = devfs_vop_readlink, 148 .vop_reclaim = devfs_vop_reclaim, 149 .vop_setattr = devfs_vop_setattr, 150 .vop_write = DEVFS_BADOP, 151 .vop_ioctl = DEVFS_BADOP 152 }; 153 154 /* 155 * devfs vnode operations for character devices. All vnode ops are MPSAFE. 156 */ 157 struct vop_ops devfs_vnode_dev_vops = { 158 .vop_default = vop_defaultop, 159 .vop_access = devfs_vop_access, 160 .vop_advlock = devfs_spec_advlock, 161 .vop_bmap = devfs_spec_bmap, 162 .vop_close = devfs_spec_close, 163 .vop_freeblks = devfs_spec_freeblks, 164 .vop_fsync = devfs_spec_fsync, 165 .vop_getattr = devfs_vop_getattr, 166 .vop_getpages = devfs_spec_getpages, 167 .vop_inactive = devfs_vop_inactive, 168 .vop_open = devfs_spec_open, 169 .vop_pathconf = vop_stdpathconf, 170 .vop_print = devfs_vop_print, 171 .vop_kqfilter = devfs_spec_kqfilter, 172 .vop_read = devfs_spec_read, 173 .vop_readdir = DEVFS_BADOP, 174 .vop_readlink = DEVFS_BADOP, 175 .vop_reclaim = devfs_vop_reclaim, 176 .vop_setattr = devfs_vop_setattr, 177 .vop_strategy = devfs_spec_strategy, 178 .vop_write = devfs_spec_write, 179 .vop_ioctl = devfs_spec_ioctl 180 }; 181 182 /* 183 * devfs file pointer operations. All fileops are MPSAFE. 184 */ 185 struct vop_ops *devfs_vnode_dev_vops_p = &devfs_vnode_dev_vops; 186 187 struct fileops devfs_dev_fileops = { 188 .fo_read = devfs_fo_read, 189 .fo_write = devfs_fo_write, 190 .fo_ioctl = devfs_fo_ioctl, 191 .fo_kqfilter = devfs_fo_kqfilter, 192 .fo_stat = devfs_fo_stat, 193 .fo_close = devfs_fo_close, 194 .fo_shutdown = nofo_shutdown 195 }; 196 197 /* 198 * These two functions are possibly temporary hacks for devices (aka 199 * the pty code) which want to control the node attributes themselves. 200 * 201 * XXX we may ultimately desire to simply remove the uid/gid/mode 202 * from the node entirely. 203 * 204 * MPSAFE - sorta. Theoretically the overwrite can compete since they 205 * are loading from the same fields. 206 */ 207 static __inline void 208 node_sync_dev_get(struct devfs_node *node) 209 { 210 cdev_t dev; 211 212 if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) { 213 node->uid = dev->si_uid; 214 node->gid = dev->si_gid; 215 node->mode = dev->si_perms; 216 } 217 } 218 219 static __inline void 220 node_sync_dev_set(struct devfs_node *node) 221 { 222 cdev_t dev; 223 224 if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) { 225 dev->si_uid = node->uid; 226 dev->si_gid = node->gid; 227 dev->si_perms = node->mode; 228 } 229 } 230 231 /* 232 * generic entry point for unsupported operations 233 */ 234 static int 235 devfs_vop_badop(struct vop_generic_args *ap) 236 { 237 return (EIO); 238 } 239 240 241 static int 242 devfs_vop_access(struct vop_access_args *ap) 243 { 244 struct devfs_node *node = DEVFS_NODE(ap->a_vp); 245 int error; 246 247 if (!devfs_node_is_accessible(node)) 248 return ENOENT; 249 node_sync_dev_get(node); 250 error = vop_helper_access(ap, node->uid, node->gid, 251 node->mode, node->flags); 252 253 return error; 254 } 255 256 257 static int 258 devfs_vop_inactive(struct vop_inactive_args *ap) 259 { 260 struct devfs_node *node = DEVFS_NODE(ap->a_vp); 261 262 if (node == NULL || (node->flags & DEVFS_NODE_LINKED) == 0) 263 vrecycle(ap->a_vp); 264 return 0; 265 } 266 267 268 static int 269 devfs_vop_reclaim(struct vop_reclaim_args *ap) 270 { 271 struct devfs_node *node; 272 struct vnode *vp; 273 int locked; 274 275 /* 276 * Check if it is locked already. if not, we acquire the devfs lock 277 */ 278 if (!(lockstatus(&devfs_lock, curthread)) == LK_EXCLUSIVE) { 279 lockmgr(&devfs_lock, LK_EXCLUSIVE); 280 locked = 1; 281 } else { 282 locked = 0; 283 } 284 285 /* 286 * Get rid of the devfs_node if it is no longer linked into the 287 * topology. 288 */ 289 vp = ap->a_vp; 290 if ((node = DEVFS_NODE(vp)) != NULL) { 291 node->v_node = NULL; 292 if ((node->flags & DEVFS_NODE_LINKED) == 0) 293 devfs_freep(node); 294 } 295 296 if (locked) 297 lockmgr(&devfs_lock, LK_RELEASE); 298 299 /* 300 * v_rdev needs to be properly released using v_release_rdev 301 * Make sure v_data is NULL as well. 302 */ 303 vp->v_data = NULL; 304 v_release_rdev(vp); 305 return 0; 306 } 307 308 309 static int 310 devfs_vop_readdir(struct vop_readdir_args *ap) 311 { 312 struct devfs_node *dnode = DEVFS_NODE(ap->a_vp); 313 struct devfs_node *node; 314 int cookie_index; 315 int ncookies; 316 int error2; 317 int error; 318 int r; 319 off_t *cookies; 320 off_t saveoff; 321 322 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_readdir() called!\n"); 323 324 if (ap->a_uio->uio_offset < 0 || ap->a_uio->uio_offset > INT_MAX) 325 return (EINVAL); 326 if ((error = vn_lock(ap->a_vp, LK_EXCLUSIVE | LK_RETRY)) != 0) 327 return (error); 328 329 if (!devfs_node_is_accessible(dnode)) { 330 vn_unlock(ap->a_vp); 331 return ENOENT; 332 } 333 334 lockmgr(&devfs_lock, LK_EXCLUSIVE); 335 336 saveoff = ap->a_uio->uio_offset; 337 338 if (ap->a_ncookies) { 339 ncookies = ap->a_uio->uio_resid / 16 + 1; /* Why / 16 ?? */ 340 if (ncookies > 256) 341 ncookies = 256; 342 cookies = kmalloc(256 * sizeof(off_t), M_TEMP, M_WAITOK); 343 cookie_index = 0; 344 } else { 345 ncookies = -1; 346 cookies = NULL; 347 cookie_index = 0; 348 } 349 350 nanotime(&dnode->atime); 351 352 if (saveoff == 0) { 353 r = vop_write_dirent(&error, ap->a_uio, dnode->d_dir.d_ino, 354 DT_DIR, 1, "."); 355 if (r) 356 goto done; 357 if (cookies) 358 cookies[cookie_index] = saveoff; 359 saveoff++; 360 cookie_index++; 361 if (cookie_index == ncookies) 362 goto done; 363 } 364 365 if (saveoff == 1) { 366 if (dnode->parent) { 367 r = vop_write_dirent(&error, ap->a_uio, 368 dnode->parent->d_dir.d_ino, 369 DT_DIR, 2, ".."); 370 } else { 371 r = vop_write_dirent(&error, ap->a_uio, 372 dnode->d_dir.d_ino, 373 DT_DIR, 2, ".."); 374 } 375 if (r) 376 goto done; 377 if (cookies) 378 cookies[cookie_index] = saveoff; 379 saveoff++; 380 cookie_index++; 381 if (cookie_index == ncookies) 382 goto done; 383 } 384 385 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) { 386 if ((node->flags & DEVFS_HIDDEN) || 387 (node->flags & DEVFS_INVISIBLE)) { 388 continue; 389 } 390 391 /* 392 * If the node type is a valid devfs alias, then we make 393 * sure that the target isn't hidden. If it is, we don't 394 * show the link in the directory listing. 395 */ 396 if ((node->node_type == Nlink) && (node->link_target != NULL) && 397 (node->link_target->flags & DEVFS_HIDDEN)) 398 continue; 399 400 if (node->cookie < saveoff) 401 continue; 402 403 saveoff = node->cookie; 404 405 error2 = vop_write_dirent(&error, ap->a_uio, node->d_dir.d_ino, 406 node->d_dir.d_type, 407 node->d_dir.d_namlen, 408 node->d_dir.d_name); 409 410 if (error2) 411 break; 412 413 saveoff++; 414 415 if (cookies) 416 cookies[cookie_index] = node->cookie; 417 ++cookie_index; 418 if (cookie_index == ncookies) 419 break; 420 } 421 422 done: 423 lockmgr(&devfs_lock, LK_RELEASE); 424 vn_unlock(ap->a_vp); 425 426 ap->a_uio->uio_offset = saveoff; 427 if (error && cookie_index == 0) { 428 if (cookies) { 429 kfree(cookies, M_TEMP); 430 *ap->a_ncookies = 0; 431 *ap->a_cookies = NULL; 432 } 433 } else { 434 if (cookies) { 435 *ap->a_ncookies = cookie_index; 436 *ap->a_cookies = cookies; 437 } 438 } 439 return (error); 440 } 441 442 443 static int 444 devfs_vop_nresolve(struct vop_nresolve_args *ap) 445 { 446 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp); 447 struct devfs_node *node, *found = NULL; 448 struct namecache *ncp; 449 struct vnode *vp = NULL; 450 int error = 0; 451 int len; 452 int depth; 453 454 ncp = ap->a_nch->ncp; 455 len = ncp->nc_nlen; 456 457 if (!devfs_node_is_accessible(dnode)) 458 return ENOENT; 459 460 lockmgr(&devfs_lock, LK_EXCLUSIVE); 461 462 if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir)) { 463 error = ENOENT; 464 cache_setvp(ap->a_nch, NULL); 465 goto out; 466 } 467 468 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) { 469 if (len == node->d_dir.d_namlen) { 470 if (!memcmp(ncp->nc_name, node->d_dir.d_name, len)) { 471 found = node; 472 break; 473 } 474 } 475 } 476 477 if (found) { 478 depth = 0; 479 while ((found->node_type == Nlink) && (found->link_target)) { 480 if (depth >= 8) { 481 devfs_debug(DEVFS_DEBUG_SHOW, "Recursive link or depth >= 8"); 482 break; 483 } 484 485 found = found->link_target; 486 ++depth; 487 } 488 489 if (!(found->flags & DEVFS_HIDDEN)) 490 devfs_allocv(/*ap->a_dvp->v_mount, */ &vp, found); 491 } 492 493 if (vp == NULL) { 494 error = ENOENT; 495 cache_setvp(ap->a_nch, NULL); 496 goto out; 497 498 } 499 KKASSERT(vp); 500 vn_unlock(vp); 501 cache_setvp(ap->a_nch, vp); 502 vrele(vp); 503 out: 504 lockmgr(&devfs_lock, LK_RELEASE); 505 506 return error; 507 } 508 509 510 static int 511 devfs_vop_nlookupdotdot(struct vop_nlookupdotdot_args *ap) 512 { 513 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp); 514 515 *ap->a_vpp = NULL; 516 if (!devfs_node_is_accessible(dnode)) 517 return ENOENT; 518 519 lockmgr(&devfs_lock, LK_EXCLUSIVE); 520 if (dnode->parent != NULL) { 521 devfs_allocv(ap->a_vpp, dnode->parent); 522 vn_unlock(*ap->a_vpp); 523 } 524 lockmgr(&devfs_lock, LK_RELEASE); 525 526 return ((*ap->a_vpp == NULL) ? ENOENT : 0); 527 } 528 529 530 static int 531 devfs_vop_getattr(struct vop_getattr_args *ap) 532 { 533 struct devfs_node *node = DEVFS_NODE(ap->a_vp); 534 struct vattr *vap = ap->a_vap; 535 struct partinfo pinfo; 536 int error = 0; 537 538 #if 0 539 if (!devfs_node_is_accessible(node)) 540 return ENOENT; 541 #endif 542 node_sync_dev_get(node); 543 544 lockmgr(&devfs_lock, LK_EXCLUSIVE); 545 546 /* start by zeroing out the attributes */ 547 VATTR_NULL(vap); 548 549 /* next do all the common fields */ 550 vap->va_type = ap->a_vp->v_type; 551 vap->va_mode = node->mode; 552 vap->va_fileid = DEVFS_NODE(ap->a_vp)->d_dir.d_ino ; 553 vap->va_flags = 0; 554 vap->va_blocksize = DEV_BSIZE; 555 vap->va_bytes = vap->va_size = 0; 556 557 vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0]; 558 559 vap->va_atime = node->atime; 560 vap->va_mtime = node->mtime; 561 vap->va_ctime = node->ctime; 562 563 vap->va_nlink = 1; /* number of references to file */ 564 565 vap->va_uid = node->uid; 566 vap->va_gid = node->gid; 567 568 vap->va_rmajor = 0; 569 vap->va_rminor = 0; 570 571 if ((node->node_type == Ndev) && node->d_dev) { 572 reference_dev(node->d_dev); 573 vap->va_rminor = node->d_dev->si_uminor; 574 release_dev(node->d_dev); 575 } 576 577 /* For a softlink the va_size is the length of the softlink */ 578 if (node->symlink_name != 0) { 579 vap->va_bytes = vap->va_size = node->symlink_namelen; 580 } 581 582 /* 583 * For a disk-type device, va_size is the size of the underlying 584 * device, so that lseek() works properly. 585 */ 586 if ((node->d_dev) && (dev_dflags(node->d_dev) & D_DISK)) { 587 bzero(&pinfo, sizeof(pinfo)); 588 error = dev_dioctl(node->d_dev, DIOCGPART, (void *)&pinfo, 589 0, proc0.p_ucred, NULL); 590 if ((error == 0) && (pinfo.media_blksize != 0)) { 591 vap->va_size = pinfo.media_size; 592 } else { 593 vap->va_size = 0; 594 error = 0; 595 } 596 } 597 598 lockmgr(&devfs_lock, LK_RELEASE); 599 600 return (error); 601 } 602 603 604 static int 605 devfs_vop_setattr(struct vop_setattr_args *ap) 606 { 607 struct devfs_node *node = DEVFS_NODE(ap->a_vp); 608 struct vattr *vap; 609 uid_t cur_uid; 610 gid_t cur_gid; 611 mode_t cur_mode; 612 int error = 0; 613 614 if (!devfs_node_is_accessible(node)) 615 return ENOENT; 616 node_sync_dev_get(node); 617 618 lockmgr(&devfs_lock, LK_EXCLUSIVE); 619 620 vap = ap->a_vap; 621 622 if ((vap->va_uid != (uid_t)VNOVAL) || (vap->va_gid != (gid_t)VNOVAL)) { 623 cur_uid = node->uid; 624 cur_gid = node->gid; 625 cur_mode = node->mode; 626 error = vop_helper_chown(ap->a_vp, vap->va_uid, vap->va_gid, 627 ap->a_cred, &cur_uid, &cur_gid, &cur_mode); 628 if (error) 629 goto out; 630 631 if (node->uid != cur_uid || node->gid != cur_gid) { 632 node->uid = cur_uid; 633 node->gid = cur_gid; 634 node->mode = cur_mode; 635 } 636 } 637 638 if (vap->va_mode != (mode_t)VNOVAL) { 639 cur_mode = node->mode; 640 error = vop_helper_chmod(ap->a_vp, vap->va_mode, ap->a_cred, 641 node->uid, node->gid, &cur_mode); 642 if (error == 0 && node->mode != cur_mode) { 643 node->mode = cur_mode; 644 } 645 } 646 647 out: 648 node_sync_dev_set(node); 649 nanotime(&node->ctime); 650 lockmgr(&devfs_lock, LK_RELEASE); 651 652 return error; 653 } 654 655 656 static int 657 devfs_vop_readlink(struct vop_readlink_args *ap) 658 { 659 struct devfs_node *node = DEVFS_NODE(ap->a_vp); 660 int ret; 661 662 if (!devfs_node_is_accessible(node)) 663 return ENOENT; 664 665 lockmgr(&devfs_lock, LK_EXCLUSIVE); 666 ret = uiomove(node->symlink_name, node->symlink_namelen, ap->a_uio); 667 lockmgr(&devfs_lock, LK_RELEASE); 668 669 return ret; 670 } 671 672 673 static int 674 devfs_vop_print(struct vop_print_args *ap) 675 { 676 return (0); 677 } 678 679 static int 680 devfs_vop_nmkdir(struct vop_nmkdir_args *ap) 681 { 682 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp); 683 struct devfs_node *node; 684 685 if (!devfs_node_is_accessible(dnode)) 686 return ENOENT; 687 688 if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir)) 689 goto out; 690 691 lockmgr(&devfs_lock, LK_EXCLUSIVE); 692 devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Ndir, 693 ap->a_nch->ncp->nc_name, dnode, NULL); 694 695 if (*ap->a_vpp) { 696 node = DEVFS_NODE(*ap->a_vpp); 697 node->flags |= DEVFS_USER_CREATED; 698 cache_setunresolved(ap->a_nch); 699 cache_setvp(ap->a_nch, *ap->a_vpp); 700 } 701 lockmgr(&devfs_lock, LK_RELEASE); 702 out: 703 return ((*ap->a_vpp == NULL) ? ENOTDIR : 0); 704 } 705 706 static int 707 devfs_vop_nsymlink(struct vop_nsymlink_args *ap) 708 { 709 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp); 710 struct devfs_node *node; 711 size_t targetlen; 712 713 if (!devfs_node_is_accessible(dnode)) 714 return ENOENT; 715 716 ap->a_vap->va_type = VLNK; 717 718 if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir)) 719 goto out; 720 721 lockmgr(&devfs_lock, LK_EXCLUSIVE); 722 devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Nlink, 723 ap->a_nch->ncp->nc_name, dnode, NULL); 724 725 targetlen = strlen(ap->a_target); 726 if (*ap->a_vpp) { 727 node = DEVFS_NODE(*ap->a_vpp); 728 node->flags |= DEVFS_USER_CREATED; 729 node->symlink_namelen = targetlen; 730 node->symlink_name = kmalloc(targetlen + 1, M_DEVFS, M_WAITOK); 731 memcpy(node->symlink_name, ap->a_target, targetlen); 732 node->symlink_name[targetlen] = '\0'; 733 cache_setunresolved(ap->a_nch); 734 cache_setvp(ap->a_nch, *ap->a_vpp); 735 } 736 lockmgr(&devfs_lock, LK_RELEASE); 737 out: 738 return ((*ap->a_vpp == NULL) ? ENOTDIR : 0); 739 } 740 741 static int 742 devfs_vop_nrmdir(struct vop_nrmdir_args *ap) 743 { 744 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp); 745 struct devfs_node *node; 746 struct namecache *ncp; 747 int error = ENOENT; 748 749 ncp = ap->a_nch->ncp; 750 751 if (!devfs_node_is_accessible(dnode)) 752 return ENOENT; 753 754 lockmgr(&devfs_lock, LK_EXCLUSIVE); 755 756 if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir)) 757 goto out; 758 759 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) { 760 if (ncp->nc_nlen != node->d_dir.d_namlen) 761 continue; 762 if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen)) 763 continue; 764 765 /* 766 * only allow removal of user created dirs 767 */ 768 if ((node->flags & DEVFS_USER_CREATED) == 0) { 769 error = EPERM; 770 goto out; 771 } else if (node->node_type != Ndir) { 772 error = ENOTDIR; 773 goto out; 774 } else if (node->nchildren > 2) { 775 error = ENOTEMPTY; 776 goto out; 777 } else { 778 if (node->v_node) 779 cache_inval_vp(node->v_node, CINV_DESTROY); 780 devfs_unlinkp(node); 781 error = 0; 782 break; 783 } 784 } 785 786 cache_unlink(ap->a_nch); 787 out: 788 lockmgr(&devfs_lock, LK_RELEASE); 789 return error; 790 } 791 792 static int 793 devfs_vop_nremove(struct vop_nremove_args *ap) 794 { 795 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp); 796 struct devfs_node *node; 797 struct namecache *ncp; 798 int error = ENOENT; 799 800 ncp = ap->a_nch->ncp; 801 802 if (!devfs_node_is_accessible(dnode)) 803 return ENOENT; 804 805 lockmgr(&devfs_lock, LK_EXCLUSIVE); 806 807 if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir)) 808 goto out; 809 810 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) { 811 if (ncp->nc_nlen != node->d_dir.d_namlen) 812 continue; 813 if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen)) 814 continue; 815 816 /* 817 * only allow removal of user created stuff (e.g. symlinks) 818 */ 819 if ((node->flags & DEVFS_USER_CREATED) == 0) { 820 error = EPERM; 821 goto out; 822 } else if (node->node_type == Ndir) { 823 error = EISDIR; 824 goto out; 825 } else { 826 if (node->v_node) 827 cache_inval_vp(node->v_node, CINV_DESTROY); 828 devfs_unlinkp(node); 829 error = 0; 830 break; 831 } 832 } 833 834 cache_unlink(ap->a_nch); 835 out: 836 lockmgr(&devfs_lock, LK_RELEASE); 837 return error; 838 } 839 840 841 static int 842 devfs_spec_open(struct vop_open_args *ap) 843 { 844 struct vnode *vp = ap->a_vp; 845 struct vnode *orig_vp = NULL; 846 struct devfs_node *node = DEVFS_NODE(vp); 847 struct devfs_node *newnode; 848 cdev_t dev, ndev = NULL; 849 int error = 0; 850 851 if (node) { 852 if (node->d_dev == NULL) 853 return ENXIO; 854 if (!devfs_node_is_accessible(node)) 855 return ENOENT; 856 } 857 858 if ((dev = vp->v_rdev) == NULL) 859 return ENXIO; 860 861 if (node && ap->a_fp) { 862 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_open: -1.1-\n"); 863 lockmgr(&devfs_lock, LK_EXCLUSIVE); 864 865 ndev = devfs_clone(dev, node->d_dir.d_name, node->d_dir.d_namlen, 866 ap->a_mode, ap->a_cred); 867 if (ndev != NULL) { 868 newnode = devfs_create_device_node( 869 DEVFS_MNTDATA(vp->v_mount)->root_node, 870 ndev, NULL, NULL); 871 /* XXX: possibly destroy device if this happens */ 872 873 if (newnode != NULL) { 874 dev = ndev; 875 devfs_link_dev(dev); 876 877 devfs_debug(DEVFS_DEBUG_DEBUG, 878 "parent here is: %s, node is: |%s|\n", 879 ((node->parent->node_type == Nroot) ? 880 "ROOT!" : node->parent->d_dir.d_name), 881 newnode->d_dir.d_name); 882 devfs_debug(DEVFS_DEBUG_DEBUG, 883 "test: %s\n", 884 ((struct devfs_node *)(TAILQ_LAST(DEVFS_DENODE_HEAD(node->parent), devfs_node_head)))->d_dir.d_name); 885 886 /* 887 * orig_vp is set to the original vp if we cloned. 888 */ 889 /* node->flags |= DEVFS_CLONED; */ 890 devfs_allocv(&vp, newnode); 891 orig_vp = ap->a_vp; 892 ap->a_vp = vp; 893 } 894 } 895 lockmgr(&devfs_lock, LK_RELEASE); 896 } 897 898 devfs_debug(DEVFS_DEBUG_DEBUG, 899 "devfs_spec_open() called on %s! \n", 900 dev->si_name); 901 902 /* 903 * Make this field valid before any I/O in ->d_open 904 */ 905 if (!dev->si_iosize_max) 906 /* XXX: old DFLTPHYS == 64KB dependency */ 907 dev->si_iosize_max = min(MAXPHYS,64*1024); 908 909 if (dev_dflags(dev) & D_TTY) 910 vsetflags(vp, VISTTY); 911 912 /* 913 * Open underlying device 914 */ 915 vn_unlock(vp); 916 error = dev_dopen(dev, ap->a_mode, S_IFCHR, ap->a_cred); 917 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 918 919 /* 920 * Clean up any cloned vp if we error out. 921 */ 922 if (error) { 923 if (orig_vp) { 924 vput(vp); 925 ap->a_vp = orig_vp; 926 /* orig_vp = NULL; */ 927 } 928 return error; 929 } 930 931 /* 932 * This checks if the disk device is going to be opened for writing. 933 * It will be only allowed in the cases where securelevel permits it 934 * and it's not mounted R/W. 935 */ 936 if ((dev_dflags(dev) & D_DISK) && (ap->a_mode & FWRITE) && 937 (ap->a_cred != FSCRED)) { 938 939 /* Very secure mode. No open for writing allowed */ 940 if (securelevel >= 2) 941 return EPERM; 942 943 /* 944 * If it is mounted R/W, do not allow to open for writing. 945 * In the case it's mounted read-only but securelevel 946 * is >= 1, then do not allow opening for writing either. 947 */ 948 if (vfs_mountedon(vp)) { 949 if (!(dev->si_mountpoint->mnt_flag & MNT_RDONLY)) 950 return EBUSY; 951 else if (securelevel >= 1) 952 return EPERM; 953 } 954 } 955 956 if (dev_dflags(dev) & D_TTY) { 957 if (dev->si_tty) { 958 struct tty *tp; 959 tp = dev->si_tty; 960 if (!tp->t_stop) { 961 devfs_debug(DEVFS_DEBUG_DEBUG, 962 "devfs: no t_stop\n"); 963 tp->t_stop = nottystop; 964 } 965 } 966 } 967 968 969 if (vn_isdisk(vp, NULL)) { 970 if (!dev->si_bsize_phys) 971 dev->si_bsize_phys = DEV_BSIZE; 972 vinitvmio(vp, IDX_TO_OFF(INT_MAX), PAGE_SIZE, -1); 973 } 974 975 vop_stdopen(ap); 976 #if 0 977 if (node) 978 nanotime(&node->atime); 979 #endif 980 981 /* 982 * If we replaced the vp the vop_stdopen() call will have loaded 983 * it into fp->f_data and vref()d the vp, giving us two refs. So 984 * instead of just unlocking it here we have to vput() it. 985 */ 986 if (orig_vp) 987 vput(vp); 988 989 /* Ugly pty magic, to make pty devices appear once they are opened */ 990 if (node && (node->flags & DEVFS_PTY) == DEVFS_PTY) 991 node->flags &= ~DEVFS_INVISIBLE; 992 993 if (ap->a_fp) { 994 KKASSERT(ap->a_fp->f_type == DTYPE_VNODE); 995 KKASSERT((ap->a_fp->f_flag & FMASK) == (ap->a_mode & FMASK)); 996 ap->a_fp->f_ops = &devfs_dev_fileops; 997 KKASSERT(ap->a_fp->f_data == (void *)vp); 998 } 999 1000 return 0; 1001 } 1002 1003 1004 static int 1005 devfs_spec_close(struct vop_close_args *ap) 1006 { 1007 struct devfs_node *node; 1008 struct proc *p = curproc; 1009 struct vnode *vp = ap->a_vp; 1010 cdev_t dev = vp->v_rdev; 1011 int error = 0; 1012 int needrelock; 1013 1014 if (dev) 1015 devfs_debug(DEVFS_DEBUG_DEBUG, 1016 "devfs_spec_close() called on %s! \n", 1017 dev->si_name); 1018 else 1019 devfs_debug(DEVFS_DEBUG_DEBUG, 1020 "devfs_spec_close() called, null vode!\n"); 1021 1022 /* 1023 * A couple of hacks for devices and tty devices. The 1024 * vnode ref count cannot be used to figure out the 1025 * last close, but we can use v_opencount now that 1026 * revoke works properly. 1027 * 1028 * Detect the last close on a controlling terminal and clear 1029 * the session (half-close). 1030 */ 1031 if (dev) 1032 reference_dev(dev); 1033 1034 if (p && vp->v_opencount <= 1 && vp == p->p_session->s_ttyvp) { 1035 p->p_session->s_ttyvp = NULL; 1036 vrele(vp); 1037 } 1038 1039 /* 1040 * Vnodes can be opened and closed multiple times. Do not really 1041 * close the device unless (1) it is being closed forcibly, 1042 * (2) the device wants to track closes, or (3) this is the last 1043 * vnode doing its last close on the device. 1044 * 1045 * XXX the VXLOCK (force close) case can leave vnodes referencing 1046 * a closed device. This might not occur now that our revoke is 1047 * fixed. 1048 */ 1049 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -1- \n"); 1050 if (dev && ((vp->v_flag & VRECLAIMED) || 1051 (dev_dflags(dev) & D_TRACKCLOSE) || 1052 (vp->v_opencount == 1))) { 1053 /* 1054 * Ugly pty magic, to make pty devices disappear again once 1055 * they are closed. 1056 */ 1057 node = DEVFS_NODE(ap->a_vp); 1058 if (node && (node->flags & DEVFS_PTY)) 1059 node->flags |= DEVFS_INVISIBLE; 1060 1061 /* 1062 * Unlock around dev_dclose(), unless the vnode is 1063 * undergoing a vgone/reclaim (during umount). 1064 */ 1065 needrelock = 0; 1066 if ((vp->v_flag & VRECLAIMED) == 0 && vn_islocked(vp)) { 1067 needrelock = 1; 1068 vn_unlock(vp); 1069 } 1070 1071 /* 1072 * WARNING! If the device destroys itself the devfs node 1073 * can disappear here. 1074 * 1075 * WARNING! vn_lock() will fail if the vp is in a VRECLAIM, 1076 * which can occur during umount. 1077 */ 1078 error = dev_dclose(dev, ap->a_fflag, S_IFCHR); 1079 /* node is now stale */ 1080 1081 if (needrelock) { 1082 if (vn_lock(vp, LK_EXCLUSIVE | LK_RETRY) != 0) { 1083 panic("devfs_spec_close: vnode %p " 1084 "unexpectedly could not be relocked", 1085 vp); 1086 } 1087 } 1088 } else { 1089 error = 0; 1090 } 1091 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -2- \n"); 1092 1093 /* 1094 * Track the actual opens and closes on the vnode. The last close 1095 * disassociates the rdev. If the rdev is already disassociated or 1096 * the opencount is already 0, the vnode might have been revoked 1097 * and no further opencount tracking occurs. 1098 */ 1099 if (dev) 1100 release_dev(dev); 1101 if (vp->v_opencount > 0) 1102 vop_stdclose(ap); 1103 return(error); 1104 1105 } 1106 1107 1108 static int 1109 devfs_fo_close(struct file *fp) 1110 { 1111 struct vnode *vp = (struct vnode *)fp->f_data; 1112 int error; 1113 1114 fp->f_ops = &badfileops; 1115 error = vn_close(vp, fp->f_flag); 1116 1117 return (error); 1118 } 1119 1120 1121 /* 1122 * Device-optimized file table vnode read routine. 1123 * 1124 * This bypasses the VOP table and talks directly to the device. Most 1125 * filesystems just route to specfs and can make this optimization. 1126 * 1127 * MPALMOSTSAFE - acquires mplock 1128 */ 1129 static int 1130 devfs_fo_read(struct file *fp, struct uio *uio, 1131 struct ucred *cred, int flags) 1132 { 1133 struct devfs_node *node; 1134 struct vnode *vp; 1135 int ioflag; 1136 int error; 1137 cdev_t dev; 1138 1139 KASSERT(uio->uio_td == curthread, 1140 ("uio_td %p is not td %p", uio->uio_td, curthread)); 1141 1142 if (uio->uio_resid == 0) 1143 return 0; 1144 1145 vp = (struct vnode *)fp->f_data; 1146 if (vp == NULL || vp->v_type == VBAD) 1147 return EBADF; 1148 1149 node = DEVFS_NODE(vp); 1150 1151 if ((dev = vp->v_rdev) == NULL) 1152 return EBADF; 1153 1154 reference_dev(dev); 1155 1156 if ((flags & O_FOFFSET) == 0) 1157 uio->uio_offset = fp->f_offset; 1158 1159 ioflag = 0; 1160 if (flags & O_FBLOCKING) { 1161 /* ioflag &= ~IO_NDELAY; */ 1162 } else if (flags & O_FNONBLOCKING) { 1163 ioflag |= IO_NDELAY; 1164 } else if (fp->f_flag & FNONBLOCK) { 1165 ioflag |= IO_NDELAY; 1166 } 1167 if (flags & O_FBUFFERED) { 1168 /* ioflag &= ~IO_DIRECT; */ 1169 } else if (flags & O_FUNBUFFERED) { 1170 ioflag |= IO_DIRECT; 1171 } else if (fp->f_flag & O_DIRECT) { 1172 ioflag |= IO_DIRECT; 1173 } 1174 ioflag |= sequential_heuristic(uio, fp); 1175 1176 error = dev_dread(dev, uio, ioflag); 1177 1178 release_dev(dev); 1179 if (node) 1180 nanotime(&node->atime); 1181 if ((flags & O_FOFFSET) == 0) 1182 fp->f_offset = uio->uio_offset; 1183 fp->f_nextoff = uio->uio_offset; 1184 1185 return (error); 1186 } 1187 1188 1189 static int 1190 devfs_fo_write(struct file *fp, struct uio *uio, 1191 struct ucred *cred, int flags) 1192 { 1193 struct devfs_node *node; 1194 struct vnode *vp; 1195 int ioflag; 1196 int error; 1197 cdev_t dev; 1198 1199 KASSERT(uio->uio_td == curthread, 1200 ("uio_td %p is not p %p", uio->uio_td, curthread)); 1201 1202 vp = (struct vnode *)fp->f_data; 1203 if (vp == NULL || vp->v_type == VBAD) 1204 return EBADF; 1205 1206 node = DEVFS_NODE(vp); 1207 1208 if (vp->v_type == VREG) 1209 bwillwrite(uio->uio_resid); 1210 1211 vp = (struct vnode *)fp->f_data; 1212 1213 if ((dev = vp->v_rdev) == NULL) 1214 return EBADF; 1215 1216 reference_dev(dev); 1217 1218 if ((flags & O_FOFFSET) == 0) 1219 uio->uio_offset = fp->f_offset; 1220 1221 ioflag = IO_UNIT; 1222 if (vp->v_type == VREG && 1223 ((fp->f_flag & O_APPEND) || (flags & O_FAPPEND))) { 1224 ioflag |= IO_APPEND; 1225 } 1226 1227 if (flags & O_FBLOCKING) { 1228 /* ioflag &= ~IO_NDELAY; */ 1229 } else if (flags & O_FNONBLOCKING) { 1230 ioflag |= IO_NDELAY; 1231 } else if (fp->f_flag & FNONBLOCK) { 1232 ioflag |= IO_NDELAY; 1233 } 1234 if (flags & O_FBUFFERED) { 1235 /* ioflag &= ~IO_DIRECT; */ 1236 } else if (flags & O_FUNBUFFERED) { 1237 ioflag |= IO_DIRECT; 1238 } else if (fp->f_flag & O_DIRECT) { 1239 ioflag |= IO_DIRECT; 1240 } 1241 if (flags & O_FASYNCWRITE) { 1242 /* ioflag &= ~IO_SYNC; */ 1243 } else if (flags & O_FSYNCWRITE) { 1244 ioflag |= IO_SYNC; 1245 } else if (fp->f_flag & O_FSYNC) { 1246 ioflag |= IO_SYNC; 1247 } 1248 1249 if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)) 1250 ioflag |= IO_SYNC; 1251 ioflag |= sequential_heuristic(uio, fp); 1252 1253 error = dev_dwrite(dev, uio, ioflag); 1254 1255 release_dev(dev); 1256 if (node) { 1257 nanotime(&node->atime); 1258 nanotime(&node->mtime); 1259 } 1260 1261 if ((flags & O_FOFFSET) == 0) 1262 fp->f_offset = uio->uio_offset; 1263 fp->f_nextoff = uio->uio_offset; 1264 1265 return (error); 1266 } 1267 1268 1269 static int 1270 devfs_fo_stat(struct file *fp, struct stat *sb, struct ucred *cred) 1271 { 1272 struct vnode *vp; 1273 struct vattr vattr; 1274 struct vattr *vap; 1275 u_short mode; 1276 cdev_t dev; 1277 int error; 1278 1279 vp = (struct vnode *)fp->f_data; 1280 if (vp == NULL || vp->v_type == VBAD) 1281 return EBADF; 1282 1283 error = vn_stat(vp, sb, cred); 1284 if (error) 1285 return (error); 1286 1287 vap = &vattr; 1288 error = VOP_GETATTR(vp, vap); 1289 if (error) 1290 return (error); 1291 1292 /* 1293 * Zero the spare stat fields 1294 */ 1295 sb->st_lspare = 0; 1296 sb->st_qspare1 = 0; 1297 sb->st_qspare2 = 0; 1298 1299 /* 1300 * Copy from vattr table ... or not in case it's a cloned device 1301 */ 1302 if (vap->va_fsid != VNOVAL) 1303 sb->st_dev = vap->va_fsid; 1304 else 1305 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0]; 1306 1307 sb->st_ino = vap->va_fileid; 1308 1309 mode = vap->va_mode; 1310 mode |= S_IFCHR; 1311 sb->st_mode = mode; 1312 1313 if (vap->va_nlink > (nlink_t)-1) 1314 sb->st_nlink = (nlink_t)-1; 1315 else 1316 sb->st_nlink = vap->va_nlink; 1317 1318 sb->st_uid = vap->va_uid; 1319 sb->st_gid = vap->va_gid; 1320 sb->st_rdev = dev2udev(DEVFS_NODE(vp)->d_dev); 1321 sb->st_size = vap->va_bytes; 1322 sb->st_atimespec = vap->va_atime; 1323 sb->st_mtimespec = vap->va_mtime; 1324 sb->st_ctimespec = vap->va_ctime; 1325 1326 /* 1327 * A VCHR and VBLK device may track the last access and last modified 1328 * time independantly of the filesystem. This is particularly true 1329 * because device read and write calls may bypass the filesystem. 1330 */ 1331 if (vp->v_type == VCHR || vp->v_type == VBLK) { 1332 dev = vp->v_rdev; 1333 if (dev != NULL) { 1334 if (dev->si_lastread) { 1335 sb->st_atimespec.tv_sec = dev->si_lastread; 1336 sb->st_atimespec.tv_nsec = 0; 1337 } 1338 if (dev->si_lastwrite) { 1339 sb->st_atimespec.tv_sec = dev->si_lastwrite; 1340 sb->st_atimespec.tv_nsec = 0; 1341 } 1342 } 1343 } 1344 1345 /* 1346 * According to www.opengroup.org, the meaning of st_blksize is 1347 * "a filesystem-specific preferred I/O block size for this 1348 * object. In some filesystem types, this may vary from file 1349 * to file" 1350 * Default to PAGE_SIZE after much discussion. 1351 */ 1352 1353 sb->st_blksize = PAGE_SIZE; 1354 1355 sb->st_flags = vap->va_flags; 1356 1357 error = priv_check_cred(cred, PRIV_VFS_GENERATION, 0); 1358 if (error) 1359 sb->st_gen = 0; 1360 else 1361 sb->st_gen = (u_int32_t)vap->va_gen; 1362 1363 sb->st_blocks = vap->va_bytes / S_BLKSIZE; 1364 1365 return (0); 1366 } 1367 1368 1369 static int 1370 devfs_fo_kqfilter(struct file *fp, struct knote *kn) 1371 { 1372 struct vnode *vp; 1373 int error; 1374 cdev_t dev; 1375 1376 vp = (struct vnode *)fp->f_data; 1377 if (vp == NULL || vp->v_type == VBAD) { 1378 error = EBADF; 1379 goto done; 1380 } 1381 if ((dev = vp->v_rdev) == NULL) { 1382 error = EBADF; 1383 goto done; 1384 } 1385 reference_dev(dev); 1386 1387 error = dev_dkqfilter(dev, kn); 1388 1389 release_dev(dev); 1390 1391 done: 1392 return (error); 1393 } 1394 1395 /* 1396 * MPALMOSTSAFE - acquires mplock 1397 */ 1398 static int 1399 devfs_fo_ioctl(struct file *fp, u_long com, caddr_t data, 1400 struct ucred *ucred, struct sysmsg *msg) 1401 { 1402 #if 0 1403 struct devfs_node *node; 1404 #endif 1405 struct vnode *vp; 1406 struct vnode *ovp; 1407 cdev_t dev; 1408 int error; 1409 struct fiodname_args *name_args; 1410 size_t namlen; 1411 const char *name; 1412 1413 vp = ((struct vnode *)fp->f_data); 1414 1415 if ((dev = vp->v_rdev) == NULL) 1416 return EBADF; /* device was revoked */ 1417 1418 reference_dev(dev); 1419 1420 #if 0 1421 node = DEVFS_NODE(vp); 1422 #endif 1423 1424 devfs_debug(DEVFS_DEBUG_DEBUG, 1425 "devfs_fo_ioctl() called! for dev %s\n", 1426 dev->si_name); 1427 1428 if (com == FIODTYPE) { 1429 *(int *)data = dev_dflags(dev) & D_TYPEMASK; 1430 error = 0; 1431 goto out; 1432 } else if (com == FIODNAME) { 1433 name_args = (struct fiodname_args *)data; 1434 name = dev->si_name; 1435 namlen = strlen(name) + 1; 1436 1437 devfs_debug(DEVFS_DEBUG_DEBUG, 1438 "ioctl, got: FIODNAME for %s\n", name); 1439 1440 if (namlen <= name_args->len) 1441 error = copyout(dev->si_name, name_args->name, namlen); 1442 else 1443 error = EINVAL; 1444 1445 devfs_debug(DEVFS_DEBUG_DEBUG, 1446 "ioctl stuff: error: %d\n", error); 1447 goto out; 1448 } 1449 1450 error = dev_dioctl(dev, com, data, fp->f_flag, ucred, msg); 1451 1452 #if 0 1453 if (node) { 1454 nanotime(&node->atime); 1455 nanotime(&node->mtime); 1456 } 1457 #endif 1458 if (com == TIOCSCTTY) { 1459 devfs_debug(DEVFS_DEBUG_DEBUG, 1460 "devfs_fo_ioctl: got TIOCSCTTY on %s\n", 1461 dev->si_name); 1462 } 1463 if (error == 0 && com == TIOCSCTTY) { 1464 struct proc *p = curthread->td_proc; 1465 struct session *sess; 1466 1467 devfs_debug(DEVFS_DEBUG_DEBUG, 1468 "devfs_fo_ioctl: dealing with TIOCSCTTY on %s\n", 1469 dev->si_name); 1470 if (p == NULL) { 1471 error = ENOTTY; 1472 goto out; 1473 } 1474 sess = p->p_session; 1475 1476 /* 1477 * Do nothing if reassigning same control tty 1478 */ 1479 if (sess->s_ttyvp == vp) { 1480 error = 0; 1481 goto out; 1482 } 1483 1484 /* 1485 * Get rid of reference to old control tty 1486 */ 1487 ovp = sess->s_ttyvp; 1488 vref(vp); 1489 sess->s_ttyvp = vp; 1490 if (ovp) 1491 vrele(ovp); 1492 } 1493 1494 out: 1495 release_dev(dev); 1496 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_fo_ioctl() finished! \n"); 1497 return (error); 1498 } 1499 1500 1501 static int 1502 devfs_spec_fsync(struct vop_fsync_args *ap) 1503 { 1504 struct vnode *vp = ap->a_vp; 1505 int error; 1506 1507 if (!vn_isdisk(vp, NULL)) 1508 return (0); 1509 1510 /* 1511 * Flush all dirty buffers associated with a block device. 1512 */ 1513 error = vfsync(vp, ap->a_waitfor, 10000, NULL, NULL); 1514 return (error); 1515 } 1516 1517 static int 1518 devfs_spec_read(struct vop_read_args *ap) 1519 { 1520 struct devfs_node *node; 1521 struct vnode *vp; 1522 struct uio *uio; 1523 cdev_t dev; 1524 int error; 1525 1526 vp = ap->a_vp; 1527 dev = vp->v_rdev; 1528 uio = ap->a_uio; 1529 node = DEVFS_NODE(vp); 1530 1531 if (dev == NULL) /* device was revoked */ 1532 return (EBADF); 1533 if (uio->uio_resid == 0) 1534 return (0); 1535 1536 vn_unlock(vp); 1537 error = dev_dread(dev, uio, ap->a_ioflag); 1538 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1539 1540 if (node) 1541 nanotime(&node->atime); 1542 1543 return (error); 1544 } 1545 1546 /* 1547 * Vnode op for write 1548 * 1549 * spec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, 1550 * struct ucred *a_cred) 1551 */ 1552 static int 1553 devfs_spec_write(struct vop_write_args *ap) 1554 { 1555 struct devfs_node *node; 1556 struct vnode *vp; 1557 struct uio *uio; 1558 cdev_t dev; 1559 int error; 1560 1561 vp = ap->a_vp; 1562 dev = vp->v_rdev; 1563 uio = ap->a_uio; 1564 node = DEVFS_NODE(vp); 1565 1566 KKASSERT(uio->uio_segflg != UIO_NOCOPY); 1567 1568 if (dev == NULL) /* device was revoked */ 1569 return (EBADF); 1570 1571 vn_unlock(vp); 1572 error = dev_dwrite(dev, uio, ap->a_ioflag); 1573 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1574 1575 if (node) { 1576 nanotime(&node->atime); 1577 nanotime(&node->mtime); 1578 } 1579 1580 return (error); 1581 } 1582 1583 /* 1584 * Device ioctl operation. 1585 * 1586 * spec_ioctl(struct vnode *a_vp, int a_command, caddr_t a_data, 1587 * int a_fflag, struct ucred *a_cred, struct sysmsg *msg) 1588 */ 1589 static int 1590 devfs_spec_ioctl(struct vop_ioctl_args *ap) 1591 { 1592 struct vnode *vp = ap->a_vp; 1593 #if 0 1594 struct devfs_node *node; 1595 #endif 1596 cdev_t dev; 1597 1598 if ((dev = vp->v_rdev) == NULL) 1599 return (EBADF); /* device was revoked */ 1600 #if 0 1601 node = DEVFS_NODE(vp); 1602 1603 if (node) { 1604 nanotime(&node->atime); 1605 nanotime(&node->mtime); 1606 } 1607 #endif 1608 1609 return (dev_dioctl(dev, ap->a_command, ap->a_data, ap->a_fflag, 1610 ap->a_cred, ap->a_sysmsg)); 1611 } 1612 1613 /* 1614 * spec_kqfilter(struct vnode *a_vp, struct knote *a_kn) 1615 */ 1616 /* ARGSUSED */ 1617 static int 1618 devfs_spec_kqfilter(struct vop_kqfilter_args *ap) 1619 { 1620 struct vnode *vp = ap->a_vp; 1621 #if 0 1622 struct devfs_node *node; 1623 #endif 1624 cdev_t dev; 1625 1626 if ((dev = vp->v_rdev) == NULL) 1627 return (EBADF); /* device was revoked (EBADF) */ 1628 #if 0 1629 node = DEVFS_NODE(vp); 1630 1631 if (node) 1632 nanotime(&node->atime); 1633 #endif 1634 1635 return (dev_dkqfilter(dev, ap->a_kn)); 1636 } 1637 1638 /* 1639 * Convert a vnode strategy call into a device strategy call. Vnode strategy 1640 * calls are not limited to device DMA limits so we have to deal with the 1641 * case. 1642 * 1643 * spec_strategy(struct vnode *a_vp, struct bio *a_bio) 1644 */ 1645 static int 1646 devfs_spec_strategy(struct vop_strategy_args *ap) 1647 { 1648 struct bio *bio = ap->a_bio; 1649 struct buf *bp = bio->bio_buf; 1650 struct buf *nbp; 1651 struct vnode *vp; 1652 struct mount *mp; 1653 int chunksize; 1654 int maxiosize; 1655 1656 if (bp->b_cmd != BUF_CMD_READ && LIST_FIRST(&bp->b_dep) != NULL) 1657 buf_start(bp); 1658 1659 /* 1660 * Collect statistics on synchronous and asynchronous read 1661 * and write counts for disks that have associated filesystems. 1662 */ 1663 vp = ap->a_vp; 1664 KKASSERT(vp->v_rdev != NULL); /* XXX */ 1665 if (vn_isdisk(vp, NULL) && (mp = vp->v_rdev->si_mountpoint) != NULL) { 1666 if (bp->b_cmd == BUF_CMD_READ) { 1667 if (bp->b_flags & BIO_SYNC) 1668 mp->mnt_stat.f_syncreads++; 1669 else 1670 mp->mnt_stat.f_asyncreads++; 1671 } else { 1672 if (bp->b_flags & BIO_SYNC) 1673 mp->mnt_stat.f_syncwrites++; 1674 else 1675 mp->mnt_stat.f_asyncwrites++; 1676 } 1677 } 1678 1679 /* 1680 * Device iosize limitations only apply to read and write. Shortcut 1681 * the I/O if it fits. 1682 */ 1683 if ((maxiosize = vp->v_rdev->si_iosize_max) == 0) { 1684 devfs_debug(DEVFS_DEBUG_DEBUG, 1685 "%s: si_iosize_max not set!\n", 1686 dev_dname(vp->v_rdev)); 1687 maxiosize = MAXPHYS; 1688 } 1689 #if SPEC_CHAIN_DEBUG & 2 1690 maxiosize = 4096; 1691 #endif 1692 if (bp->b_bcount <= maxiosize || 1693 (bp->b_cmd != BUF_CMD_READ && bp->b_cmd != BUF_CMD_WRITE)) { 1694 dev_dstrategy_chain(vp->v_rdev, bio); 1695 return (0); 1696 } 1697 1698 /* 1699 * Clone the buffer and set up an I/O chain to chunk up the I/O. 1700 */ 1701 nbp = kmalloc(sizeof(*bp), M_DEVBUF, M_INTWAIT|M_ZERO); 1702 initbufbio(nbp); 1703 buf_dep_init(nbp); 1704 BUF_LOCK(nbp, LK_EXCLUSIVE); 1705 BUF_KERNPROC(nbp); 1706 nbp->b_vp = vp; 1707 nbp->b_flags = B_PAGING | (bp->b_flags & B_BNOCLIP); 1708 nbp->b_data = bp->b_data; 1709 nbp->b_bio1.bio_done = devfs_spec_strategy_done; 1710 nbp->b_bio1.bio_offset = bio->bio_offset; 1711 nbp->b_bio1.bio_caller_info1.ptr = bio; 1712 1713 /* 1714 * Start the first transfer 1715 */ 1716 if (vn_isdisk(vp, NULL)) 1717 chunksize = vp->v_rdev->si_bsize_phys; 1718 else 1719 chunksize = DEV_BSIZE; 1720 chunksize = maxiosize / chunksize * chunksize; 1721 #if SPEC_CHAIN_DEBUG & 1 1722 devfs_debug(DEVFS_DEBUG_DEBUG, 1723 "spec_strategy chained I/O chunksize=%d\n", 1724 chunksize); 1725 #endif 1726 nbp->b_cmd = bp->b_cmd; 1727 nbp->b_bcount = chunksize; 1728 nbp->b_bufsize = chunksize; /* used to detect a short I/O */ 1729 nbp->b_bio1.bio_caller_info2.index = chunksize; 1730 1731 #if SPEC_CHAIN_DEBUG & 1 1732 devfs_debug(DEVFS_DEBUG_DEBUG, 1733 "spec_strategy: chain %p offset %d/%d bcount %d\n", 1734 bp, 0, bp->b_bcount, nbp->b_bcount); 1735 #endif 1736 1737 dev_dstrategy(vp->v_rdev, &nbp->b_bio1); 1738 1739 if (DEVFS_NODE(vp)) { 1740 nanotime(&DEVFS_NODE(vp)->atime); 1741 nanotime(&DEVFS_NODE(vp)->mtime); 1742 } 1743 1744 return (0); 1745 } 1746 1747 /* 1748 * Chunked up transfer completion routine - chain transfers until done 1749 * 1750 * NOTE: MPSAFE callback. 1751 */ 1752 static 1753 void 1754 devfs_spec_strategy_done(struct bio *nbio) 1755 { 1756 struct buf *nbp = nbio->bio_buf; 1757 struct bio *bio = nbio->bio_caller_info1.ptr; /* original bio */ 1758 struct buf *bp = bio->bio_buf; /* original bp */ 1759 int chunksize = nbio->bio_caller_info2.index; /* chunking */ 1760 int boffset = nbp->b_data - bp->b_data; 1761 1762 if (nbp->b_flags & B_ERROR) { 1763 /* 1764 * An error terminates the chain, propogate the error back 1765 * to the original bp 1766 */ 1767 bp->b_flags |= B_ERROR; 1768 bp->b_error = nbp->b_error; 1769 bp->b_resid = bp->b_bcount - boffset + 1770 (nbp->b_bcount - nbp->b_resid); 1771 #if SPEC_CHAIN_DEBUG & 1 1772 devfs_debug(DEVFS_DEBUG_DEBUG, 1773 "spec_strategy: chain %p error %d bcount %d/%d\n", 1774 bp, bp->b_error, bp->b_bcount, 1775 bp->b_bcount - bp->b_resid); 1776 #endif 1777 } else if (nbp->b_resid) { 1778 /* 1779 * A short read or write terminates the chain 1780 */ 1781 bp->b_error = nbp->b_error; 1782 bp->b_resid = bp->b_bcount - boffset + 1783 (nbp->b_bcount - nbp->b_resid); 1784 #if SPEC_CHAIN_DEBUG & 1 1785 devfs_debug(DEVFS_DEBUG_DEBUG, 1786 "spec_strategy: chain %p short read(1) " 1787 "bcount %d/%d\n", 1788 bp, bp->b_bcount - bp->b_resid, bp->b_bcount); 1789 #endif 1790 } else if (nbp->b_bcount != nbp->b_bufsize) { 1791 /* 1792 * A short read or write can also occur by truncating b_bcount 1793 */ 1794 #if SPEC_CHAIN_DEBUG & 1 1795 devfs_debug(DEVFS_DEBUG_DEBUG, 1796 "spec_strategy: chain %p short read(2) " 1797 "bcount %d/%d\n", 1798 bp, nbp->b_bcount + boffset, bp->b_bcount); 1799 #endif 1800 bp->b_error = 0; 1801 bp->b_bcount = nbp->b_bcount + boffset; 1802 bp->b_resid = nbp->b_resid; 1803 } else if (nbp->b_bcount + boffset == bp->b_bcount) { 1804 /* 1805 * No more data terminates the chain 1806 */ 1807 #if SPEC_CHAIN_DEBUG & 1 1808 devfs_debug(DEVFS_DEBUG_DEBUG, 1809 "spec_strategy: chain %p finished bcount %d\n", 1810 bp, bp->b_bcount); 1811 #endif 1812 bp->b_error = 0; 1813 bp->b_resid = 0; 1814 } else { 1815 /* 1816 * Continue the chain 1817 */ 1818 boffset += nbp->b_bcount; 1819 nbp->b_data = bp->b_data + boffset; 1820 nbp->b_bcount = bp->b_bcount - boffset; 1821 if (nbp->b_bcount > chunksize) 1822 nbp->b_bcount = chunksize; 1823 nbp->b_bio1.bio_done = devfs_spec_strategy_done; 1824 nbp->b_bio1.bio_offset = bio->bio_offset + boffset; 1825 1826 #if SPEC_CHAIN_DEBUG & 1 1827 devfs_debug(DEVFS_DEBUG_DEBUG, 1828 "spec_strategy: chain %p offset %d/%d bcount %d\n", 1829 bp, boffset, bp->b_bcount, nbp->b_bcount); 1830 #endif 1831 1832 dev_dstrategy(nbp->b_vp->v_rdev, &nbp->b_bio1); 1833 return; 1834 } 1835 1836 /* 1837 * Fall through to here on termination. biodone(bp) and 1838 * clean up and free nbp. 1839 */ 1840 biodone(bio); 1841 BUF_UNLOCK(nbp); 1842 uninitbufbio(nbp); 1843 kfree(nbp, M_DEVBUF); 1844 } 1845 1846 /* 1847 * spec_freeblks(struct vnode *a_vp, daddr_t a_addr, daddr_t a_length) 1848 */ 1849 static int 1850 devfs_spec_freeblks(struct vop_freeblks_args *ap) 1851 { 1852 struct buf *bp; 1853 1854 /* 1855 * XXX: This assumes that strategy does the deed right away. 1856 * XXX: this may not be TRTTD. 1857 */ 1858 KKASSERT(ap->a_vp->v_rdev != NULL); 1859 if ((ap->a_vp->v_rdev->si_flags & SI_CANFREE) == 0) 1860 return (0); 1861 bp = geteblk(ap->a_length); 1862 bp->b_cmd = BUF_CMD_FREEBLKS; 1863 bp->b_bio1.bio_offset = ap->a_offset; 1864 bp->b_bcount = ap->a_length; 1865 dev_dstrategy(ap->a_vp->v_rdev, &bp->b_bio1); 1866 return (0); 1867 } 1868 1869 /* 1870 * Implement degenerate case where the block requested is the block 1871 * returned, and assume that the entire device is contiguous in regards 1872 * to the contiguous block range (runp and runb). 1873 * 1874 * spec_bmap(struct vnode *a_vp, off_t a_loffset, 1875 * off_t *a_doffsetp, int *a_runp, int *a_runb) 1876 */ 1877 static int 1878 devfs_spec_bmap(struct vop_bmap_args *ap) 1879 { 1880 if (ap->a_doffsetp != NULL) 1881 *ap->a_doffsetp = ap->a_loffset; 1882 if (ap->a_runp != NULL) 1883 *ap->a_runp = MAXBSIZE; 1884 if (ap->a_runb != NULL) { 1885 if (ap->a_loffset < MAXBSIZE) 1886 *ap->a_runb = (int)ap->a_loffset; 1887 else 1888 *ap->a_runb = MAXBSIZE; 1889 } 1890 return (0); 1891 } 1892 1893 1894 /* 1895 * Special device advisory byte-level locks. 1896 * 1897 * spec_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, 1898 * struct flock *a_fl, int a_flags) 1899 */ 1900 /* ARGSUSED */ 1901 static int 1902 devfs_spec_advlock(struct vop_advlock_args *ap) 1903 { 1904 return ((ap->a_flags & F_POSIX) ? EINVAL : EOPNOTSUPP); 1905 } 1906 1907 /* 1908 * NOTE: MPSAFE callback. 1909 */ 1910 static void 1911 devfs_spec_getpages_iodone(struct bio *bio) 1912 { 1913 bio->bio_buf->b_cmd = BUF_CMD_DONE; 1914 wakeup(bio->bio_buf); 1915 } 1916 1917 /* 1918 * spec_getpages() - get pages associated with device vnode. 1919 * 1920 * Note that spec_read and spec_write do not use the buffer cache, so we 1921 * must fully implement getpages here. 1922 */ 1923 static int 1924 devfs_spec_getpages(struct vop_getpages_args *ap) 1925 { 1926 vm_offset_t kva; 1927 int error; 1928 int i, pcount, size; 1929 struct buf *bp; 1930 vm_page_t m; 1931 vm_ooffset_t offset; 1932 int toff, nextoff, nread; 1933 struct vnode *vp = ap->a_vp; 1934 int blksiz; 1935 int gotreqpage; 1936 1937 error = 0; 1938 pcount = round_page(ap->a_count) / PAGE_SIZE; 1939 1940 /* 1941 * Calculate the offset of the transfer and do sanity check. 1942 */ 1943 offset = IDX_TO_OFF(ap->a_m[0]->pindex) + ap->a_offset; 1944 1945 /* 1946 * Round up physical size for real devices. We cannot round using 1947 * v_mount's block size data because v_mount has nothing to do with 1948 * the device. i.e. it's usually '/dev'. We need the physical block 1949 * size for the device itself. 1950 * 1951 * We can't use v_rdev->si_mountpoint because it only exists when the 1952 * block device is mounted. However, we can use v_rdev. 1953 */ 1954 if (vn_isdisk(vp, NULL)) 1955 blksiz = vp->v_rdev->si_bsize_phys; 1956 else 1957 blksiz = DEV_BSIZE; 1958 1959 size = (ap->a_count + blksiz - 1) & ~(blksiz - 1); 1960 1961 bp = getpbuf_kva(NULL); 1962 kva = (vm_offset_t)bp->b_data; 1963 1964 /* 1965 * Map the pages to be read into the kva. 1966 */ 1967 pmap_qenter(kva, ap->a_m, pcount); 1968 1969 /* Build a minimal buffer header. */ 1970 bp->b_cmd = BUF_CMD_READ; 1971 bp->b_bcount = size; 1972 bp->b_resid = 0; 1973 bsetrunningbufspace(bp, size); 1974 1975 bp->b_bio1.bio_offset = offset; 1976 bp->b_bio1.bio_done = devfs_spec_getpages_iodone; 1977 1978 mycpu->gd_cnt.v_vnodein++; 1979 mycpu->gd_cnt.v_vnodepgsin += pcount; 1980 1981 /* Do the input. */ 1982 vn_strategy(ap->a_vp, &bp->b_bio1); 1983 1984 crit_enter(); 1985 1986 /* We definitely need to be at splbio here. */ 1987 while (bp->b_cmd != BUF_CMD_DONE) 1988 tsleep(bp, 0, "spread", 0); 1989 1990 crit_exit(); 1991 1992 if (bp->b_flags & B_ERROR) { 1993 if (bp->b_error) 1994 error = bp->b_error; 1995 else 1996 error = EIO; 1997 } 1998 1999 /* 2000 * If EOF is encountered we must zero-extend the result in order 2001 * to ensure that the page does not contain garabge. When no 2002 * error occurs, an early EOF is indicated if b_bcount got truncated. 2003 * b_resid is relative to b_bcount and should be 0, but some devices 2004 * might indicate an EOF with b_resid instead of truncating b_bcount. 2005 */ 2006 nread = bp->b_bcount - bp->b_resid; 2007 if (nread < ap->a_count) 2008 bzero((caddr_t)kva + nread, ap->a_count - nread); 2009 pmap_qremove(kva, pcount); 2010 2011 gotreqpage = 0; 2012 for (i = 0, toff = 0; i < pcount; i++, toff = nextoff) { 2013 nextoff = toff + PAGE_SIZE; 2014 m = ap->a_m[i]; 2015 2016 m->flags &= ~PG_ZERO; 2017 2018 /* 2019 * NOTE: vm_page_undirty/clear_dirty etc do not clear the 2020 * pmap modified bit. pmap modified bit should have 2021 * already been cleared. 2022 */ 2023 if (nextoff <= nread) { 2024 m->valid = VM_PAGE_BITS_ALL; 2025 vm_page_undirty(m); 2026 } else if (toff < nread) { 2027 /* 2028 * Since this is a VM request, we have to supply the 2029 * unaligned offset to allow vm_page_set_valid() 2030 * to zero sub-DEV_BSIZE'd portions of the page. 2031 */ 2032 vm_page_set_valid(m, 0, nread - toff); 2033 vm_page_clear_dirty_end_nonincl(m, 0, nread - toff); 2034 } else { 2035 m->valid = 0; 2036 vm_page_undirty(m); 2037 } 2038 2039 if (i != ap->a_reqpage) { 2040 /* 2041 * Just in case someone was asking for this page we 2042 * now tell them that it is ok to use. 2043 */ 2044 if (!error || (m->valid == VM_PAGE_BITS_ALL)) { 2045 if (m->valid) { 2046 if (m->flags & PG_REFERENCED) { 2047 vm_page_activate(m); 2048 } else { 2049 vm_page_deactivate(m); 2050 } 2051 vm_page_wakeup(m); 2052 } else { 2053 vm_page_free(m); 2054 } 2055 } else { 2056 vm_page_free(m); 2057 } 2058 } else if (m->valid) { 2059 gotreqpage = 1; 2060 /* 2061 * Since this is a VM request, we need to make the 2062 * entire page presentable by zeroing invalid sections. 2063 */ 2064 if (m->valid != VM_PAGE_BITS_ALL) 2065 vm_page_zero_invalid(m, FALSE); 2066 } 2067 } 2068 if (!gotreqpage) { 2069 m = ap->a_m[ap->a_reqpage]; 2070 devfs_debug(DEVFS_DEBUG_WARNING, 2071 "spec_getpages:(%s) I/O read failure: (error=%d) bp %p vp %p\n", 2072 devtoname(vp->v_rdev), error, bp, bp->b_vp); 2073 devfs_debug(DEVFS_DEBUG_WARNING, 2074 " size: %d, resid: %d, a_count: %d, valid: 0x%x\n", 2075 size, bp->b_resid, ap->a_count, m->valid); 2076 devfs_debug(DEVFS_DEBUG_WARNING, 2077 " nread: %d, reqpage: %d, pindex: %lu, pcount: %d\n", 2078 nread, ap->a_reqpage, (u_long)m->pindex, pcount); 2079 /* 2080 * Free the buffer header back to the swap buffer pool. 2081 */ 2082 relpbuf(bp, NULL); 2083 return VM_PAGER_ERROR; 2084 } 2085 /* 2086 * Free the buffer header back to the swap buffer pool. 2087 */ 2088 relpbuf(bp, NULL); 2089 if (DEVFS_NODE(ap->a_vp)) 2090 nanotime(&DEVFS_NODE(ap->a_vp)->mtime); 2091 return VM_PAGER_OK; 2092 } 2093 2094 static __inline 2095 int 2096 sequential_heuristic(struct uio *uio, struct file *fp) 2097 { 2098 /* 2099 * Sequential heuristic - detect sequential operation 2100 */ 2101 if ((uio->uio_offset == 0 && fp->f_seqcount > 0) || 2102 uio->uio_offset == fp->f_nextoff) { 2103 /* 2104 * XXX we assume that the filesystem block size is 2105 * the default. Not true, but still gives us a pretty 2106 * good indicator of how sequential the read operations 2107 * are. 2108 */ 2109 int tmpseq = fp->f_seqcount; 2110 2111 tmpseq += (uio->uio_resid + BKVASIZE - 1) / BKVASIZE; 2112 if (tmpseq > IO_SEQMAX) 2113 tmpseq = IO_SEQMAX; 2114 fp->f_seqcount = tmpseq; 2115 return(fp->f_seqcount << IO_SEQSHIFT); 2116 } 2117 2118 /* 2119 * Not sequential, quick draw-down of seqcount 2120 */ 2121 if (fp->f_seqcount > 1) 2122 fp->f_seqcount = 1; 2123 else 2124 fp->f_seqcount = 0; 2125 return(0); 2126 } 2127