xref: /dflybsd-src/sys/vfs/devfs/devfs_core.c (revision 65c62024e97be0964ff6de261081aec59a904f78)
1 /*
2  * Copyright (c) 2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Alex Hornung <ahornung@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/mount.h>
38 #include <sys/vnode.h>
39 #include <sys/types.h>
40 #include <sys/lock.h>
41 #include <sys/msgport.h>
42 #include <sys/msgport2.h>
43 #include <sys/spinlock2.h>
44 #include <sys/sysctl.h>
45 #include <sys/ucred.h>
46 #include <sys/param.h>
47 #include <sys/sysref2.h>
48 #include <sys/systm.h>
49 #include <sys/devfs.h>
50 #include <sys/devfs_rules.h>
51 
52 MALLOC_DEFINE(M_DEVFS, "devfs", "Device File System (devfs) allocations");
53 DEVFS_DECLARE_CLONE_BITMAP(ops_id);
54 /*
55  * SYSREF Integration - reference counting, allocation,
56  * sysid and syslink integration.
57  */
58 static void devfs_cdev_terminate(cdev_t dev);
59 static struct sysref_class     cdev_sysref_class = {
60 	.name =         "cdev",
61 	.mtype =        M_DEVFS,
62 	.proto =        SYSREF_PROTO_DEV,
63 	.offset =       offsetof(struct cdev, si_sysref),
64 	.objsize =      sizeof(struct cdev),
65 	.mag_capacity = 32,
66 	.flags =        0,
67 	.ops =  {
68 		.terminate = (sysref_terminate_func_t)devfs_cdev_terminate
69 	}
70 };
71 
72 static struct objcache	*devfs_node_cache;
73 static struct objcache 	*devfs_msg_cache;
74 static struct objcache	*devfs_dev_cache;
75 
76 static struct objcache_malloc_args devfs_node_malloc_args = {
77 	sizeof(struct devfs_node), M_DEVFS };
78 struct objcache_malloc_args devfs_msg_malloc_args = {
79 	sizeof(struct devfs_msg), M_DEVFS };
80 struct objcache_malloc_args devfs_dev_malloc_args = {
81 	sizeof(struct cdev), M_DEVFS };
82 
83 static struct devfs_dev_head devfs_dev_list =
84 		TAILQ_HEAD_INITIALIZER(devfs_dev_list);
85 static struct devfs_mnt_head devfs_mnt_list =
86 		TAILQ_HEAD_INITIALIZER(devfs_mnt_list);
87 static struct devfs_chandler_head devfs_chandler_list =
88 		TAILQ_HEAD_INITIALIZER(devfs_chandler_list);
89 static struct devfs_alias_head devfs_alias_list =
90 		TAILQ_HEAD_INITIALIZER(devfs_alias_list);
91 static struct devfs_dev_ops_head devfs_dev_ops_list =
92 		TAILQ_HEAD_INITIALIZER(devfs_dev_ops_list);
93 
94 struct lock 		devfs_lock;
95 static struct lwkt_port devfs_dispose_port;
96 static struct lwkt_port devfs_msg_port;
97 static struct thread 	*td_core;
98 
99 static struct spinlock  ino_lock;
100 static ino_t 	d_ino;
101 static int	devfs_debug_enable;
102 static int	devfs_run;
103 
104 static ino_t devfs_fetch_ino(void);
105 static int devfs_create_all_dev_worker(struct devfs_node *);
106 static int devfs_create_dev_worker(cdev_t, uid_t, gid_t, int);
107 static int devfs_destroy_dev_worker(cdev_t);
108 static int devfs_destroy_subnames_worker(char *);
109 static int devfs_destroy_dev_by_ops_worker(struct dev_ops *, int);
110 static int devfs_propagate_dev(cdev_t, int);
111 static int devfs_unlink_dev(cdev_t dev);
112 static void devfs_msg_exec(devfs_msg_t msg);
113 
114 static int devfs_chandler_add_worker(const char *, d_clone_t *);
115 static int devfs_chandler_del_worker(const char *);
116 
117 static void devfs_msg_autofree_reply(lwkt_port_t, lwkt_msg_t);
118 static void devfs_msg_core(void *);
119 
120 static int devfs_find_device_by_name_worker(devfs_msg_t);
121 static int devfs_find_device_by_udev_worker(devfs_msg_t);
122 
123 static int devfs_apply_reset_rules_caller(char *, int);
124 
125 static int devfs_scan_callback_worker(devfs_scan_t *);
126 
127 static struct devfs_node *devfs_resolve_or_create_dir(struct devfs_node *,
128 		char *, size_t, int);
129 
130 static int devfs_make_alias_worker(struct devfs_alias *);
131 static int devfs_alias_remove(cdev_t);
132 static int devfs_alias_reap(void);
133 static int devfs_alias_propagate(struct devfs_alias *);
134 static int devfs_alias_apply(struct devfs_node *, struct devfs_alias *);
135 static int devfs_alias_check_create(struct devfs_node *);
136 
137 static int devfs_clr_subnames_flag_worker(char *, uint32_t);
138 static int devfs_destroy_subnames_without_flag_worker(char *, uint32_t);
139 
140 static void *devfs_reaperp_callback(struct devfs_node *, void *);
141 static void *devfs_gc_dirs_callback(struct devfs_node *, void *);
142 static void *devfs_gc_links_callback(struct devfs_node *, struct devfs_node *);
143 static void *
144 devfs_inode_to_vnode_worker_callback(struct devfs_node *, ino_t *);
145 
146 /*
147  * devfs_debug() is a SYSCTL and TUNABLE controlled debug output function
148  * using kvprintf
149  */
150 int
151 devfs_debug(int level, char *fmt, ...)
152 {
153 	__va_list ap;
154 
155 	__va_start(ap, fmt);
156 	if (level <= devfs_debug_enable)
157 		kvprintf(fmt, ap);
158 	__va_end(ap);
159 
160 	return 0;
161 }
162 
163 /*
164  * devfs_allocp() Allocates a new devfs node with the specified
165  * parameters. The node is also automatically linked into the topology
166  * if a parent is specified. It also calls the rule and alias stuff to
167  * be applied on the new node
168  */
169 struct devfs_node *
170 devfs_allocp(devfs_nodetype devfsnodetype, char *name,
171 	     struct devfs_node *parent, struct mount *mp, cdev_t dev)
172 {
173 	struct devfs_node *node = NULL;
174 	size_t namlen = strlen(name);
175 
176 	node = objcache_get(devfs_node_cache, M_WAITOK);
177 	bzero(node, sizeof(*node));
178 
179 	atomic_add_long(&(DEVFS_MNTDATA(mp)->leak_count), 1);
180 
181 	node->d_dev = NULL;
182 	node->nchildren = 1;
183 	node->mp = mp;
184 	node->d_dir.d_ino = devfs_fetch_ino();
185 
186 	/*
187 	 * Cookie jar for children. Leave 0 and 1 for '.' and '..' entries
188 	 * respectively.
189 	 */
190 	node->cookie_jar = 2;
191 
192 	/*
193 	 * Access Control members
194 	 */
195 	node->mode = DEVFS_DEFAULT_MODE;
196 	node->uid = DEVFS_DEFAULT_UID;
197 	node->gid = DEVFS_DEFAULT_GID;
198 
199 	switch (devfsnodetype) {
200 	case Proot:
201 		/*
202 		 * Ensure that we don't recycle the root vnode by marking it as
203 		 * linked into the topology.
204 		 */
205 		node->flags |= DEVFS_NODE_LINKED;
206 	case Pdir:
207 		TAILQ_INIT(DEVFS_DENODE_HEAD(node));
208 		node->d_dir.d_type = DT_DIR;
209 		node->nchildren = 2;
210 		break;
211 
212 	case Plink:
213 		node->d_dir.d_type = DT_LNK;
214 		break;
215 
216 	case Preg:
217 		node->d_dir.d_type = DT_REG;
218 		break;
219 
220 	case Pdev:
221 		if (dev != NULL) {
222 			node->d_dir.d_type = DT_CHR;
223 			node->d_dev = dev;
224 
225 			node->mode = dev->si_perms;
226 			node->uid = dev->si_uid;
227 			node->gid = dev->si_gid;
228 
229 			devfs_alias_check_create(node);
230 		}
231 		break;
232 
233 	default:
234 		panic("devfs_allocp: unknown node type");
235 	}
236 
237 	node->v_node = NULL;
238 	node->node_type = devfsnodetype;
239 
240 	/* Initialize the dirent structure of each devfs vnode */
241 	KKASSERT(namlen < 256);
242 	node->d_dir.d_namlen = namlen;
243 	node->d_dir.d_name = kmalloc(namlen+1, M_DEVFS, M_WAITOK);
244 	memcpy(node->d_dir.d_name, name, namlen);
245 	node->d_dir.d_name[namlen] = '\0';
246 
247 	/* Initialize the parent node element */
248 	node->parent = parent;
249 
250 	/* Apply rules */
251 	devfs_rule_check_apply(node, NULL);
252 
253 	/* Initialize *time members */
254 	nanotime(&node->atime);
255 	node->mtime = node->ctime = node->atime;
256 
257 	/*
258 	 * Associate with parent as last step, clean out namecache
259 	 * reference.
260 	 */
261 	if ((parent != NULL) &&
262 	    ((parent->node_type == Proot) || (parent->node_type == Pdir))) {
263 		parent->nchildren++;
264 		node->cookie = parent->cookie_jar++;
265 		node->flags |= DEVFS_NODE_LINKED;
266 		TAILQ_INSERT_TAIL(DEVFS_DENODE_HEAD(parent), node, link);
267 
268 		/* This forces negative namecache lookups to clear */
269 		++mp->mnt_namecache_gen;
270 	}
271 
272 	return node;
273 }
274 
275 /*
276  * devfs_allocv() allocates a new vnode based on a devfs node.
277  */
278 int
279 devfs_allocv(struct vnode **vpp, struct devfs_node *node)
280 {
281 	struct vnode *vp;
282 	int error = 0;
283 
284 	KKASSERT(node);
285 
286 try_again:
287 	while ((vp = node->v_node) != NULL) {
288 		error = vget(vp, LK_EXCLUSIVE);
289 		if (error != ENOENT) {
290 			*vpp = vp;
291 			goto out;
292 		}
293 	}
294 
295 	if ((error = getnewvnode(VT_DEVFS, node->mp, vpp, 0, 0)) != 0)
296 		goto out;
297 
298 	vp = *vpp;
299 
300 	if (node->v_node != NULL) {
301 		vp->v_type = VBAD;
302 		vx_put(vp);
303 		goto try_again;
304 	}
305 
306 	vp->v_data = node;
307 	node->v_node = vp;
308 
309 	switch (node->node_type) {
310 	case Proot:
311 		vp->v_flag |= VROOT;
312 	case Pdir:
313 		vp->v_type = VDIR;
314 		break;
315 
316 	case Plink:
317 		vp->v_type = VLNK;
318 		break;
319 
320 	case Preg:
321 		vp->v_type = VREG;
322 		break;
323 
324 	case Pdev:
325 		vp->v_type = VCHR;
326 		KKASSERT(node->d_dev);
327 
328 		vp->v_uminor = node->d_dev->si_uminor;
329 		vp->v_umajor = 0;
330 
331 		v_associate_rdev(vp, node->d_dev);
332 		vp->v_ops = &node->mp->mnt_vn_spec_ops;
333 		break;
334 
335 	default:
336 		panic("devfs_allocv: unknown node type");
337 	}
338 
339 out:
340 	return error;
341 }
342 
343 /*
344  * devfs_allocvp allocates both a devfs node (with the given settings) and a vnode
345  * based on the newly created devfs node.
346  */
347 int
348 devfs_allocvp(struct mount *mp, struct vnode **vpp, devfs_nodetype devfsnodetype,
349 		char *name, struct devfs_node *parent, cdev_t dev)
350 {
351 	struct devfs_node *node;
352 
353 	node = devfs_allocp(devfsnodetype, name, parent, mp, dev);
354 
355 	if (node != NULL)
356 		devfs_allocv(vpp, node);
357 	else
358 		*vpp = NULL;
359 
360 	return 0;
361 }
362 
363 /*
364  * Destroy the devfs_node.  The node must be unlinked from the topology.
365  *
366  * This function will also destroy any vnode association with the node
367  * and device.
368  *
369  * The cdev_t itself remains intact.
370  */
371 int
372 devfs_freep(struct devfs_node *node)
373 {
374 	struct vnode *vp;
375 
376 	KKASSERT(node);
377 	KKASSERT(((node->flags & DEVFS_NODE_LINKED) == 0) ||
378 		 (node->node_type == Proot));
379 	KKASSERT((node->flags & DEVFS_DESTROYED) == 0);
380 
381 	atomic_subtract_long(&(DEVFS_MNTDATA(node->mp)->leak_count), 1);
382 	if (node->symlink_name)	{
383 		kfree(node->symlink_name, M_DEVFS);
384 		node->symlink_name = NULL;
385 	}
386 
387 	/*
388 	 * Remove the node from the orphan list if it is still on it.
389 	 */
390 	if (node->flags & DEVFS_ORPHANED)
391 		devfs_tracer_del_orphan(node);
392 
393 	/*
394 	 * Disassociate the vnode from the node.  This also prevents the
395 	 * vnode's reclaim code from double-freeing the node.
396 	 *
397 	 * The vget is needed to safely modify the vp.  It also serves
398 	 * to cycle the refs and terminate the vnode if it happens to
399 	 * be inactive, otherwise namecache references may not get cleared.
400 	 */
401 	while ((vp = node->v_node) != NULL) {
402 		if (vget(vp, LK_EXCLUSIVE | LK_RETRY) != 0)
403 			break;
404 		v_release_rdev(vp);
405 		vp->v_data = NULL;
406 		node->v_node = NULL;
407 		cache_inval_vp(vp, CINV_DESTROY);
408 		vput(vp);
409 	}
410 	if (node->d_dir.d_name) {
411 		kfree(node->d_dir.d_name, M_DEVFS);
412 		node->d_dir.d_name = NULL;
413 	}
414 	node->flags |= DEVFS_DESTROYED;
415 
416 	objcache_put(devfs_node_cache, node);
417 
418 	return 0;
419 }
420 
421 /*
422  * Unlink the devfs node from the topology and add it to the orphan list.
423  * The node will later be destroyed by freep.
424  *
425  * Any vnode association, including the v_rdev and v_data, remains intact
426  * until the freep.
427  */
428 int
429 devfs_unlinkp(struct devfs_node *node)
430 {
431 	struct devfs_node *parent;
432 	KKASSERT(node);
433 
434 	/*
435 	 * Add the node to the orphan list, so it is referenced somewhere, to
436 	 * so we don't leak it.
437 	 */
438 	devfs_tracer_add_orphan(node);
439 
440 	parent = node->parent;
441 
442 	/*
443 	 * If the parent is known we can unlink the node out of the topology
444 	 */
445 	if (parent)	{
446 		TAILQ_REMOVE(DEVFS_DENODE_HEAD(parent), node, link);
447 		parent->nchildren--;
448 		KKASSERT((parent->nchildren >= 0));
449 		node->flags &= ~DEVFS_NODE_LINKED;
450 	}
451 	node->parent = NULL;
452 	return 0;
453 }
454 
455 void *
456 devfs_iterate_topology(struct devfs_node *node,
457 		devfs_iterate_callback_t *callback, void *arg1)
458 {
459 	struct devfs_node *node1, *node2;
460 	void *ret = NULL;
461 
462 	if ((node->node_type == Proot) || (node->node_type == Pdir)) {
463 		if (node->nchildren > 2) {
464 			TAILQ_FOREACH_MUTABLE(node1, DEVFS_DENODE_HEAD(node),
465 							link, node2) {
466 				if ((ret = devfs_iterate_topology(node1, callback, arg1)))
467 					return ret;
468 			}
469 		}
470 	}
471 
472 	ret = callback(node, arg1);
473 	return ret;
474 }
475 
476 /*
477  * devfs_reaperp() is a recursive function that iterates through all the
478  * topology, unlinking and freeing all devfs nodes.
479  */
480 static void *
481 devfs_reaperp_callback(struct devfs_node *node, void *unused)
482 {
483 	devfs_unlinkp(node);
484 	devfs_freep(node);
485 
486 	return NULL;
487 }
488 
489 static void *
490 devfs_gc_dirs_callback(struct devfs_node *node, void *unused)
491 {
492 	if (node->node_type == Pdir) {
493 		if (node->nchildren == 2) {
494 			devfs_unlinkp(node);
495 			devfs_freep(node);
496 		}
497 	}
498 
499 	return NULL;
500 }
501 
502 static void *
503 devfs_gc_links_callback(struct devfs_node *node, struct devfs_node *target)
504 {
505 	if ((node->node_type == Plink) && (node->link_target == target)) {
506 		devfs_unlinkp(node);
507 		devfs_freep(node);
508 	}
509 
510 	return NULL;
511 }
512 
513 /*
514  * devfs_gc() is devfs garbage collector. It takes care of unlinking and
515  * freeing a node, but also removes empty directories and links that link
516  * via devfs auto-link mechanism to the node being deleted.
517  */
518 int
519 devfs_gc(struct devfs_node *node)
520 {
521 	struct devfs_node *root_node = DEVFS_MNTDATA(node->mp)->root_node;
522 
523 	if (node->nlinks > 0)
524 		devfs_iterate_topology(root_node,
525 				(devfs_iterate_callback_t *)devfs_gc_links_callback, node);
526 
527 	devfs_unlinkp(node);
528 	devfs_iterate_topology(root_node,
529 			(devfs_iterate_callback_t *)devfs_gc_dirs_callback, NULL);
530 
531 	devfs_freep(node);
532 
533 	return 0;
534 }
535 
536 /*
537  * devfs_create_dev() is the asynchronous entry point for device creation.
538  * It just sends a message with the relevant details to the devfs core.
539  *
540  * This function will reference the passed device.  The reference is owned
541  * by devfs and represents all of the device's node associations.
542  */
543 int
544 devfs_create_dev(cdev_t dev, uid_t uid, gid_t gid, int perms)
545 {
546 	reference_dev(dev);
547 	devfs_msg_send_dev(DEVFS_DEVICE_CREATE, dev, uid, gid, perms);
548 
549 	return 0;
550 }
551 
552 /*
553  * devfs_destroy_dev() is the asynchronous entry point for device destruction.
554  * It just sends a message with the relevant details to the devfs core.
555  */
556 int
557 devfs_destroy_dev(cdev_t dev)
558 {
559 	devfs_msg_send_dev(DEVFS_DEVICE_DESTROY, dev, 0, 0, 0);
560 	return 0;
561 }
562 
563 /*
564  * devfs_mount_add() is the synchronous entry point for adding a new devfs
565  * mount.  It sends a synchronous message with the relevant details to the
566  * devfs core.
567  */
568 int
569 devfs_mount_add(struct devfs_mnt_data *mnt)
570 {
571 	devfs_msg_t msg;
572 
573 	msg = devfs_msg_get();
574 	msg->mdv_mnt = mnt;
575 	msg = devfs_msg_send_sync(DEVFS_MOUNT_ADD, msg);
576 	devfs_msg_put(msg);
577 
578 	return 0;
579 }
580 
581 /*
582  * devfs_mount_del() is the synchronous entry point for removing a devfs mount.
583  * It sends a synchronous message with the relevant details to the devfs core.
584  */
585 int
586 devfs_mount_del(struct devfs_mnt_data *mnt)
587 {
588 	devfs_msg_t msg;
589 
590 	msg = devfs_msg_get();
591 	msg->mdv_mnt = mnt;
592 	msg = devfs_msg_send_sync(DEVFS_MOUNT_DEL, msg);
593 	devfs_msg_put(msg);
594 
595 	return 0;
596 }
597 
598 /*
599  * devfs_destroy_subnames() is the synchronous entry point for device
600  * destruction by subname. It just sends a message with the relevant details to
601  * the devfs core.
602  */
603 int
604 devfs_destroy_subnames(char *name)
605 {
606 	devfs_msg_t msg;
607 
608 	msg = devfs_msg_get();
609 	msg->mdv_load = name;
610 	msg = devfs_msg_send_sync(DEVFS_DESTROY_SUBNAMES, msg);
611 	devfs_msg_put(msg);
612 	return 0;
613 }
614 
615 int
616 devfs_clr_subnames_flag(char *name, uint32_t flag)
617 {
618 	devfs_msg_t msg;
619 
620 	msg = devfs_msg_get();
621 	msg->mdv_flags.name = name;
622 	msg->mdv_flags.flag = flag;
623 	msg = devfs_msg_send_sync(DEVFS_CLR_SUBNAMES_FLAG, msg);
624 	devfs_msg_put(msg);
625 
626 	return 0;
627 }
628 
629 int
630 devfs_destroy_subnames_without_flag(char *name, uint32_t flag)
631 {
632 	devfs_msg_t msg;
633 
634 	msg = devfs_msg_get();
635 	msg->mdv_flags.name = name;
636 	msg->mdv_flags.flag = flag;
637 	msg = devfs_msg_send_sync(DEVFS_DESTROY_SUBNAMES_WO_FLAG, msg);
638 	devfs_msg_put(msg);
639 
640 	return 0;
641 }
642 
643 /*
644  * devfs_create_all_dev is the asynchronous entry point to trigger device
645  * node creation.  It just sends a message with the relevant details to
646  * the devfs core.
647  */
648 int
649 devfs_create_all_dev(struct devfs_node *root)
650 {
651 	devfs_msg_send_generic(DEVFS_CREATE_ALL_DEV, root);
652 	return 0;
653 }
654 
655 /*
656  * devfs_destroy_dev_by_ops is the asynchronous entry point to destroy all
657  * devices with a specific set of dev_ops and minor.  It just sends a
658  * message with the relevant details to the devfs core.
659  */
660 int
661 devfs_destroy_dev_by_ops(struct dev_ops *ops, int minor)
662 {
663 	devfs_msg_send_ops(DEVFS_DESTROY_DEV_BY_OPS, ops, minor);
664 	return 0;
665 }
666 
667 /*
668  * devfs_clone_handler_add is the synchronous entry point to add a new
669  * clone handler.  It just sends a message with the relevant details to
670  * the devfs core.
671  */
672 int
673 devfs_clone_handler_add(const char *name, d_clone_t *nhandler)
674 {
675 	devfs_msg_t msg;
676 
677 	msg = devfs_msg_get();
678 	msg->mdv_chandler.name = name;
679 	msg->mdv_chandler.nhandler = nhandler;
680 	msg = devfs_msg_send_sync(DEVFS_CHANDLER_ADD, msg);
681 	devfs_msg_put(msg);
682 	return 0;
683 }
684 
685 /*
686  * devfs_clone_handler_del is the synchronous entry point to remove a
687  * clone handler.  It just sends a message with the relevant details to
688  * the devfs core.
689  */
690 int
691 devfs_clone_handler_del(const char *name)
692 {
693 	devfs_msg_t msg;
694 
695 	msg = devfs_msg_get();
696 	msg->mdv_chandler.name = name;
697 	msg->mdv_chandler.nhandler = NULL;
698 	msg = devfs_msg_send_sync(DEVFS_CHANDLER_DEL, msg);
699 	devfs_msg_put(msg);
700 	return 0;
701 }
702 
703 /*
704  * devfs_find_device_by_name is the synchronous entry point to find a
705  * device given its name.  It sends a synchronous message with the
706  * relevant details to the devfs core and returns the answer.
707  */
708 cdev_t
709 devfs_find_device_by_name(const char *fmt, ...)
710 {
711 	cdev_t found = NULL;
712 	devfs_msg_t msg;
713 	char *target;
714 	__va_list ap;
715 
716 	if (fmt == NULL)
717 		return NULL;
718 
719 	__va_start(ap, fmt);
720 	kvasnrprintf(&target, PATH_MAX, 10, fmt, ap);
721 	__va_end(ap);
722 
723 	msg = devfs_msg_get();
724 	msg->mdv_name = target;
725 	msg = devfs_msg_send_sync(DEVFS_FIND_DEVICE_BY_NAME, msg);
726 	found = msg->mdv_cdev;
727 	devfs_msg_put(msg);
728 	kvasfree(&target);
729 
730 	return found;
731 }
732 
733 /*
734  * devfs_find_device_by_udev is the synchronous entry point to find a
735  * device given its udev number.  It sends a synchronous message with
736  * the relevant details to the devfs core and returns the answer.
737  */
738 cdev_t
739 devfs_find_device_by_udev(udev_t udev)
740 {
741 	cdev_t found = NULL;
742 	devfs_msg_t msg;
743 
744 	msg = devfs_msg_get();
745 	msg->mdv_udev = udev;
746 	msg = devfs_msg_send_sync(DEVFS_FIND_DEVICE_BY_UDEV, msg);
747 	found = msg->mdv_cdev;
748 	devfs_msg_put(msg);
749 
750 	devfs_debug(DEVFS_DEBUG_DEBUG,
751 		    "devfs_find_device_by_udev found? %s  -end:3-\n",
752 		    ((found) ? found->si_name:"NO"));
753 	return found;
754 }
755 
756 struct vnode *
757 devfs_inode_to_vnode(struct mount *mp, ino_t target)
758 {
759 	struct vnode *vp = NULL;
760 	devfs_msg_t msg;
761 
762 	if (mp == NULL)
763 		return NULL;
764 
765 	msg = devfs_msg_get();
766 	msg->mdv_ino.mp = mp;
767 	msg->mdv_ino.ino = target;
768 	msg = devfs_msg_send_sync(DEVFS_INODE_TO_VNODE, msg);
769 	vp = msg->mdv_ino.vp;
770 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
771 	devfs_msg_put(msg);
772 
773 	return vp;
774 }
775 
776 /*
777  * devfs_make_alias is the asynchronous entry point to register an alias
778  * for a device.  It just sends a message with the relevant details to the
779  * devfs core.
780  */
781 int
782 devfs_make_alias(const char *name, cdev_t dev_target)
783 {
784 	struct devfs_alias *alias;
785 	size_t len;
786 
787 	len = strlen(name);
788 
789 	alias = kmalloc(sizeof(struct devfs_alias), M_DEVFS, M_WAITOK);
790 	alias->name = kstrdup(name, M_DEVFS);
791 	alias->namlen = len;
792 	alias->dev_target = dev_target;
793 
794 	devfs_msg_send_generic(DEVFS_MAKE_ALIAS, alias);
795 	return 0;
796 }
797 
798 /*
799  * devfs_apply_rules is the asynchronous entry point to trigger application
800  * of all rules.  It just sends a message with the relevant details to the
801  * devfs core.
802  */
803 int
804 devfs_apply_rules(char *mntto)
805 {
806 	char *new_name;
807 
808 	new_name = kstrdup(mntto, M_DEVFS);
809 	devfs_msg_send_name(DEVFS_APPLY_RULES, new_name);
810 
811 	return 0;
812 }
813 
814 /*
815  * devfs_reset_rules is the asynchronous entry point to trigger reset of all
816  * rules. It just sends a message with the relevant details to the devfs core.
817  */
818 int
819 devfs_reset_rules(char *mntto)
820 {
821 	char *new_name;
822 
823 	new_name = kstrdup(mntto, M_DEVFS);
824 	devfs_msg_send_name(DEVFS_RESET_RULES, new_name);
825 
826 	return 0;
827 }
828 
829 
830 /*
831  * devfs_scan_callback is the asynchronous entry point to call a callback
832  * on all cdevs.
833  * It just sends a message with the relevant details to the devfs core.
834  */
835 int
836 devfs_scan_callback(devfs_scan_t *callback)
837 {
838 	devfs_msg_t msg;
839 
840 	KKASSERT(sizeof(callback) == sizeof(void *));
841 
842 	msg = devfs_msg_get();
843 	msg->mdv_load = callback;
844 	msg = devfs_msg_send_sync(DEVFS_SCAN_CALLBACK, msg);
845 	devfs_msg_put(msg);
846 
847 	return 0;
848 }
849 
850 
851 /*
852  * Acts as a message drain. Any message that is replied to here gets destroyed
853  * and the memory freed.
854  */
855 static void
856 devfs_msg_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
857 {
858 	devfs_msg_put((devfs_msg_t)msg);
859 }
860 
861 /*
862  * devfs_msg_get allocates a new devfs msg and returns it.
863  */
864 devfs_msg_t
865 devfs_msg_get()
866 {
867 	return objcache_get(devfs_msg_cache, M_WAITOK);
868 }
869 
870 /*
871  * devfs_msg_put deallocates a given devfs msg.
872  */
873 int
874 devfs_msg_put(devfs_msg_t msg)
875 {
876 	objcache_put(devfs_msg_cache, msg);
877 	return 0;
878 }
879 
880 /*
881  * devfs_msg_send is the generic asynchronous message sending facility
882  * for devfs. By default the reply port is the automatic disposal port.
883  *
884  * If the current thread is the devfs_msg_port thread we execute the
885  * operation synchronously.
886  */
887 void
888 devfs_msg_send(uint32_t cmd, devfs_msg_t devfs_msg)
889 {
890 	lwkt_port_t port = &devfs_msg_port;
891 
892 	lwkt_initmsg(&devfs_msg->hdr, &devfs_dispose_port, 0);
893 
894 	devfs_msg->hdr.u.ms_result = cmd;
895 
896 	if (port->mpu_td == curthread) {
897 		devfs_msg_exec(devfs_msg);
898 		lwkt_replymsg(&devfs_msg->hdr, 0);
899 	} else {
900 		lwkt_sendmsg(port, (lwkt_msg_t)devfs_msg);
901 	}
902 }
903 
904 /*
905  * devfs_msg_send_sync is the generic synchronous message sending
906  * facility for devfs. It initializes a local reply port and waits
907  * for the core's answer. This answer is then returned.
908  */
909 devfs_msg_t
910 devfs_msg_send_sync(uint32_t cmd, devfs_msg_t devfs_msg)
911 {
912 	struct lwkt_port rep_port;
913 	devfs_msg_t	msg_incoming;
914 	lwkt_port_t port = &devfs_msg_port;
915 
916 	lwkt_initport_thread(&rep_port, curthread);
917 	lwkt_initmsg(&devfs_msg->hdr, &rep_port, 0);
918 
919 	devfs_msg->hdr.u.ms_result = cmd;
920 
921 	lwkt_sendmsg(port, (lwkt_msg_t)devfs_msg);
922 	msg_incoming = lwkt_waitport(&rep_port, 0);
923 
924 	return msg_incoming;
925 }
926 
927 /*
928  * sends a message with a generic argument.
929  */
930 void
931 devfs_msg_send_generic(uint32_t cmd, void *load)
932 {
933 	devfs_msg_t devfs_msg = devfs_msg_get();
934 
935 	devfs_msg->mdv_load = load;
936 	devfs_msg_send(cmd, devfs_msg);
937 }
938 
939 /*
940  * sends a message with a name argument.
941  */
942 void
943 devfs_msg_send_name(uint32_t cmd, char *name)
944 {
945 	devfs_msg_t devfs_msg = devfs_msg_get();
946 
947 	devfs_msg->mdv_name = name;
948 	devfs_msg_send(cmd, devfs_msg);
949 }
950 
951 /*
952  * sends a message with a mount argument.
953  */
954 void
955 devfs_msg_send_mount(uint32_t cmd, struct devfs_mnt_data *mnt)
956 {
957 	devfs_msg_t devfs_msg = devfs_msg_get();
958 
959 	devfs_msg->mdv_mnt = mnt;
960 	devfs_msg_send(cmd, devfs_msg);
961 }
962 
963 /*
964  * sends a message with an ops argument.
965  */
966 void
967 devfs_msg_send_ops(uint32_t cmd, struct dev_ops *ops, int minor)
968 {
969 	devfs_msg_t devfs_msg = devfs_msg_get();
970 
971 	devfs_msg->mdv_ops.ops = ops;
972 	devfs_msg->mdv_ops.minor = minor;
973 	devfs_msg_send(cmd, devfs_msg);
974 }
975 
976 /*
977  * sends a message with a clone handler argument.
978  */
979 void
980 devfs_msg_send_chandler(uint32_t cmd, char *name, d_clone_t handler)
981 {
982 	devfs_msg_t devfs_msg = devfs_msg_get();
983 
984 	devfs_msg->mdv_chandler.name = name;
985 	devfs_msg->mdv_chandler.nhandler = handler;
986 	devfs_msg_send(cmd, devfs_msg);
987 }
988 
989 /*
990  * sends a message with a device argument.
991  */
992 void
993 devfs_msg_send_dev(uint32_t cmd, cdev_t dev, uid_t uid, gid_t gid, int perms)
994 {
995 	devfs_msg_t devfs_msg = devfs_msg_get();
996 
997 	devfs_msg->mdv_dev.dev = dev;
998 	devfs_msg->mdv_dev.uid = uid;
999 	devfs_msg->mdv_dev.gid = gid;
1000 	devfs_msg->mdv_dev.perms = perms;
1001 
1002 	devfs_msg_send(cmd, devfs_msg);
1003 }
1004 
1005 /*
1006  * sends a message with a link argument.
1007  */
1008 void
1009 devfs_msg_send_link(uint32_t cmd, char *name, char *target, struct mount *mp)
1010 {
1011 	devfs_msg_t devfs_msg = devfs_msg_get();
1012 
1013 	devfs_msg->mdv_link.name = name;
1014 	devfs_msg->mdv_link.target = target;
1015 	devfs_msg->mdv_link.mp = mp;
1016 	devfs_msg_send(cmd, devfs_msg);
1017 }
1018 
1019 /*
1020  * devfs_msg_core is the main devfs thread. It handles all incoming messages
1021  * and calls the relevant worker functions. By using messages it's assured
1022  * that events occur in the correct order.
1023  */
1024 static void
1025 devfs_msg_core(void *arg)
1026 {
1027 	devfs_msg_t msg;
1028 
1029 	devfs_run = 1;
1030 	lwkt_initport_thread(&devfs_msg_port, curthread);
1031 	wakeup(td_core);
1032 
1033 	while (devfs_run) {
1034 		msg = (devfs_msg_t)lwkt_waitport(&devfs_msg_port, 0);
1035 		devfs_debug(DEVFS_DEBUG_DEBUG,
1036 				"devfs_msg_core, new msg: %x\n",
1037 				(unsigned int)msg->hdr.u.ms_result);
1038 		devfs_msg_exec(msg);
1039 		lwkt_replymsg(&msg->hdr, 0);
1040 	}
1041 	wakeup(td_core);
1042 	lwkt_exit();
1043 }
1044 
1045 static void
1046 devfs_msg_exec(devfs_msg_t msg)
1047 {
1048 	struct devfs_mnt_data *mnt;
1049 	struct devfs_node *node;
1050 	cdev_t	dev;
1051 
1052 	/*
1053 	 * Acquire the devfs lock to ensure safety of all called functions
1054 	 */
1055 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
1056 
1057 	switch (msg->hdr.u.ms_result) {
1058 	case DEVFS_DEVICE_CREATE:
1059 		dev = msg->mdv_dev.dev;
1060 		devfs_create_dev_worker(dev,
1061 					msg->mdv_dev.uid,
1062 					msg->mdv_dev.gid,
1063 					msg->mdv_dev.perms);
1064 		break;
1065 	case DEVFS_DEVICE_DESTROY:
1066 		dev = msg->mdv_dev.dev;
1067 		devfs_destroy_dev_worker(dev);
1068 		break;
1069 	case DEVFS_DESTROY_SUBNAMES:
1070 		devfs_destroy_subnames_worker(msg->mdv_load);
1071 		break;
1072 	case DEVFS_DESTROY_DEV_BY_OPS:
1073 		devfs_destroy_dev_by_ops_worker(msg->mdv_ops.ops,
1074 						msg->mdv_ops.minor);
1075 		break;
1076 	case DEVFS_CREATE_ALL_DEV:
1077 		node = (struct devfs_node *)msg->mdv_load;
1078 		devfs_create_all_dev_worker(node);
1079 		break;
1080 	case DEVFS_MOUNT_ADD:
1081 		mnt = msg->mdv_mnt;
1082 		TAILQ_INSERT_TAIL(&devfs_mnt_list, mnt, link);
1083 		devfs_create_all_dev_worker(mnt->root_node);
1084 		break;
1085 	case DEVFS_MOUNT_DEL:
1086 		mnt = msg->mdv_mnt;
1087 		TAILQ_REMOVE(&devfs_mnt_list, mnt, link);
1088 		devfs_iterate_topology(mnt->root_node, devfs_reaperp_callback,
1089 				       NULL);
1090 		if (mnt->leak_count) {
1091 			devfs_debug(DEVFS_DEBUG_SHOW,
1092 				    "Leaked %ld devfs_node elements!\n",
1093 				    mnt->leak_count);
1094 		}
1095 		break;
1096 	case DEVFS_CHANDLER_ADD:
1097 		devfs_chandler_add_worker(msg->mdv_chandler.name,
1098 				msg->mdv_chandler.nhandler);
1099 		break;
1100 	case DEVFS_CHANDLER_DEL:
1101 		devfs_chandler_del_worker(msg->mdv_chandler.name);
1102 		break;
1103 	case DEVFS_FIND_DEVICE_BY_NAME:
1104 		devfs_find_device_by_name_worker(msg);
1105 		break;
1106 	case DEVFS_FIND_DEVICE_BY_UDEV:
1107 		devfs_find_device_by_udev_worker(msg);
1108 		break;
1109 	case DEVFS_MAKE_ALIAS:
1110 		devfs_make_alias_worker((struct devfs_alias *)msg->mdv_load);
1111 		break;
1112 	case DEVFS_APPLY_RULES:
1113 		devfs_apply_reset_rules_caller(msg->mdv_name, 1);
1114 		break;
1115 	case DEVFS_RESET_RULES:
1116 		devfs_apply_reset_rules_caller(msg->mdv_name, 0);
1117 		break;
1118 	case DEVFS_SCAN_CALLBACK:
1119 		devfs_scan_callback_worker((devfs_scan_t *)msg->mdv_load);
1120 		break;
1121 	case DEVFS_CLR_SUBNAMES_FLAG:
1122 		devfs_clr_subnames_flag_worker(msg->mdv_flags.name,
1123 				msg->mdv_flags.flag);
1124 		break;
1125 	case DEVFS_DESTROY_SUBNAMES_WO_FLAG:
1126 		devfs_destroy_subnames_without_flag_worker(msg->mdv_flags.name,
1127 				msg->mdv_flags.flag);
1128 		break;
1129 	case DEVFS_INODE_TO_VNODE:
1130 		msg->mdv_ino.vp = devfs_iterate_topology(
1131 			DEVFS_MNTDATA(msg->mdv_ino.mp)->root_node,
1132 			(devfs_iterate_callback_t *)devfs_inode_to_vnode_worker_callback,
1133 			&msg->mdv_ino.ino);
1134 		break;
1135 	case DEVFS_TERMINATE_CORE:
1136 		devfs_run = 0;
1137 		break;
1138 	case DEVFS_SYNC:
1139 		break;
1140 	default:
1141 		devfs_debug(DEVFS_DEBUG_WARNING,
1142 			    "devfs_msg_core: unknown message "
1143 			    "received at core\n");
1144 		break;
1145 	}
1146 	lockmgr(&devfs_lock, LK_RELEASE);
1147 }
1148 
1149 /*
1150  * Worker function to insert a new dev into the dev list and initialize its
1151  * permissions. It also calls devfs_propagate_dev which in turn propagates
1152  * the change to all mount points.
1153  *
1154  * The passed dev is already referenced.  This reference is eaten by this
1155  * function and represents the dev's linkage into devfs_dev_list.
1156  */
1157 static int
1158 devfs_create_dev_worker(cdev_t dev, uid_t uid, gid_t gid, int perms)
1159 {
1160 	KKASSERT(dev);
1161 
1162 	dev->si_uid = uid;
1163 	dev->si_gid = gid;
1164 	dev->si_perms = perms;
1165 
1166 	devfs_link_dev(dev);
1167 	devfs_propagate_dev(dev, 1);
1168 
1169 	return 0;
1170 }
1171 
1172 /*
1173  * Worker function to delete a dev from the dev list and free the cdev.
1174  * It also calls devfs_propagate_dev which in turn propagates the change
1175  * to all mount points.
1176  */
1177 static int
1178 devfs_destroy_dev_worker(cdev_t dev)
1179 {
1180 	int error;
1181 
1182 	KKASSERT(dev);
1183 	KKASSERT((lockstatus(&devfs_lock, curthread)) == LK_EXCLUSIVE);
1184 
1185 	error = devfs_unlink_dev(dev);
1186 	devfs_propagate_dev(dev, 0);
1187 	if (error == 0)
1188 		release_dev(dev);	/* link ref */
1189 	release_dev(dev);
1190 	release_dev(dev);
1191 
1192 	return 0;
1193 }
1194 
1195 /*
1196  * Worker function to destroy all devices with a certain basename.
1197  * Calls devfs_destroy_dev_worker for the actual destruction.
1198  */
1199 static int
1200 devfs_destroy_subnames_worker(char *name)
1201 {
1202 	cdev_t dev, dev1;
1203 	size_t len = strlen(name);
1204 
1205 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1206 		if ((!strncmp(dev->si_name, name, len)) &&
1207 				(dev->si_name[len] != '\0')) {
1208 			devfs_destroy_dev_worker(dev);
1209 		}
1210 	}
1211 	return 0;
1212 }
1213 
1214 static int
1215 devfs_clr_subnames_flag_worker(char *name, uint32_t flag)
1216 {
1217 	cdev_t dev, dev1;
1218 	size_t len = strlen(name);
1219 
1220 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1221 		if ((!strncmp(dev->si_name, name, len)) &&
1222 				(dev->si_name[len] != '\0')) {
1223 			dev->si_flags &= ~flag;
1224 		}
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 static int
1231 devfs_destroy_subnames_without_flag_worker(char *name, uint32_t flag)
1232 {
1233 	cdev_t dev, dev1;
1234 	size_t len = strlen(name);
1235 
1236 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1237 		if ((!strncmp(dev->si_name, name, len)) &&
1238 				(dev->si_name[len] != '\0')) {
1239 			if (!(dev->si_flags & flag)) {
1240 				devfs_destroy_dev_worker(dev);
1241 			}
1242 		}
1243 	}
1244 
1245 	return 0;
1246 }
1247 
1248 /*
1249  * Worker function that creates all device nodes on top of a devfs
1250  * root node.
1251  */
1252 static int
1253 devfs_create_all_dev_worker(struct devfs_node *root)
1254 {
1255 	cdev_t dev;
1256 
1257 	KKASSERT(root);
1258 
1259 	TAILQ_FOREACH(dev, &devfs_dev_list, link) {
1260 		devfs_create_device_node(root, dev, NULL, NULL);
1261 	}
1262 
1263 	return 0;
1264 }
1265 
1266 /*
1267  * Worker function that destroys all devices that match a specific
1268  * dev_ops and/or minor. If minor is less than 0, it is not matched
1269  * against. It also propagates all changes.
1270  */
1271 static int
1272 devfs_destroy_dev_by_ops_worker(struct dev_ops *ops, int minor)
1273 {
1274 	cdev_t dev, dev1;
1275 
1276 	KKASSERT(ops);
1277 
1278 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1279 		if (dev->si_ops != ops)
1280 			continue;
1281 		if ((minor < 0) || (dev->si_uminor == minor)) {
1282 			devfs_destroy_dev_worker(dev);
1283 		}
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 /*
1290  * Worker function that registers a new clone handler in devfs.
1291  */
1292 static int
1293 devfs_chandler_add_worker(const char *name, d_clone_t *nhandler)
1294 {
1295 	struct devfs_clone_handler *chandler = NULL;
1296 	u_char len = strlen(name);
1297 
1298 	if (len == 0)
1299 		return 1;
1300 
1301 	TAILQ_FOREACH(chandler, &devfs_chandler_list, link) {
1302 		if (chandler->namlen != len)
1303 			continue;
1304 
1305 		if (!memcmp(chandler->name, name, len)) {
1306 			/* Clonable basename already exists */
1307 			return 1;
1308 		}
1309 	}
1310 
1311 	chandler = kmalloc(sizeof(*chandler), M_DEVFS, M_WAITOK | M_ZERO);
1312 	chandler->name = kstrdup(name, M_DEVFS);
1313 	chandler->namlen = len;
1314 	chandler->nhandler = nhandler;
1315 
1316 	TAILQ_INSERT_TAIL(&devfs_chandler_list, chandler, link);
1317 	return 0;
1318 }
1319 
1320 /*
1321  * Worker function that removes a given clone handler from the
1322  * clone handler list.
1323  */
1324 static int
1325 devfs_chandler_del_worker(const char *name)
1326 {
1327 	struct devfs_clone_handler *chandler, *chandler2;
1328 	u_char len = strlen(name);
1329 
1330 	if (len == 0)
1331 		return 1;
1332 
1333 	TAILQ_FOREACH_MUTABLE(chandler, &devfs_chandler_list, link, chandler2) {
1334 		if (chandler->namlen != len)
1335 			continue;
1336 		if (memcmp(chandler->name, name, len))
1337 			continue;
1338 
1339 		TAILQ_REMOVE(&devfs_chandler_list, chandler, link);
1340 		kfree(chandler->name, M_DEVFS);
1341 		kfree(chandler, M_DEVFS);
1342 		break;
1343 	}
1344 
1345 	return 0;
1346 }
1347 
1348 /*
1349  * Worker function that finds a given device name and changes
1350  * the message received accordingly so that when replied to,
1351  * the answer is returned to the caller.
1352  */
1353 static int
1354 devfs_find_device_by_name_worker(devfs_msg_t devfs_msg)
1355 {
1356 	struct devfs_alias *alias;
1357 	cdev_t dev;
1358 	cdev_t found = NULL;
1359 
1360 	TAILQ_FOREACH(dev, &devfs_dev_list, link) {
1361 		if (strcmp(devfs_msg->mdv_name, dev->si_name) == 0) {
1362 			found = dev;
1363 			break;
1364 		}
1365 	}
1366 	if (found == NULL) {
1367 		TAILQ_FOREACH(alias, &devfs_alias_list, link) {
1368 			if (strcmp(devfs_msg->mdv_name, alias->name) == 0) {
1369 				found = alias->dev_target;
1370 				break;
1371 			}
1372 		}
1373 	}
1374 	devfs_msg->mdv_cdev = found;
1375 
1376 	return 0;
1377 }
1378 
1379 /*
1380  * Worker function that finds a given device udev and changes
1381  * the message received accordingly so that when replied to,
1382  * the answer is returned to the caller.
1383  */
1384 static int
1385 devfs_find_device_by_udev_worker(devfs_msg_t devfs_msg)
1386 {
1387 	cdev_t dev, dev1;
1388 	cdev_t found = NULL;
1389 
1390 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1391 		if (((udev_t)dev->si_inode) == devfs_msg->mdv_udev) {
1392 			found = dev;
1393 			break;
1394 		}
1395 	}
1396 	devfs_msg->mdv_cdev = found;
1397 
1398 	return 0;
1399 }
1400 
1401 /*
1402  * Worker function that inserts a given alias into the
1403  * alias list, and propagates the alias to all mount
1404  * points.
1405  */
1406 static int
1407 devfs_make_alias_worker(struct devfs_alias *alias)
1408 {
1409 	struct devfs_alias *alias2;
1410 	size_t len = strlen(alias->name);
1411 	int found = 0;
1412 
1413 	TAILQ_FOREACH(alias2, &devfs_alias_list, link) {
1414 		if (len != alias2->namlen)
1415 			continue;
1416 
1417 		if (!memcmp(alias->name, alias2->name, len)) {
1418 			found = 1;
1419 			break;
1420 		}
1421 	}
1422 
1423 	if (!found) {
1424 		/*
1425 		 * The alias doesn't exist yet, so we add it to the alias list
1426 		 */
1427 		TAILQ_INSERT_TAIL(&devfs_alias_list, alias, link);
1428 		devfs_alias_propagate(alias);
1429 	} else {
1430 		devfs_debug(DEVFS_DEBUG_WARNING,
1431 			    "Warning: duplicate devfs_make_alias for %s\n",
1432 			    alias->name);
1433 		kfree(alias->name, M_DEVFS);
1434 		kfree(alias, M_DEVFS);
1435 	}
1436 
1437 	return 0;
1438 }
1439 
1440 /*
1441  * Function that removes and frees all aliases.
1442  */
1443 static int
1444 devfs_alias_reap(void)
1445 {
1446 	struct devfs_alias *alias, *alias2;
1447 
1448 	TAILQ_FOREACH_MUTABLE(alias, &devfs_alias_list, link, alias2) {
1449 		TAILQ_REMOVE(&devfs_alias_list, alias, link);
1450 		kfree(alias, M_DEVFS);
1451 	}
1452 	return 0;
1453 }
1454 
1455 /*
1456  * Function that removes an alias matching a specific cdev and frees
1457  * it accordingly.
1458  */
1459 static int
1460 devfs_alias_remove(cdev_t dev)
1461 {
1462 	struct devfs_alias *alias, *alias2;
1463 
1464 	TAILQ_FOREACH_MUTABLE(alias, &devfs_alias_list, link, alias2) {
1465 		if (alias->dev_target == dev) {
1466 			TAILQ_REMOVE(&devfs_alias_list, alias, link);
1467 			kfree(alias, M_DEVFS);
1468 		}
1469 	}
1470 	return 0;
1471 }
1472 
1473 /*
1474  * This function propagates a new alias to all mount points.
1475  */
1476 static int
1477 devfs_alias_propagate(struct devfs_alias *alias)
1478 {
1479 	struct devfs_mnt_data *mnt;
1480 
1481 	TAILQ_FOREACH(mnt, &devfs_mnt_list, link) {
1482 		devfs_alias_apply(mnt->root_node, alias);
1483 	}
1484 	return 0;
1485 }
1486 
1487 /*
1488  * This function is a recursive function iterating through
1489  * all device nodes in the topology and, if applicable,
1490  * creating the relevant alias for a device node.
1491  */
1492 static int
1493 devfs_alias_apply(struct devfs_node *node, struct devfs_alias *alias)
1494 {
1495 	struct devfs_node *node1, *node2;
1496 
1497 	KKASSERT(alias != NULL);
1498 
1499 	if ((node->node_type == Proot) || (node->node_type == Pdir)) {
1500 		if (node->nchildren > 2) {
1501 			TAILQ_FOREACH_MUTABLE(node1, DEVFS_DENODE_HEAD(node), link, node2) {
1502 				devfs_alias_apply(node1, alias);
1503 			}
1504 		}
1505 	} else {
1506 		if (node->d_dev == alias->dev_target)
1507 			devfs_alias_create(alias->name, node, 0);
1508 	}
1509 	return 0;
1510 }
1511 
1512 /*
1513  * This function checks if any alias possibly is applicable
1514  * to the given node. If so, the alias is created.
1515  */
1516 static int
1517 devfs_alias_check_create(struct devfs_node *node)
1518 {
1519 	struct devfs_alias *alias;
1520 
1521 	TAILQ_FOREACH(alias, &devfs_alias_list, link) {
1522 		if (node->d_dev == alias->dev_target)
1523 			devfs_alias_create(alias->name, node, 0);
1524 	}
1525 	return 0;
1526 }
1527 
1528 /*
1529  * This function creates an alias with a given name
1530  * linking to a given devfs node. It also increments
1531  * the link count on the target node.
1532  */
1533 int
1534 devfs_alias_create(char *name_orig, struct devfs_node *target, int rule_based)
1535 {
1536 	struct mount *mp = target->mp;
1537 	struct devfs_node *parent = DEVFS_MNTDATA(mp)->root_node;
1538 	struct devfs_node *linknode;
1539 	char *create_path = NULL;
1540 	char *name;
1541 	char *name_buf;
1542 	int result = 0;
1543 
1544 	KKASSERT((lockstatus(&devfs_lock, curthread)) == LK_EXCLUSIVE);
1545 
1546 	name_buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK);
1547 	devfs_resolve_name_path(name_orig, name_buf, &create_path, &name);
1548 
1549 	if (create_path)
1550 		parent = devfs_resolve_or_create_path(parent, create_path, 1);
1551 
1552 
1553 	if (devfs_find_device_node_by_name(parent, name)) {
1554 		devfs_debug(DEVFS_DEBUG_WARNING,
1555 			    "Node already exists: %s "
1556 			    "(devfs_make_alias_worker)!\n",
1557 			    name);
1558 		result = 1;
1559 		goto done;
1560 	}
1561 
1562 	linknode = devfs_allocp(Plink, name, parent, mp, NULL);
1563 	if (linknode == NULL) {
1564 		result = 1;
1565 		goto done;
1566 	}
1567 
1568 	linknode->link_target = target;
1569 	target->nlinks++;
1570 
1571 	if (rule_based)
1572 		linknode->flags |= DEVFS_RULE_CREATED;
1573 
1574 done:
1575 	kfree(name_buf, M_TEMP);
1576 	return (result);
1577 }
1578 
1579 /*
1580  * This function is called by the core and handles mount point
1581  * strings. It either calls the relevant worker (devfs_apply_
1582  * reset_rules_worker) on all mountpoints or only a specific
1583  * one.
1584  */
1585 static int
1586 devfs_apply_reset_rules_caller(char *mountto, int apply)
1587 {
1588 	struct devfs_mnt_data *mnt;
1589 
1590 	if (mountto[0] == '*') {
1591 		TAILQ_FOREACH(mnt, &devfs_mnt_list, link) {
1592 			devfs_iterate_topology(mnt->root_node,
1593 					(apply)?(devfs_rule_check_apply):(devfs_rule_reset_node),
1594 					NULL);
1595 		}
1596 	} else {
1597 		TAILQ_FOREACH(mnt, &devfs_mnt_list, link) {
1598 			if (!strcmp(mnt->mp->mnt_stat.f_mntonname, mountto)) {
1599 				devfs_iterate_topology(mnt->root_node,
1600 					(apply)?(devfs_rule_check_apply):(devfs_rule_reset_node),
1601 					NULL);
1602 				break;
1603 			}
1604 		}
1605 	}
1606 
1607 	kfree(mountto, M_DEVFS);
1608 	return 0;
1609 }
1610 
1611 /*
1612  * This function calls a given callback function for
1613  * every dev node in the devfs dev list.
1614  */
1615 static int
1616 devfs_scan_callback_worker(devfs_scan_t *callback)
1617 {
1618 	cdev_t dev, dev1;
1619 
1620 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1621 		callback(dev);
1622 	}
1623 
1624 	return 0;
1625 }
1626 
1627 /*
1628  * This function tries to resolve a given directory, or if not
1629  * found and creation requested, creates the given directory.
1630  */
1631 static struct devfs_node *
1632 devfs_resolve_or_create_dir(struct devfs_node *parent, char *dir_name,
1633 			    size_t name_len, int create)
1634 {
1635 	struct devfs_node *node, *found = NULL;
1636 
1637 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(parent), link) {
1638 		if (name_len != node->d_dir.d_namlen)
1639 			continue;
1640 
1641 		if (!memcmp(dir_name, node->d_dir.d_name, name_len)) {
1642 			found = node;
1643 			break;
1644 		}
1645 	}
1646 
1647 	if ((found == NULL) && (create)) {
1648 		found = devfs_allocp(Pdir, dir_name, parent, parent->mp, NULL);
1649 	}
1650 
1651 	return found;
1652 }
1653 
1654 /*
1655  * This function tries to resolve a complete path. If creation is requested,
1656  * if a given part of the path cannot be resolved (because it doesn't exist),
1657  * it is created.
1658  */
1659 struct devfs_node *
1660 devfs_resolve_or_create_path(struct devfs_node *parent, char *path, int create)
1661 {
1662 	struct devfs_node *node = parent;
1663 	char *buf;
1664 	size_t idx = 0;
1665 
1666 	if (path == NULL)
1667 		return parent;
1668 
1669 	buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK);
1670 
1671 	while (*path && idx < PATH_MAX - 1) {
1672 		if (*path != '/') {
1673 			buf[idx++] = *path;
1674 		} else {
1675 			buf[idx] = '\0';
1676 			node = devfs_resolve_or_create_dir(node, buf, idx, create);
1677 			if (node == NULL) {
1678 				kfree(buf, M_TEMP);
1679 				return NULL;
1680 			}
1681 			idx = 0;
1682 		}
1683 		++path;
1684 	}
1685 	buf[idx] = '\0';
1686 	node = devfs_resolve_or_create_dir(node, buf, idx, create);
1687 	kfree (buf, M_TEMP);
1688 	return (node);
1689 }
1690 
1691 /*
1692  * Takes a full path and strips it into a directory path and a name.
1693  * For a/b/c/foo, it returns foo in namep and a/b/c in pathp. It
1694  * requires a working buffer with enough size to keep the whole
1695  * fullpath.
1696  */
1697 int
1698 devfs_resolve_name_path(char *fullpath, char *buf, char **pathp, char **namep)
1699 {
1700 	char *name = NULL;
1701 	char *path = NULL;
1702 	size_t len = strlen(fullpath) + 1;
1703 	int i;
1704 
1705 	KKASSERT((fullpath != NULL) && (buf != NULL));
1706 	KKASSERT((pathp != NULL) && (namep != NULL));
1707 
1708 	memcpy(buf, fullpath, len);
1709 
1710 	for (i = len-1; i>= 0; i--) {
1711 		if (buf[i] == '/') {
1712 			buf[i] = '\0';
1713 			name = &(buf[i+1]);
1714 			path = buf;
1715 			break;
1716 		}
1717 	}
1718 
1719 	*pathp = path;
1720 
1721 	if (name) {
1722 		*namep = name;
1723 	} else {
1724 		*namep = buf;
1725 	}
1726 
1727 	return 0;
1728 }
1729 
1730 /*
1731  * This function creates a new devfs node for a given device.  It can
1732  * handle a complete path as device name, and accordingly creates
1733  * the path and the final device node.
1734  *
1735  * The reference count on the passed dev remains unchanged.
1736  */
1737 struct devfs_node *
1738 devfs_create_device_node(struct devfs_node *root, cdev_t dev,
1739 			 char *dev_name, char *path_fmt, ...)
1740 {
1741 	struct devfs_node *parent, *node = NULL;
1742 	char *path = NULL;
1743 	char *name;
1744 	char *name_buf;
1745 	__va_list ap;
1746 	int i, found;
1747 	char *create_path = NULL;
1748 	char *names = "pqrsPQRS";
1749 
1750 	name_buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK);
1751 
1752 	if (path_fmt != NULL) {
1753 		__va_start(ap, path_fmt);
1754 		kvasnrprintf(&path, PATH_MAX, 10, path_fmt, ap);
1755 		__va_end(ap);
1756 	}
1757 
1758 	parent = devfs_resolve_or_create_path(root, path, 1);
1759 	KKASSERT(parent);
1760 
1761 	devfs_resolve_name_path(
1762 			((dev_name == NULL) && (dev))?(dev->si_name):(dev_name),
1763 			name_buf, &create_path, &name);
1764 
1765 	if (create_path)
1766 		parent = devfs_resolve_or_create_path(parent, create_path, 1);
1767 
1768 
1769 	if (devfs_find_device_node_by_name(parent, name)) {
1770 		devfs_debug(DEVFS_DEBUG_WARNING, "devfs_create_device_node: "
1771 			"DEVICE %s ALREADY EXISTS!!! Ignoring creation request.\n", name);
1772 		goto out;
1773 	}
1774 
1775 	node = devfs_allocp(Pdev, name, parent, parent->mp, dev);
1776 	nanotime(&parent->mtime);
1777 
1778 	/*
1779 	 * Ugly unix98 pty magic, to hide pty master (ptm) devices and their
1780 	 * directory
1781 	 */
1782 	if ((dev) && (strlen(dev->si_name) >= 4) &&
1783 			(!memcmp(dev->si_name, "ptm/", 4))) {
1784 		node->parent->flags |= DEVFS_HIDDEN;
1785 		node->flags |= DEVFS_HIDDEN;
1786 	}
1787 
1788 	/*
1789 	 * Ugly pty magic, to tag pty devices as such and hide them if needed.
1790 	 */
1791 	if ((strlen(name) >= 3) && (!memcmp(name, "pty", 3)))
1792 		node->flags |= (DEVFS_PTY | DEVFS_INVISIBLE);
1793 
1794 	if ((strlen(name) >= 3) && (!memcmp(name, "tty", 3))) {
1795 		found = 0;
1796 		for (i = 0; i < strlen(names); i++) {
1797 			if (name[3] == names[i]) {
1798 				found = 1;
1799 				break;
1800 			}
1801 		}
1802 		if (found)
1803 			node->flags |= (DEVFS_PTY | DEVFS_INVISIBLE);
1804 	}
1805 
1806 out:
1807 	kfree(name_buf, M_TEMP);
1808 	kvasfree(&path);
1809 	return node;
1810 }
1811 
1812 /*
1813  * This function finds a given device node in the topology with a given
1814  * cdev.
1815  */
1816 void *
1817 devfs_find_device_node_callback(struct devfs_node *node, cdev_t target)
1818 {
1819 	if ((node->node_type == Pdev) && (node->d_dev == target)) {
1820 		return node;
1821 	}
1822 
1823 	return NULL;
1824 }
1825 
1826 /*
1827  * This function finds a device node in the given parent directory by its
1828  * name and returns it.
1829  */
1830 struct devfs_node *
1831 devfs_find_device_node_by_name(struct devfs_node *parent, char *target)
1832 {
1833 	struct devfs_node *node, *found = NULL;
1834 	size_t len = strlen(target);
1835 
1836 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(parent), link) {
1837 		if (len != node->d_dir.d_namlen)
1838 			continue;
1839 
1840 		if (!memcmp(node->d_dir.d_name, target, len)) {
1841 			found = node;
1842 			break;
1843 		}
1844 	}
1845 
1846 	return found;
1847 }
1848 
1849 static void *
1850 devfs_inode_to_vnode_worker_callback(struct devfs_node *node, ino_t *inop)
1851 {
1852 	struct vnode *vp = NULL;
1853 	ino_t target = *inop;
1854 
1855 	if (node->d_dir.d_ino == target) {
1856 		if (node->v_node) {
1857 			vp = node->v_node;
1858 			vget(vp, LK_EXCLUSIVE | LK_RETRY);
1859 			vn_unlock(vp);
1860 		} else {
1861 			devfs_allocv(&vp, node);
1862 			vn_unlock(vp);
1863 		}
1864 	}
1865 
1866 	return vp;
1867 }
1868 
1869 /*
1870  * This function takes a cdev and removes its devfs node in the
1871  * given topology.  The cdev remains intact.
1872  */
1873 int
1874 devfs_destroy_device_node(struct devfs_node *root, cdev_t target)
1875 {
1876 	struct devfs_node *node, *parent;
1877 	char *name;
1878 	char *name_buf;
1879 	char *create_path = NULL;
1880 
1881 	KKASSERT(target);
1882 
1883 	name_buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK);
1884 	ksnprintf(name_buf, PATH_MAX, "%s", target->si_name);
1885 
1886 	devfs_resolve_name_path(target->si_name, name_buf, &create_path, &name);
1887 
1888 	if (create_path)
1889 		parent = devfs_resolve_or_create_path(root, create_path, 0);
1890 	else
1891 		parent = root;
1892 
1893 	if (parent == NULL)
1894 		return 1;
1895 
1896 	node = devfs_find_device_node_by_name(parent, name);
1897 
1898 	if (node) {
1899 		nanotime(&node->parent->mtime);
1900 		devfs_gc(node);
1901 	}
1902 	kfree(name_buf, M_TEMP);
1903 
1904 	return 0;
1905 }
1906 
1907 /*
1908  * Just set perms and ownership for given node.
1909  */
1910 int
1911 devfs_set_perms(struct devfs_node *node, uid_t uid, gid_t gid,
1912 		u_short mode, u_long flags)
1913 {
1914 	node->mode = mode;
1915 	node->uid = uid;
1916 	node->gid = gid;
1917 
1918 	return 0;
1919 }
1920 
1921 /*
1922  * Propagates a device attach/detach to all mount
1923  * points. Also takes care of automatic alias removal
1924  * for a deleted cdev.
1925  */
1926 static int
1927 devfs_propagate_dev(cdev_t dev, int attach)
1928 {
1929 	struct devfs_mnt_data *mnt;
1930 
1931 	TAILQ_FOREACH(mnt, &devfs_mnt_list, link) {
1932 		if (attach) {
1933 			/* Device is being attached */
1934 			devfs_create_device_node(mnt->root_node, dev,
1935 						 NULL, NULL );
1936 		} else {
1937 			/* Device is being detached */
1938 			devfs_alias_remove(dev);
1939 			devfs_destroy_device_node(mnt->root_node, dev);
1940 		}
1941 	}
1942 	return 0;
1943 }
1944 
1945 /*
1946  * devfs_clone either returns a basename from a complete name by
1947  * returning the length of the name without trailing digits, or,
1948  * if clone != 0, calls the device's clone handler to get a new
1949  * device, which in turn is returned in devp.
1950  */
1951 cdev_t
1952 devfs_clone(cdev_t dev, const char *name, size_t len, int mode,
1953 		struct ucred *cred)
1954 {
1955 	int error;
1956 	struct devfs_clone_handler *chandler;
1957 	struct dev_clone_args ap;
1958 
1959 	TAILQ_FOREACH(chandler, &devfs_chandler_list, link) {
1960 		if (chandler->namlen != len)
1961 			continue;
1962 		if ((!memcmp(chandler->name, name, len)) && (chandler->nhandler)) {
1963 			lockmgr(&devfs_lock, LK_RELEASE);
1964 			devfs_config();
1965 			lockmgr(&devfs_lock, LK_EXCLUSIVE);
1966 
1967 			ap.a_head.a_dev = dev;
1968 			ap.a_dev = NULL;
1969 			ap.a_name = name;
1970 			ap.a_namelen = len;
1971 			ap.a_mode = mode;
1972 			ap.a_cred = cred;
1973 			error = (chandler->nhandler)(&ap);
1974 			if (error)
1975 				continue;
1976 
1977 			return ap.a_dev;
1978 		}
1979 	}
1980 
1981 	return NULL;
1982 }
1983 
1984 
1985 /*
1986  * Registers a new orphan in the orphan list.
1987  */
1988 void
1989 devfs_tracer_add_orphan(struct devfs_node *node)
1990 {
1991 	struct devfs_orphan *orphan;
1992 
1993 	KKASSERT(node);
1994 	orphan = kmalloc(sizeof(struct devfs_orphan), M_DEVFS, M_WAITOK);
1995 	orphan->node = node;
1996 
1997 	KKASSERT((node->flags & DEVFS_ORPHANED) == 0);
1998 	node->flags |= DEVFS_ORPHANED;
1999 	TAILQ_INSERT_TAIL(DEVFS_ORPHANLIST(node->mp), orphan, link);
2000 }
2001 
2002 /*
2003  * Removes an orphan from the orphan list.
2004  */
2005 void
2006 devfs_tracer_del_orphan(struct devfs_node *node)
2007 {
2008 	struct devfs_orphan *orphan;
2009 
2010 	KKASSERT(node);
2011 
2012 	TAILQ_FOREACH(orphan, DEVFS_ORPHANLIST(node->mp), link)	{
2013 		if (orphan->node == node) {
2014 			node->flags &= ~DEVFS_ORPHANED;
2015 			TAILQ_REMOVE(DEVFS_ORPHANLIST(node->mp), orphan, link);
2016 			kfree(orphan, M_DEVFS);
2017 			break;
2018 		}
2019 	}
2020 }
2021 
2022 /*
2023  * Counts the orphans in the orphan list, and if cleanup
2024  * is specified, also frees the orphan and removes it from
2025  * the list.
2026  */
2027 size_t
2028 devfs_tracer_orphan_count(struct mount *mp, int cleanup)
2029 {
2030 	struct devfs_orphan *orphan, *orphan2;
2031 	size_t count = 0;
2032 
2033 	TAILQ_FOREACH_MUTABLE(orphan, DEVFS_ORPHANLIST(mp), link, orphan2)	{
2034 		count++;
2035 		/*
2036 		 * If we are instructed to clean up, we do so.
2037 		 */
2038 		if (cleanup) {
2039 			TAILQ_REMOVE(DEVFS_ORPHANLIST(mp), orphan, link);
2040 			orphan->node->flags &= ~DEVFS_ORPHANED;
2041 			devfs_freep(orphan->node);
2042 			kfree(orphan, M_DEVFS);
2043 		}
2044 	}
2045 
2046 	return count;
2047 }
2048 
2049 /*
2050  * Fetch an ino_t from the global d_ino by increasing it
2051  * while spinlocked.
2052  */
2053 static ino_t
2054 devfs_fetch_ino(void)
2055 {
2056 	ino_t	ret;
2057 
2058 	spin_lock_wr(&ino_lock);
2059 	ret = d_ino++;
2060 	spin_unlock_wr(&ino_lock);
2061 
2062 	return ret;
2063 }
2064 
2065 /*
2066  * Allocates a new cdev and initializes it's most basic
2067  * fields.
2068  */
2069 cdev_t
2070 devfs_new_cdev(struct dev_ops *ops, int minor)
2071 {
2072 	cdev_t dev = sysref_alloc(&cdev_sysref_class);
2073 
2074 	sysref_activate(&dev->si_sysref);
2075 	reference_dev(dev);
2076 	bzero(dev, offsetof(struct cdev, si_sysref));
2077 
2078 	dev->si_uid = 0;
2079 	dev->si_gid = 0;
2080 	dev->si_perms = 0;
2081 	dev->si_drv1 = NULL;
2082 	dev->si_drv2 = NULL;
2083 	dev->si_lastread = 0;		/* time_second */
2084 	dev->si_lastwrite = 0;		/* time_second */
2085 
2086 	dev->si_ops = ops;
2087 	dev->si_flags = 0;
2088 	dev->si_umajor = 0;
2089 	dev->si_uminor = minor;
2090 	dev->si_inode = makeudev(devfs_reference_ops(ops), minor);
2091 
2092 	return dev;
2093 }
2094 
2095 static void
2096 devfs_cdev_terminate(cdev_t dev)
2097 {
2098 	int locked = 0;
2099 
2100 	/* Check if it is locked already. if not, we acquire the devfs lock */
2101 	if (!(lockstatus(&devfs_lock, curthread)) == LK_EXCLUSIVE) {
2102 		lockmgr(&devfs_lock, LK_EXCLUSIVE);
2103 		locked = 1;
2104 	}
2105 
2106 	/* Propagate destruction, just in case */
2107 	devfs_propagate_dev(dev, 0);
2108 
2109 	/* If we acquired the lock, we also get rid of it */
2110 	if (locked)
2111 		lockmgr(&devfs_lock, LK_RELEASE);
2112 
2113 	devfs_release_ops(dev->si_ops);
2114 
2115 	/* Finally destroy the device */
2116 	sysref_put(&dev->si_sysref);
2117 }
2118 
2119 /*
2120  * Links a given cdev into the dev list.
2121  */
2122 int
2123 devfs_link_dev(cdev_t dev)
2124 {
2125 	KKASSERT((dev->si_flags & SI_DEVFS_LINKED) == 0);
2126 	dev->si_flags |= SI_DEVFS_LINKED;
2127 	TAILQ_INSERT_TAIL(&devfs_dev_list, dev, link);
2128 
2129 	return 0;
2130 }
2131 
2132 /*
2133  * Removes a given cdev from the dev list.  The caller is responsible for
2134  * releasing the reference on the device associated with the linkage.
2135  *
2136  * Returns EALREADY if the dev has already been unlinked.
2137  */
2138 static int
2139 devfs_unlink_dev(cdev_t dev)
2140 {
2141 	if ((dev->si_flags & SI_DEVFS_LINKED)) {
2142 		TAILQ_REMOVE(&devfs_dev_list, dev, link);
2143 		dev->si_flags &= ~SI_DEVFS_LINKED;
2144 		return (0);
2145 	}
2146 	return (EALREADY);
2147 }
2148 
2149 int
2150 devfs_node_is_accessible(struct devfs_node *node)
2151 {
2152 	if ((node) && (!(node->flags & DEVFS_HIDDEN)))
2153 		return 1;
2154 	else
2155 		return 0;
2156 }
2157 
2158 int
2159 devfs_reference_ops(struct dev_ops *ops)
2160 {
2161 	int unit;
2162 	struct devfs_dev_ops *found = NULL;
2163 	struct devfs_dev_ops *devops;
2164 
2165 	TAILQ_FOREACH(devops, &devfs_dev_ops_list, link) {
2166 		if (devops->ops == ops) {
2167 			found = devops;
2168 			break;
2169 		}
2170 	}
2171 
2172 	if (!found) {
2173 		found = kmalloc(sizeof(struct devfs_dev_ops), M_DEVFS, M_WAITOK);
2174 		found->ops = ops;
2175 		found->ref_count = 0;
2176 		TAILQ_INSERT_TAIL(&devfs_dev_ops_list, found, link);
2177 	}
2178 
2179 	KKASSERT(found);
2180 
2181 	if (found->ref_count == 0) {
2182 		found->id = devfs_clone_bitmap_get(&DEVFS_CLONE_BITMAP(ops_id), 255);
2183 		if (found->id == -1) {
2184 			/* Ran out of unique ids */
2185 			devfs_debug(DEVFS_DEBUG_WARNING,
2186 					"devfs_reference_ops: WARNING: ran out of unique ids\n");
2187 		}
2188 	}
2189 	unit = found->id;
2190 	++found->ref_count;
2191 
2192 	return unit;
2193 }
2194 
2195 void
2196 devfs_release_ops(struct dev_ops *ops)
2197 {
2198 	struct devfs_dev_ops *found = NULL;
2199 	struct devfs_dev_ops *devops;
2200 
2201 	TAILQ_FOREACH(devops, &devfs_dev_ops_list, link) {
2202 		if (devops->ops == ops) {
2203 			found = devops;
2204 			break;
2205 		}
2206 	}
2207 
2208 	KKASSERT(found);
2209 
2210 	--found->ref_count;
2211 
2212 	if (found->ref_count == 0) {
2213 		TAILQ_REMOVE(&devfs_dev_ops_list, found, link);
2214 		devfs_clone_bitmap_put(&DEVFS_CLONE_BITMAP(ops_id), found->id);
2215 		kfree(found, M_DEVFS);
2216 	}
2217 }
2218 
2219 void
2220 devfs_config(void)
2221 {
2222 	devfs_msg_t msg;
2223 
2224 	msg = devfs_msg_get();
2225 	msg = devfs_msg_send_sync(DEVFS_SYNC, msg);
2226 	devfs_msg_put(msg);
2227 }
2228 
2229 /*
2230  * Called on init of devfs; creates the objcaches and
2231  * spawns off the devfs core thread. Also initializes
2232  * locks.
2233  */
2234 static void
2235 devfs_init(void)
2236 {
2237 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_init() called\n");
2238 	/* Create objcaches for nodes, msgs and devs */
2239 	devfs_node_cache = objcache_create("devfs-node-cache", 0, 0,
2240 					   NULL, NULL, NULL,
2241 					   objcache_malloc_alloc,
2242 					   objcache_malloc_free,
2243 					   &devfs_node_malloc_args );
2244 
2245 	devfs_msg_cache = objcache_create("devfs-msg-cache", 0, 0,
2246 					  NULL, NULL, NULL,
2247 					  objcache_malloc_alloc,
2248 					  objcache_malloc_free,
2249 					  &devfs_msg_malloc_args );
2250 
2251 	devfs_dev_cache = objcache_create("devfs-dev-cache", 0, 0,
2252 					  NULL, NULL, NULL,
2253 					  objcache_malloc_alloc,
2254 					  objcache_malloc_free,
2255 					  &devfs_dev_malloc_args );
2256 
2257 	devfs_clone_bitmap_init(&DEVFS_CLONE_BITMAP(ops_id));
2258 
2259 	/* Initialize the reply-only port which acts as a message drain */
2260 	lwkt_initport_replyonly(&devfs_dispose_port, devfs_msg_autofree_reply);
2261 
2262 	/* Initialize *THE* devfs lock */
2263 	lockinit(&devfs_lock, "devfs_core lock", 0, 0);
2264 
2265 
2266 	lwkt_create(devfs_msg_core, /*args*/NULL, &td_core, NULL,
2267 		    0, 0, "devfs_msg_core");
2268 
2269 	tsleep(td_core/*devfs_id*/, 0, "devfsc", 0);
2270 
2271 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_init finished\n");
2272 }
2273 
2274 /*
2275  * Called on unload of devfs; takes care of destroying the core
2276  * and the objcaches. Also removes aliases that are no longer needed.
2277  */
2278 static void
2279 devfs_uninit(void)
2280 {
2281 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_uninit() called\n");
2282 
2283 	devfs_msg_send(DEVFS_TERMINATE_CORE, NULL);
2284 
2285 	tsleep(td_core/*devfs_id*/, 0, "devfsc", 0);
2286 	tsleep(td_core/*devfs_id*/, 0, "devfsc", 10000);
2287 
2288 	devfs_clone_bitmap_uninit(&DEVFS_CLONE_BITMAP(ops_id));
2289 
2290 	/* Destroy the objcaches */
2291 	objcache_destroy(devfs_msg_cache);
2292 	objcache_destroy(devfs_node_cache);
2293 	objcache_destroy(devfs_dev_cache);
2294 
2295 	devfs_alias_reap();
2296 }
2297 
2298 /*
2299  * This is a sysctl handler to assist userland devname(3) to
2300  * find the device name for a given udev.
2301  */
2302 static int
2303 devfs_sysctl_devname_helper(SYSCTL_HANDLER_ARGS)
2304 {
2305 	udev_t 	udev;
2306 	cdev_t	found;
2307 	int		error;
2308 
2309 
2310 	if ((error = SYSCTL_IN(req, &udev, sizeof(udev_t))))
2311 		return (error);
2312 
2313 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs sysctl, received udev: %d\n", udev);
2314 
2315 	if (udev == NOUDEV)
2316 		return(EINVAL);
2317 
2318 	if ((found = devfs_find_device_by_udev(udev)) == NULL)
2319 		return(ENOENT);
2320 
2321 	return(SYSCTL_OUT(req, found->si_name, strlen(found->si_name) + 1));
2322 }
2323 
2324 
2325 SYSCTL_PROC(_kern, OID_AUTO, devname, CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_ANYBODY,
2326 			NULL, 0, devfs_sysctl_devname_helper, "", "helper for devname(3)");
2327 
2328 static SYSCTL_NODE(_vfs, OID_AUTO, devfs, CTLFLAG_RW, 0, "devfs");
2329 TUNABLE_INT("vfs.devfs.debug", &devfs_debug_enable);
2330 SYSCTL_INT(_vfs_devfs, OID_AUTO, debug, CTLFLAG_RW, &devfs_debug_enable,
2331 		0, "Enable DevFS debugging");
2332 
2333 SYSINIT(vfs_devfs_register, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST,
2334 		devfs_init, NULL);
2335 SYSUNINIT(vfs_devfs_register, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY,
2336 		devfs_uninit, NULL);
2337