xref: /dflybsd-src/sys/vfs/devfs/devfs_core.c (revision 5844bad4362a5003b37475c888ad60161aad744d)
1 /*
2  * Copyright (c) 2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Alex Hornung <ahornung@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/mount.h>
38 #include <sys/vnode.h>
39 #include <sys/types.h>
40 #include <sys/lock.h>
41 #include <sys/msgport.h>
42 #include <sys/msgport2.h>
43 #include <sys/spinlock2.h>
44 #include <sys/sysctl.h>
45 #include <sys/ucred.h>
46 #include <sys/param.h>
47 #include <sys/sysref2.h>
48 #include <sys/systm.h>
49 #include <sys/devfs.h>
50 #include <sys/devfs_rules.h>
51 #include <sys/hotplug.h>
52 #include <sys/udev.h>
53 
54 MALLOC_DEFINE(M_DEVFS, "devfs", "Device File System (devfs) allocations");
55 DEVFS_DECLARE_CLONE_BITMAP(ops_id);
56 /*
57  * SYSREF Integration - reference counting, allocation,
58  * sysid and syslink integration.
59  */
60 static void devfs_cdev_terminate(cdev_t dev);
61 static void devfs_cdev_lock(cdev_t dev);
62 static void devfs_cdev_unlock(cdev_t dev);
63 static struct sysref_class     cdev_sysref_class = {
64 	.name =         "cdev",
65 	.mtype =        M_DEVFS,
66 	.proto =        SYSREF_PROTO_DEV,
67 	.offset =       offsetof(struct cdev, si_sysref),
68 	.objsize =      sizeof(struct cdev),
69 	.mag_capacity = 32,
70 	.flags =        0,
71 	.ops =  {
72 		.terminate = (sysref_terminate_func_t)devfs_cdev_terminate,
73 		.lock = (sysref_lock_func_t)devfs_cdev_lock,
74 		.unlock = (sysref_unlock_func_t)devfs_cdev_unlock
75 	}
76 };
77 
78 static struct objcache	*devfs_node_cache;
79 static struct objcache 	*devfs_msg_cache;
80 static struct objcache	*devfs_dev_cache;
81 
82 static struct objcache_malloc_args devfs_node_malloc_args = {
83 	sizeof(struct devfs_node), M_DEVFS };
84 struct objcache_malloc_args devfs_msg_malloc_args = {
85 	sizeof(struct devfs_msg), M_DEVFS };
86 struct objcache_malloc_args devfs_dev_malloc_args = {
87 	sizeof(struct cdev), M_DEVFS };
88 
89 static struct devfs_dev_head devfs_dev_list =
90 		TAILQ_HEAD_INITIALIZER(devfs_dev_list);
91 static struct devfs_mnt_head devfs_mnt_list =
92 		TAILQ_HEAD_INITIALIZER(devfs_mnt_list);
93 static struct devfs_chandler_head devfs_chandler_list =
94 		TAILQ_HEAD_INITIALIZER(devfs_chandler_list);
95 static struct devfs_alias_head devfs_alias_list =
96 		TAILQ_HEAD_INITIALIZER(devfs_alias_list);
97 static struct devfs_dev_ops_head devfs_dev_ops_list =
98 		TAILQ_HEAD_INITIALIZER(devfs_dev_ops_list);
99 
100 struct lock 		devfs_lock;
101 static struct lwkt_port devfs_dispose_port;
102 static struct lwkt_port devfs_msg_port;
103 static struct thread 	*td_core;
104 
105 static struct spinlock  ino_lock;
106 static ino_t 	d_ino;
107 static int	devfs_debug_enable;
108 static int	devfs_run;
109 
110 static ino_t devfs_fetch_ino(void);
111 static int devfs_create_all_dev_worker(struct devfs_node *);
112 static int devfs_create_dev_worker(cdev_t, uid_t, gid_t, int);
113 static int devfs_destroy_dev_worker(cdev_t);
114 static int devfs_destroy_subnames_worker(char *);
115 static int devfs_destroy_dev_by_ops_worker(struct dev_ops *, int);
116 static int devfs_propagate_dev(cdev_t, int);
117 static int devfs_unlink_dev(cdev_t dev);
118 static void devfs_msg_exec(devfs_msg_t msg);
119 
120 static int devfs_chandler_add_worker(const char *, d_clone_t *);
121 static int devfs_chandler_del_worker(const char *);
122 
123 static void devfs_msg_autofree_reply(lwkt_port_t, lwkt_msg_t);
124 static void devfs_msg_core(void *);
125 
126 static int devfs_find_device_by_name_worker(devfs_msg_t);
127 static int devfs_find_device_by_udev_worker(devfs_msg_t);
128 
129 static int devfs_apply_reset_rules_caller(char *, int);
130 
131 static int devfs_scan_callback_worker(devfs_scan_t *, void *);
132 
133 static struct devfs_node *devfs_resolve_or_create_dir(struct devfs_node *,
134 		char *, size_t, int);
135 
136 static int devfs_make_alias_worker(struct devfs_alias *);
137 static int devfs_alias_remove(cdev_t);
138 static int devfs_alias_reap(void);
139 static int devfs_alias_propagate(struct devfs_alias *);
140 static int devfs_alias_apply(struct devfs_node *, struct devfs_alias *);
141 static int devfs_alias_check_create(struct devfs_node *);
142 
143 static int devfs_clr_subnames_flag_worker(char *, uint32_t);
144 static int devfs_destroy_subnames_without_flag_worker(char *, uint32_t);
145 
146 static void *devfs_reaperp_callback(struct devfs_node *, void *);
147 static void *devfs_gc_dirs_callback(struct devfs_node *, void *);
148 static void *devfs_gc_links_callback(struct devfs_node *, struct devfs_node *);
149 static void *
150 devfs_inode_to_vnode_worker_callback(struct devfs_node *, ino_t *);
151 
152 /* hotplug */
153 void (*devfs_node_added)(struct hotplug_device*) = NULL;
154 void (*devfs_node_removed)(struct hotplug_device*) = NULL;
155 
156 /*
157  * devfs_debug() is a SYSCTL and TUNABLE controlled debug output function
158  * using kvprintf
159  */
160 int
161 devfs_debug(int level, char *fmt, ...)
162 {
163 	__va_list ap;
164 
165 	__va_start(ap, fmt);
166 	if (level <= devfs_debug_enable)
167 		kvprintf(fmt, ap);
168 	__va_end(ap);
169 
170 	return 0;
171 }
172 
173 /*
174  * devfs_allocp() Allocates a new devfs node with the specified
175  * parameters. The node is also automatically linked into the topology
176  * if a parent is specified. It also calls the rule and alias stuff to
177  * be applied on the new node
178  */
179 struct devfs_node *
180 devfs_allocp(devfs_nodetype devfsnodetype, char *name,
181 	     struct devfs_node *parent, struct mount *mp, cdev_t dev)
182 {
183 	struct devfs_node *node = NULL;
184 	size_t namlen = strlen(name);
185 
186 	node = objcache_get(devfs_node_cache, M_WAITOK);
187 	bzero(node, sizeof(*node));
188 
189 	atomic_add_long(&(DEVFS_MNTDATA(mp)->leak_count), 1);
190 
191 	node->d_dev = NULL;
192 	node->nchildren = 1;
193 	node->mp = mp;
194 	node->d_dir.d_ino = devfs_fetch_ino();
195 
196 	/*
197 	 * Cookie jar for children. Leave 0 and 1 for '.' and '..' entries
198 	 * respectively.
199 	 */
200 	node->cookie_jar = 2;
201 
202 	/*
203 	 * Access Control members
204 	 */
205 	node->mode = DEVFS_DEFAULT_MODE;
206 	node->uid = DEVFS_DEFAULT_UID;
207 	node->gid = DEVFS_DEFAULT_GID;
208 
209 	switch (devfsnodetype) {
210 	case Proot:
211 		/*
212 		 * Ensure that we don't recycle the root vnode by marking it as
213 		 * linked into the topology.
214 		 */
215 		node->flags |= DEVFS_NODE_LINKED;
216 	case Pdir:
217 		TAILQ_INIT(DEVFS_DENODE_HEAD(node));
218 		node->d_dir.d_type = DT_DIR;
219 		node->nchildren = 2;
220 		break;
221 
222 	case Plink:
223 		node->d_dir.d_type = DT_LNK;
224 		break;
225 
226 	case Preg:
227 		node->d_dir.d_type = DT_REG;
228 		break;
229 
230 	case Pdev:
231 		if (dev != NULL) {
232 			node->d_dir.d_type = DT_CHR;
233 			node->d_dev = dev;
234 
235 			node->mode = dev->si_perms;
236 			node->uid = dev->si_uid;
237 			node->gid = dev->si_gid;
238 
239 			devfs_alias_check_create(node);
240 		}
241 		break;
242 
243 	default:
244 		panic("devfs_allocp: unknown node type");
245 	}
246 
247 	node->v_node = NULL;
248 	node->node_type = devfsnodetype;
249 
250 	/* Initialize the dirent structure of each devfs vnode */
251 	node->d_dir.d_namlen = namlen;
252 	node->d_dir.d_name = kmalloc(namlen+1, M_DEVFS, M_WAITOK);
253 	memcpy(node->d_dir.d_name, name, namlen);
254 	node->d_dir.d_name[namlen] = '\0';
255 
256 	/* Initialize the parent node element */
257 	node->parent = parent;
258 
259 	/* Apply rules */
260 	devfs_rule_check_apply(node, NULL);
261 
262 	/* Initialize *time members */
263 	nanotime(&node->atime);
264 	node->mtime = node->ctime = node->atime;
265 
266 	/*
267 	 * Associate with parent as last step, clean out namecache
268 	 * reference.
269 	 */
270 	if ((parent != NULL) &&
271 	    ((parent->node_type == Proot) || (parent->node_type == Pdir))) {
272 		parent->nchildren++;
273 		node->cookie = parent->cookie_jar++;
274 		node->flags |= DEVFS_NODE_LINKED;
275 		TAILQ_INSERT_TAIL(DEVFS_DENODE_HEAD(parent), node, link);
276 
277 		/* This forces negative namecache lookups to clear */
278 		++mp->mnt_namecache_gen;
279 	}
280 
281 	++DEVFS_MNTDATA(mp)->file_count;
282 
283 	return node;
284 }
285 
286 /*
287  * devfs_allocv() allocates a new vnode based on a devfs node.
288  */
289 int
290 devfs_allocv(struct vnode **vpp, struct devfs_node *node)
291 {
292 	struct vnode *vp;
293 	int error = 0;
294 
295 	KKASSERT(node);
296 
297 try_again:
298 	while ((vp = node->v_node) != NULL) {
299 		error = vget(vp, LK_EXCLUSIVE);
300 		if (error != ENOENT) {
301 			*vpp = vp;
302 			goto out;
303 		}
304 	}
305 
306 	if ((error = getnewvnode(VT_DEVFS, node->mp, vpp, 0, 0)) != 0)
307 		goto out;
308 
309 	vp = *vpp;
310 
311 	if (node->v_node != NULL) {
312 		vp->v_type = VBAD;
313 		vx_put(vp);
314 		goto try_again;
315 	}
316 
317 	vp->v_data = node;
318 	node->v_node = vp;
319 
320 	switch (node->node_type) {
321 	case Proot:
322 		vsetflags(vp, VROOT);
323 		/* fall through */
324 	case Pdir:
325 		vp->v_type = VDIR;
326 		break;
327 
328 	case Plink:
329 		vp->v_type = VLNK;
330 		break;
331 
332 	case Preg:
333 		vp->v_type = VREG;
334 		break;
335 
336 	case Pdev:
337 		vp->v_type = VCHR;
338 		KKASSERT(node->d_dev);
339 
340 		vp->v_uminor = node->d_dev->si_uminor;
341 		vp->v_umajor = 0;
342 
343 		v_associate_rdev(vp, node->d_dev);
344 		vp->v_ops = &node->mp->mnt_vn_spec_ops;
345 		break;
346 
347 	default:
348 		panic("devfs_allocv: unknown node type");
349 	}
350 
351 out:
352 	return error;
353 }
354 
355 /*
356  * devfs_allocvp allocates both a devfs node (with the given settings) and a vnode
357  * based on the newly created devfs node.
358  */
359 int
360 devfs_allocvp(struct mount *mp, struct vnode **vpp, devfs_nodetype devfsnodetype,
361 		char *name, struct devfs_node *parent, cdev_t dev)
362 {
363 	struct devfs_node *node;
364 
365 	node = devfs_allocp(devfsnodetype, name, parent, mp, dev);
366 
367 	if (node != NULL)
368 		devfs_allocv(vpp, node);
369 	else
370 		*vpp = NULL;
371 
372 	return 0;
373 }
374 
375 /*
376  * Destroy the devfs_node.  The node must be unlinked from the topology.
377  *
378  * This function will also destroy any vnode association with the node
379  * and device.
380  *
381  * The cdev_t itself remains intact.
382  */
383 int
384 devfs_freep(struct devfs_node *node)
385 {
386 	struct vnode *vp;
387 
388 	KKASSERT(node);
389 	KKASSERT(((node->flags & DEVFS_NODE_LINKED) == 0) ||
390 		 (node->node_type == Proot));
391 	KKASSERT((node->flags & DEVFS_DESTROYED) == 0);
392 
393 	atomic_subtract_long(&(DEVFS_MNTDATA(node->mp)->leak_count), 1);
394 	if (node->symlink_name)	{
395 		kfree(node->symlink_name, M_DEVFS);
396 		node->symlink_name = NULL;
397 	}
398 
399 	/*
400 	 * Remove the node from the orphan list if it is still on it.
401 	 */
402 	if (node->flags & DEVFS_ORPHANED)
403 		devfs_tracer_del_orphan(node);
404 
405 	/*
406 	 * Disassociate the vnode from the node.  This also prevents the
407 	 * vnode's reclaim code from double-freeing the node.
408 	 *
409 	 * The vget is needed to safely modify the vp.  It also serves
410 	 * to cycle the refs and terminate the vnode if it happens to
411 	 * be inactive, otherwise namecache references may not get cleared.
412 	 */
413 	while ((vp = node->v_node) != NULL) {
414 		if (vget(vp, LK_EXCLUSIVE | LK_RETRY) != 0)
415 			break;
416 		v_release_rdev(vp);
417 		vp->v_data = NULL;
418 		node->v_node = NULL;
419 		cache_inval_vp(vp, CINV_DESTROY);
420 		vput(vp);
421 	}
422 	if (node->d_dir.d_name) {
423 		kfree(node->d_dir.d_name, M_DEVFS);
424 		node->d_dir.d_name = NULL;
425 	}
426 	node->flags |= DEVFS_DESTROYED;
427 
428 	--DEVFS_MNTDATA(node->mp)->file_count;
429 
430 	objcache_put(devfs_node_cache, node);
431 
432 	return 0;
433 }
434 
435 /*
436  * Unlink the devfs node from the topology and add it to the orphan list.
437  * The node will later be destroyed by freep.
438  *
439  * Any vnode association, including the v_rdev and v_data, remains intact
440  * until the freep.
441  */
442 int
443 devfs_unlinkp(struct devfs_node *node)
444 {
445 	struct devfs_node *parent;
446 	struct hotplug_device *hpdev;
447 	KKASSERT(node);
448 
449 	/*
450 	 * Add the node to the orphan list, so it is referenced somewhere, to
451 	 * so we don't leak it.
452 	 */
453 	devfs_tracer_add_orphan(node);
454 
455 	parent = node->parent;
456 
457 	/*
458 	 * If the parent is known we can unlink the node out of the topology
459 	 */
460 	if (parent)	{
461 		TAILQ_REMOVE(DEVFS_DENODE_HEAD(parent), node, link);
462 		parent->nchildren--;
463 		KKASSERT((parent->nchildren >= 0));
464 		node->flags &= ~DEVFS_NODE_LINKED;
465 	}
466 	/* hotplug handler */
467 	if(devfs_node_removed) {
468 		hpdev = kmalloc(sizeof(struct hotplug_device), M_TEMP, M_WAITOK);
469 		hpdev->dev = node->d_dev;
470 		if(hpdev->dev)
471 			hpdev->name = node->d_dev->si_name;
472 		devfs_node_removed(hpdev);
473 		kfree(hpdev, M_TEMP);
474 	}
475 	node->parent = NULL;
476 	return 0;
477 }
478 
479 void *
480 devfs_iterate_topology(struct devfs_node *node,
481 		devfs_iterate_callback_t *callback, void *arg1)
482 {
483 	struct devfs_node *node1, *node2;
484 	void *ret = NULL;
485 
486 	if ((node->node_type == Proot) || (node->node_type == Pdir)) {
487 		if (node->nchildren > 2) {
488 			TAILQ_FOREACH_MUTABLE(node1, DEVFS_DENODE_HEAD(node),
489 							link, node2) {
490 				if ((ret = devfs_iterate_topology(node1, callback, arg1)))
491 					return ret;
492 			}
493 		}
494 	}
495 
496 	ret = callback(node, arg1);
497 	return ret;
498 }
499 
500 /*
501  * devfs_reaperp() is a recursive function that iterates through all the
502  * topology, unlinking and freeing all devfs nodes.
503  */
504 static void *
505 devfs_reaperp_callback(struct devfs_node *node, void *unused)
506 {
507 	devfs_unlinkp(node);
508 	devfs_freep(node);
509 
510 	return NULL;
511 }
512 
513 static void *
514 devfs_gc_dirs_callback(struct devfs_node *node, void *unused)
515 {
516 	if (node->node_type == Pdir) {
517 		if ((node->nchildren == 2) &&
518 		    !(node->flags & DEVFS_USER_CREATED)) {
519 			devfs_unlinkp(node);
520 			devfs_freep(node);
521 		}
522 	}
523 
524 	return NULL;
525 }
526 
527 static void *
528 devfs_gc_links_callback(struct devfs_node *node, struct devfs_node *target)
529 {
530 	if ((node->node_type == Plink) && (node->link_target == target)) {
531 		devfs_unlinkp(node);
532 		devfs_freep(node);
533 	}
534 
535 	return NULL;
536 }
537 
538 /*
539  * devfs_gc() is devfs garbage collector. It takes care of unlinking and
540  * freeing a node, but also removes empty directories and links that link
541  * via devfs auto-link mechanism to the node being deleted.
542  */
543 int
544 devfs_gc(struct devfs_node *node)
545 {
546 	struct devfs_node *root_node = DEVFS_MNTDATA(node->mp)->root_node;
547 
548 	if (node->nlinks > 0)
549 		devfs_iterate_topology(root_node,
550 				(devfs_iterate_callback_t *)devfs_gc_links_callback, node);
551 
552 	devfs_unlinkp(node);
553 	devfs_iterate_topology(root_node,
554 			(devfs_iterate_callback_t *)devfs_gc_dirs_callback, NULL);
555 
556 	devfs_freep(node);
557 
558 	return 0;
559 }
560 
561 /*
562  * devfs_create_dev() is the asynchronous entry point for device creation.
563  * It just sends a message with the relevant details to the devfs core.
564  *
565  * This function will reference the passed device.  The reference is owned
566  * by devfs and represents all of the device's node associations.
567  */
568 int
569 devfs_create_dev(cdev_t dev, uid_t uid, gid_t gid, int perms)
570 {
571 	reference_dev(dev);
572 	devfs_msg_send_dev(DEVFS_DEVICE_CREATE, dev, uid, gid, perms);
573 
574 	return 0;
575 }
576 
577 /*
578  * devfs_destroy_dev() is the asynchronous entry point for device destruction.
579  * It just sends a message with the relevant details to the devfs core.
580  */
581 int
582 devfs_destroy_dev(cdev_t dev)
583 {
584 	devfs_msg_send_dev(DEVFS_DEVICE_DESTROY, dev, 0, 0, 0);
585 	return 0;
586 }
587 
588 /*
589  * devfs_mount_add() is the synchronous entry point for adding a new devfs
590  * mount.  It sends a synchronous message with the relevant details to the
591  * devfs core.
592  */
593 int
594 devfs_mount_add(struct devfs_mnt_data *mnt)
595 {
596 	devfs_msg_t msg;
597 
598 	msg = devfs_msg_get();
599 	msg->mdv_mnt = mnt;
600 	msg = devfs_msg_send_sync(DEVFS_MOUNT_ADD, msg);
601 	devfs_msg_put(msg);
602 
603 	return 0;
604 }
605 
606 /*
607  * devfs_mount_del() is the synchronous entry point for removing a devfs mount.
608  * It sends a synchronous message with the relevant details to the devfs core.
609  */
610 int
611 devfs_mount_del(struct devfs_mnt_data *mnt)
612 {
613 	devfs_msg_t msg;
614 
615 	msg = devfs_msg_get();
616 	msg->mdv_mnt = mnt;
617 	msg = devfs_msg_send_sync(DEVFS_MOUNT_DEL, msg);
618 	devfs_msg_put(msg);
619 
620 	return 0;
621 }
622 
623 /*
624  * devfs_destroy_subnames() is the synchronous entry point for device
625  * destruction by subname. It just sends a message with the relevant details to
626  * the devfs core.
627  */
628 int
629 devfs_destroy_subnames(char *name)
630 {
631 	devfs_msg_t msg;
632 
633 	msg = devfs_msg_get();
634 	msg->mdv_load = name;
635 	msg = devfs_msg_send_sync(DEVFS_DESTROY_SUBNAMES, msg);
636 	devfs_msg_put(msg);
637 	return 0;
638 }
639 
640 int
641 devfs_clr_subnames_flag(char *name, uint32_t flag)
642 {
643 	devfs_msg_t msg;
644 
645 	msg = devfs_msg_get();
646 	msg->mdv_flags.name = name;
647 	msg->mdv_flags.flag = flag;
648 	msg = devfs_msg_send_sync(DEVFS_CLR_SUBNAMES_FLAG, msg);
649 	devfs_msg_put(msg);
650 
651 	return 0;
652 }
653 
654 int
655 devfs_destroy_subnames_without_flag(char *name, uint32_t flag)
656 {
657 	devfs_msg_t msg;
658 
659 	msg = devfs_msg_get();
660 	msg->mdv_flags.name = name;
661 	msg->mdv_flags.flag = flag;
662 	msg = devfs_msg_send_sync(DEVFS_DESTROY_SUBNAMES_WO_FLAG, msg);
663 	devfs_msg_put(msg);
664 
665 	return 0;
666 }
667 
668 /*
669  * devfs_create_all_dev is the asynchronous entry point to trigger device
670  * node creation.  It just sends a message with the relevant details to
671  * the devfs core.
672  */
673 int
674 devfs_create_all_dev(struct devfs_node *root)
675 {
676 	devfs_msg_send_generic(DEVFS_CREATE_ALL_DEV, root);
677 	return 0;
678 }
679 
680 /*
681  * devfs_destroy_dev_by_ops is the asynchronous entry point to destroy all
682  * devices with a specific set of dev_ops and minor.  It just sends a
683  * message with the relevant details to the devfs core.
684  */
685 int
686 devfs_destroy_dev_by_ops(struct dev_ops *ops, int minor)
687 {
688 	devfs_msg_send_ops(DEVFS_DESTROY_DEV_BY_OPS, ops, minor);
689 	return 0;
690 }
691 
692 /*
693  * devfs_clone_handler_add is the synchronous entry point to add a new
694  * clone handler.  It just sends a message with the relevant details to
695  * the devfs core.
696  */
697 int
698 devfs_clone_handler_add(const char *name, d_clone_t *nhandler)
699 {
700 	devfs_msg_t msg;
701 
702 	msg = devfs_msg_get();
703 	msg->mdv_chandler.name = name;
704 	msg->mdv_chandler.nhandler = nhandler;
705 	msg = devfs_msg_send_sync(DEVFS_CHANDLER_ADD, msg);
706 	devfs_msg_put(msg);
707 	return 0;
708 }
709 
710 /*
711  * devfs_clone_handler_del is the synchronous entry point to remove a
712  * clone handler.  It just sends a message with the relevant details to
713  * the devfs core.
714  */
715 int
716 devfs_clone_handler_del(const char *name)
717 {
718 	devfs_msg_t msg;
719 
720 	msg = devfs_msg_get();
721 	msg->mdv_chandler.name = name;
722 	msg->mdv_chandler.nhandler = NULL;
723 	msg = devfs_msg_send_sync(DEVFS_CHANDLER_DEL, msg);
724 	devfs_msg_put(msg);
725 	return 0;
726 }
727 
728 /*
729  * devfs_find_device_by_name is the synchronous entry point to find a
730  * device given its name.  It sends a synchronous message with the
731  * relevant details to the devfs core and returns the answer.
732  */
733 cdev_t
734 devfs_find_device_by_name(const char *fmt, ...)
735 {
736 	cdev_t found = NULL;
737 	devfs_msg_t msg;
738 	char *target;
739 	__va_list ap;
740 
741 	if (fmt == NULL)
742 		return NULL;
743 
744 	__va_start(ap, fmt);
745 	kvasnrprintf(&target, PATH_MAX, 10, fmt, ap);
746 	__va_end(ap);
747 
748 	msg = devfs_msg_get();
749 	msg->mdv_name = target;
750 	msg = devfs_msg_send_sync(DEVFS_FIND_DEVICE_BY_NAME, msg);
751 	found = msg->mdv_cdev;
752 	devfs_msg_put(msg);
753 	kvasfree(&target);
754 
755 	return found;
756 }
757 
758 /*
759  * devfs_find_device_by_udev is the synchronous entry point to find a
760  * device given its udev number.  It sends a synchronous message with
761  * the relevant details to the devfs core and returns the answer.
762  */
763 cdev_t
764 devfs_find_device_by_udev(udev_t udev)
765 {
766 	cdev_t found = NULL;
767 	devfs_msg_t msg;
768 
769 	msg = devfs_msg_get();
770 	msg->mdv_udev = udev;
771 	msg = devfs_msg_send_sync(DEVFS_FIND_DEVICE_BY_UDEV, msg);
772 	found = msg->mdv_cdev;
773 	devfs_msg_put(msg);
774 
775 	devfs_debug(DEVFS_DEBUG_DEBUG,
776 		    "devfs_find_device_by_udev found? %s  -end:3-\n",
777 		    ((found) ? found->si_name:"NO"));
778 	return found;
779 }
780 
781 struct vnode *
782 devfs_inode_to_vnode(struct mount *mp, ino_t target)
783 {
784 	struct vnode *vp = NULL;
785 	devfs_msg_t msg;
786 
787 	if (mp == NULL)
788 		return NULL;
789 
790 	msg = devfs_msg_get();
791 	msg->mdv_ino.mp = mp;
792 	msg->mdv_ino.ino = target;
793 	msg = devfs_msg_send_sync(DEVFS_INODE_TO_VNODE, msg);
794 	vp = msg->mdv_ino.vp;
795 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
796 	devfs_msg_put(msg);
797 
798 	return vp;
799 }
800 
801 /*
802  * devfs_make_alias is the asynchronous entry point to register an alias
803  * for a device.  It just sends a message with the relevant details to the
804  * devfs core.
805  */
806 int
807 devfs_make_alias(const char *name, cdev_t dev_target)
808 {
809 	struct devfs_alias *alias;
810 	size_t len;
811 
812 	len = strlen(name);
813 
814 	alias = kmalloc(sizeof(struct devfs_alias), M_DEVFS, M_WAITOK);
815 	alias->name = kstrdup(name, M_DEVFS);
816 	alias->namlen = len;
817 	alias->dev_target = dev_target;
818 
819 	devfs_msg_send_generic(DEVFS_MAKE_ALIAS, alias);
820 	return 0;
821 }
822 
823 /*
824  * devfs_apply_rules is the asynchronous entry point to trigger application
825  * of all rules.  It just sends a message with the relevant details to the
826  * devfs core.
827  */
828 int
829 devfs_apply_rules(char *mntto)
830 {
831 	char *new_name;
832 
833 	new_name = kstrdup(mntto, M_DEVFS);
834 	devfs_msg_send_name(DEVFS_APPLY_RULES, new_name);
835 
836 	return 0;
837 }
838 
839 /*
840  * devfs_reset_rules is the asynchronous entry point to trigger reset of all
841  * rules. It just sends a message with the relevant details to the devfs core.
842  */
843 int
844 devfs_reset_rules(char *mntto)
845 {
846 	char *new_name;
847 
848 	new_name = kstrdup(mntto, M_DEVFS);
849 	devfs_msg_send_name(DEVFS_RESET_RULES, new_name);
850 
851 	return 0;
852 }
853 
854 
855 /*
856  * devfs_scan_callback is the asynchronous entry point to call a callback
857  * on all cdevs.
858  * It just sends a message with the relevant details to the devfs core.
859  */
860 int
861 devfs_scan_callback(devfs_scan_t *callback, void *arg)
862 {
863 	devfs_msg_t msg;
864 
865 	KKASSERT(sizeof(callback) == sizeof(void *));
866 
867 	msg = devfs_msg_get();
868 	msg->mdv_load = callback;
869 	msg->mdv_load2 = arg;
870 	msg = devfs_msg_send_sync(DEVFS_SCAN_CALLBACK, msg);
871 	devfs_msg_put(msg);
872 
873 	return 0;
874 }
875 
876 
877 /*
878  * Acts as a message drain. Any message that is replied to here gets destroyed
879  * and the memory freed.
880  */
881 static void
882 devfs_msg_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
883 {
884 	devfs_msg_put((devfs_msg_t)msg);
885 }
886 
887 /*
888  * devfs_msg_get allocates a new devfs msg and returns it.
889  */
890 devfs_msg_t
891 devfs_msg_get(void)
892 {
893 	return objcache_get(devfs_msg_cache, M_WAITOK);
894 }
895 
896 /*
897  * devfs_msg_put deallocates a given devfs msg.
898  */
899 int
900 devfs_msg_put(devfs_msg_t msg)
901 {
902 	objcache_put(devfs_msg_cache, msg);
903 	return 0;
904 }
905 
906 /*
907  * devfs_msg_send is the generic asynchronous message sending facility
908  * for devfs. By default the reply port is the automatic disposal port.
909  *
910  * If the current thread is the devfs_msg_port thread we execute the
911  * operation synchronously.
912  */
913 void
914 devfs_msg_send(uint32_t cmd, devfs_msg_t devfs_msg)
915 {
916 	lwkt_port_t port = &devfs_msg_port;
917 
918 	lwkt_initmsg(&devfs_msg->hdr, &devfs_dispose_port, 0);
919 
920 	devfs_msg->hdr.u.ms_result = cmd;
921 
922 	if (port->mpu_td == curthread) {
923 		devfs_msg_exec(devfs_msg);
924 		lwkt_replymsg(&devfs_msg->hdr, 0);
925 	} else {
926 		lwkt_sendmsg(port, (lwkt_msg_t)devfs_msg);
927 	}
928 }
929 
930 /*
931  * devfs_msg_send_sync is the generic synchronous message sending
932  * facility for devfs. It initializes a local reply port and waits
933  * for the core's answer. This answer is then returned.
934  */
935 devfs_msg_t
936 devfs_msg_send_sync(uint32_t cmd, devfs_msg_t devfs_msg)
937 {
938 	struct lwkt_port rep_port;
939 	devfs_msg_t	msg_incoming;
940 	lwkt_port_t port = &devfs_msg_port;
941 
942 	lwkt_initport_thread(&rep_port, curthread);
943 	lwkt_initmsg(&devfs_msg->hdr, &rep_port, 0);
944 
945 	devfs_msg->hdr.u.ms_result = cmd;
946 
947 	lwkt_sendmsg(port, (lwkt_msg_t)devfs_msg);
948 	msg_incoming = lwkt_waitport(&rep_port, 0);
949 
950 	return msg_incoming;
951 }
952 
953 /*
954  * sends a message with a generic argument.
955  */
956 void
957 devfs_msg_send_generic(uint32_t cmd, void *load)
958 {
959 	devfs_msg_t devfs_msg = devfs_msg_get();
960 
961 	devfs_msg->mdv_load = load;
962 	devfs_msg_send(cmd, devfs_msg);
963 }
964 
965 /*
966  * sends a message with a name argument.
967  */
968 void
969 devfs_msg_send_name(uint32_t cmd, char *name)
970 {
971 	devfs_msg_t devfs_msg = devfs_msg_get();
972 
973 	devfs_msg->mdv_name = name;
974 	devfs_msg_send(cmd, devfs_msg);
975 }
976 
977 /*
978  * sends a message with a mount argument.
979  */
980 void
981 devfs_msg_send_mount(uint32_t cmd, struct devfs_mnt_data *mnt)
982 {
983 	devfs_msg_t devfs_msg = devfs_msg_get();
984 
985 	devfs_msg->mdv_mnt = mnt;
986 	devfs_msg_send(cmd, devfs_msg);
987 }
988 
989 /*
990  * sends a message with an ops argument.
991  */
992 void
993 devfs_msg_send_ops(uint32_t cmd, struct dev_ops *ops, int minor)
994 {
995 	devfs_msg_t devfs_msg = devfs_msg_get();
996 
997 	devfs_msg->mdv_ops.ops = ops;
998 	devfs_msg->mdv_ops.minor = minor;
999 	devfs_msg_send(cmd, devfs_msg);
1000 }
1001 
1002 /*
1003  * sends a message with a clone handler argument.
1004  */
1005 void
1006 devfs_msg_send_chandler(uint32_t cmd, char *name, d_clone_t handler)
1007 {
1008 	devfs_msg_t devfs_msg = devfs_msg_get();
1009 
1010 	devfs_msg->mdv_chandler.name = name;
1011 	devfs_msg->mdv_chandler.nhandler = handler;
1012 	devfs_msg_send(cmd, devfs_msg);
1013 }
1014 
1015 /*
1016  * sends a message with a device argument.
1017  */
1018 void
1019 devfs_msg_send_dev(uint32_t cmd, cdev_t dev, uid_t uid, gid_t gid, int perms)
1020 {
1021 	devfs_msg_t devfs_msg = devfs_msg_get();
1022 
1023 	devfs_msg->mdv_dev.dev = dev;
1024 	devfs_msg->mdv_dev.uid = uid;
1025 	devfs_msg->mdv_dev.gid = gid;
1026 	devfs_msg->mdv_dev.perms = perms;
1027 
1028 	devfs_msg_send(cmd, devfs_msg);
1029 }
1030 
1031 /*
1032  * sends a message with a link argument.
1033  */
1034 void
1035 devfs_msg_send_link(uint32_t cmd, char *name, char *target, struct mount *mp)
1036 {
1037 	devfs_msg_t devfs_msg = devfs_msg_get();
1038 
1039 	devfs_msg->mdv_link.name = name;
1040 	devfs_msg->mdv_link.target = target;
1041 	devfs_msg->mdv_link.mp = mp;
1042 	devfs_msg_send(cmd, devfs_msg);
1043 }
1044 
1045 /*
1046  * devfs_msg_core is the main devfs thread. It handles all incoming messages
1047  * and calls the relevant worker functions. By using messages it's assured
1048  * that events occur in the correct order.
1049  */
1050 static void
1051 devfs_msg_core(void *arg)
1052 {
1053 	devfs_msg_t msg;
1054 
1055 	devfs_run = 1;
1056 	lwkt_initport_thread(&devfs_msg_port, curthread);
1057 	wakeup(td_core);
1058 
1059 	while (devfs_run) {
1060 		msg = (devfs_msg_t)lwkt_waitport(&devfs_msg_port, 0);
1061 		devfs_debug(DEVFS_DEBUG_DEBUG,
1062 				"devfs_msg_core, new msg: %x\n",
1063 				(unsigned int)msg->hdr.u.ms_result);
1064 		devfs_msg_exec(msg);
1065 		lwkt_replymsg(&msg->hdr, 0);
1066 	}
1067 	wakeup(td_core);
1068 	lwkt_exit();
1069 }
1070 
1071 static void
1072 devfs_msg_exec(devfs_msg_t msg)
1073 {
1074 	struct devfs_mnt_data *mnt;
1075 	struct devfs_node *node;
1076 	cdev_t	dev;
1077 
1078 	/*
1079 	 * Acquire the devfs lock to ensure safety of all called functions
1080 	 */
1081 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
1082 
1083 	switch (msg->hdr.u.ms_result) {
1084 	case DEVFS_DEVICE_CREATE:
1085 		dev = msg->mdv_dev.dev;
1086 		devfs_create_dev_worker(dev,
1087 					msg->mdv_dev.uid,
1088 					msg->mdv_dev.gid,
1089 					msg->mdv_dev.perms);
1090 		break;
1091 	case DEVFS_DEVICE_DESTROY:
1092 		dev = msg->mdv_dev.dev;
1093 		devfs_destroy_dev_worker(dev);
1094 		break;
1095 	case DEVFS_DESTROY_SUBNAMES:
1096 		devfs_destroy_subnames_worker(msg->mdv_load);
1097 		break;
1098 	case DEVFS_DESTROY_DEV_BY_OPS:
1099 		devfs_destroy_dev_by_ops_worker(msg->mdv_ops.ops,
1100 						msg->mdv_ops.minor);
1101 		break;
1102 	case DEVFS_CREATE_ALL_DEV:
1103 		node = (struct devfs_node *)msg->mdv_load;
1104 		devfs_create_all_dev_worker(node);
1105 		break;
1106 	case DEVFS_MOUNT_ADD:
1107 		mnt = msg->mdv_mnt;
1108 		TAILQ_INSERT_TAIL(&devfs_mnt_list, mnt, link);
1109 		devfs_create_all_dev_worker(mnt->root_node);
1110 		break;
1111 	case DEVFS_MOUNT_DEL:
1112 		mnt = msg->mdv_mnt;
1113 		TAILQ_REMOVE(&devfs_mnt_list, mnt, link);
1114 		devfs_iterate_topology(mnt->root_node, devfs_reaperp_callback,
1115 				       NULL);
1116 		if (mnt->leak_count) {
1117 			devfs_debug(DEVFS_DEBUG_SHOW,
1118 				    "Leaked %ld devfs_node elements!\n",
1119 				    mnt->leak_count);
1120 		}
1121 		break;
1122 	case DEVFS_CHANDLER_ADD:
1123 		devfs_chandler_add_worker(msg->mdv_chandler.name,
1124 				msg->mdv_chandler.nhandler);
1125 		break;
1126 	case DEVFS_CHANDLER_DEL:
1127 		devfs_chandler_del_worker(msg->mdv_chandler.name);
1128 		break;
1129 	case DEVFS_FIND_DEVICE_BY_NAME:
1130 		devfs_find_device_by_name_worker(msg);
1131 		break;
1132 	case DEVFS_FIND_DEVICE_BY_UDEV:
1133 		devfs_find_device_by_udev_worker(msg);
1134 		break;
1135 	case DEVFS_MAKE_ALIAS:
1136 		devfs_make_alias_worker((struct devfs_alias *)msg->mdv_load);
1137 		break;
1138 	case DEVFS_APPLY_RULES:
1139 		devfs_apply_reset_rules_caller(msg->mdv_name, 1);
1140 		break;
1141 	case DEVFS_RESET_RULES:
1142 		devfs_apply_reset_rules_caller(msg->mdv_name, 0);
1143 		break;
1144 	case DEVFS_SCAN_CALLBACK:
1145 		devfs_scan_callback_worker((devfs_scan_t *)msg->mdv_load,
1146 			msg->mdv_load2);
1147 		break;
1148 	case DEVFS_CLR_SUBNAMES_FLAG:
1149 		devfs_clr_subnames_flag_worker(msg->mdv_flags.name,
1150 				msg->mdv_flags.flag);
1151 		break;
1152 	case DEVFS_DESTROY_SUBNAMES_WO_FLAG:
1153 		devfs_destroy_subnames_without_flag_worker(msg->mdv_flags.name,
1154 				msg->mdv_flags.flag);
1155 		break;
1156 	case DEVFS_INODE_TO_VNODE:
1157 		msg->mdv_ino.vp = devfs_iterate_topology(
1158 			DEVFS_MNTDATA(msg->mdv_ino.mp)->root_node,
1159 			(devfs_iterate_callback_t *)devfs_inode_to_vnode_worker_callback,
1160 			&msg->mdv_ino.ino);
1161 		break;
1162 	case DEVFS_TERMINATE_CORE:
1163 		devfs_run = 0;
1164 		break;
1165 	case DEVFS_SYNC:
1166 		break;
1167 	default:
1168 		devfs_debug(DEVFS_DEBUG_WARNING,
1169 			    "devfs_msg_core: unknown message "
1170 			    "received at core\n");
1171 		break;
1172 	}
1173 	lockmgr(&devfs_lock, LK_RELEASE);
1174 }
1175 
1176 /*
1177  * Worker function to insert a new dev into the dev list and initialize its
1178  * permissions. It also calls devfs_propagate_dev which in turn propagates
1179  * the change to all mount points.
1180  *
1181  * The passed dev is already referenced.  This reference is eaten by this
1182  * function and represents the dev's linkage into devfs_dev_list.
1183  */
1184 static int
1185 devfs_create_dev_worker(cdev_t dev, uid_t uid, gid_t gid, int perms)
1186 {
1187 	KKASSERT(dev);
1188 
1189 	dev->si_uid = uid;
1190 	dev->si_gid = gid;
1191 	dev->si_perms = perms;
1192 
1193 	devfs_link_dev(dev);
1194 	devfs_propagate_dev(dev, 1);
1195 
1196 	udev_event_attach(dev, NULL, 0);
1197 
1198 	return 0;
1199 }
1200 
1201 /*
1202  * Worker function to delete a dev from the dev list and free the cdev.
1203  * It also calls devfs_propagate_dev which in turn propagates the change
1204  * to all mount points.
1205  */
1206 static int
1207 devfs_destroy_dev_worker(cdev_t dev)
1208 {
1209 	int error;
1210 
1211 	KKASSERT(dev);
1212 	KKASSERT((lockstatus(&devfs_lock, curthread)) == LK_EXCLUSIVE);
1213 
1214 	error = devfs_unlink_dev(dev);
1215 	devfs_propagate_dev(dev, 0);
1216 
1217 	udev_event_detach(dev, NULL, 0);
1218 
1219 	if (error == 0)
1220 		release_dev(dev);	/* link ref */
1221 	release_dev(dev);
1222 	release_dev(dev);
1223 
1224 	return 0;
1225 }
1226 
1227 /*
1228  * Worker function to destroy all devices with a certain basename.
1229  * Calls devfs_destroy_dev_worker for the actual destruction.
1230  */
1231 static int
1232 devfs_destroy_subnames_worker(char *name)
1233 {
1234 	cdev_t dev, dev1;
1235 	size_t len = strlen(name);
1236 
1237 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1238 		if ((!strncmp(dev->si_name, name, len)) &&
1239 				(dev->si_name[len] != '\0')) {
1240 			devfs_destroy_dev_worker(dev);
1241 		}
1242 	}
1243 	return 0;
1244 }
1245 
1246 static int
1247 devfs_clr_subnames_flag_worker(char *name, uint32_t flag)
1248 {
1249 	cdev_t dev, dev1;
1250 	size_t len = strlen(name);
1251 
1252 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1253 		if ((!strncmp(dev->si_name, name, len)) &&
1254 				(dev->si_name[len] != '\0')) {
1255 			dev->si_flags &= ~flag;
1256 		}
1257 	}
1258 
1259 	return 0;
1260 }
1261 
1262 static int
1263 devfs_destroy_subnames_without_flag_worker(char *name, uint32_t flag)
1264 {
1265 	cdev_t dev, dev1;
1266 	size_t len = strlen(name);
1267 
1268 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1269 		if ((!strncmp(dev->si_name, name, len)) &&
1270 				(dev->si_name[len] != '\0')) {
1271 			if (!(dev->si_flags & flag)) {
1272 				devfs_destroy_dev_worker(dev);
1273 			}
1274 		}
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 /*
1281  * Worker function that creates all device nodes on top of a devfs
1282  * root node.
1283  */
1284 static int
1285 devfs_create_all_dev_worker(struct devfs_node *root)
1286 {
1287 	cdev_t dev;
1288 
1289 	KKASSERT(root);
1290 
1291 	TAILQ_FOREACH(dev, &devfs_dev_list, link) {
1292 		devfs_create_device_node(root, dev, NULL, NULL);
1293 	}
1294 
1295 	return 0;
1296 }
1297 
1298 /*
1299  * Worker function that destroys all devices that match a specific
1300  * dev_ops and/or minor. If minor is less than 0, it is not matched
1301  * against. It also propagates all changes.
1302  */
1303 static int
1304 devfs_destroy_dev_by_ops_worker(struct dev_ops *ops, int minor)
1305 {
1306 	cdev_t dev, dev1;
1307 
1308 	KKASSERT(ops);
1309 
1310 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1311 		if (dev->si_ops != ops)
1312 			continue;
1313 		if ((minor < 0) || (dev->si_uminor == minor)) {
1314 			devfs_destroy_dev_worker(dev);
1315 		}
1316 	}
1317 
1318 	return 0;
1319 }
1320 
1321 /*
1322  * Worker function that registers a new clone handler in devfs.
1323  */
1324 static int
1325 devfs_chandler_add_worker(const char *name, d_clone_t *nhandler)
1326 {
1327 	struct devfs_clone_handler *chandler = NULL;
1328 	u_char len = strlen(name);
1329 
1330 	if (len == 0)
1331 		return 1;
1332 
1333 	TAILQ_FOREACH(chandler, &devfs_chandler_list, link) {
1334 		if (chandler->namlen != len)
1335 			continue;
1336 
1337 		if (!memcmp(chandler->name, name, len)) {
1338 			/* Clonable basename already exists */
1339 			return 1;
1340 		}
1341 	}
1342 
1343 	chandler = kmalloc(sizeof(*chandler), M_DEVFS, M_WAITOK | M_ZERO);
1344 	chandler->name = kstrdup(name, M_DEVFS);
1345 	chandler->namlen = len;
1346 	chandler->nhandler = nhandler;
1347 
1348 	TAILQ_INSERT_TAIL(&devfs_chandler_list, chandler, link);
1349 	return 0;
1350 }
1351 
1352 /*
1353  * Worker function that removes a given clone handler from the
1354  * clone handler list.
1355  */
1356 static int
1357 devfs_chandler_del_worker(const char *name)
1358 {
1359 	struct devfs_clone_handler *chandler, *chandler2;
1360 	u_char len = strlen(name);
1361 
1362 	if (len == 0)
1363 		return 1;
1364 
1365 	TAILQ_FOREACH_MUTABLE(chandler, &devfs_chandler_list, link, chandler2) {
1366 		if (chandler->namlen != len)
1367 			continue;
1368 		if (memcmp(chandler->name, name, len))
1369 			continue;
1370 
1371 		TAILQ_REMOVE(&devfs_chandler_list, chandler, link);
1372 		kfree(chandler->name, M_DEVFS);
1373 		kfree(chandler, M_DEVFS);
1374 		break;
1375 	}
1376 
1377 	return 0;
1378 }
1379 
1380 /*
1381  * Worker function that finds a given device name and changes
1382  * the message received accordingly so that when replied to,
1383  * the answer is returned to the caller.
1384  */
1385 static int
1386 devfs_find_device_by_name_worker(devfs_msg_t devfs_msg)
1387 {
1388 	struct devfs_alias *alias;
1389 	cdev_t dev;
1390 	cdev_t found = NULL;
1391 
1392 	TAILQ_FOREACH(dev, &devfs_dev_list, link) {
1393 		if (strcmp(devfs_msg->mdv_name, dev->si_name) == 0) {
1394 			found = dev;
1395 			break;
1396 		}
1397 	}
1398 	if (found == NULL) {
1399 		TAILQ_FOREACH(alias, &devfs_alias_list, link) {
1400 			if (strcmp(devfs_msg->mdv_name, alias->name) == 0) {
1401 				found = alias->dev_target;
1402 				break;
1403 			}
1404 		}
1405 	}
1406 	devfs_msg->mdv_cdev = found;
1407 
1408 	return 0;
1409 }
1410 
1411 /*
1412  * Worker function that finds a given device udev and changes
1413  * the message received accordingly so that when replied to,
1414  * the answer is returned to the caller.
1415  */
1416 static int
1417 devfs_find_device_by_udev_worker(devfs_msg_t devfs_msg)
1418 {
1419 	cdev_t dev, dev1;
1420 	cdev_t found = NULL;
1421 
1422 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1423 		if (((udev_t)dev->si_inode) == devfs_msg->mdv_udev) {
1424 			found = dev;
1425 			break;
1426 		}
1427 	}
1428 	devfs_msg->mdv_cdev = found;
1429 
1430 	return 0;
1431 }
1432 
1433 /*
1434  * Worker function that inserts a given alias into the
1435  * alias list, and propagates the alias to all mount
1436  * points.
1437  */
1438 static int
1439 devfs_make_alias_worker(struct devfs_alias *alias)
1440 {
1441 	struct devfs_alias *alias2;
1442 	size_t len = strlen(alias->name);
1443 	int found = 0;
1444 
1445 	TAILQ_FOREACH(alias2, &devfs_alias_list, link) {
1446 		if (len != alias2->namlen)
1447 			continue;
1448 
1449 		if (!memcmp(alias->name, alias2->name, len)) {
1450 			found = 1;
1451 			break;
1452 		}
1453 	}
1454 
1455 	if (!found) {
1456 		/*
1457 		 * The alias doesn't exist yet, so we add it to the alias list
1458 		 */
1459 		TAILQ_INSERT_TAIL(&devfs_alias_list, alias, link);
1460 		devfs_alias_propagate(alias);
1461 		udev_event_attach(alias->dev_target, alias->name, 1);
1462 	} else {
1463 		devfs_debug(DEVFS_DEBUG_WARNING,
1464 			    "Warning: duplicate devfs_make_alias for %s\n",
1465 			    alias->name);
1466 		kfree(alias->name, M_DEVFS);
1467 		kfree(alias, M_DEVFS);
1468 	}
1469 
1470 	return 0;
1471 }
1472 
1473 /*
1474  * Function that removes and frees all aliases.
1475  */
1476 static int
1477 devfs_alias_reap(void)
1478 {
1479 	struct devfs_alias *alias, *alias2;
1480 
1481 	TAILQ_FOREACH_MUTABLE(alias, &devfs_alias_list, link, alias2) {
1482 		TAILQ_REMOVE(&devfs_alias_list, alias, link);
1483 		kfree(alias, M_DEVFS);
1484 	}
1485 	return 0;
1486 }
1487 
1488 /*
1489  * Function that removes an alias matching a specific cdev and frees
1490  * it accordingly.
1491  */
1492 static int
1493 devfs_alias_remove(cdev_t dev)
1494 {
1495 	struct devfs_alias *alias, *alias2;
1496 
1497 	TAILQ_FOREACH_MUTABLE(alias, &devfs_alias_list, link, alias2) {
1498 		if (alias->dev_target == dev) {
1499 			TAILQ_REMOVE(&devfs_alias_list, alias, link);
1500 			udev_event_detach(alias->dev_target, alias->name, 1);
1501 			kfree(alias, M_DEVFS);
1502 		}
1503 	}
1504 	return 0;
1505 }
1506 
1507 /*
1508  * This function propagates a new alias to all mount points.
1509  */
1510 static int
1511 devfs_alias_propagate(struct devfs_alias *alias)
1512 {
1513 	struct devfs_mnt_data *mnt;
1514 
1515 	TAILQ_FOREACH(mnt, &devfs_mnt_list, link) {
1516 		devfs_alias_apply(mnt->root_node, alias);
1517 	}
1518 	return 0;
1519 }
1520 
1521 /*
1522  * This function is a recursive function iterating through
1523  * all device nodes in the topology and, if applicable,
1524  * creating the relevant alias for a device node.
1525  */
1526 static int
1527 devfs_alias_apply(struct devfs_node *node, struct devfs_alias *alias)
1528 {
1529 	struct devfs_node *node1, *node2;
1530 
1531 	KKASSERT(alias != NULL);
1532 
1533 	if ((node->node_type == Proot) || (node->node_type == Pdir)) {
1534 		if (node->nchildren > 2) {
1535 			TAILQ_FOREACH_MUTABLE(node1, DEVFS_DENODE_HEAD(node), link, node2) {
1536 				devfs_alias_apply(node1, alias);
1537 			}
1538 		}
1539 	} else {
1540 		if (node->d_dev == alias->dev_target)
1541 			devfs_alias_create(alias->name, node, 0);
1542 	}
1543 	return 0;
1544 }
1545 
1546 /*
1547  * This function checks if any alias possibly is applicable
1548  * to the given node. If so, the alias is created.
1549  */
1550 static int
1551 devfs_alias_check_create(struct devfs_node *node)
1552 {
1553 	struct devfs_alias *alias;
1554 
1555 	TAILQ_FOREACH(alias, &devfs_alias_list, link) {
1556 		if (node->d_dev == alias->dev_target)
1557 			devfs_alias_create(alias->name, node, 0);
1558 	}
1559 	return 0;
1560 }
1561 
1562 /*
1563  * This function creates an alias with a given name
1564  * linking to a given devfs node. It also increments
1565  * the link count on the target node.
1566  */
1567 int
1568 devfs_alias_create(char *name_orig, struct devfs_node *target, int rule_based)
1569 {
1570 	struct mount *mp = target->mp;
1571 	struct devfs_node *parent = DEVFS_MNTDATA(mp)->root_node;
1572 	struct devfs_node *linknode;
1573 	struct hotplug_device *hpdev;
1574 	char *create_path = NULL;
1575 	char *name;
1576 	char *name_buf;
1577 	int result = 0;
1578 
1579 	KKASSERT((lockstatus(&devfs_lock, curthread)) == LK_EXCLUSIVE);
1580 
1581 	name_buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK);
1582 	devfs_resolve_name_path(name_orig, name_buf, &create_path, &name);
1583 
1584 	if (create_path)
1585 		parent = devfs_resolve_or_create_path(parent, create_path, 1);
1586 
1587 
1588 	if (devfs_find_device_node_by_name(parent, name)) {
1589 		devfs_debug(DEVFS_DEBUG_WARNING,
1590 			    "Node already exists: %s "
1591 			    "(devfs_make_alias_worker)!\n",
1592 			    name);
1593 		result = 1;
1594 		goto done;
1595 	}
1596 
1597 	linknode = devfs_allocp(Plink, name, parent, mp, NULL);
1598 	if (linknode == NULL) {
1599 		result = 1;
1600 		goto done;
1601 	}
1602 
1603 	linknode->link_target = target;
1604 	target->nlinks++;
1605 
1606 	if (rule_based)
1607 		linknode->flags |= DEVFS_RULE_CREATED;
1608 
1609 done:
1610 	/* hotplug handler */
1611 	if(devfs_node_added) {
1612 		hpdev = kmalloc(sizeof(struct hotplug_device), M_TEMP, M_WAITOK);
1613 		hpdev->dev = target->d_dev;
1614 		hpdev->name = name_orig;
1615 		devfs_node_added(hpdev);
1616 		kfree(hpdev, M_TEMP);
1617 	}
1618 	kfree(name_buf, M_TEMP);
1619 	return (result);
1620 }
1621 
1622 /*
1623  * This function is called by the core and handles mount point
1624  * strings. It either calls the relevant worker (devfs_apply_
1625  * reset_rules_worker) on all mountpoints or only a specific
1626  * one.
1627  */
1628 static int
1629 devfs_apply_reset_rules_caller(char *mountto, int apply)
1630 {
1631 	struct devfs_mnt_data *mnt;
1632 
1633 	if (mountto[0] == '*') {
1634 		TAILQ_FOREACH(mnt, &devfs_mnt_list, link) {
1635 			devfs_iterate_topology(mnt->root_node,
1636 					(apply)?(devfs_rule_check_apply):(devfs_rule_reset_node),
1637 					NULL);
1638 		}
1639 	} else {
1640 		TAILQ_FOREACH(mnt, &devfs_mnt_list, link) {
1641 			if (!strcmp(mnt->mp->mnt_stat.f_mntonname, mountto)) {
1642 				devfs_iterate_topology(mnt->root_node,
1643 					(apply)?(devfs_rule_check_apply):(devfs_rule_reset_node),
1644 					NULL);
1645 				break;
1646 			}
1647 		}
1648 	}
1649 
1650 	kfree(mountto, M_DEVFS);
1651 	return 0;
1652 }
1653 
1654 /*
1655  * This function calls a given callback function for
1656  * every dev node in the devfs dev list.
1657  */
1658 static int
1659 devfs_scan_callback_worker(devfs_scan_t *callback, void *arg)
1660 {
1661 	cdev_t dev, dev1;
1662 
1663 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1664 		callback(dev, arg);
1665 	}
1666 
1667 	return 0;
1668 }
1669 
1670 /*
1671  * This function tries to resolve a given directory, or if not
1672  * found and creation requested, creates the given directory.
1673  */
1674 static struct devfs_node *
1675 devfs_resolve_or_create_dir(struct devfs_node *parent, char *dir_name,
1676 			    size_t name_len, int create)
1677 {
1678 	struct devfs_node *node, *found = NULL;
1679 
1680 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(parent), link) {
1681 		if (name_len != node->d_dir.d_namlen)
1682 			continue;
1683 
1684 		if (!memcmp(dir_name, node->d_dir.d_name, name_len)) {
1685 			found = node;
1686 			break;
1687 		}
1688 	}
1689 
1690 	if ((found == NULL) && (create)) {
1691 		found = devfs_allocp(Pdir, dir_name, parent, parent->mp, NULL);
1692 	}
1693 
1694 	return found;
1695 }
1696 
1697 /*
1698  * This function tries to resolve a complete path. If creation is requested,
1699  * if a given part of the path cannot be resolved (because it doesn't exist),
1700  * it is created.
1701  */
1702 struct devfs_node *
1703 devfs_resolve_or_create_path(struct devfs_node *parent, char *path, int create)
1704 {
1705 	struct devfs_node *node = parent;
1706 	char *buf;
1707 	size_t idx = 0;
1708 
1709 	if (path == NULL)
1710 		return parent;
1711 
1712 	buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK);
1713 
1714 	while (*path && idx < PATH_MAX - 1) {
1715 		if (*path != '/') {
1716 			buf[idx++] = *path;
1717 		} else {
1718 			buf[idx] = '\0';
1719 			node = devfs_resolve_or_create_dir(node, buf, idx, create);
1720 			if (node == NULL) {
1721 				kfree(buf, M_TEMP);
1722 				return NULL;
1723 			}
1724 			idx = 0;
1725 		}
1726 		++path;
1727 	}
1728 	buf[idx] = '\0';
1729 	node = devfs_resolve_or_create_dir(node, buf, idx, create);
1730 	kfree (buf, M_TEMP);
1731 	return (node);
1732 }
1733 
1734 /*
1735  * Takes a full path and strips it into a directory path and a name.
1736  * For a/b/c/foo, it returns foo in namep and a/b/c in pathp. It
1737  * requires a working buffer with enough size to keep the whole
1738  * fullpath.
1739  */
1740 int
1741 devfs_resolve_name_path(char *fullpath, char *buf, char **pathp, char **namep)
1742 {
1743 	char *name = NULL;
1744 	char *path = NULL;
1745 	size_t len = strlen(fullpath) + 1;
1746 	int i;
1747 
1748 	KKASSERT((fullpath != NULL) && (buf != NULL));
1749 	KKASSERT((pathp != NULL) && (namep != NULL));
1750 
1751 	memcpy(buf, fullpath, len);
1752 
1753 	for (i = len-1; i>= 0; i--) {
1754 		if (buf[i] == '/') {
1755 			buf[i] = '\0';
1756 			name = &(buf[i+1]);
1757 			path = buf;
1758 			break;
1759 		}
1760 	}
1761 
1762 	*pathp = path;
1763 
1764 	if (name) {
1765 		*namep = name;
1766 	} else {
1767 		*namep = buf;
1768 	}
1769 
1770 	return 0;
1771 }
1772 
1773 /*
1774  * This function creates a new devfs node for a given device.  It can
1775  * handle a complete path as device name, and accordingly creates
1776  * the path and the final device node.
1777  *
1778  * The reference count on the passed dev remains unchanged.
1779  */
1780 struct devfs_node *
1781 devfs_create_device_node(struct devfs_node *root, cdev_t dev,
1782 			 char *dev_name, char *path_fmt, ...)
1783 {
1784 	struct devfs_node *parent, *node = NULL;
1785 	struct hotplug_device *hpdev;
1786 	char *path = NULL;
1787 	char *name;
1788 	char *name_buf;
1789 	__va_list ap;
1790 	int i, found;
1791 	char *create_path = NULL;
1792 	char *names = "pqrsPQRS";
1793 
1794 	name_buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK);
1795 
1796 	if (path_fmt != NULL) {
1797 		__va_start(ap, path_fmt);
1798 		kvasnrprintf(&path, PATH_MAX, 10, path_fmt, ap);
1799 		__va_end(ap);
1800 	}
1801 
1802 	parent = devfs_resolve_or_create_path(root, path, 1);
1803 	KKASSERT(parent);
1804 
1805 	devfs_resolve_name_path(
1806 			((dev_name == NULL) && (dev))?(dev->si_name):(dev_name),
1807 			name_buf, &create_path, &name);
1808 
1809 	if (create_path)
1810 		parent = devfs_resolve_or_create_path(parent, create_path, 1);
1811 
1812 
1813 	if (devfs_find_device_node_by_name(parent, name)) {
1814 		devfs_debug(DEVFS_DEBUG_WARNING, "devfs_create_device_node: "
1815 			"DEVICE %s ALREADY EXISTS!!! Ignoring creation request.\n", name);
1816 		goto out;
1817 	}
1818 
1819 	node = devfs_allocp(Pdev, name, parent, parent->mp, dev);
1820 	nanotime(&parent->mtime);
1821 
1822 	/*
1823 	 * Ugly unix98 pty magic, to hide pty master (ptm) devices and their
1824 	 * directory
1825 	 */
1826 	if ((dev) && (strlen(dev->si_name) >= 4) &&
1827 			(!memcmp(dev->si_name, "ptm/", 4))) {
1828 		node->parent->flags |= DEVFS_HIDDEN;
1829 		node->flags |= DEVFS_HIDDEN;
1830 	}
1831 
1832 	/*
1833 	 * Ugly pty magic, to tag pty devices as such and hide them if needed.
1834 	 */
1835 	if ((strlen(name) >= 3) && (!memcmp(name, "pty", 3)))
1836 		node->flags |= (DEVFS_PTY | DEVFS_INVISIBLE);
1837 
1838 	if ((strlen(name) >= 3) && (!memcmp(name, "tty", 3))) {
1839 		found = 0;
1840 		for (i = 0; i < strlen(names); i++) {
1841 			if (name[3] == names[i]) {
1842 				found = 1;
1843 				break;
1844 			}
1845 		}
1846 		if (found)
1847 			node->flags |= (DEVFS_PTY | DEVFS_INVISIBLE);
1848 	}
1849 	/* hotplug handler */
1850 	if(devfs_node_added) {
1851 		hpdev = kmalloc(sizeof(struct hotplug_device), M_TEMP, M_WAITOK);
1852 		hpdev->dev = node->d_dev;
1853 		hpdev->name = node->d_dev->si_name;
1854 		devfs_node_added(hpdev);
1855 		kfree(hpdev, M_TEMP);
1856 	}
1857 
1858 out:
1859 	kfree(name_buf, M_TEMP);
1860 	kvasfree(&path);
1861 	return node;
1862 }
1863 
1864 /*
1865  * This function finds a given device node in the topology with a given
1866  * cdev.
1867  */
1868 void *
1869 devfs_find_device_node_callback(struct devfs_node *node, cdev_t target)
1870 {
1871 	if ((node->node_type == Pdev) && (node->d_dev == target)) {
1872 		return node;
1873 	}
1874 
1875 	return NULL;
1876 }
1877 
1878 /*
1879  * This function finds a device node in the given parent directory by its
1880  * name and returns it.
1881  */
1882 struct devfs_node *
1883 devfs_find_device_node_by_name(struct devfs_node *parent, char *target)
1884 {
1885 	struct devfs_node *node, *found = NULL;
1886 	size_t len = strlen(target);
1887 
1888 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(parent), link) {
1889 		if (len != node->d_dir.d_namlen)
1890 			continue;
1891 
1892 		if (!memcmp(node->d_dir.d_name, target, len)) {
1893 			found = node;
1894 			break;
1895 		}
1896 	}
1897 
1898 	return found;
1899 }
1900 
1901 static void *
1902 devfs_inode_to_vnode_worker_callback(struct devfs_node *node, ino_t *inop)
1903 {
1904 	struct vnode *vp = NULL;
1905 	ino_t target = *inop;
1906 
1907 	if (node->d_dir.d_ino == target) {
1908 		if (node->v_node) {
1909 			vp = node->v_node;
1910 			vget(vp, LK_EXCLUSIVE | LK_RETRY);
1911 			vn_unlock(vp);
1912 		} else {
1913 			devfs_allocv(&vp, node);
1914 			vn_unlock(vp);
1915 		}
1916 	}
1917 
1918 	return vp;
1919 }
1920 
1921 /*
1922  * This function takes a cdev and removes its devfs node in the
1923  * given topology.  The cdev remains intact.
1924  */
1925 int
1926 devfs_destroy_device_node(struct devfs_node *root, cdev_t target)
1927 {
1928 	struct devfs_node *node, *parent;
1929 	char *name;
1930 	char *name_buf;
1931 	char *create_path = NULL;
1932 
1933 	KKASSERT(target);
1934 
1935 	name_buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK);
1936 	ksnprintf(name_buf, PATH_MAX, "%s", target->si_name);
1937 
1938 	devfs_resolve_name_path(target->si_name, name_buf, &create_path, &name);
1939 
1940 	if (create_path)
1941 		parent = devfs_resolve_or_create_path(root, create_path, 0);
1942 	else
1943 		parent = root;
1944 
1945 	if (parent == NULL) {
1946 		kfree(name_buf, M_TEMP);
1947 		return 1;
1948 	}
1949 
1950 	node = devfs_find_device_node_by_name(parent, name);
1951 
1952 	if (node) {
1953 		nanotime(&node->parent->mtime);
1954 		devfs_gc(node);
1955 	}
1956 
1957 	kfree(name_buf, M_TEMP);
1958 
1959 	return 0;
1960 }
1961 
1962 /*
1963  * Just set perms and ownership for given node.
1964  */
1965 int
1966 devfs_set_perms(struct devfs_node *node, uid_t uid, gid_t gid,
1967 		u_short mode, u_long flags)
1968 {
1969 	node->mode = mode;
1970 	node->uid = uid;
1971 	node->gid = gid;
1972 
1973 	return 0;
1974 }
1975 
1976 /*
1977  * Propagates a device attach/detach to all mount
1978  * points. Also takes care of automatic alias removal
1979  * for a deleted cdev.
1980  */
1981 static int
1982 devfs_propagate_dev(cdev_t dev, int attach)
1983 {
1984 	struct devfs_mnt_data *mnt;
1985 
1986 	TAILQ_FOREACH(mnt, &devfs_mnt_list, link) {
1987 		if (attach) {
1988 			/* Device is being attached */
1989 			devfs_create_device_node(mnt->root_node, dev,
1990 						 NULL, NULL );
1991 		} else {
1992 			/* Device is being detached */
1993 			devfs_alias_remove(dev);
1994 			devfs_destroy_device_node(mnt->root_node, dev);
1995 		}
1996 	}
1997 	return 0;
1998 }
1999 
2000 /*
2001  * devfs_clone either returns a basename from a complete name by
2002  * returning the length of the name without trailing digits, or,
2003  * if clone != 0, calls the device's clone handler to get a new
2004  * device, which in turn is returned in devp.
2005  */
2006 cdev_t
2007 devfs_clone(cdev_t dev, const char *name, size_t len, int mode,
2008 		struct ucred *cred)
2009 {
2010 	int error;
2011 	struct devfs_clone_handler *chandler;
2012 	struct dev_clone_args ap;
2013 
2014 	TAILQ_FOREACH(chandler, &devfs_chandler_list, link) {
2015 		if (chandler->namlen != len)
2016 			continue;
2017 		if ((!memcmp(chandler->name, name, len)) && (chandler->nhandler)) {
2018 			lockmgr(&devfs_lock, LK_RELEASE);
2019 			devfs_config();
2020 			lockmgr(&devfs_lock, LK_EXCLUSIVE);
2021 
2022 			ap.a_head.a_dev = dev;
2023 			ap.a_dev = NULL;
2024 			ap.a_name = name;
2025 			ap.a_namelen = len;
2026 			ap.a_mode = mode;
2027 			ap.a_cred = cred;
2028 			error = (chandler->nhandler)(&ap);
2029 			if (error)
2030 				continue;
2031 
2032 			return ap.a_dev;
2033 		}
2034 	}
2035 
2036 	return NULL;
2037 }
2038 
2039 
2040 /*
2041  * Registers a new orphan in the orphan list.
2042  */
2043 void
2044 devfs_tracer_add_orphan(struct devfs_node *node)
2045 {
2046 	struct devfs_orphan *orphan;
2047 
2048 	KKASSERT(node);
2049 	orphan = kmalloc(sizeof(struct devfs_orphan), M_DEVFS, M_WAITOK);
2050 	orphan->node = node;
2051 
2052 	KKASSERT((node->flags & DEVFS_ORPHANED) == 0);
2053 	node->flags |= DEVFS_ORPHANED;
2054 	TAILQ_INSERT_TAIL(DEVFS_ORPHANLIST(node->mp), orphan, link);
2055 }
2056 
2057 /*
2058  * Removes an orphan from the orphan list.
2059  */
2060 void
2061 devfs_tracer_del_orphan(struct devfs_node *node)
2062 {
2063 	struct devfs_orphan *orphan;
2064 
2065 	KKASSERT(node);
2066 
2067 	TAILQ_FOREACH(orphan, DEVFS_ORPHANLIST(node->mp), link)	{
2068 		if (orphan->node == node) {
2069 			node->flags &= ~DEVFS_ORPHANED;
2070 			TAILQ_REMOVE(DEVFS_ORPHANLIST(node->mp), orphan, link);
2071 			kfree(orphan, M_DEVFS);
2072 			break;
2073 		}
2074 	}
2075 }
2076 
2077 /*
2078  * Counts the orphans in the orphan list, and if cleanup
2079  * is specified, also frees the orphan and removes it from
2080  * the list.
2081  */
2082 size_t
2083 devfs_tracer_orphan_count(struct mount *mp, int cleanup)
2084 {
2085 	struct devfs_orphan *orphan, *orphan2;
2086 	size_t count = 0;
2087 
2088 	TAILQ_FOREACH_MUTABLE(orphan, DEVFS_ORPHANLIST(mp), link, orphan2)	{
2089 		count++;
2090 		/*
2091 		 * If we are instructed to clean up, we do so.
2092 		 */
2093 		if (cleanup) {
2094 			TAILQ_REMOVE(DEVFS_ORPHANLIST(mp), orphan, link);
2095 			orphan->node->flags &= ~DEVFS_ORPHANED;
2096 			devfs_freep(orphan->node);
2097 			kfree(orphan, M_DEVFS);
2098 		}
2099 	}
2100 
2101 	return count;
2102 }
2103 
2104 /*
2105  * Fetch an ino_t from the global d_ino by increasing it
2106  * while spinlocked.
2107  */
2108 static ino_t
2109 devfs_fetch_ino(void)
2110 {
2111 	ino_t	ret;
2112 
2113 	spin_lock_wr(&ino_lock);
2114 	ret = d_ino++;
2115 	spin_unlock_wr(&ino_lock);
2116 
2117 	return ret;
2118 }
2119 
2120 /*
2121  * Allocates a new cdev and initializes it's most basic
2122  * fields.
2123  */
2124 cdev_t
2125 devfs_new_cdev(struct dev_ops *ops, int minor, struct dev_ops *bops)
2126 {
2127 	cdev_t dev = sysref_alloc(&cdev_sysref_class);
2128 
2129 	sysref_activate(&dev->si_sysref);
2130 	reference_dev(dev);
2131 	bzero(dev, offsetof(struct cdev, si_sysref));
2132 
2133 	dev->si_uid = 0;
2134 	dev->si_gid = 0;
2135 	dev->si_perms = 0;
2136 	dev->si_drv1 = NULL;
2137 	dev->si_drv2 = NULL;
2138 	dev->si_lastread = 0;		/* time_second */
2139 	dev->si_lastwrite = 0;		/* time_second */
2140 
2141 	dev->si_ops = ops;
2142 	dev->si_flags = 0;
2143 	dev->si_umajor = 0;
2144 	dev->si_uminor = minor;
2145 	dev->si_bops = bops;
2146 	/* If there is a backing device, we reference its ops */
2147 	dev->si_inode = makeudev(
2148 		    devfs_reference_ops((bops)?(bops):(ops)),
2149 		    minor );
2150 
2151 	return dev;
2152 }
2153 
2154 static void
2155 devfs_cdev_terminate(cdev_t dev)
2156 {
2157 	int locked = 0;
2158 
2159 	/* Check if it is locked already. if not, we acquire the devfs lock */
2160 	if (!(lockstatus(&devfs_lock, curthread)) == LK_EXCLUSIVE) {
2161 		lockmgr(&devfs_lock, LK_EXCLUSIVE);
2162 		locked = 1;
2163 	}
2164 
2165 	/* Propagate destruction, just in case */
2166 	devfs_propagate_dev(dev, 0);
2167 
2168 	/* If we acquired the lock, we also get rid of it */
2169 	if (locked)
2170 		lockmgr(&devfs_lock, LK_RELEASE);
2171 
2172 	/* If there is a backing device, we release the backing device's ops */
2173 	devfs_release_ops((dev->si_bops)?(dev->si_bops):(dev->si_ops));
2174 
2175 	/* Finally destroy the device */
2176 	sysref_put(&dev->si_sysref);
2177 }
2178 
2179 /*
2180  * Dummies for now (individual locks for MPSAFE)
2181  */
2182 static void
2183 devfs_cdev_lock(cdev_t dev)
2184 {
2185 }
2186 
2187 static void
2188 devfs_cdev_unlock(cdev_t dev)
2189 {
2190 }
2191 
2192 /*
2193  * Links a given cdev into the dev list.
2194  */
2195 int
2196 devfs_link_dev(cdev_t dev)
2197 {
2198 	KKASSERT((dev->si_flags & SI_DEVFS_LINKED) == 0);
2199 	dev->si_flags |= SI_DEVFS_LINKED;
2200 	TAILQ_INSERT_TAIL(&devfs_dev_list, dev, link);
2201 
2202 	return 0;
2203 }
2204 
2205 /*
2206  * Removes a given cdev from the dev list.  The caller is responsible for
2207  * releasing the reference on the device associated with the linkage.
2208  *
2209  * Returns EALREADY if the dev has already been unlinked.
2210  */
2211 static int
2212 devfs_unlink_dev(cdev_t dev)
2213 {
2214 	if ((dev->si_flags & SI_DEVFS_LINKED)) {
2215 		TAILQ_REMOVE(&devfs_dev_list, dev, link);
2216 		dev->si_flags &= ~SI_DEVFS_LINKED;
2217 		return (0);
2218 	}
2219 	return (EALREADY);
2220 }
2221 
2222 int
2223 devfs_node_is_accessible(struct devfs_node *node)
2224 {
2225 	if ((node) && (!(node->flags & DEVFS_HIDDEN)))
2226 		return 1;
2227 	else
2228 		return 0;
2229 }
2230 
2231 int
2232 devfs_reference_ops(struct dev_ops *ops)
2233 {
2234 	int unit;
2235 	struct devfs_dev_ops *found = NULL;
2236 	struct devfs_dev_ops *devops;
2237 
2238 	TAILQ_FOREACH(devops, &devfs_dev_ops_list, link) {
2239 		if (devops->ops == ops) {
2240 			found = devops;
2241 			break;
2242 		}
2243 	}
2244 
2245 	if (!found) {
2246 		found = kmalloc(sizeof(struct devfs_dev_ops), M_DEVFS, M_WAITOK);
2247 		found->ops = ops;
2248 		found->ref_count = 0;
2249 		TAILQ_INSERT_TAIL(&devfs_dev_ops_list, found, link);
2250 	}
2251 
2252 	KKASSERT(found);
2253 
2254 	if (found->ref_count == 0) {
2255 		found->id = devfs_clone_bitmap_get(&DEVFS_CLONE_BITMAP(ops_id), 255);
2256 		if (found->id == -1) {
2257 			/* Ran out of unique ids */
2258 			devfs_debug(DEVFS_DEBUG_WARNING,
2259 					"devfs_reference_ops: WARNING: ran out of unique ids\n");
2260 		}
2261 	}
2262 	unit = found->id;
2263 	++found->ref_count;
2264 
2265 	return unit;
2266 }
2267 
2268 void
2269 devfs_release_ops(struct dev_ops *ops)
2270 {
2271 	struct devfs_dev_ops *found = NULL;
2272 	struct devfs_dev_ops *devops;
2273 
2274 	TAILQ_FOREACH(devops, &devfs_dev_ops_list, link) {
2275 		if (devops->ops == ops) {
2276 			found = devops;
2277 			break;
2278 		}
2279 	}
2280 
2281 	KKASSERT(found);
2282 
2283 	--found->ref_count;
2284 
2285 	if (found->ref_count == 0) {
2286 		TAILQ_REMOVE(&devfs_dev_ops_list, found, link);
2287 		devfs_clone_bitmap_put(&DEVFS_CLONE_BITMAP(ops_id), found->id);
2288 		kfree(found, M_DEVFS);
2289 	}
2290 }
2291 
2292 void
2293 devfs_config(void)
2294 {
2295 	devfs_msg_t msg;
2296 
2297 	msg = devfs_msg_get();
2298 	msg = devfs_msg_send_sync(DEVFS_SYNC, msg);
2299 	devfs_msg_put(msg);
2300 }
2301 
2302 /*
2303  * Called on init of devfs; creates the objcaches and
2304  * spawns off the devfs core thread. Also initializes
2305  * locks.
2306  */
2307 static void
2308 devfs_init(void)
2309 {
2310 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_init() called\n");
2311 	/* Create objcaches for nodes, msgs and devs */
2312 	devfs_node_cache = objcache_create("devfs-node-cache", 0, 0,
2313 					   NULL, NULL, NULL,
2314 					   objcache_malloc_alloc,
2315 					   objcache_malloc_free,
2316 					   &devfs_node_malloc_args );
2317 
2318 	devfs_msg_cache = objcache_create("devfs-msg-cache", 0, 0,
2319 					  NULL, NULL, NULL,
2320 					  objcache_malloc_alloc,
2321 					  objcache_malloc_free,
2322 					  &devfs_msg_malloc_args );
2323 
2324 	devfs_dev_cache = objcache_create("devfs-dev-cache", 0, 0,
2325 					  NULL, NULL, NULL,
2326 					  objcache_malloc_alloc,
2327 					  objcache_malloc_free,
2328 					  &devfs_dev_malloc_args );
2329 
2330 	devfs_clone_bitmap_init(&DEVFS_CLONE_BITMAP(ops_id));
2331 
2332 	/* Initialize the reply-only port which acts as a message drain */
2333 	lwkt_initport_replyonly(&devfs_dispose_port, devfs_msg_autofree_reply);
2334 
2335 	/* Initialize *THE* devfs lock */
2336 	lockinit(&devfs_lock, "devfs_core lock", 0, 0);
2337 
2338 
2339 	lwkt_create(devfs_msg_core, /*args*/NULL, &td_core, NULL,
2340 		    0, 0, "devfs_msg_core");
2341 
2342 	tsleep(td_core/*devfs_id*/, 0, "devfsc", 0);
2343 
2344 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_init finished\n");
2345 }
2346 
2347 /*
2348  * Called on unload of devfs; takes care of destroying the core
2349  * and the objcaches. Also removes aliases that are no longer needed.
2350  */
2351 static void
2352 devfs_uninit(void)
2353 {
2354 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_uninit() called\n");
2355 
2356 	devfs_msg_send(DEVFS_TERMINATE_CORE, NULL);
2357 
2358 	tsleep(td_core/*devfs_id*/, 0, "devfsc", 0);
2359 	tsleep(td_core/*devfs_id*/, 0, "devfsc", 10000);
2360 
2361 	devfs_clone_bitmap_uninit(&DEVFS_CLONE_BITMAP(ops_id));
2362 
2363 	/* Destroy the objcaches */
2364 	objcache_destroy(devfs_msg_cache);
2365 	objcache_destroy(devfs_node_cache);
2366 	objcache_destroy(devfs_dev_cache);
2367 
2368 	devfs_alias_reap();
2369 }
2370 
2371 /*
2372  * This is a sysctl handler to assist userland devname(3) to
2373  * find the device name for a given udev.
2374  */
2375 static int
2376 devfs_sysctl_devname_helper(SYSCTL_HANDLER_ARGS)
2377 {
2378 	udev_t 	udev;
2379 	cdev_t	found;
2380 	int		error;
2381 
2382 
2383 	if ((error = SYSCTL_IN(req, &udev, sizeof(udev_t))))
2384 		return (error);
2385 
2386 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs sysctl, received udev: %d\n", udev);
2387 
2388 	if (udev == NOUDEV)
2389 		return(EINVAL);
2390 
2391 	if ((found = devfs_find_device_by_udev(udev)) == NULL)
2392 		return(ENOENT);
2393 
2394 	return(SYSCTL_OUT(req, found->si_name, strlen(found->si_name) + 1));
2395 }
2396 
2397 
2398 SYSCTL_PROC(_kern, OID_AUTO, devname, CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_ANYBODY,
2399 			NULL, 0, devfs_sysctl_devname_helper, "", "helper for devname(3)");
2400 
2401 SYSCTL_NODE(_vfs, OID_AUTO, devfs, CTLFLAG_RW, 0, "devfs");
2402 TUNABLE_INT("vfs.devfs.debug", &devfs_debug_enable);
2403 SYSCTL_INT(_vfs_devfs, OID_AUTO, debug, CTLFLAG_RW, &devfs_debug_enable,
2404 		0, "Enable DevFS debugging");
2405 
2406 SYSINIT(vfs_devfs_register, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST,
2407 		devfs_init, NULL);
2408 SYSUNINIT(vfs_devfs_register, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY,
2409 		devfs_uninit, NULL);
2410