1 /* 2 * Copyright (c) 2009 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Alex Hornung <ahornung@gmail.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/mount.h> 38 #include <sys/vnode.h> 39 #include <sys/types.h> 40 #include <sys/lock.h> 41 #include <sys/msgport.h> 42 #include <sys/msgport2.h> 43 #include <sys/spinlock2.h> 44 #include <sys/sysctl.h> 45 #include <sys/ucred.h> 46 #include <sys/param.h> 47 #include <sys/sysref2.h> 48 #include <sys/systm.h> 49 #include <sys/devfs.h> 50 #include <sys/devfs_rules.h> 51 52 MALLOC_DEFINE(M_DEVFS, "devfs", "Device File System (devfs) allocations"); 53 DEVFS_DECLARE_CLONE_BITMAP(ops_id); 54 /* 55 * SYSREF Integration - reference counting, allocation, 56 * sysid and syslink integration. 57 */ 58 static void devfs_cdev_terminate(cdev_t dev); 59 static struct sysref_class cdev_sysref_class = { 60 .name = "cdev", 61 .mtype = M_DEVFS, 62 .proto = SYSREF_PROTO_DEV, 63 .offset = offsetof(struct cdev, si_sysref), 64 .objsize = sizeof(struct cdev), 65 .mag_capacity = 32, 66 .flags = 0, 67 .ops = { 68 .terminate = (sysref_terminate_func_t)devfs_cdev_terminate 69 } 70 }; 71 72 static struct objcache *devfs_node_cache; 73 static struct objcache *devfs_msg_cache; 74 static struct objcache *devfs_dev_cache; 75 76 static struct objcache_malloc_args devfs_node_malloc_args = { 77 sizeof(struct devfs_node), M_DEVFS }; 78 struct objcache_malloc_args devfs_msg_malloc_args = { 79 sizeof(struct devfs_msg), M_DEVFS }; 80 struct objcache_malloc_args devfs_dev_malloc_args = { 81 sizeof(struct cdev), M_DEVFS }; 82 83 static struct devfs_dev_head devfs_dev_list = 84 TAILQ_HEAD_INITIALIZER(devfs_dev_list); 85 static struct devfs_mnt_head devfs_mnt_list = 86 TAILQ_HEAD_INITIALIZER(devfs_mnt_list); 87 static struct devfs_chandler_head devfs_chandler_list = 88 TAILQ_HEAD_INITIALIZER(devfs_chandler_list); 89 static struct devfs_alias_head devfs_alias_list = 90 TAILQ_HEAD_INITIALIZER(devfs_alias_list); 91 static struct devfs_dev_ops_head devfs_dev_ops_list = 92 TAILQ_HEAD_INITIALIZER(devfs_dev_ops_list); 93 94 struct lock devfs_lock; 95 static struct lwkt_port devfs_dispose_port; 96 static struct lwkt_port devfs_msg_port; 97 static struct thread *td_core; 98 99 static struct spinlock ino_lock; 100 static ino_t d_ino; 101 static int devfs_debug_enable; 102 static int devfs_run; 103 104 static ino_t devfs_fetch_ino(void); 105 static int devfs_create_all_dev_worker(struct devfs_node *); 106 static int devfs_create_dev_worker(cdev_t, uid_t, gid_t, int); 107 static int devfs_destroy_dev_worker(cdev_t); 108 static int devfs_destroy_subnames_worker(char *); 109 static int devfs_destroy_dev_by_ops_worker(struct dev_ops *, int); 110 static int devfs_propagate_dev(cdev_t, int); 111 static int devfs_unlink_dev(cdev_t dev); 112 static void devfs_msg_exec(devfs_msg_t msg); 113 114 static int devfs_chandler_add_worker(const char *, d_clone_t *); 115 static int devfs_chandler_del_worker(const char *); 116 117 static void devfs_msg_autofree_reply(lwkt_port_t, lwkt_msg_t); 118 static void devfs_msg_core(void *); 119 120 static int devfs_find_device_by_name_worker(devfs_msg_t); 121 static int devfs_find_device_by_udev_worker(devfs_msg_t); 122 123 static int devfs_apply_reset_rules_caller(char *, int); 124 125 static int devfs_scan_callback_worker(devfs_scan_t *); 126 127 static struct devfs_node *devfs_resolve_or_create_dir(struct devfs_node *, 128 char *, size_t, int); 129 130 static int devfs_make_alias_worker(struct devfs_alias *); 131 static int devfs_alias_remove(cdev_t); 132 static int devfs_alias_reap(void); 133 static int devfs_alias_propagate(struct devfs_alias *); 134 static int devfs_alias_apply(struct devfs_node *, struct devfs_alias *); 135 static int devfs_alias_check_create(struct devfs_node *); 136 137 static int devfs_clr_subnames_flag_worker(char *, uint32_t); 138 static int devfs_destroy_subnames_without_flag_worker(char *, uint32_t); 139 140 static void *devfs_reaperp_callback(struct devfs_node *, void *); 141 static void *devfs_gc_dirs_callback(struct devfs_node *, void *); 142 static void *devfs_gc_links_callback(struct devfs_node *, struct devfs_node *); 143 static void * 144 devfs_inode_to_vnode_worker_callback(struct devfs_node *, ino_t *); 145 146 /* 147 * devfs_debug() is a SYSCTL and TUNABLE controlled debug output function 148 * using kvprintf 149 */ 150 int 151 devfs_debug(int level, char *fmt, ...) 152 { 153 __va_list ap; 154 155 __va_start(ap, fmt); 156 if (level <= devfs_debug_enable) 157 kvprintf(fmt, ap); 158 __va_end(ap); 159 160 return 0; 161 } 162 163 /* 164 * devfs_allocp() Allocates a new devfs node with the specified 165 * parameters. The node is also automatically linked into the topology 166 * if a parent is specified. It also calls the rule and alias stuff to 167 * be applied on the new node 168 */ 169 struct devfs_node * 170 devfs_allocp(devfs_nodetype devfsnodetype, char *name, 171 struct devfs_node *parent, struct mount *mp, cdev_t dev) 172 { 173 struct devfs_node *node = NULL; 174 size_t namlen = strlen(name); 175 176 node = objcache_get(devfs_node_cache, M_WAITOK); 177 bzero(node, sizeof(*node)); 178 179 atomic_add_long(&(DEVFS_MNTDATA(mp)->leak_count), 1); 180 181 node->d_dev = NULL; 182 node->nchildren = 1; 183 node->mp = mp; 184 node->d_dir.d_ino = devfs_fetch_ino(); 185 186 /* 187 * Cookie jar for children. Leave 0 and 1 for '.' and '..' entries 188 * respectively. 189 */ 190 node->cookie_jar = 2; 191 192 /* 193 * Access Control members 194 */ 195 node->mode = DEVFS_DEFAULT_MODE; 196 node->uid = DEVFS_DEFAULT_UID; 197 node->gid = DEVFS_DEFAULT_GID; 198 199 switch (devfsnodetype) { 200 case Proot: 201 /* 202 * Ensure that we don't recycle the root vnode by marking it as 203 * linked into the topology. 204 */ 205 node->flags |= DEVFS_NODE_LINKED; 206 case Pdir: 207 TAILQ_INIT(DEVFS_DENODE_HEAD(node)); 208 node->d_dir.d_type = DT_DIR; 209 node->nchildren = 2; 210 break; 211 212 case Plink: 213 node->d_dir.d_type = DT_LNK; 214 break; 215 216 case Preg: 217 node->d_dir.d_type = DT_REG; 218 break; 219 220 case Pdev: 221 if (dev != NULL) { 222 node->d_dir.d_type = DT_CHR; 223 node->d_dev = dev; 224 225 node->mode = dev->si_perms; 226 node->uid = dev->si_uid; 227 node->gid = dev->si_gid; 228 229 devfs_alias_check_create(node); 230 } 231 break; 232 233 default: 234 panic("devfs_allocp: unknown node type"); 235 } 236 237 node->v_node = NULL; 238 node->node_type = devfsnodetype; 239 240 /* Initialize the dirent structure of each devfs vnode */ 241 KKASSERT(namlen < 256); 242 node->d_dir.d_namlen = namlen; 243 node->d_dir.d_name = kmalloc(namlen+1, M_DEVFS, M_WAITOK); 244 memcpy(node->d_dir.d_name, name, namlen); 245 node->d_dir.d_name[namlen] = '\0'; 246 247 /* Initialize the parent node element */ 248 node->parent = parent; 249 250 /* Apply rules */ 251 devfs_rule_check_apply(node, NULL); 252 253 /* Initialize *time members */ 254 nanotime(&node->atime); 255 node->mtime = node->ctime = node->atime; 256 257 /* 258 * Associate with parent as last step, clean out namecache 259 * reference. 260 */ 261 if ((parent != NULL) && 262 ((parent->node_type == Proot) || (parent->node_type == Pdir))) { 263 parent->nchildren++; 264 node->cookie = parent->cookie_jar++; 265 node->flags |= DEVFS_NODE_LINKED; 266 TAILQ_INSERT_TAIL(DEVFS_DENODE_HEAD(parent), node, link); 267 268 /* This forces negative namecache lookups to clear */ 269 ++mp->mnt_namecache_gen; 270 } 271 272 return node; 273 } 274 275 /* 276 * devfs_allocv() allocates a new vnode based on a devfs node. 277 */ 278 int 279 devfs_allocv(struct vnode **vpp, struct devfs_node *node) 280 { 281 struct vnode *vp; 282 int error = 0; 283 284 KKASSERT(node); 285 286 try_again: 287 while ((vp = node->v_node) != NULL) { 288 error = vget(vp, LK_EXCLUSIVE); 289 if (error != ENOENT) { 290 *vpp = vp; 291 goto out; 292 } 293 } 294 295 if ((error = getnewvnode(VT_DEVFS, node->mp, vpp, 0, 0)) != 0) 296 goto out; 297 298 vp = *vpp; 299 300 if (node->v_node != NULL) { 301 vp->v_type = VBAD; 302 vx_put(vp); 303 goto try_again; 304 } 305 306 vp->v_data = node; 307 node->v_node = vp; 308 309 switch (node->node_type) { 310 case Proot: 311 vp->v_flag |= VROOT; 312 case Pdir: 313 vp->v_type = VDIR; 314 break; 315 316 case Plink: 317 vp->v_type = VLNK; 318 break; 319 320 case Preg: 321 vp->v_type = VREG; 322 break; 323 324 case Pdev: 325 vp->v_type = VCHR; 326 KKASSERT(node->d_dev); 327 328 vp->v_uminor = node->d_dev->si_uminor; 329 vp->v_umajor = 0; 330 331 v_associate_rdev(vp, node->d_dev); 332 vp->v_ops = &node->mp->mnt_vn_spec_ops; 333 break; 334 335 default: 336 panic("devfs_allocv: unknown node type"); 337 } 338 339 out: 340 return error; 341 } 342 343 /* 344 * devfs_allocvp allocates both a devfs node (with the given settings) and a vnode 345 * based on the newly created devfs node. 346 */ 347 int 348 devfs_allocvp(struct mount *mp, struct vnode **vpp, devfs_nodetype devfsnodetype, 349 char *name, struct devfs_node *parent, cdev_t dev) 350 { 351 struct devfs_node *node; 352 353 node = devfs_allocp(devfsnodetype, name, parent, mp, dev); 354 355 if (node != NULL) 356 devfs_allocv(vpp, node); 357 else 358 *vpp = NULL; 359 360 return 0; 361 } 362 363 /* 364 * Destroy the devfs_node. The node must be unlinked from the topology. 365 * 366 * This function will also destroy any vnode association with the node 367 * and device. 368 * 369 * The cdev_t itself remains intact. 370 */ 371 int 372 devfs_freep(struct devfs_node *node) 373 { 374 struct vnode *vp; 375 376 KKASSERT(node); 377 KKASSERT(((node->flags & DEVFS_NODE_LINKED) == 0) || 378 (node->node_type == Proot)); 379 KKASSERT((node->flags & DEVFS_DESTROYED) == 0); 380 381 atomic_subtract_long(&(DEVFS_MNTDATA(node->mp)->leak_count), 1); 382 if (node->symlink_name) { 383 kfree(node->symlink_name, M_DEVFS); 384 node->symlink_name = NULL; 385 } 386 387 /* 388 * Remove the node from the orphan list if it is still on it. 389 */ 390 if (node->flags & DEVFS_ORPHANED) 391 devfs_tracer_del_orphan(node); 392 393 /* 394 * Disassociate the vnode from the node. This also prevents the 395 * vnode's reclaim code from double-freeing the node. 396 * 397 * The vget is needed to safely modify the vp. It also serves 398 * to cycle the refs and terminate the vnode if it happens to 399 * be inactive, otherwise namecache references may not get cleared. 400 */ 401 while ((vp = node->v_node) != NULL) { 402 if (vget(vp, LK_EXCLUSIVE | LK_RETRY) != 0) 403 break; 404 v_release_rdev(vp); 405 vp->v_data = NULL; 406 node->v_node = NULL; 407 cache_inval_vp(vp, CINV_DESTROY); 408 vput(vp); 409 } 410 if (node->d_dir.d_name) { 411 kfree(node->d_dir.d_name, M_DEVFS); 412 node->d_dir.d_name = NULL; 413 } 414 node->flags |= DEVFS_DESTROYED; 415 416 objcache_put(devfs_node_cache, node); 417 418 return 0; 419 } 420 421 /* 422 * Unlink the devfs node from the topology and add it to the orphan list. 423 * The node will later be destroyed by freep. 424 * 425 * Any vnode association, including the v_rdev and v_data, remains intact 426 * until the freep. 427 */ 428 int 429 devfs_unlinkp(struct devfs_node *node) 430 { 431 struct devfs_node *parent; 432 KKASSERT(node); 433 434 /* 435 * Add the node to the orphan list, so it is referenced somewhere, to 436 * so we don't leak it. 437 */ 438 devfs_tracer_add_orphan(node); 439 440 parent = node->parent; 441 442 /* 443 * If the parent is known we can unlink the node out of the topology 444 */ 445 if (parent) { 446 TAILQ_REMOVE(DEVFS_DENODE_HEAD(parent), node, link); 447 parent->nchildren--; 448 KKASSERT((parent->nchildren >= 0)); 449 node->flags &= ~DEVFS_NODE_LINKED; 450 } 451 node->parent = NULL; 452 return 0; 453 } 454 455 void * 456 devfs_iterate_topology(struct devfs_node *node, 457 devfs_iterate_callback_t *callback, void *arg1) 458 { 459 struct devfs_node *node1, *node2; 460 void *ret = NULL; 461 462 if ((node->node_type == Proot) || (node->node_type == Pdir)) { 463 if (node->nchildren > 2) { 464 TAILQ_FOREACH_MUTABLE(node1, DEVFS_DENODE_HEAD(node), 465 link, node2) { 466 if ((ret = devfs_iterate_topology(node1, callback, arg1))) 467 return ret; 468 } 469 } 470 } 471 472 ret = callback(node, arg1); 473 return ret; 474 } 475 476 /* 477 * devfs_reaperp() is a recursive function that iterates through all the 478 * topology, unlinking and freeing all devfs nodes. 479 */ 480 static void * 481 devfs_reaperp_callback(struct devfs_node *node, void *unused) 482 { 483 devfs_unlinkp(node); 484 devfs_freep(node); 485 486 return NULL; 487 } 488 489 static void * 490 devfs_gc_dirs_callback(struct devfs_node *node, void *unused) 491 { 492 if (node->node_type == Pdir) { 493 if (node->nchildren == 2) { 494 devfs_unlinkp(node); 495 devfs_freep(node); 496 } 497 } 498 499 return NULL; 500 } 501 502 static void * 503 devfs_gc_links_callback(struct devfs_node *node, struct devfs_node *target) 504 { 505 if ((node->node_type == Plink) && (node->link_target == target)) { 506 devfs_unlinkp(node); 507 devfs_freep(node); 508 } 509 510 return NULL; 511 } 512 513 /* 514 * devfs_gc() is devfs garbage collector. It takes care of unlinking and 515 * freeing a node, but also removes empty directories and links that link 516 * via devfs auto-link mechanism to the node being deleted. 517 */ 518 int 519 devfs_gc(struct devfs_node *node) 520 { 521 struct devfs_node *root_node = DEVFS_MNTDATA(node->mp)->root_node; 522 523 if (node->nlinks > 0) 524 devfs_iterate_topology(root_node, 525 (devfs_iterate_callback_t *)devfs_gc_links_callback, node); 526 527 devfs_unlinkp(node); 528 devfs_iterate_topology(root_node, 529 (devfs_iterate_callback_t *)devfs_gc_dirs_callback, NULL); 530 531 devfs_freep(node); 532 533 return 0; 534 } 535 536 /* 537 * devfs_create_dev() is the asynchronous entry point for device creation. 538 * It just sends a message with the relevant details to the devfs core. 539 * 540 * This function will reference the passed device. The reference is owned 541 * by devfs and represents all of the device's node associations. 542 */ 543 int 544 devfs_create_dev(cdev_t dev, uid_t uid, gid_t gid, int perms) 545 { 546 reference_dev(dev); 547 devfs_msg_send_dev(DEVFS_DEVICE_CREATE, dev, uid, gid, perms); 548 549 return 0; 550 } 551 552 /* 553 * devfs_destroy_dev() is the asynchronous entry point for device destruction. 554 * It just sends a message with the relevant details to the devfs core. 555 */ 556 int 557 devfs_destroy_dev(cdev_t dev) 558 { 559 devfs_msg_send_dev(DEVFS_DEVICE_DESTROY, dev, 0, 0, 0); 560 return 0; 561 } 562 563 /* 564 * devfs_mount_add() is the synchronous entry point for adding a new devfs 565 * mount. It sends a synchronous message with the relevant details to the 566 * devfs core. 567 */ 568 int 569 devfs_mount_add(struct devfs_mnt_data *mnt) 570 { 571 devfs_msg_t msg; 572 573 msg = devfs_msg_get(); 574 msg->mdv_mnt = mnt; 575 msg = devfs_msg_send_sync(DEVFS_MOUNT_ADD, msg); 576 devfs_msg_put(msg); 577 578 return 0; 579 } 580 581 /* 582 * devfs_mount_del() is the synchronous entry point for removing a devfs mount. 583 * It sends a synchronous message with the relevant details to the devfs core. 584 */ 585 int 586 devfs_mount_del(struct devfs_mnt_data *mnt) 587 { 588 devfs_msg_t msg; 589 590 msg = devfs_msg_get(); 591 msg->mdv_mnt = mnt; 592 msg = devfs_msg_send_sync(DEVFS_MOUNT_DEL, msg); 593 devfs_msg_put(msg); 594 595 return 0; 596 } 597 598 /* 599 * devfs_destroy_subnames() is the synchronous entry point for device 600 * destruction by subname. It just sends a message with the relevant details to 601 * the devfs core. 602 */ 603 int 604 devfs_destroy_subnames(char *name) 605 { 606 devfs_msg_t msg; 607 608 msg = devfs_msg_get(); 609 msg->mdv_load = name; 610 msg = devfs_msg_send_sync(DEVFS_DESTROY_SUBNAMES, msg); 611 devfs_msg_put(msg); 612 return 0; 613 } 614 615 int 616 devfs_clr_subnames_flag(char *name, uint32_t flag) 617 { 618 devfs_msg_t msg; 619 620 msg = devfs_msg_get(); 621 msg->mdv_flags.name = name; 622 msg->mdv_flags.flag = flag; 623 msg = devfs_msg_send_sync(DEVFS_CLR_SUBNAMES_FLAG, msg); 624 devfs_msg_put(msg); 625 626 return 0; 627 } 628 629 int 630 devfs_destroy_subnames_without_flag(char *name, uint32_t flag) 631 { 632 devfs_msg_t msg; 633 634 msg = devfs_msg_get(); 635 msg->mdv_flags.name = name; 636 msg->mdv_flags.flag = flag; 637 msg = devfs_msg_send_sync(DEVFS_DESTROY_SUBNAMES_WO_FLAG, msg); 638 devfs_msg_put(msg); 639 640 return 0; 641 } 642 643 /* 644 * devfs_create_all_dev is the asynchronous entry point to trigger device 645 * node creation. It just sends a message with the relevant details to 646 * the devfs core. 647 */ 648 int 649 devfs_create_all_dev(struct devfs_node *root) 650 { 651 devfs_msg_send_generic(DEVFS_CREATE_ALL_DEV, root); 652 return 0; 653 } 654 655 /* 656 * devfs_destroy_dev_by_ops is the asynchronous entry point to destroy all 657 * devices with a specific set of dev_ops and minor. It just sends a 658 * message with the relevant details to the devfs core. 659 */ 660 int 661 devfs_destroy_dev_by_ops(struct dev_ops *ops, int minor) 662 { 663 devfs_msg_send_ops(DEVFS_DESTROY_DEV_BY_OPS, ops, minor); 664 return 0; 665 } 666 667 /* 668 * devfs_clone_handler_add is the synchronous entry point to add a new 669 * clone handler. It just sends a message with the relevant details to 670 * the devfs core. 671 */ 672 int 673 devfs_clone_handler_add(const char *name, d_clone_t *nhandler) 674 { 675 devfs_msg_t msg; 676 677 msg = devfs_msg_get(); 678 msg->mdv_chandler.name = name; 679 msg->mdv_chandler.nhandler = nhandler; 680 msg = devfs_msg_send_sync(DEVFS_CHANDLER_ADD, msg); 681 devfs_msg_put(msg); 682 return 0; 683 } 684 685 /* 686 * devfs_clone_handler_del is the synchronous entry point to remove a 687 * clone handler. It just sends a message with the relevant details to 688 * the devfs core. 689 */ 690 int 691 devfs_clone_handler_del(const char *name) 692 { 693 devfs_msg_t msg; 694 695 msg = devfs_msg_get(); 696 msg->mdv_chandler.name = name; 697 msg->mdv_chandler.nhandler = NULL; 698 msg = devfs_msg_send_sync(DEVFS_CHANDLER_DEL, msg); 699 devfs_msg_put(msg); 700 return 0; 701 } 702 703 /* 704 * devfs_find_device_by_name is the synchronous entry point to find a 705 * device given its name. It sends a synchronous message with the 706 * relevant details to the devfs core and returns the answer. 707 */ 708 cdev_t 709 devfs_find_device_by_name(const char *fmt, ...) 710 { 711 cdev_t found = NULL; 712 devfs_msg_t msg; 713 char *target; 714 __va_list ap; 715 716 if (fmt == NULL) 717 return NULL; 718 719 __va_start(ap, fmt); 720 kvasnrprintf(&target, PATH_MAX, 10, fmt, ap); 721 __va_end(ap); 722 723 msg = devfs_msg_get(); 724 msg->mdv_name = target; 725 msg = devfs_msg_send_sync(DEVFS_FIND_DEVICE_BY_NAME, msg); 726 found = msg->mdv_cdev; 727 devfs_msg_put(msg); 728 kvasfree(&target); 729 730 return found; 731 } 732 733 /* 734 * devfs_find_device_by_udev is the synchronous entry point to find a 735 * device given its udev number. It sends a synchronous message with 736 * the relevant details to the devfs core and returns the answer. 737 */ 738 cdev_t 739 devfs_find_device_by_udev(udev_t udev) 740 { 741 cdev_t found = NULL; 742 devfs_msg_t msg; 743 744 msg = devfs_msg_get(); 745 msg->mdv_udev = udev; 746 msg = devfs_msg_send_sync(DEVFS_FIND_DEVICE_BY_UDEV, msg); 747 found = msg->mdv_cdev; 748 devfs_msg_put(msg); 749 750 devfs_debug(DEVFS_DEBUG_DEBUG, 751 "devfs_find_device_by_udev found? %s -end:3-\n", 752 ((found) ? found->si_name:"NO")); 753 return found; 754 } 755 756 struct vnode * 757 devfs_inode_to_vnode(struct mount *mp, ino_t target) 758 { 759 struct vnode *vp = NULL; 760 devfs_msg_t msg; 761 762 if (mp == NULL) 763 return NULL; 764 765 msg = devfs_msg_get(); 766 msg->mdv_ino.mp = mp; 767 msg->mdv_ino.ino = target; 768 msg = devfs_msg_send_sync(DEVFS_INODE_TO_VNODE, msg); 769 vp = msg->mdv_ino.vp; 770 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 771 devfs_msg_put(msg); 772 773 return vp; 774 } 775 776 /* 777 * devfs_make_alias is the asynchronous entry point to register an alias 778 * for a device. It just sends a message with the relevant details to the 779 * devfs core. 780 */ 781 int 782 devfs_make_alias(const char *name, cdev_t dev_target) 783 { 784 struct devfs_alias *alias; 785 size_t len; 786 787 len = strlen(name); 788 789 alias = kmalloc(sizeof(struct devfs_alias), M_DEVFS, M_WAITOK); 790 alias->name = kstrdup(name, M_DEVFS); 791 alias->namlen = len; 792 alias->dev_target = dev_target; 793 794 devfs_msg_send_generic(DEVFS_MAKE_ALIAS, alias); 795 return 0; 796 } 797 798 /* 799 * devfs_apply_rules is the asynchronous entry point to trigger application 800 * of all rules. It just sends a message with the relevant details to the 801 * devfs core. 802 */ 803 int 804 devfs_apply_rules(char *mntto) 805 { 806 char *new_name; 807 808 new_name = kstrdup(mntto, M_DEVFS); 809 devfs_msg_send_name(DEVFS_APPLY_RULES, new_name); 810 811 return 0; 812 } 813 814 /* 815 * devfs_reset_rules is the asynchronous entry point to trigger reset of all 816 * rules. It just sends a message with the relevant details to the devfs core. 817 */ 818 int 819 devfs_reset_rules(char *mntto) 820 { 821 char *new_name; 822 823 new_name = kstrdup(mntto, M_DEVFS); 824 devfs_msg_send_name(DEVFS_RESET_RULES, new_name); 825 826 return 0; 827 } 828 829 830 /* 831 * devfs_scan_callback is the asynchronous entry point to call a callback 832 * on all cdevs. 833 * It just sends a message with the relevant details to the devfs core. 834 */ 835 int 836 devfs_scan_callback(devfs_scan_t *callback) 837 { 838 devfs_msg_t msg; 839 840 KKASSERT(sizeof(callback) == sizeof(void *)); 841 842 msg = devfs_msg_get(); 843 msg->mdv_load = callback; 844 msg = devfs_msg_send_sync(DEVFS_SCAN_CALLBACK, msg); 845 devfs_msg_put(msg); 846 847 return 0; 848 } 849 850 851 /* 852 * Acts as a message drain. Any message that is replied to here gets destroyed 853 * and the memory freed. 854 */ 855 static void 856 devfs_msg_autofree_reply(lwkt_port_t port, lwkt_msg_t msg) 857 { 858 devfs_msg_put((devfs_msg_t)msg); 859 } 860 861 /* 862 * devfs_msg_get allocates a new devfs msg and returns it. 863 */ 864 devfs_msg_t 865 devfs_msg_get() 866 { 867 return objcache_get(devfs_msg_cache, M_WAITOK); 868 } 869 870 /* 871 * devfs_msg_put deallocates a given devfs msg. 872 */ 873 int 874 devfs_msg_put(devfs_msg_t msg) 875 { 876 objcache_put(devfs_msg_cache, msg); 877 return 0; 878 } 879 880 /* 881 * devfs_msg_send is the generic asynchronous message sending facility 882 * for devfs. By default the reply port is the automatic disposal port. 883 * 884 * If the current thread is the devfs_msg_port thread we execute the 885 * operation synchronously. 886 */ 887 void 888 devfs_msg_send(uint32_t cmd, devfs_msg_t devfs_msg) 889 { 890 lwkt_port_t port = &devfs_msg_port; 891 892 lwkt_initmsg(&devfs_msg->hdr, &devfs_dispose_port, 0); 893 894 devfs_msg->hdr.u.ms_result = cmd; 895 896 if (port->mpu_td == curthread) { 897 devfs_msg_exec(devfs_msg); 898 lwkt_replymsg(&devfs_msg->hdr, 0); 899 } else { 900 lwkt_sendmsg(port, (lwkt_msg_t)devfs_msg); 901 } 902 } 903 904 /* 905 * devfs_msg_send_sync is the generic synchronous message sending 906 * facility for devfs. It initializes a local reply port and waits 907 * for the core's answer. This answer is then returned. 908 */ 909 devfs_msg_t 910 devfs_msg_send_sync(uint32_t cmd, devfs_msg_t devfs_msg) 911 { 912 struct lwkt_port rep_port; 913 devfs_msg_t msg_incoming; 914 lwkt_port_t port = &devfs_msg_port; 915 916 lwkt_initport_thread(&rep_port, curthread); 917 lwkt_initmsg(&devfs_msg->hdr, &rep_port, 0); 918 919 devfs_msg->hdr.u.ms_result = cmd; 920 921 lwkt_sendmsg(port, (lwkt_msg_t)devfs_msg); 922 msg_incoming = lwkt_waitport(&rep_port, 0); 923 924 return msg_incoming; 925 } 926 927 /* 928 * sends a message with a generic argument. 929 */ 930 void 931 devfs_msg_send_generic(uint32_t cmd, void *load) 932 { 933 devfs_msg_t devfs_msg = devfs_msg_get(); 934 935 devfs_msg->mdv_load = load; 936 devfs_msg_send(cmd, devfs_msg); 937 } 938 939 /* 940 * sends a message with a name argument. 941 */ 942 void 943 devfs_msg_send_name(uint32_t cmd, char *name) 944 { 945 devfs_msg_t devfs_msg = devfs_msg_get(); 946 947 devfs_msg->mdv_name = name; 948 devfs_msg_send(cmd, devfs_msg); 949 } 950 951 /* 952 * sends a message with a mount argument. 953 */ 954 void 955 devfs_msg_send_mount(uint32_t cmd, struct devfs_mnt_data *mnt) 956 { 957 devfs_msg_t devfs_msg = devfs_msg_get(); 958 959 devfs_msg->mdv_mnt = mnt; 960 devfs_msg_send(cmd, devfs_msg); 961 } 962 963 /* 964 * sends a message with an ops argument. 965 */ 966 void 967 devfs_msg_send_ops(uint32_t cmd, struct dev_ops *ops, int minor) 968 { 969 devfs_msg_t devfs_msg = devfs_msg_get(); 970 971 devfs_msg->mdv_ops.ops = ops; 972 devfs_msg->mdv_ops.minor = minor; 973 devfs_msg_send(cmd, devfs_msg); 974 } 975 976 /* 977 * sends a message with a clone handler argument. 978 */ 979 void 980 devfs_msg_send_chandler(uint32_t cmd, char *name, d_clone_t handler) 981 { 982 devfs_msg_t devfs_msg = devfs_msg_get(); 983 984 devfs_msg->mdv_chandler.name = name; 985 devfs_msg->mdv_chandler.nhandler = handler; 986 devfs_msg_send(cmd, devfs_msg); 987 } 988 989 /* 990 * sends a message with a device argument. 991 */ 992 void 993 devfs_msg_send_dev(uint32_t cmd, cdev_t dev, uid_t uid, gid_t gid, int perms) 994 { 995 devfs_msg_t devfs_msg = devfs_msg_get(); 996 997 devfs_msg->mdv_dev.dev = dev; 998 devfs_msg->mdv_dev.uid = uid; 999 devfs_msg->mdv_dev.gid = gid; 1000 devfs_msg->mdv_dev.perms = perms; 1001 1002 devfs_msg_send(cmd, devfs_msg); 1003 } 1004 1005 /* 1006 * sends a message with a link argument. 1007 */ 1008 void 1009 devfs_msg_send_link(uint32_t cmd, char *name, char *target, struct mount *mp) 1010 { 1011 devfs_msg_t devfs_msg = devfs_msg_get(); 1012 1013 devfs_msg->mdv_link.name = name; 1014 devfs_msg->mdv_link.target = target; 1015 devfs_msg->mdv_link.mp = mp; 1016 devfs_msg_send(cmd, devfs_msg); 1017 } 1018 1019 /* 1020 * devfs_msg_core is the main devfs thread. It handles all incoming messages 1021 * and calls the relevant worker functions. By using messages it's assured 1022 * that events occur in the correct order. 1023 */ 1024 static void 1025 devfs_msg_core(void *arg) 1026 { 1027 devfs_msg_t msg; 1028 1029 devfs_run = 1; 1030 lwkt_initport_thread(&devfs_msg_port, curthread); 1031 wakeup(td_core); 1032 1033 while (devfs_run) { 1034 msg = (devfs_msg_t)lwkt_waitport(&devfs_msg_port, 0); 1035 devfs_debug(DEVFS_DEBUG_DEBUG, 1036 "devfs_msg_core, new msg: %x\n", 1037 (unsigned int)msg->hdr.u.ms_result); 1038 devfs_msg_exec(msg); 1039 lwkt_replymsg(&msg->hdr, 0); 1040 } 1041 wakeup(td_core); 1042 lwkt_exit(); 1043 } 1044 1045 static void 1046 devfs_msg_exec(devfs_msg_t msg) 1047 { 1048 struct devfs_mnt_data *mnt; 1049 struct devfs_node *node; 1050 cdev_t dev; 1051 1052 /* 1053 * Acquire the devfs lock to ensure safety of all called functions 1054 */ 1055 lockmgr(&devfs_lock, LK_EXCLUSIVE); 1056 1057 switch (msg->hdr.u.ms_result) { 1058 case DEVFS_DEVICE_CREATE: 1059 dev = msg->mdv_dev.dev; 1060 devfs_create_dev_worker(dev, 1061 msg->mdv_dev.uid, 1062 msg->mdv_dev.gid, 1063 msg->mdv_dev.perms); 1064 break; 1065 case DEVFS_DEVICE_DESTROY: 1066 dev = msg->mdv_dev.dev; 1067 devfs_destroy_dev_worker(dev); 1068 break; 1069 case DEVFS_DESTROY_SUBNAMES: 1070 devfs_destroy_subnames_worker(msg->mdv_load); 1071 break; 1072 case DEVFS_DESTROY_DEV_BY_OPS: 1073 devfs_destroy_dev_by_ops_worker(msg->mdv_ops.ops, 1074 msg->mdv_ops.minor); 1075 break; 1076 case DEVFS_CREATE_ALL_DEV: 1077 node = (struct devfs_node *)msg->mdv_load; 1078 devfs_create_all_dev_worker(node); 1079 break; 1080 case DEVFS_MOUNT_ADD: 1081 mnt = msg->mdv_mnt; 1082 TAILQ_INSERT_TAIL(&devfs_mnt_list, mnt, link); 1083 devfs_create_all_dev_worker(mnt->root_node); 1084 break; 1085 case DEVFS_MOUNT_DEL: 1086 mnt = msg->mdv_mnt; 1087 TAILQ_REMOVE(&devfs_mnt_list, mnt, link); 1088 devfs_iterate_topology(mnt->root_node, devfs_reaperp_callback, 1089 NULL); 1090 if (mnt->leak_count) { 1091 devfs_debug(DEVFS_DEBUG_SHOW, 1092 "Leaked %ld devfs_node elements!\n", 1093 mnt->leak_count); 1094 } 1095 break; 1096 case DEVFS_CHANDLER_ADD: 1097 devfs_chandler_add_worker(msg->mdv_chandler.name, 1098 msg->mdv_chandler.nhandler); 1099 break; 1100 case DEVFS_CHANDLER_DEL: 1101 devfs_chandler_del_worker(msg->mdv_chandler.name); 1102 break; 1103 case DEVFS_FIND_DEVICE_BY_NAME: 1104 devfs_find_device_by_name_worker(msg); 1105 break; 1106 case DEVFS_FIND_DEVICE_BY_UDEV: 1107 devfs_find_device_by_udev_worker(msg); 1108 break; 1109 case DEVFS_MAKE_ALIAS: 1110 devfs_make_alias_worker((struct devfs_alias *)msg->mdv_load); 1111 break; 1112 case DEVFS_APPLY_RULES: 1113 devfs_apply_reset_rules_caller(msg->mdv_name, 1); 1114 break; 1115 case DEVFS_RESET_RULES: 1116 devfs_apply_reset_rules_caller(msg->mdv_name, 0); 1117 break; 1118 case DEVFS_SCAN_CALLBACK: 1119 devfs_scan_callback_worker((devfs_scan_t *)msg->mdv_load); 1120 break; 1121 case DEVFS_CLR_SUBNAMES_FLAG: 1122 devfs_clr_subnames_flag_worker(msg->mdv_flags.name, 1123 msg->mdv_flags.flag); 1124 break; 1125 case DEVFS_DESTROY_SUBNAMES_WO_FLAG: 1126 devfs_destroy_subnames_without_flag_worker(msg->mdv_flags.name, 1127 msg->mdv_flags.flag); 1128 break; 1129 case DEVFS_INODE_TO_VNODE: 1130 msg->mdv_ino.vp = devfs_iterate_topology( 1131 DEVFS_MNTDATA(msg->mdv_ino.mp)->root_node, 1132 (devfs_iterate_callback_t *)devfs_inode_to_vnode_worker_callback, 1133 &msg->mdv_ino.ino); 1134 break; 1135 case DEVFS_TERMINATE_CORE: 1136 devfs_run = 0; 1137 break; 1138 case DEVFS_SYNC: 1139 break; 1140 default: 1141 devfs_debug(DEVFS_DEBUG_WARNING, 1142 "devfs_msg_core: unknown message " 1143 "received at core\n"); 1144 break; 1145 } 1146 lockmgr(&devfs_lock, LK_RELEASE); 1147 } 1148 1149 /* 1150 * Worker function to insert a new dev into the dev list and initialize its 1151 * permissions. It also calls devfs_propagate_dev which in turn propagates 1152 * the change to all mount points. 1153 * 1154 * The passed dev is already referenced. This reference is eaten by this 1155 * function and represents the dev's linkage into devfs_dev_list. 1156 */ 1157 static int 1158 devfs_create_dev_worker(cdev_t dev, uid_t uid, gid_t gid, int perms) 1159 { 1160 KKASSERT(dev); 1161 1162 dev->si_uid = uid; 1163 dev->si_gid = gid; 1164 dev->si_perms = perms; 1165 1166 devfs_link_dev(dev); 1167 devfs_propagate_dev(dev, 1); 1168 1169 return 0; 1170 } 1171 1172 /* 1173 * Worker function to delete a dev from the dev list and free the cdev. 1174 * It also calls devfs_propagate_dev which in turn propagates the change 1175 * to all mount points. 1176 */ 1177 static int 1178 devfs_destroy_dev_worker(cdev_t dev) 1179 { 1180 int error; 1181 1182 KKASSERT(dev); 1183 KKASSERT((lockstatus(&devfs_lock, curthread)) == LK_EXCLUSIVE); 1184 1185 error = devfs_unlink_dev(dev); 1186 devfs_propagate_dev(dev, 0); 1187 if (error == 0) 1188 release_dev(dev); /* link ref */ 1189 release_dev(dev); 1190 release_dev(dev); 1191 1192 return 0; 1193 } 1194 1195 /* 1196 * Worker function to destroy all devices with a certain basename. 1197 * Calls devfs_destroy_dev_worker for the actual destruction. 1198 */ 1199 static int 1200 devfs_destroy_subnames_worker(char *name) 1201 { 1202 cdev_t dev, dev1; 1203 size_t len = strlen(name); 1204 1205 TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) { 1206 if ((!strncmp(dev->si_name, name, len)) && 1207 (dev->si_name[len] != '\0')) { 1208 devfs_destroy_dev_worker(dev); 1209 } 1210 } 1211 return 0; 1212 } 1213 1214 static int 1215 devfs_clr_subnames_flag_worker(char *name, uint32_t flag) 1216 { 1217 cdev_t dev, dev1; 1218 size_t len = strlen(name); 1219 1220 TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) { 1221 if ((!strncmp(dev->si_name, name, len)) && 1222 (dev->si_name[len] != '\0')) { 1223 dev->si_flags &= ~flag; 1224 } 1225 } 1226 1227 return 0; 1228 } 1229 1230 static int 1231 devfs_destroy_subnames_without_flag_worker(char *name, uint32_t flag) 1232 { 1233 cdev_t dev, dev1; 1234 size_t len = strlen(name); 1235 1236 TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) { 1237 if ((!strncmp(dev->si_name, name, len)) && 1238 (dev->si_name[len] != '\0')) { 1239 if (!(dev->si_flags & flag)) { 1240 devfs_destroy_dev_worker(dev); 1241 } 1242 } 1243 } 1244 1245 return 0; 1246 } 1247 1248 /* 1249 * Worker function that creates all device nodes on top of a devfs 1250 * root node. 1251 */ 1252 static int 1253 devfs_create_all_dev_worker(struct devfs_node *root) 1254 { 1255 cdev_t dev; 1256 1257 KKASSERT(root); 1258 1259 TAILQ_FOREACH(dev, &devfs_dev_list, link) { 1260 devfs_create_device_node(root, dev, NULL, NULL); 1261 } 1262 1263 return 0; 1264 } 1265 1266 /* 1267 * Worker function that destroys all devices that match a specific 1268 * dev_ops and/or minor. If minor is less than 0, it is not matched 1269 * against. It also propagates all changes. 1270 */ 1271 static int 1272 devfs_destroy_dev_by_ops_worker(struct dev_ops *ops, int minor) 1273 { 1274 cdev_t dev, dev1; 1275 1276 KKASSERT(ops); 1277 1278 TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) { 1279 if (dev->si_ops != ops) 1280 continue; 1281 if ((minor < 0) || (dev->si_uminor == minor)) { 1282 devfs_destroy_dev_worker(dev); 1283 } 1284 } 1285 1286 return 0; 1287 } 1288 1289 /* 1290 * Worker function that registers a new clone handler in devfs. 1291 */ 1292 static int 1293 devfs_chandler_add_worker(const char *name, d_clone_t *nhandler) 1294 { 1295 struct devfs_clone_handler *chandler = NULL; 1296 u_char len = strlen(name); 1297 1298 if (len == 0) 1299 return 1; 1300 1301 TAILQ_FOREACH(chandler, &devfs_chandler_list, link) { 1302 if (chandler->namlen != len) 1303 continue; 1304 1305 if (!memcmp(chandler->name, name, len)) { 1306 /* Clonable basename already exists */ 1307 return 1; 1308 } 1309 } 1310 1311 chandler = kmalloc(sizeof(*chandler), M_DEVFS, M_WAITOK | M_ZERO); 1312 chandler->name = kstrdup(name, M_DEVFS); 1313 chandler->namlen = len; 1314 chandler->nhandler = nhandler; 1315 1316 TAILQ_INSERT_TAIL(&devfs_chandler_list, chandler, link); 1317 return 0; 1318 } 1319 1320 /* 1321 * Worker function that removes a given clone handler from the 1322 * clone handler list. 1323 */ 1324 static int 1325 devfs_chandler_del_worker(const char *name) 1326 { 1327 struct devfs_clone_handler *chandler, *chandler2; 1328 u_char len = strlen(name); 1329 1330 if (len == 0) 1331 return 1; 1332 1333 TAILQ_FOREACH_MUTABLE(chandler, &devfs_chandler_list, link, chandler2) { 1334 if (chandler->namlen != len) 1335 continue; 1336 if (memcmp(chandler->name, name, len)) 1337 continue; 1338 1339 TAILQ_REMOVE(&devfs_chandler_list, chandler, link); 1340 kfree(chandler->name, M_DEVFS); 1341 kfree(chandler, M_DEVFS); 1342 break; 1343 } 1344 1345 return 0; 1346 } 1347 1348 /* 1349 * Worker function that finds a given device name and changes 1350 * the message received accordingly so that when replied to, 1351 * the answer is returned to the caller. 1352 */ 1353 static int 1354 devfs_find_device_by_name_worker(devfs_msg_t devfs_msg) 1355 { 1356 struct devfs_alias *alias; 1357 cdev_t dev; 1358 cdev_t found = NULL; 1359 1360 TAILQ_FOREACH(dev, &devfs_dev_list, link) { 1361 if (strcmp(devfs_msg->mdv_name, dev->si_name) == 0) { 1362 found = dev; 1363 break; 1364 } 1365 } 1366 if (found == NULL) { 1367 TAILQ_FOREACH(alias, &devfs_alias_list, link) { 1368 if (strcmp(devfs_msg->mdv_name, alias->name) == 0) { 1369 found = alias->dev_target; 1370 break; 1371 } 1372 } 1373 } 1374 devfs_msg->mdv_cdev = found; 1375 1376 return 0; 1377 } 1378 1379 /* 1380 * Worker function that finds a given device udev and changes 1381 * the message received accordingly so that when replied to, 1382 * the answer is returned to the caller. 1383 */ 1384 static int 1385 devfs_find_device_by_udev_worker(devfs_msg_t devfs_msg) 1386 { 1387 cdev_t dev, dev1; 1388 cdev_t found = NULL; 1389 1390 TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) { 1391 if (((udev_t)dev->si_inode) == devfs_msg->mdv_udev) { 1392 found = dev; 1393 break; 1394 } 1395 } 1396 devfs_msg->mdv_cdev = found; 1397 1398 return 0; 1399 } 1400 1401 /* 1402 * Worker function that inserts a given alias into the 1403 * alias list, and propagates the alias to all mount 1404 * points. 1405 */ 1406 static int 1407 devfs_make_alias_worker(struct devfs_alias *alias) 1408 { 1409 struct devfs_alias *alias2; 1410 size_t len = strlen(alias->name); 1411 int found = 0; 1412 1413 TAILQ_FOREACH(alias2, &devfs_alias_list, link) { 1414 if (len != alias2->namlen) 1415 continue; 1416 1417 if (!memcmp(alias->name, alias2->name, len)) { 1418 found = 1; 1419 break; 1420 } 1421 } 1422 1423 if (!found) { 1424 /* 1425 * The alias doesn't exist yet, so we add it to the alias list 1426 */ 1427 TAILQ_INSERT_TAIL(&devfs_alias_list, alias, link); 1428 devfs_alias_propagate(alias); 1429 } else { 1430 devfs_debug(DEVFS_DEBUG_WARNING, 1431 "Warning: duplicate devfs_make_alias for %s\n", 1432 alias->name); 1433 kfree(alias->name, M_DEVFS); 1434 kfree(alias, M_DEVFS); 1435 } 1436 1437 return 0; 1438 } 1439 1440 /* 1441 * Function that removes and frees all aliases. 1442 */ 1443 static int 1444 devfs_alias_reap(void) 1445 { 1446 struct devfs_alias *alias, *alias2; 1447 1448 TAILQ_FOREACH_MUTABLE(alias, &devfs_alias_list, link, alias2) { 1449 TAILQ_REMOVE(&devfs_alias_list, alias, link); 1450 kfree(alias, M_DEVFS); 1451 } 1452 return 0; 1453 } 1454 1455 /* 1456 * Function that removes an alias matching a specific cdev and frees 1457 * it accordingly. 1458 */ 1459 static int 1460 devfs_alias_remove(cdev_t dev) 1461 { 1462 struct devfs_alias *alias, *alias2; 1463 1464 TAILQ_FOREACH_MUTABLE(alias, &devfs_alias_list, link, alias2) { 1465 if (alias->dev_target == dev) { 1466 TAILQ_REMOVE(&devfs_alias_list, alias, link); 1467 kfree(alias, M_DEVFS); 1468 } 1469 } 1470 return 0; 1471 } 1472 1473 /* 1474 * This function propagates a new alias to all mount points. 1475 */ 1476 static int 1477 devfs_alias_propagate(struct devfs_alias *alias) 1478 { 1479 struct devfs_mnt_data *mnt; 1480 1481 TAILQ_FOREACH(mnt, &devfs_mnt_list, link) { 1482 devfs_alias_apply(mnt->root_node, alias); 1483 } 1484 return 0; 1485 } 1486 1487 /* 1488 * This function is a recursive function iterating through 1489 * all device nodes in the topology and, if applicable, 1490 * creating the relevant alias for a device node. 1491 */ 1492 static int 1493 devfs_alias_apply(struct devfs_node *node, struct devfs_alias *alias) 1494 { 1495 struct devfs_node *node1, *node2; 1496 1497 KKASSERT(alias != NULL); 1498 1499 if ((node->node_type == Proot) || (node->node_type == Pdir)) { 1500 if (node->nchildren > 2) { 1501 TAILQ_FOREACH_MUTABLE(node1, DEVFS_DENODE_HEAD(node), link, node2) { 1502 devfs_alias_apply(node1, alias); 1503 } 1504 } 1505 } else { 1506 if (node->d_dev == alias->dev_target) 1507 devfs_alias_create(alias->name, node, 0); 1508 } 1509 return 0; 1510 } 1511 1512 /* 1513 * This function checks if any alias possibly is applicable 1514 * to the given node. If so, the alias is created. 1515 */ 1516 static int 1517 devfs_alias_check_create(struct devfs_node *node) 1518 { 1519 struct devfs_alias *alias; 1520 1521 TAILQ_FOREACH(alias, &devfs_alias_list, link) { 1522 if (node->d_dev == alias->dev_target) 1523 devfs_alias_create(alias->name, node, 0); 1524 } 1525 return 0; 1526 } 1527 1528 /* 1529 * This function creates an alias with a given name 1530 * linking to a given devfs node. It also increments 1531 * the link count on the target node. 1532 */ 1533 int 1534 devfs_alias_create(char *name_orig, struct devfs_node *target, int rule_based) 1535 { 1536 struct mount *mp = target->mp; 1537 struct devfs_node *parent = DEVFS_MNTDATA(mp)->root_node; 1538 struct devfs_node *linknode; 1539 char *create_path = NULL; 1540 char *name; 1541 char *name_buf; 1542 int result = 0; 1543 1544 KKASSERT((lockstatus(&devfs_lock, curthread)) == LK_EXCLUSIVE); 1545 1546 name_buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK); 1547 devfs_resolve_name_path(name_orig, name_buf, &create_path, &name); 1548 1549 if (create_path) 1550 parent = devfs_resolve_or_create_path(parent, create_path, 1); 1551 1552 1553 if (devfs_find_device_node_by_name(parent, name)) { 1554 devfs_debug(DEVFS_DEBUG_WARNING, 1555 "Node already exists: %s " 1556 "(devfs_make_alias_worker)!\n", 1557 name); 1558 result = 1; 1559 goto done; 1560 } 1561 1562 linknode = devfs_allocp(Plink, name, parent, mp, NULL); 1563 if (linknode == NULL) { 1564 result = 1; 1565 goto done; 1566 } 1567 1568 linknode->link_target = target; 1569 target->nlinks++; 1570 1571 if (rule_based) 1572 linknode->flags |= DEVFS_RULE_CREATED; 1573 1574 done: 1575 kfree(name_buf, M_TEMP); 1576 return (result); 1577 } 1578 1579 /* 1580 * This function is called by the core and handles mount point 1581 * strings. It either calls the relevant worker (devfs_apply_ 1582 * reset_rules_worker) on all mountpoints or only a specific 1583 * one. 1584 */ 1585 static int 1586 devfs_apply_reset_rules_caller(char *mountto, int apply) 1587 { 1588 struct devfs_mnt_data *mnt; 1589 1590 if (mountto[0] == '*') { 1591 TAILQ_FOREACH(mnt, &devfs_mnt_list, link) { 1592 devfs_iterate_topology(mnt->root_node, 1593 (apply)?(devfs_rule_check_apply):(devfs_rule_reset_node), 1594 NULL); 1595 } 1596 } else { 1597 TAILQ_FOREACH(mnt, &devfs_mnt_list, link) { 1598 if (!strcmp(mnt->mp->mnt_stat.f_mntonname, mountto)) { 1599 devfs_iterate_topology(mnt->root_node, 1600 (apply)?(devfs_rule_check_apply):(devfs_rule_reset_node), 1601 NULL); 1602 break; 1603 } 1604 } 1605 } 1606 1607 kfree(mountto, M_DEVFS); 1608 return 0; 1609 } 1610 1611 /* 1612 * This function calls a given callback function for 1613 * every dev node in the devfs dev list. 1614 */ 1615 static int 1616 devfs_scan_callback_worker(devfs_scan_t *callback) 1617 { 1618 cdev_t dev, dev1; 1619 1620 TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) { 1621 callback(dev); 1622 } 1623 1624 return 0; 1625 } 1626 1627 /* 1628 * This function tries to resolve a given directory, or if not 1629 * found and creation requested, creates the given directory. 1630 */ 1631 static struct devfs_node * 1632 devfs_resolve_or_create_dir(struct devfs_node *parent, char *dir_name, 1633 size_t name_len, int create) 1634 { 1635 struct devfs_node *node, *found = NULL; 1636 1637 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(parent), link) { 1638 if (name_len != node->d_dir.d_namlen) 1639 continue; 1640 1641 if (!memcmp(dir_name, node->d_dir.d_name, name_len)) { 1642 found = node; 1643 break; 1644 } 1645 } 1646 1647 if ((found == NULL) && (create)) { 1648 found = devfs_allocp(Pdir, dir_name, parent, parent->mp, NULL); 1649 } 1650 1651 return found; 1652 } 1653 1654 /* 1655 * This function tries to resolve a complete path. If creation is requested, 1656 * if a given part of the path cannot be resolved (because it doesn't exist), 1657 * it is created. 1658 */ 1659 struct devfs_node * 1660 devfs_resolve_or_create_path(struct devfs_node *parent, char *path, int create) 1661 { 1662 struct devfs_node *node = parent; 1663 char *buf; 1664 size_t idx = 0; 1665 1666 if (path == NULL) 1667 return parent; 1668 1669 buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK); 1670 1671 while (*path && idx < PATH_MAX - 1) { 1672 if (*path != '/') { 1673 buf[idx++] = *path; 1674 } else { 1675 buf[idx] = '\0'; 1676 node = devfs_resolve_or_create_dir(node, buf, idx, create); 1677 if (node == NULL) { 1678 kfree(buf, M_TEMP); 1679 return NULL; 1680 } 1681 idx = 0; 1682 } 1683 ++path; 1684 } 1685 buf[idx] = '\0'; 1686 node = devfs_resolve_or_create_dir(node, buf, idx, create); 1687 kfree (buf, M_TEMP); 1688 return (node); 1689 } 1690 1691 /* 1692 * Takes a full path and strips it into a directory path and a name. 1693 * For a/b/c/foo, it returns foo in namep and a/b/c in pathp. It 1694 * requires a working buffer with enough size to keep the whole 1695 * fullpath. 1696 */ 1697 int 1698 devfs_resolve_name_path(char *fullpath, char *buf, char **pathp, char **namep) 1699 { 1700 char *name = NULL; 1701 char *path = NULL; 1702 size_t len = strlen(fullpath) + 1; 1703 int i; 1704 1705 KKASSERT((fullpath != NULL) && (buf != NULL)); 1706 KKASSERT((pathp != NULL) && (namep != NULL)); 1707 1708 memcpy(buf, fullpath, len); 1709 1710 for (i = len-1; i>= 0; i--) { 1711 if (buf[i] == '/') { 1712 buf[i] = '\0'; 1713 name = &(buf[i+1]); 1714 path = buf; 1715 break; 1716 } 1717 } 1718 1719 *pathp = path; 1720 1721 if (name) { 1722 *namep = name; 1723 } else { 1724 *namep = buf; 1725 } 1726 1727 return 0; 1728 } 1729 1730 /* 1731 * This function creates a new devfs node for a given device. It can 1732 * handle a complete path as device name, and accordingly creates 1733 * the path and the final device node. 1734 * 1735 * The reference count on the passed dev remains unchanged. 1736 */ 1737 struct devfs_node * 1738 devfs_create_device_node(struct devfs_node *root, cdev_t dev, 1739 char *dev_name, char *path_fmt, ...) 1740 { 1741 struct devfs_node *parent, *node = NULL; 1742 char *path = NULL; 1743 char *name; 1744 char *name_buf; 1745 __va_list ap; 1746 int i, found; 1747 char *create_path = NULL; 1748 char *names = "pqrsPQRS"; 1749 1750 name_buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK); 1751 1752 if (path_fmt != NULL) { 1753 __va_start(ap, path_fmt); 1754 kvasnrprintf(&path, PATH_MAX, 10, path_fmt, ap); 1755 __va_end(ap); 1756 } 1757 1758 parent = devfs_resolve_or_create_path(root, path, 1); 1759 KKASSERT(parent); 1760 1761 devfs_resolve_name_path( 1762 ((dev_name == NULL) && (dev))?(dev->si_name):(dev_name), 1763 name_buf, &create_path, &name); 1764 1765 if (create_path) 1766 parent = devfs_resolve_or_create_path(parent, create_path, 1); 1767 1768 1769 if (devfs_find_device_node_by_name(parent, name)) { 1770 devfs_debug(DEVFS_DEBUG_WARNING, "devfs_create_device_node: " 1771 "DEVICE %s ALREADY EXISTS!!! Ignoring creation request.\n", name); 1772 goto out; 1773 } 1774 1775 node = devfs_allocp(Pdev, name, parent, parent->mp, dev); 1776 nanotime(&parent->mtime); 1777 1778 /* 1779 * Ugly unix98 pty magic, to hide pty master (ptm) devices and their 1780 * directory 1781 */ 1782 if ((dev) && (strlen(dev->si_name) >= 4) && 1783 (!memcmp(dev->si_name, "ptm/", 4))) { 1784 node->parent->flags |= DEVFS_HIDDEN; 1785 node->flags |= DEVFS_HIDDEN; 1786 } 1787 1788 /* 1789 * Ugly pty magic, to tag pty devices as such and hide them if needed. 1790 */ 1791 if ((strlen(name) >= 3) && (!memcmp(name, "pty", 3))) 1792 node->flags |= (DEVFS_PTY | DEVFS_INVISIBLE); 1793 1794 if ((strlen(name) >= 3) && (!memcmp(name, "tty", 3))) { 1795 found = 0; 1796 for (i = 0; i < strlen(names); i++) { 1797 if (name[3] == names[i]) { 1798 found = 1; 1799 break; 1800 } 1801 } 1802 if (found) 1803 node->flags |= (DEVFS_PTY | DEVFS_INVISIBLE); 1804 } 1805 1806 out: 1807 kfree(name_buf, M_TEMP); 1808 kvasfree(&path); 1809 return node; 1810 } 1811 1812 /* 1813 * This function finds a given device node in the topology with a given 1814 * cdev. 1815 */ 1816 void * 1817 devfs_find_device_node_callback(struct devfs_node *node, cdev_t target) 1818 { 1819 if ((node->node_type == Pdev) && (node->d_dev == target)) { 1820 return node; 1821 } 1822 1823 return NULL; 1824 } 1825 1826 /* 1827 * This function finds a device node in the given parent directory by its 1828 * name and returns it. 1829 */ 1830 struct devfs_node * 1831 devfs_find_device_node_by_name(struct devfs_node *parent, char *target) 1832 { 1833 struct devfs_node *node, *found = NULL; 1834 size_t len = strlen(target); 1835 1836 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(parent), link) { 1837 if (len != node->d_dir.d_namlen) 1838 continue; 1839 1840 if (!memcmp(node->d_dir.d_name, target, len)) { 1841 found = node; 1842 break; 1843 } 1844 } 1845 1846 return found; 1847 } 1848 1849 static void * 1850 devfs_inode_to_vnode_worker_callback(struct devfs_node *node, ino_t *inop) 1851 { 1852 struct vnode *vp = NULL; 1853 ino_t target = *inop; 1854 1855 if (node->d_dir.d_ino == target) { 1856 if (node->v_node) { 1857 vp = node->v_node; 1858 vget(vp, LK_EXCLUSIVE | LK_RETRY); 1859 vn_unlock(vp); 1860 } else { 1861 devfs_allocv(&vp, node); 1862 vn_unlock(vp); 1863 } 1864 } 1865 1866 return vp; 1867 } 1868 1869 /* 1870 * This function takes a cdev and removes its devfs node in the 1871 * given topology. The cdev remains intact. 1872 */ 1873 int 1874 devfs_destroy_device_node(struct devfs_node *root, cdev_t target) 1875 { 1876 struct devfs_node *node, *parent; 1877 char *name; 1878 char *name_buf; 1879 char *create_path = NULL; 1880 1881 KKASSERT(target); 1882 1883 name_buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK); 1884 ksnprintf(name_buf, PATH_MAX, "%s", target->si_name); 1885 1886 devfs_resolve_name_path(target->si_name, name_buf, &create_path, &name); 1887 1888 if (create_path) 1889 parent = devfs_resolve_or_create_path(root, create_path, 0); 1890 else 1891 parent = root; 1892 1893 if (parent == NULL) 1894 return 1; 1895 1896 node = devfs_find_device_node_by_name(parent, name); 1897 1898 if (node) { 1899 nanotime(&node->parent->mtime); 1900 devfs_gc(node); 1901 } 1902 kfree(name_buf, M_TEMP); 1903 1904 return 0; 1905 } 1906 1907 /* 1908 * Just set perms and ownership for given node. 1909 */ 1910 int 1911 devfs_set_perms(struct devfs_node *node, uid_t uid, gid_t gid, 1912 u_short mode, u_long flags) 1913 { 1914 node->mode = mode; 1915 node->uid = uid; 1916 node->gid = gid; 1917 1918 return 0; 1919 } 1920 1921 /* 1922 * Propagates a device attach/detach to all mount 1923 * points. Also takes care of automatic alias removal 1924 * for a deleted cdev. 1925 */ 1926 static int 1927 devfs_propagate_dev(cdev_t dev, int attach) 1928 { 1929 struct devfs_mnt_data *mnt; 1930 1931 TAILQ_FOREACH(mnt, &devfs_mnt_list, link) { 1932 if (attach) { 1933 /* Device is being attached */ 1934 devfs_create_device_node(mnt->root_node, dev, 1935 NULL, NULL ); 1936 } else { 1937 /* Device is being detached */ 1938 devfs_alias_remove(dev); 1939 devfs_destroy_device_node(mnt->root_node, dev); 1940 } 1941 } 1942 return 0; 1943 } 1944 1945 /* 1946 * devfs_clone either returns a basename from a complete name by 1947 * returning the length of the name without trailing digits, or, 1948 * if clone != 0, calls the device's clone handler to get a new 1949 * device, which in turn is returned in devp. 1950 */ 1951 cdev_t 1952 devfs_clone(cdev_t dev, const char *name, size_t len, int mode, 1953 struct ucred *cred) 1954 { 1955 int error; 1956 struct devfs_clone_handler *chandler; 1957 struct dev_clone_args ap; 1958 1959 TAILQ_FOREACH(chandler, &devfs_chandler_list, link) { 1960 if (chandler->namlen != len) 1961 continue; 1962 if ((!memcmp(chandler->name, name, len)) && (chandler->nhandler)) { 1963 lockmgr(&devfs_lock, LK_RELEASE); 1964 devfs_config(); 1965 lockmgr(&devfs_lock, LK_EXCLUSIVE); 1966 1967 ap.a_head.a_dev = dev; 1968 ap.a_dev = NULL; 1969 ap.a_name = name; 1970 ap.a_namelen = len; 1971 ap.a_mode = mode; 1972 ap.a_cred = cred; 1973 error = (chandler->nhandler)(&ap); 1974 if (error) 1975 continue; 1976 1977 return ap.a_dev; 1978 } 1979 } 1980 1981 return NULL; 1982 } 1983 1984 1985 /* 1986 * Registers a new orphan in the orphan list. 1987 */ 1988 void 1989 devfs_tracer_add_orphan(struct devfs_node *node) 1990 { 1991 struct devfs_orphan *orphan; 1992 1993 KKASSERT(node); 1994 orphan = kmalloc(sizeof(struct devfs_orphan), M_DEVFS, M_WAITOK); 1995 orphan->node = node; 1996 1997 KKASSERT((node->flags & DEVFS_ORPHANED) == 0); 1998 node->flags |= DEVFS_ORPHANED; 1999 TAILQ_INSERT_TAIL(DEVFS_ORPHANLIST(node->mp), orphan, link); 2000 } 2001 2002 /* 2003 * Removes an orphan from the orphan list. 2004 */ 2005 void 2006 devfs_tracer_del_orphan(struct devfs_node *node) 2007 { 2008 struct devfs_orphan *orphan; 2009 2010 KKASSERT(node); 2011 2012 TAILQ_FOREACH(orphan, DEVFS_ORPHANLIST(node->mp), link) { 2013 if (orphan->node == node) { 2014 node->flags &= ~DEVFS_ORPHANED; 2015 TAILQ_REMOVE(DEVFS_ORPHANLIST(node->mp), orphan, link); 2016 kfree(orphan, M_DEVFS); 2017 break; 2018 } 2019 } 2020 } 2021 2022 /* 2023 * Counts the orphans in the orphan list, and if cleanup 2024 * is specified, also frees the orphan and removes it from 2025 * the list. 2026 */ 2027 size_t 2028 devfs_tracer_orphan_count(struct mount *mp, int cleanup) 2029 { 2030 struct devfs_orphan *orphan, *orphan2; 2031 size_t count = 0; 2032 2033 TAILQ_FOREACH_MUTABLE(orphan, DEVFS_ORPHANLIST(mp), link, orphan2) { 2034 count++; 2035 /* 2036 * If we are instructed to clean up, we do so. 2037 */ 2038 if (cleanup) { 2039 TAILQ_REMOVE(DEVFS_ORPHANLIST(mp), orphan, link); 2040 orphan->node->flags &= ~DEVFS_ORPHANED; 2041 devfs_freep(orphan->node); 2042 kfree(orphan, M_DEVFS); 2043 } 2044 } 2045 2046 return count; 2047 } 2048 2049 /* 2050 * Fetch an ino_t from the global d_ino by increasing it 2051 * while spinlocked. 2052 */ 2053 static ino_t 2054 devfs_fetch_ino(void) 2055 { 2056 ino_t ret; 2057 2058 spin_lock_wr(&ino_lock); 2059 ret = d_ino++; 2060 spin_unlock_wr(&ino_lock); 2061 2062 return ret; 2063 } 2064 2065 /* 2066 * Allocates a new cdev and initializes it's most basic 2067 * fields. 2068 */ 2069 cdev_t 2070 devfs_new_cdev(struct dev_ops *ops, int minor) 2071 { 2072 cdev_t dev = sysref_alloc(&cdev_sysref_class); 2073 2074 sysref_activate(&dev->si_sysref); 2075 reference_dev(dev); 2076 bzero(dev, offsetof(struct cdev, si_sysref)); 2077 2078 dev->si_uid = 0; 2079 dev->si_gid = 0; 2080 dev->si_perms = 0; 2081 dev->si_drv1 = NULL; 2082 dev->si_drv2 = NULL; 2083 dev->si_lastread = 0; /* time_second */ 2084 dev->si_lastwrite = 0; /* time_second */ 2085 2086 dev->si_ops = ops; 2087 dev->si_flags = 0; 2088 dev->si_umajor = 0; 2089 dev->si_uminor = minor; 2090 dev->si_inode = makeudev(devfs_reference_ops(ops), minor); 2091 2092 return dev; 2093 } 2094 2095 static void 2096 devfs_cdev_terminate(cdev_t dev) 2097 { 2098 int locked = 0; 2099 2100 /* Check if it is locked already. if not, we acquire the devfs lock */ 2101 if (!(lockstatus(&devfs_lock, curthread)) == LK_EXCLUSIVE) { 2102 lockmgr(&devfs_lock, LK_EXCLUSIVE); 2103 locked = 1; 2104 } 2105 2106 /* Propagate destruction, just in case */ 2107 devfs_propagate_dev(dev, 0); 2108 2109 /* If we acquired the lock, we also get rid of it */ 2110 if (locked) 2111 lockmgr(&devfs_lock, LK_RELEASE); 2112 2113 devfs_release_ops(dev->si_ops); 2114 2115 /* Finally destroy the device */ 2116 sysref_put(&dev->si_sysref); 2117 } 2118 2119 /* 2120 * Links a given cdev into the dev list. 2121 */ 2122 int 2123 devfs_link_dev(cdev_t dev) 2124 { 2125 KKASSERT((dev->si_flags & SI_DEVFS_LINKED) == 0); 2126 dev->si_flags |= SI_DEVFS_LINKED; 2127 TAILQ_INSERT_TAIL(&devfs_dev_list, dev, link); 2128 2129 return 0; 2130 } 2131 2132 /* 2133 * Removes a given cdev from the dev list. The caller is responsible for 2134 * releasing the reference on the device associated with the linkage. 2135 * 2136 * Returns EALREADY if the dev has already been unlinked. 2137 */ 2138 static int 2139 devfs_unlink_dev(cdev_t dev) 2140 { 2141 if ((dev->si_flags & SI_DEVFS_LINKED)) { 2142 TAILQ_REMOVE(&devfs_dev_list, dev, link); 2143 dev->si_flags &= ~SI_DEVFS_LINKED; 2144 return (0); 2145 } 2146 return (EALREADY); 2147 } 2148 2149 int 2150 devfs_node_is_accessible(struct devfs_node *node) 2151 { 2152 if ((node) && (!(node->flags & DEVFS_HIDDEN))) 2153 return 1; 2154 else 2155 return 0; 2156 } 2157 2158 int 2159 devfs_reference_ops(struct dev_ops *ops) 2160 { 2161 int unit; 2162 struct devfs_dev_ops *found = NULL; 2163 struct devfs_dev_ops *devops; 2164 2165 TAILQ_FOREACH(devops, &devfs_dev_ops_list, link) { 2166 if (devops->ops == ops) { 2167 found = devops; 2168 break; 2169 } 2170 } 2171 2172 if (!found) { 2173 found = kmalloc(sizeof(struct devfs_dev_ops), M_DEVFS, M_WAITOK); 2174 found->ops = ops; 2175 found->ref_count = 0; 2176 TAILQ_INSERT_TAIL(&devfs_dev_ops_list, found, link); 2177 } 2178 2179 KKASSERT(found); 2180 2181 if (found->ref_count == 0) { 2182 found->id = devfs_clone_bitmap_get(&DEVFS_CLONE_BITMAP(ops_id), 255); 2183 if (found->id == -1) { 2184 /* Ran out of unique ids */ 2185 devfs_debug(DEVFS_DEBUG_WARNING, 2186 "devfs_reference_ops: WARNING: ran out of unique ids\n"); 2187 } 2188 } 2189 unit = found->id; 2190 ++found->ref_count; 2191 2192 return unit; 2193 } 2194 2195 void 2196 devfs_release_ops(struct dev_ops *ops) 2197 { 2198 struct devfs_dev_ops *found = NULL; 2199 struct devfs_dev_ops *devops; 2200 2201 TAILQ_FOREACH(devops, &devfs_dev_ops_list, link) { 2202 if (devops->ops == ops) { 2203 found = devops; 2204 break; 2205 } 2206 } 2207 2208 KKASSERT(found); 2209 2210 --found->ref_count; 2211 2212 if (found->ref_count == 0) { 2213 TAILQ_REMOVE(&devfs_dev_ops_list, found, link); 2214 devfs_clone_bitmap_put(&DEVFS_CLONE_BITMAP(ops_id), found->id); 2215 kfree(found, M_DEVFS); 2216 } 2217 } 2218 2219 void 2220 devfs_config(void) 2221 { 2222 devfs_msg_t msg; 2223 2224 msg = devfs_msg_get(); 2225 msg = devfs_msg_send_sync(DEVFS_SYNC, msg); 2226 devfs_msg_put(msg); 2227 } 2228 2229 /* 2230 * Called on init of devfs; creates the objcaches and 2231 * spawns off the devfs core thread. Also initializes 2232 * locks. 2233 */ 2234 static void 2235 devfs_init(void) 2236 { 2237 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_init() called\n"); 2238 /* Create objcaches for nodes, msgs and devs */ 2239 devfs_node_cache = objcache_create("devfs-node-cache", 0, 0, 2240 NULL, NULL, NULL, 2241 objcache_malloc_alloc, 2242 objcache_malloc_free, 2243 &devfs_node_malloc_args ); 2244 2245 devfs_msg_cache = objcache_create("devfs-msg-cache", 0, 0, 2246 NULL, NULL, NULL, 2247 objcache_malloc_alloc, 2248 objcache_malloc_free, 2249 &devfs_msg_malloc_args ); 2250 2251 devfs_dev_cache = objcache_create("devfs-dev-cache", 0, 0, 2252 NULL, NULL, NULL, 2253 objcache_malloc_alloc, 2254 objcache_malloc_free, 2255 &devfs_dev_malloc_args ); 2256 2257 devfs_clone_bitmap_init(&DEVFS_CLONE_BITMAP(ops_id)); 2258 2259 /* Initialize the reply-only port which acts as a message drain */ 2260 lwkt_initport_replyonly(&devfs_dispose_port, devfs_msg_autofree_reply); 2261 2262 /* Initialize *THE* devfs lock */ 2263 lockinit(&devfs_lock, "devfs_core lock", 0, 0); 2264 2265 2266 lwkt_create(devfs_msg_core, /*args*/NULL, &td_core, NULL, 2267 0, 0, "devfs_msg_core"); 2268 2269 tsleep(td_core/*devfs_id*/, 0, "devfsc", 0); 2270 2271 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_init finished\n"); 2272 } 2273 2274 /* 2275 * Called on unload of devfs; takes care of destroying the core 2276 * and the objcaches. Also removes aliases that are no longer needed. 2277 */ 2278 static void 2279 devfs_uninit(void) 2280 { 2281 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_uninit() called\n"); 2282 2283 devfs_msg_send(DEVFS_TERMINATE_CORE, NULL); 2284 2285 tsleep(td_core/*devfs_id*/, 0, "devfsc", 0); 2286 tsleep(td_core/*devfs_id*/, 0, "devfsc", 10000); 2287 2288 devfs_clone_bitmap_uninit(&DEVFS_CLONE_BITMAP(ops_id)); 2289 2290 /* Destroy the objcaches */ 2291 objcache_destroy(devfs_msg_cache); 2292 objcache_destroy(devfs_node_cache); 2293 objcache_destroy(devfs_dev_cache); 2294 2295 devfs_alias_reap(); 2296 } 2297 2298 /* 2299 * This is a sysctl handler to assist userland devname(3) to 2300 * find the device name for a given udev. 2301 */ 2302 static int 2303 devfs_sysctl_devname_helper(SYSCTL_HANDLER_ARGS) 2304 { 2305 udev_t udev; 2306 cdev_t found; 2307 int error; 2308 2309 2310 if ((error = SYSCTL_IN(req, &udev, sizeof(udev_t)))) 2311 return (error); 2312 2313 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs sysctl, received udev: %d\n", udev); 2314 2315 if (udev == NOUDEV) 2316 return(EINVAL); 2317 2318 if ((found = devfs_find_device_by_udev(udev)) == NULL) 2319 return(ENOENT); 2320 2321 return(SYSCTL_OUT(req, found->si_name, strlen(found->si_name) + 1)); 2322 } 2323 2324 2325 SYSCTL_PROC(_kern, OID_AUTO, devname, CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_ANYBODY, 2326 NULL, 0, devfs_sysctl_devname_helper, "", "helper for devname(3)"); 2327 2328 static SYSCTL_NODE(_vfs, OID_AUTO, devfs, CTLFLAG_RW, 0, "devfs"); 2329 TUNABLE_INT("vfs.devfs.debug", &devfs_debug_enable); 2330 SYSCTL_INT(_vfs_devfs, OID_AUTO, debug, CTLFLAG_RW, &devfs_debug_enable, 2331 0, "Enable DevFS debugging"); 2332 2333 SYSINIT(vfs_devfs_register, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, 2334 devfs_init, NULL); 2335 SYSUNINIT(vfs_devfs_register, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, 2336 devfs_uninit, NULL); 2337