xref: /dflybsd-src/sys/platform/pc64/x86_64/pmap.c (revision 5ba2aca2bd75b9a67f07b5af7d98a6c6eb1ff483)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1994 David Greenman
5  * Copyright (c) 2003 Peter Wemm
6  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7  * Copyright (c) 2008, 2009 The DragonFly Project.
8  * Copyright (c) 2008, 2009 Jordan Gordeev.
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * the Systems Programming Group of the University of Utah Computer
13  * Science Department and William Jolitz of UUNET Technologies Inc.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44  * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
45  */
46 
47 /*
48  *	Manages physical address maps.
49  *
50  *	In addition to hardware address maps, this
51  *	module is called upon to provide software-use-only
52  *	maps which may or may not be stored in the same
53  *	form as hardware maps.  These pseudo-maps are
54  *	used to store intermediate results from copy
55  *	operations to and from address spaces.
56  *
57  *	Since the information managed by this module is
58  *	also stored by the logical address mapping module,
59  *	this module may throw away valid virtual-to-physical
60  *	mappings at almost any time.  However, invalidations
61  *	of virtual-to-physical mappings must be done as
62  *	requested.
63  *
64  *	In order to cope with hardware architectures which
65  *	make virtual-to-physical map invalidates expensive,
66  *	this module may delay invalidate or reduced protection
67  *	operations until such time as they are actually
68  *	necessary.  This module is given full information as
69  *	to which processors are currently using which maps,
70  *	and to when physical maps must be made correct.
71  */
72 
73 #if JG
74 #include "opt_disable_pse.h"
75 #include "opt_pmap.h"
76 #endif
77 #include "opt_msgbuf.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/msgbuf.h>
84 #include <sys/vmmeter.h>
85 #include <sys/mman.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <sys/sysctl.h>
90 #include <sys/lock.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_pager.h>
98 #include <vm/vm_zone.h>
99 
100 #include <sys/user.h>
101 #include <sys/thread2.h>
102 #include <sys/sysref2.h>
103 
104 #include <machine/cputypes.h>
105 #include <machine/md_var.h>
106 #include <machine/specialreg.h>
107 #include <machine/smp.h>
108 #include <machine_base/apic/apicreg.h>
109 #include <machine/globaldata.h>
110 #include <machine/pmap.h>
111 #include <machine/pmap_inval.h>
112 
113 #include <ddb/ddb.h>
114 
115 #define PMAP_KEEP_PDIRS
116 #ifndef PMAP_SHPGPERPROC
117 #define PMAP_SHPGPERPROC 200
118 #endif
119 
120 #if defined(DIAGNOSTIC)
121 #define PMAP_DIAGNOSTIC
122 #endif
123 
124 #define MINPV 2048
125 
126 /*
127  * Get PDEs and PTEs for user/kernel address space
128  */
129 static pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va);
130 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
131 
132 #define pmap_pde_v(pte)		((*(pd_entry_t *)pte & PG_V) != 0)
133 #define pmap_pte_w(pte)		((*(pt_entry_t *)pte & PG_W) != 0)
134 #define pmap_pte_m(pte)		((*(pt_entry_t *)pte & PG_M) != 0)
135 #define pmap_pte_u(pte)		((*(pt_entry_t *)pte & PG_A) != 0)
136 #define pmap_pte_v(pte)		((*(pt_entry_t *)pte & PG_V) != 0)
137 
138 
139 /*
140  * Given a map and a machine independent protection code,
141  * convert to a vax protection code.
142  */
143 #define pte_prot(m, p)		\
144 	(protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
145 static int protection_codes[8];
146 
147 struct pmap kernel_pmap;
148 static TAILQ_HEAD(,pmap)	pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
149 
150 vm_paddr_t avail_start;		/* PA of first available physical page */
151 vm_paddr_t avail_end;		/* PA of last available physical page */
152 vm_offset_t virtual2_start;	/* cutout free area prior to kernel start */
153 vm_offset_t virtual2_end;
154 vm_offset_t virtual_start;	/* VA of first avail page (after kernel bss) */
155 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
156 vm_offset_t KvaStart;		/* VA start of KVA space */
157 vm_offset_t KvaEnd;		/* VA end of KVA space (non-inclusive) */
158 vm_offset_t KvaSize;		/* max size of kernel virtual address space */
159 static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
160 static int pgeflag;		/* PG_G or-in */
161 static int pseflag;		/* PG_PS or-in */
162 
163 static vm_object_t kptobj;
164 
165 static int ndmpdp;
166 static vm_paddr_t dmaplimit;
167 static int nkpt;
168 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
169 
170 static uint64_t KPTbase;
171 static uint64_t KPTphys;
172 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
173 static uint64_t	KPDbase;	/* phys addr of kernel level 2 @ KERNBASE */
174 uint64_t KPDPphys;	/* phys addr of kernel level 3 */
175 uint64_t KPML4phys;	/* phys addr of kernel level 4 */
176 
177 static uint64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
178 static uint64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
179 
180 /*
181  * Data for the pv entry allocation mechanism
182  */
183 static vm_zone_t pvzone;
184 static struct vm_zone pvzone_store;
185 static struct vm_object pvzone_obj;
186 static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
187 static int pmap_pagedaemon_waken = 0;
188 static struct pv_entry *pvinit;
189 
190 /*
191  * All those kernel PT submaps that BSD is so fond of
192  */
193 pt_entry_t *CMAP1 = 0, *ptmmap;
194 caddr_t CADDR1 = 0, ptvmmap = 0;
195 static pt_entry_t *msgbufmap;
196 struct msgbuf *msgbufp=0;
197 
198 /*
199  * Crashdump maps.
200  */
201 static pt_entry_t *pt_crashdumpmap;
202 static caddr_t crashdumpmap;
203 
204 extern pt_entry_t *SMPpt;
205 extern uint64_t SMPptpa;
206 
207 #define DISABLE_PSE
208 
209 static pv_entry_t get_pv_entry (void);
210 static void i386_protection_init (void);
211 static void create_pagetables(vm_paddr_t *firstaddr);
212 static void pmap_remove_all (vm_page_t m);
213 static int  pmap_remove_pte (struct pmap *pmap, pt_entry_t *ptq,
214 				vm_offset_t sva, pmap_inval_info_t info);
215 static void pmap_remove_page (struct pmap *pmap,
216 				vm_offset_t va, pmap_inval_info_t info);
217 static int  pmap_remove_entry (struct pmap *pmap, vm_page_t m,
218 				vm_offset_t va, pmap_inval_info_t info);
219 static boolean_t pmap_testbit (vm_page_t m, int bit);
220 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
221 				vm_page_t mpte, vm_page_t m);
222 
223 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
224 
225 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
226 static vm_page_t _pmap_allocpte (pmap_t pmap, vm_pindex_t ptepindex);
227 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
228 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
229 static int _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m,
230 				pmap_inval_info_t info);
231 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t, pmap_inval_info_t);
232 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
233 
234 static unsigned pdir4mb;
235 
236 /*
237  * Move the kernel virtual free pointer to the next
238  * 2MB.  This is used to help improve performance
239  * by using a large (2MB) page for much of the kernel
240  * (.text, .data, .bss)
241  */
242 static
243 vm_offset_t
244 pmap_kmem_choose(vm_offset_t addr)
245 {
246 	vm_offset_t newaddr = addr;
247 
248 	newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
249 	return newaddr;
250 }
251 
252 /*
253  * pmap_pte_quick:
254  *
255  *	Super fast pmap_pte routine best used when scanning the pv lists.
256  *	This eliminates many course-grained invltlb calls.  Note that many of
257  *	the pv list scans are across different pmaps and it is very wasteful
258  *	to do an entire invltlb when checking a single mapping.
259  *
260  *	Should only be called while in a critical section.
261  */
262 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
263 
264 static
265 pt_entry_t *
266 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
267 {
268 	return pmap_pte(pmap, va);
269 }
270 
271 /* Return a non-clipped PD index for a given VA */
272 static __inline
273 vm_pindex_t
274 pmap_pde_pindex(vm_offset_t va)
275 {
276 	return va >> PDRSHIFT;
277 }
278 
279 /* Return various clipped indexes for a given VA */
280 static __inline
281 vm_pindex_t
282 pmap_pte_index(vm_offset_t va)
283 {
284 
285 	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
286 }
287 
288 static __inline
289 vm_pindex_t
290 pmap_pde_index(vm_offset_t va)
291 {
292 
293 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
294 }
295 
296 static __inline
297 vm_pindex_t
298 pmap_pdpe_index(vm_offset_t va)
299 {
300 
301 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
302 }
303 
304 static __inline
305 vm_pindex_t
306 pmap_pml4e_index(vm_offset_t va)
307 {
308 
309 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
310 }
311 
312 /* Return a pointer to the PML4 slot that corresponds to a VA */
313 static __inline
314 pml4_entry_t *
315 pmap_pml4e(pmap_t pmap, vm_offset_t va)
316 {
317 
318 	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
319 }
320 
321 /* Return a pointer to the PDP slot that corresponds to a VA */
322 static __inline
323 pdp_entry_t *
324 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
325 {
326 	pdp_entry_t *pdpe;
327 
328 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
329 	return (&pdpe[pmap_pdpe_index(va)]);
330 }
331 
332 /* Return a pointer to the PDP slot that corresponds to a VA */
333 static __inline
334 pdp_entry_t *
335 pmap_pdpe(pmap_t pmap, vm_offset_t va)
336 {
337 	pml4_entry_t *pml4e;
338 
339 	pml4e = pmap_pml4e(pmap, va);
340 	if ((*pml4e & PG_V) == 0)
341 		return NULL;
342 	return (pmap_pml4e_to_pdpe(pml4e, va));
343 }
344 
345 /* Return a pointer to the PD slot that corresponds to a VA */
346 static __inline
347 pd_entry_t *
348 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
349 {
350 	pd_entry_t *pde;
351 
352 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
353 	return (&pde[pmap_pde_index(va)]);
354 }
355 
356 /* Return a pointer to the PD slot that corresponds to a VA */
357 static __inline
358 pd_entry_t *
359 pmap_pde(pmap_t pmap, vm_offset_t va)
360 {
361 	pdp_entry_t *pdpe;
362 
363 	pdpe = pmap_pdpe(pmap, va);
364 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
365 		 return NULL;
366 	return (pmap_pdpe_to_pde(pdpe, va));
367 }
368 
369 /* Return a pointer to the PT slot that corresponds to a VA */
370 static __inline
371 pt_entry_t *
372 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
373 {
374 	pt_entry_t *pte;
375 
376 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
377 	return (&pte[pmap_pte_index(va)]);
378 }
379 
380 /* Return a pointer to the PT slot that corresponds to a VA */
381 static __inline
382 pt_entry_t *
383 pmap_pte(pmap_t pmap, vm_offset_t va)
384 {
385 	pd_entry_t *pde;
386 
387 	pde = pmap_pde(pmap, va);
388 	if (pde == NULL || (*pde & PG_V) == 0)
389 		return NULL;
390 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
391 		return ((pt_entry_t *)pde);
392 	return (pmap_pde_to_pte(pde, va));
393 }
394 
395 static __inline
396 pt_entry_t *
397 vtopte(vm_offset_t va)
398 {
399 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
400 
401 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
402 }
403 
404 static __inline
405 pd_entry_t *
406 vtopde(vm_offset_t va)
407 {
408 	uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
409 
410 	return (PDmap + ((va >> PDRSHIFT) & mask));
411 }
412 
413 static uint64_t
414 allocpages(vm_paddr_t *firstaddr, int n)
415 {
416 	uint64_t ret;
417 
418 	ret = *firstaddr;
419 	bzero((void *)ret, n * PAGE_SIZE);
420 	*firstaddr += n * PAGE_SIZE;
421 	return (ret);
422 }
423 
424 static
425 void
426 create_pagetables(vm_paddr_t *firstaddr)
427 {
428 	int i;
429 
430 	/* we are running (mostly) V=P at this point */
431 
432 	/* Allocate pages */
433 	KPTbase = allocpages(firstaddr, NKPT);
434 	KPTphys = allocpages(firstaddr, NKPT);
435 	KPML4phys = allocpages(firstaddr, 1);
436 	KPDPphys = allocpages(firstaddr, NKPML4E);
437 
438 	/*
439 	 * Calculate the page directory base for KERNBASE,
440 	 * that is where we start populating the page table pages.
441 	 * Basically this is the end - 2.
442 	 */
443 	KPDphys = allocpages(firstaddr, NKPDPE);
444 	KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
445 
446 	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
447 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
448 		ndmpdp = 4;
449 	DMPDPphys = allocpages(firstaddr, NDMPML4E);
450 	if ((amd_feature & AMDID_PAGE1GB) == 0)
451 		DMPDphys = allocpages(firstaddr, ndmpdp);
452 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
453 
454 	/*
455 	 * Fill in the underlying page table pages for the area around
456 	 * KERNBASE.  This remaps low physical memory to KERNBASE.
457 	 *
458 	 * Read-only from zero to physfree
459 	 * XXX not fully used, underneath 2M pages
460 	 */
461 	for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
462 		((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
463 		((pt_entry_t *)KPTbase)[i] |= PG_RW | PG_V | PG_G;
464 	}
465 
466 	/*
467 	 * Now map the initial kernel page tables.  One block of page
468 	 * tables is placed at the beginning of kernel virtual memory,
469 	 * and another block is placed at KERNBASE to map the kernel binary,
470 	 * data, bss, and initial pre-allocations.
471 	 */
472 	for (i = 0; i < NKPT; i++) {
473 		((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
474 		((pd_entry_t *)KPDbase)[i] |= PG_RW | PG_V;
475 	}
476 	for (i = 0; i < NKPT; i++) {
477 		((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
478 		((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V;
479 	}
480 
481 	/*
482 	 * Map from zero to end of allocations using 2M pages as an
483 	 * optimization.  This will bypass some of the KPTBase pages
484 	 * above in the KERNBASE area.
485 	 */
486 	for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
487 		((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
488 		((pd_entry_t *)KPDbase)[i] |= PG_RW | PG_V | PG_PS | PG_G;
489 	}
490 
491 	/*
492 	 * And connect up the PD to the PDP.  The kernel pmap is expected
493 	 * to pre-populate all of its PDs.  See NKPDPE in vmparam.h.
494 	 */
495 	for (i = 0; i < NKPDPE; i++) {
496 		((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
497 				KPDphys + (i << PAGE_SHIFT);
498 		((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
499 				PG_RW | PG_V | PG_U;
500 	}
501 
502 	/* Now set up the direct map space using either 2MB or 1GB pages */
503 	/* Preset PG_M and PG_A because demotion expects it */
504 	if ((amd_feature & AMDID_PAGE1GB) == 0) {
505 		for (i = 0; i < NPDEPG * ndmpdp; i++) {
506 			((pd_entry_t *)DMPDphys)[i] = (vm_paddr_t)i << PDRSHIFT;
507 			((pd_entry_t *)DMPDphys)[i] |= PG_RW | PG_V | PG_PS |
508 			    PG_G | PG_M | PG_A;
509 		}
510 		/* And the direct map space's PDP */
511 		for (i = 0; i < ndmpdp; i++) {
512 			((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
513 			    (i << PAGE_SHIFT);
514 			((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_U;
515 		}
516 	} else {
517 		for (i = 0; i < ndmpdp; i++) {
518 			((pdp_entry_t *)DMPDPphys)[i] =
519 			    (vm_paddr_t)i << PDPSHIFT;
520 			((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_PS |
521 			    PG_G | PG_M | PG_A;
522 		}
523 	}
524 
525 	/* And recursively map PML4 to itself in order to get PTmap */
526 	((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
527 	((pdp_entry_t *)KPML4phys)[PML4PML4I] |= PG_RW | PG_V | PG_U;
528 
529 	/* Connect the Direct Map slot up to the PML4 */
530 	((pdp_entry_t *)KPML4phys)[DMPML4I] = DMPDPphys;
531 	((pdp_entry_t *)KPML4phys)[DMPML4I] |= PG_RW | PG_V | PG_U;
532 
533 	/* Connect the KVA slot up to the PML4 */
534 	((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
535 	((pdp_entry_t *)KPML4phys)[KPML4I] |= PG_RW | PG_V | PG_U;
536 }
537 
538 void
539 init_paging(vm_paddr_t *firstaddr)
540 {
541 	create_pagetables(firstaddr);
542 }
543 
544 /*
545  *	Bootstrap the system enough to run with virtual memory.
546  *
547  *	On the i386 this is called after mapping has already been enabled
548  *	and just syncs the pmap module with what has already been done.
549  *	[We can't call it easily with mapping off since the kernel is not
550  *	mapped with PA == VA, hence we would have to relocate every address
551  *	from the linked base (virtual) address "KERNBASE" to the actual
552  *	(physical) address starting relative to 0]
553  */
554 void
555 pmap_bootstrap(vm_paddr_t *firstaddr)
556 {
557 	vm_offset_t va;
558 	pt_entry_t *pte;
559 	struct mdglobaldata *gd;
560 	int pg;
561 
562 	KvaStart = VM_MIN_KERNEL_ADDRESS;
563 	KvaEnd = VM_MAX_KERNEL_ADDRESS;
564 	KvaSize = KvaEnd - KvaStart;
565 
566 	avail_start = *firstaddr;
567 
568 	/*
569 	 * Create an initial set of page tables to run the kernel in.
570 	 */
571 	create_pagetables(firstaddr);
572 
573 	virtual2_start = KvaStart;
574 	virtual2_end = PTOV_OFFSET;
575 
576 	virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
577 	virtual_start = pmap_kmem_choose(virtual_start);
578 
579 	virtual_end = VM_MAX_KERNEL_ADDRESS;
580 
581 	/* XXX do %cr0 as well */
582 	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
583 	load_cr3(KPML4phys);
584 
585 	/*
586 	 * Initialize protection array.
587 	 */
588 	i386_protection_init();
589 
590 	/*
591 	 * The kernel's pmap is statically allocated so we don't have to use
592 	 * pmap_create, which is unlikely to work correctly at this part of
593 	 * the boot sequence (XXX and which no longer exists).
594 	 */
595 	kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
596 	kernel_pmap.pm_count = 1;
597 	kernel_pmap.pm_active = (cpumask_t)-1 & ~CPUMASK_LOCK;
598 	TAILQ_INIT(&kernel_pmap.pm_pvlist);
599 	nkpt = NKPT;
600 
601 	/*
602 	 * Reserve some special page table entries/VA space for temporary
603 	 * mapping of pages.
604 	 */
605 #define	SYSMAP(c, p, v, n)	\
606 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
607 
608 	va = virtual_start;
609 #ifdef JG
610 	pte = (pt_entry_t *) pmap_pte(&kernel_pmap, va);
611 #else
612 	pte = vtopte(va);
613 #endif
614 
615 	/*
616 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
617 	 */
618 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
619 
620 	/*
621 	 * Crashdump maps.
622 	 */
623 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
624 
625 	/*
626 	 * ptvmmap is used for reading arbitrary physical pages via
627 	 * /dev/mem.
628 	 */
629 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
630 
631 	/*
632 	 * msgbufp is used to map the system message buffer.
633 	 * XXX msgbufmap is not used.
634 	 */
635 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
636 	       atop(round_page(MSGBUF_SIZE)))
637 
638 	virtual_start = va;
639 
640 	*CMAP1 = 0;
641 
642 	/*
643 	 * PG_G is terribly broken on SMP because we IPI invltlb's in some
644 	 * cases rather then invl1pg.  Actually, I don't even know why it
645 	 * works under UP because self-referential page table mappings
646 	 */
647 #ifdef SMP
648 	pgeflag = 0;
649 #else
650 	if (cpu_feature & CPUID_PGE)
651 		pgeflag = PG_G;
652 #endif
653 
654 /*
655  * Initialize the 4MB page size flag
656  */
657 	pseflag = 0;
658 /*
659  * The 4MB page version of the initial
660  * kernel page mapping.
661  */
662 	pdir4mb = 0;
663 
664 #if !defined(DISABLE_PSE)
665 	if (cpu_feature & CPUID_PSE) {
666 		pt_entry_t ptditmp;
667 		/*
668 		 * Note that we have enabled PSE mode
669 		 */
670 		pseflag = PG_PS;
671 		ptditmp = *(PTmap + x86_64_btop(KERNBASE));
672 		ptditmp &= ~(NBPDR - 1);
673 		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
674 		pdir4mb = ptditmp;
675 
676 #ifndef SMP
677 		/*
678 		 * Enable the PSE mode.  If we are SMP we can't do this
679 		 * now because the APs will not be able to use it when
680 		 * they boot up.
681 		 */
682 		load_cr4(rcr4() | CR4_PSE);
683 
684 		/*
685 		 * We can do the mapping here for the single processor
686 		 * case.  We simply ignore the old page table page from
687 		 * now on.
688 		 */
689 		/*
690 		 * For SMP, we still need 4K pages to bootstrap APs,
691 		 * PSE will be enabled as soon as all APs are up.
692 		 */
693 		PTD[KPTDI] = (pd_entry_t)ptditmp;
694 		cpu_invltlb();
695 #endif
696 	}
697 #endif
698 #ifdef SMP
699 	if (cpu_apic_address == 0)
700 		panic("pmap_bootstrap: no local apic!");
701 #endif
702 
703 	/*
704 	 * We need to finish setting up the globaldata page for the BSP.
705 	 * locore has already populated the page table for the mdglobaldata
706 	 * portion.
707 	 */
708 	pg = MDGLOBALDATA_BASEALLOC_PAGES;
709 	gd = &CPU_prvspace[0].mdglobaldata;
710 	gd->gd_CMAP1 = &SMPpt[pg + 0];
711 	gd->gd_CMAP2 = &SMPpt[pg + 1];
712 	gd->gd_CMAP3 = &SMPpt[pg + 2];
713 	gd->gd_PMAP1 = &SMPpt[pg + 3];
714 	gd->gd_CADDR1 = CPU_prvspace[0].CPAGE1;
715 	gd->gd_CADDR2 = CPU_prvspace[0].CPAGE2;
716 	gd->gd_CADDR3 = CPU_prvspace[0].CPAGE3;
717 	gd->gd_PADDR1 = (pt_entry_t *)CPU_prvspace[0].PPAGE1;
718 
719 	cpu_invltlb();
720 }
721 
722 #ifdef SMP
723 /*
724  * Set 4mb pdir for mp startup
725  */
726 void
727 pmap_set_opt(void)
728 {
729 	if (pseflag && (cpu_feature & CPUID_PSE)) {
730 		load_cr4(rcr4() | CR4_PSE);
731 		if (pdir4mb && mycpu->gd_cpuid == 0) {	/* only on BSP */
732 			cpu_invltlb();
733 		}
734 	}
735 }
736 #endif
737 
738 /*
739  *	Initialize the pmap module.
740  *	Called by vm_init, to initialize any structures that the pmap
741  *	system needs to map virtual memory.
742  *	pmap_init has been enhanced to support in a fairly consistant
743  *	way, discontiguous physical memory.
744  */
745 void
746 pmap_init(void)
747 {
748 	int i;
749 	int initial_pvs;
750 
751 	/*
752 	 * object for kernel page table pages
753 	 */
754 	/* JG I think the number can be arbitrary */
755 	kptobj = vm_object_allocate(OBJT_DEFAULT, 5);
756 
757 	/*
758 	 * Allocate memory for random pmap data structures.  Includes the
759 	 * pv_head_table.
760 	 */
761 
762 	for(i = 0; i < vm_page_array_size; i++) {
763 		vm_page_t m;
764 
765 		m = &vm_page_array[i];
766 		TAILQ_INIT(&m->md.pv_list);
767 		m->md.pv_list_count = 0;
768 	}
769 
770 	/*
771 	 * init the pv free list
772 	 */
773 	initial_pvs = vm_page_array_size;
774 	if (initial_pvs < MINPV)
775 		initial_pvs = MINPV;
776 	pvzone = &pvzone_store;
777 	pvinit = (struct pv_entry *) kmem_alloc(&kernel_map,
778 		initial_pvs * sizeof (struct pv_entry));
779 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
780 		initial_pvs);
781 
782 	/*
783 	 * Now it is safe to enable pv_table recording.
784 	 */
785 	pmap_initialized = TRUE;
786 #ifdef SMP
787 	lapic = pmap_mapdev_uncacheable(cpu_apic_address, sizeof(struct LAPIC));
788 #endif
789 }
790 
791 /*
792  * Initialize the address space (zone) for the pv_entries.  Set a
793  * high water mark so that the system can recover from excessive
794  * numbers of pv entries.
795  */
796 void
797 pmap_init2(void)
798 {
799 	int shpgperproc = PMAP_SHPGPERPROC;
800 
801 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
802 	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
803 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
804 	pv_entry_high_water = 9 * (pv_entry_max / 10);
805 	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
806 }
807 
808 
809 /***************************************************
810  * Low level helper routines.....
811  ***************************************************/
812 
813 #if defined(PMAP_DIAGNOSTIC)
814 
815 /*
816  * This code checks for non-writeable/modified pages.
817  * This should be an invalid condition.
818  */
819 static
820 int
821 pmap_nw_modified(pt_entry_t pte)
822 {
823 	if ((pte & (PG_M|PG_RW)) == PG_M)
824 		return 1;
825 	else
826 		return 0;
827 }
828 #endif
829 
830 
831 /*
832  * this routine defines the region(s) of memory that should
833  * not be tested for the modified bit.
834  */
835 static __inline
836 int
837 pmap_track_modified(vm_offset_t va)
838 {
839 	if ((va < clean_sva) || (va >= clean_eva))
840 		return 1;
841 	else
842 		return 0;
843 }
844 
845 /*
846  * pmap_extract:
847  *
848  *	Extract the physical page address associated with the map/VA pair.
849  *
850  *	This function may not be called from an interrupt if the pmap is
851  *	not kernel_pmap.
852  */
853 vm_paddr_t
854 pmap_extract(pmap_t pmap, vm_offset_t va)
855 {
856 	vm_paddr_t rtval;
857 	pt_entry_t *pte;
858 	pd_entry_t pde, *pdep;
859 
860 	rtval = 0;
861 	pdep = pmap_pde(pmap, va);
862 	if (pdep != NULL) {
863 		pde = *pdep;
864 		if (pde) {
865 			if ((pde & PG_PS) != 0) {
866 				rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
867 			} else {
868 				pte = pmap_pde_to_pte(pdep, va);
869 				rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
870 			}
871 		}
872 	}
873 	return rtval;
874 }
875 
876 /*
877  *	Routine:	pmap_kextract
878  *	Function:
879  *		Extract the physical page address associated
880  *		kernel virtual address.
881  */
882 vm_paddr_t
883 pmap_kextract(vm_offset_t va)
884 {
885 	pd_entry_t pde;
886 	vm_paddr_t pa;
887 
888 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
889 		pa = DMAP_TO_PHYS(va);
890 	} else {
891 		pde = *vtopde(va);
892 		if (pde & PG_PS) {
893 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
894 		} else {
895 			/*
896 			 * Beware of a concurrent promotion that changes the
897 			 * PDE at this point!  For example, vtopte() must not
898 			 * be used to access the PTE because it would use the
899 			 * new PDE.  It is, however, safe to use the old PDE
900 			 * because the page table page is preserved by the
901 			 * promotion.
902 			 */
903 			pa = *pmap_pde_to_pte(&pde, va);
904 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
905 		}
906 	}
907 	return pa;
908 }
909 
910 /***************************************************
911  * Low level mapping routines.....
912  ***************************************************/
913 
914 /*
915  * Routine: pmap_kenter
916  * Function:
917  *  	Add a wired page to the KVA
918  *  	NOTE! note that in order for the mapping to take effect -- you
919  *  	should do an invltlb after doing the pmap_kenter().
920  */
921 void
922 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
923 {
924 	pt_entry_t *pte;
925 	pt_entry_t npte;
926 	pmap_inval_info info;
927 
928 	pmap_inval_init(&info);
929 	npte = pa | PG_RW | PG_V | pgeflag;
930 	pte = vtopte(va);
931 	pmap_inval_interlock(&info, &kernel_pmap, va);
932 	*pte = npte;
933 	pmap_inval_deinterlock(&info, &kernel_pmap);
934 	pmap_inval_done(&info);
935 }
936 
937 /*
938  * Routine: pmap_kenter_quick
939  * Function:
940  *  	Similar to pmap_kenter(), except we only invalidate the
941  *  	mapping on the current CPU.
942  */
943 void
944 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
945 {
946 	pt_entry_t *pte;
947 	pt_entry_t npte;
948 
949 	npte = pa | PG_RW | PG_V | pgeflag;
950 	pte = vtopte(va);
951 	*pte = npte;
952 	cpu_invlpg((void *)va);
953 }
954 
955 void
956 pmap_kenter_sync(vm_offset_t va)
957 {
958 	pmap_inval_info info;
959 
960 	pmap_inval_init(&info);
961 	pmap_inval_interlock(&info, &kernel_pmap, va);
962 	pmap_inval_deinterlock(&info, &kernel_pmap);
963 	pmap_inval_done(&info);
964 }
965 
966 void
967 pmap_kenter_sync_quick(vm_offset_t va)
968 {
969 	cpu_invlpg((void *)va);
970 }
971 
972 /*
973  * remove a page from the kernel pagetables
974  */
975 void
976 pmap_kremove(vm_offset_t va)
977 {
978 	pt_entry_t *pte;
979 	pmap_inval_info info;
980 
981 	pmap_inval_init(&info);
982 	pte = vtopte(va);
983 	pmap_inval_interlock(&info, &kernel_pmap, va);
984 	*pte = 0;
985 	pmap_inval_deinterlock(&info, &kernel_pmap);
986 	pmap_inval_done(&info);
987 }
988 
989 void
990 pmap_kremove_quick(vm_offset_t va)
991 {
992 	pt_entry_t *pte;
993 	pte = vtopte(va);
994 	*pte = 0;
995 	cpu_invlpg((void *)va);
996 }
997 
998 /*
999  * XXX these need to be recoded.  They are not used in any critical path.
1000  */
1001 void
1002 pmap_kmodify_rw(vm_offset_t va)
1003 {
1004 	*vtopte(va) |= PG_RW;
1005 	cpu_invlpg((void *)va);
1006 }
1007 
1008 void
1009 pmap_kmodify_nc(vm_offset_t va)
1010 {
1011 	*vtopte(va) |= PG_N;
1012 	cpu_invlpg((void *)va);
1013 }
1014 
1015 /*
1016  *	Used to map a range of physical addresses into kernel
1017  *	virtual address space.
1018  *
1019  *	For now, VM is already on, we only need to map the
1020  *	specified memory.
1021  */
1022 vm_offset_t
1023 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1024 {
1025 	return PHYS_TO_DMAP(start);
1026 }
1027 
1028 
1029 /*
1030  * Add a list of wired pages to the kva
1031  * this routine is only used for temporary
1032  * kernel mappings that do not need to have
1033  * page modification or references recorded.
1034  * Note that old mappings are simply written
1035  * over.  The page *must* be wired.
1036  */
1037 void
1038 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1039 {
1040 	vm_offset_t end_va;
1041 
1042 	end_va = va + count * PAGE_SIZE;
1043 
1044 	while (va < end_va) {
1045 		pt_entry_t *pte;
1046 
1047 		pte = vtopte(va);
1048 		*pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
1049 		cpu_invlpg((void *)va);
1050 		va += PAGE_SIZE;
1051 		m++;
1052 	}
1053 #ifdef SMP
1054 	smp_invltlb();	/* XXX */
1055 #endif
1056 }
1057 
1058 void
1059 pmap_qenter2(vm_offset_t va, vm_page_t *m, int count, cpumask_t *mask)
1060 {
1061 	vm_offset_t end_va;
1062 	cpumask_t cmask = mycpu->gd_cpumask;
1063 
1064 	end_va = va + count * PAGE_SIZE;
1065 
1066 	while (va < end_va) {
1067 		pt_entry_t *pte;
1068 		pt_entry_t pteval;
1069 
1070 		/*
1071 		 * Install the new PTE.  If the pte changed from the prior
1072 		 * mapping we must reset the cpu mask and invalidate the page.
1073 		 * If the pte is the same but we have not seen it on the
1074 		 * current cpu, invlpg the existing mapping.  Otherwise the
1075 		 * entry is optimal and no invalidation is required.
1076 		 */
1077 		pte = vtopte(va);
1078 		pteval = VM_PAGE_TO_PHYS(*m) | PG_A | PG_RW | PG_V | pgeflag;
1079 		if (*pte != pteval) {
1080 			*mask = 0;
1081 			*pte = pteval;
1082 			cpu_invlpg((void *)va);
1083 		} else if ((*mask & cmask) == 0) {
1084 			cpu_invlpg((void *)va);
1085 		}
1086 		va += PAGE_SIZE;
1087 		m++;
1088 	}
1089 	*mask |= cmask;
1090 }
1091 
1092 /*
1093  * This routine jerks page mappings from the
1094  * kernel -- it is meant only for temporary mappings.
1095  *
1096  * MPSAFE, INTERRUPT SAFE (cluster callback)
1097  */
1098 void
1099 pmap_qremove(vm_offset_t va, int count)
1100 {
1101 	vm_offset_t end_va;
1102 
1103 	end_va = va + count * PAGE_SIZE;
1104 
1105 	while (va < end_va) {
1106 		pt_entry_t *pte;
1107 
1108 		pte = vtopte(va);
1109 		*pte = 0;
1110 		cpu_invlpg((void *)va);
1111 		va += PAGE_SIZE;
1112 	}
1113 #ifdef SMP
1114 	smp_invltlb();
1115 #endif
1116 }
1117 
1118 /*
1119  * This routine works like vm_page_lookup() but also blocks as long as the
1120  * page is busy.  This routine does not busy the page it returns.
1121  *
1122  * Unless the caller is managing objects whos pages are in a known state,
1123  * the call should be made with a critical section held so the page's object
1124  * association remains valid on return.
1125  */
1126 static
1127 vm_page_t
1128 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
1129 {
1130 	vm_page_t m;
1131 
1132 	do {
1133 		m = vm_page_lookup(object, pindex);
1134 	} while (m && vm_page_sleep_busy(m, FALSE, "pplookp"));
1135 
1136 	return(m);
1137 }
1138 
1139 /*
1140  * Create a new thread and optionally associate it with a (new) process.
1141  * NOTE! the new thread's cpu may not equal the current cpu.
1142  */
1143 void
1144 pmap_init_thread(thread_t td)
1145 {
1146 	/* enforce pcb placement */
1147 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1148 	td->td_savefpu = &td->td_pcb->pcb_save;
1149 	td->td_sp = (char *)td->td_pcb - 16; /* JG is -16 needed on x86_64? */
1150 }
1151 
1152 /*
1153  * This routine directly affects the fork perf for a process.
1154  */
1155 void
1156 pmap_init_proc(struct proc *p)
1157 {
1158 }
1159 
1160 /*
1161  * Dispose the UPAGES for a process that has exited.
1162  * This routine directly impacts the exit perf of a process.
1163  */
1164 void
1165 pmap_dispose_proc(struct proc *p)
1166 {
1167 	KASSERT(p->p_lock == 0, ("attempt to dispose referenced proc! %p", p));
1168 }
1169 
1170 /***************************************************
1171  * Page table page management routines.....
1172  ***************************************************/
1173 
1174 /*
1175  * This routine unholds page table pages, and if the hold count
1176  * drops to zero, then it decrements the wire count.
1177  */
1178 static __inline
1179 int
1180 pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m,
1181 		     pmap_inval_info_t info)
1182 {
1183 	KKASSERT(m->hold_count > 0);
1184 	if (m->hold_count > 1) {
1185 		vm_page_unhold(m);
1186 		return 0;
1187 	} else {
1188 		return _pmap_unwire_pte_hold(pmap, va, m, info);
1189 	}
1190 }
1191 
1192 static
1193 int
1194 _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m,
1195 		      pmap_inval_info_t info)
1196 {
1197 	/*
1198 	 * Wait until we can busy the page ourselves.  We cannot have
1199 	 * any active flushes if we block.  We own one hold count on the
1200 	 * page so it cannot be freed out from under us.
1201 	 */
1202 	if (m->flags & PG_BUSY) {
1203 		pmap_inval_flush(info);
1204 		while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1205 			;
1206 	}
1207 	KASSERT(m->queue == PQ_NONE,
1208 		("_pmap_unwire_pte_hold: %p->queue != PQ_NONE", m));
1209 
1210 	/*
1211 	 * This case can occur if new references were acquired while
1212 	 * we were blocked.
1213 	 */
1214 	if (m->hold_count > 1) {
1215 		KKASSERT(m->hold_count > 1);
1216 		vm_page_unhold(m);
1217 		return 0;
1218 	}
1219 
1220 	/*
1221 	 * Unmap the page table page
1222 	 */
1223 	KKASSERT(m->hold_count == 1);
1224 	vm_page_busy(m);
1225 	pmap_inval_interlock(info, pmap, -1);
1226 
1227 	if (m->pindex >= (NUPDE + NUPDPE)) {
1228 		/* PDP page */
1229 		pml4_entry_t *pml4;
1230 		pml4 = pmap_pml4e(pmap, va);
1231 		*pml4 = 0;
1232 	} else if (m->pindex >= NUPDE) {
1233 		/* PD page */
1234 		pdp_entry_t *pdp;
1235 		pdp = pmap_pdpe(pmap, va);
1236 		*pdp = 0;
1237 	} else {
1238 		/* PT page */
1239 		pd_entry_t *pd;
1240 		pd = pmap_pde(pmap, va);
1241 		*pd = 0;
1242 	}
1243 
1244 	KKASSERT(pmap->pm_stats.resident_count > 0);
1245 	--pmap->pm_stats.resident_count;
1246 
1247 	if (pmap->pm_ptphint == m)
1248 		pmap->pm_ptphint = NULL;
1249 	pmap_inval_deinterlock(info, pmap);
1250 
1251 	if (m->pindex < NUPDE) {
1252 		/* We just released a PT, unhold the matching PD */
1253 		vm_page_t pdpg;
1254 
1255 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
1256 		pmap_unwire_pte_hold(pmap, va, pdpg, info);
1257 	}
1258 	if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
1259 		/* We just released a PD, unhold the matching PDP */
1260 		vm_page_t pdppg;
1261 
1262 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
1263 		pmap_unwire_pte_hold(pmap, va, pdppg, info);
1264 	}
1265 
1266 	/*
1267 	 * This was our last hold, the page had better be unwired
1268 	 * after we decrement wire_count.
1269 	 *
1270 	 * FUTURE NOTE: shared page directory page could result in
1271 	 * multiple wire counts.
1272 	 */
1273 	vm_page_unhold(m);
1274 	--m->wire_count;
1275 	KKASSERT(m->wire_count == 0);
1276 	--vmstats.v_wire_count;
1277 	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1278 	vm_page_flash(m);
1279 	vm_page_free_zero(m);
1280 
1281 	return 1;
1282 }
1283 
1284 /*
1285  * After removing a page table entry, this routine is used to
1286  * conditionally free the page, and manage the hold/wire counts.
1287  */
1288 static
1289 int
1290 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte,
1291 		pmap_inval_info_t info)
1292 {
1293 	vm_pindex_t ptepindex;
1294 
1295 	if (va >= VM_MAX_USER_ADDRESS)
1296 		return 0;
1297 
1298 	if (mpte == NULL) {
1299 		ptepindex = pmap_pde_pindex(va);
1300 #if JGHINT
1301 		if (pmap->pm_ptphint &&
1302 			(pmap->pm_ptphint->pindex == ptepindex)) {
1303 			mpte = pmap->pm_ptphint;
1304 		} else {
1305 #endif
1306 			pmap_inval_flush(info);
1307 			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1308 			pmap->pm_ptphint = mpte;
1309 #if JGHINT
1310 		}
1311 #endif
1312 	}
1313 	return pmap_unwire_pte_hold(pmap, va, mpte, info);
1314 }
1315 
1316 /*
1317  * Initialize pmap0/vmspace0.  This pmap is not added to pmap_list because
1318  * it, and IdlePTD, represents the template used to update all other pmaps.
1319  *
1320  * On architectures where the kernel pmap is not integrated into the user
1321  * process pmap, this pmap represents the process pmap, not the kernel pmap.
1322  * kernel_pmap should be used to directly access the kernel_pmap.
1323  */
1324 void
1325 pmap_pinit0(struct pmap *pmap)
1326 {
1327 	pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1328 	pmap->pm_count = 1;
1329 	pmap->pm_active = 0;
1330 	pmap->pm_ptphint = NULL;
1331 	TAILQ_INIT(&pmap->pm_pvlist);
1332 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1333 }
1334 
1335 /*
1336  * Initialize a preallocated and zeroed pmap structure,
1337  * such as one in a vmspace structure.
1338  */
1339 void
1340 pmap_pinit(struct pmap *pmap)
1341 {
1342 	vm_page_t ptdpg;
1343 
1344 	/*
1345 	 * No need to allocate page table space yet but we do need a valid
1346 	 * page directory table.
1347 	 */
1348 	if (pmap->pm_pml4 == NULL) {
1349 		pmap->pm_pml4 =
1350 		    (pml4_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1351 	}
1352 
1353 	/*
1354 	 * Allocate an object for the ptes
1355 	 */
1356 	if (pmap->pm_pteobj == NULL)
1357 		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPDE + NUPDPE + PML4PML4I + 1);
1358 
1359 	/*
1360 	 * Allocate the page directory page, unless we already have
1361 	 * one cached.  If we used the cached page the wire_count will
1362 	 * already be set appropriately.
1363 	 */
1364 	if ((ptdpg = pmap->pm_pdirm) == NULL) {
1365 		ptdpg = vm_page_grab(pmap->pm_pteobj, NUPDE + NUPDPE + PML4PML4I,
1366 				     VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1367 		pmap->pm_pdirm = ptdpg;
1368 		vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY);
1369 		ptdpg->valid = VM_PAGE_BITS_ALL;
1370 		if (ptdpg->wire_count == 0)
1371 			++vmstats.v_wire_count;
1372 		ptdpg->wire_count = 1;
1373 		pmap_kenter((vm_offset_t)pmap->pm_pml4, VM_PAGE_TO_PHYS(ptdpg));
1374 	}
1375 	if ((ptdpg->flags & PG_ZERO) == 0)
1376 		bzero(pmap->pm_pml4, PAGE_SIZE);
1377 
1378 	pmap->pm_pml4[KPML4I] = KPDPphys | PG_RW | PG_V | PG_U;
1379 	pmap->pm_pml4[DMPML4I] = DMPDPphys | PG_RW | PG_V | PG_U;
1380 
1381 	/* install self-referential address mapping entry */
1382 	pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1383 
1384 	pmap->pm_count = 1;
1385 	pmap->pm_active = 0;
1386 	pmap->pm_ptphint = NULL;
1387 	TAILQ_INIT(&pmap->pm_pvlist);
1388 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1389 	pmap->pm_stats.resident_count = 1;
1390 }
1391 
1392 /*
1393  * Clean up a pmap structure so it can be physically freed.  This routine
1394  * is called by the vmspace dtor function.  A great deal of pmap data is
1395  * left passively mapped to improve vmspace management so we have a bit
1396  * of cleanup work to do here.
1397  */
1398 void
1399 pmap_puninit(pmap_t pmap)
1400 {
1401 	vm_page_t p;
1402 
1403 	KKASSERT(pmap->pm_active == 0);
1404 	if ((p = pmap->pm_pdirm) != NULL) {
1405 		KKASSERT(pmap->pm_pml4 != NULL);
1406 		KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1407 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
1408 		p->wire_count--;
1409 		vmstats.v_wire_count--;
1410 		KKASSERT((p->flags & PG_BUSY) == 0);
1411 		vm_page_busy(p);
1412 		vm_page_free_zero(p);
1413 		pmap->pm_pdirm = NULL;
1414 	}
1415 	if (pmap->pm_pml4) {
1416 		KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1417 		kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1418 		pmap->pm_pml4 = NULL;
1419 	}
1420 	if (pmap->pm_pteobj) {
1421 		vm_object_deallocate(pmap->pm_pteobj);
1422 		pmap->pm_pteobj = NULL;
1423 	}
1424 }
1425 
1426 /*
1427  * Wire in kernel global address entries.  To avoid a race condition
1428  * between pmap initialization and pmap_growkernel, this procedure
1429  * adds the pmap to the master list (which growkernel scans to update),
1430  * then copies the template.
1431  */
1432 void
1433 pmap_pinit2(struct pmap *pmap)
1434 {
1435 	crit_enter();
1436 	TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1437 	/* XXX copies current process, does not fill in MPPTDI */
1438 	crit_exit();
1439 }
1440 
1441 /*
1442  * Attempt to release and free a vm_page in a pmap.  Returns 1 on success,
1443  * 0 on failure (if the procedure had to sleep).
1444  *
1445  * When asked to remove the page directory page itself, we actually just
1446  * leave it cached so we do not have to incur the SMP inval overhead of
1447  * removing the kernel mapping.  pmap_puninit() will take care of it.
1448  */
1449 static
1450 int
1451 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1452 {
1453 	/*
1454 	 * This code optimizes the case of freeing non-busy
1455 	 * page-table pages.  Those pages are zero now, and
1456 	 * might as well be placed directly into the zero queue.
1457 	 */
1458 	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1459 		return 0;
1460 
1461 	vm_page_busy(p);
1462 
1463 	/*
1464 	 * Remove the page table page from the processes address space.
1465 	 */
1466 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1467 		/*
1468 		 * We are the pml4 table itself.
1469 		 */
1470 		/* XXX anything to do here? */
1471 	} else if (p->pindex >= (NUPDE + NUPDPE)) {
1472 		/*
1473 		 * Remove a PDP page from the PML4.  We do not maintain
1474 		 * hold counts on the PML4 page.
1475 		 */
1476 		pml4_entry_t *pml4;
1477 		vm_page_t m4;
1478 		int idx;
1479 
1480 		m4 = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + PML4PML4I);
1481 		KKASSERT(m4 != NULL);
1482 		pml4 = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m4));
1483 		idx = (p->pindex - (NUPDE + NUPDPE)) % NPML4EPG;
1484 		KKASSERT(pml4[idx] != 0);
1485 		pml4[idx] = 0;
1486 	} else if (p->pindex >= NUPDE) {
1487 		/*
1488 		 * Remove a PD page from the PDP and drop the hold count
1489 		 * on the PDP.  The PDP is left cached in the pmap if
1490 		 * the hold count drops to 0 so the wire count remains
1491 		 * intact.
1492 		 */
1493 		vm_page_t m3;
1494 		pdp_entry_t *pdp;
1495 		int idx;
1496 
1497 		m3 = vm_page_lookup(pmap->pm_pteobj,
1498 				NUPDE + NUPDPE + (p->pindex - NUPDE) / NPDPEPG);
1499 		KKASSERT(m3 != NULL);
1500 		pdp = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m3));
1501 		idx = (p->pindex - NUPDE) % NPDPEPG;
1502 		KKASSERT(pdp[idx] != 0);
1503 		pdp[idx] = 0;
1504 		m3->hold_count--;
1505 	} else {
1506 		/*
1507 		 * Remove a PT page from the PD and drop the hold count
1508 		 * on the PD.  The PD is left cached in the pmap if
1509 		 * the hold count drops to 0 so the wire count remains
1510 		 * intact.
1511 		 */
1512 		vm_page_t m2;
1513 		pd_entry_t *pd;
1514 		int idx;
1515 
1516 		m2 = vm_page_lookup(pmap->pm_pteobj,
1517 				    NUPDE + p->pindex / NPDEPG);
1518 		KKASSERT(m2 != NULL);
1519 		pd = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m2));
1520 		idx = p->pindex % NPDEPG;
1521 		pd[idx] = 0;
1522 		m2->hold_count--;
1523 	}
1524 
1525 	/*
1526 	 * One fewer mappings in the pmap.  p's hold count had better
1527 	 * be zero.
1528 	 */
1529 	KKASSERT(pmap->pm_stats.resident_count > 0);
1530 	--pmap->pm_stats.resident_count;
1531 	if (p->hold_count)
1532 		panic("pmap_release: freeing held page table page");
1533 	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1534 		pmap->pm_ptphint = NULL;
1535 
1536 	/*
1537 	 * We leave the top-level page table page cached, wired, and mapped in
1538 	 * the pmap until the dtor function (pmap_puninit()) gets called.
1539 	 * However, still clean it up so we can set PG_ZERO.
1540 	 */
1541 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1542 		bzero(pmap->pm_pml4, PAGE_SIZE);
1543 		vm_page_flag_set(p, PG_ZERO);
1544 		vm_page_wakeup(p);
1545 	} else {
1546 		p->wire_count--;
1547 		KKASSERT(p->wire_count == 0);
1548 		vmstats.v_wire_count--;
1549 		/* JG eventually revert to using vm_page_free_zero() */
1550 		vm_page_free(p);
1551 	}
1552 	return 1;
1553 }
1554 
1555 /*
1556  * This routine is called when various levels in the page table need to
1557  * be populated.  This routine cannot fail.
1558  */
1559 static
1560 vm_page_t
1561 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex)
1562 {
1563 	vm_page_t m;
1564 
1565 	/*
1566 	 * Find or fabricate a new pagetable page.  This will busy the page.
1567 	 */
1568 	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1569 			 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1570 	if ((m->flags & PG_ZERO) == 0) {
1571 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
1572 	}
1573 
1574 	KASSERT(m->queue == PQ_NONE,
1575 		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1576 
1577 	/*
1578 	 * Increment the hold count for the page we will be returning to
1579 	 * the caller.
1580 	 */
1581 	m->hold_count++;
1582 	if (m->wire_count++ == 0)
1583 		vmstats.v_wire_count++;
1584 
1585 	/*
1586 	 * Map the pagetable page into the process address space, if
1587 	 * it isn't already there.
1588 	 *
1589 	 * It is possible that someone else got in and mapped the page
1590 	 * directory page while we were blocked, if so just unbusy and
1591 	 * return the held page.
1592 	 */
1593 	if (ptepindex >= (NUPDE + NUPDPE)) {
1594 		/*
1595 		 * Wire up a new PDP page in the PML4
1596 		 */
1597 		vm_pindex_t pml4index;
1598 		pml4_entry_t *pml4;
1599 
1600 		pml4index = ptepindex - (NUPDE + NUPDPE);
1601 		pml4 = &pmap->pm_pml4[pml4index];
1602 		if (*pml4 & PG_V) {
1603 			if (--m->wire_count == 0)
1604 				--vmstats.v_wire_count;
1605 			vm_page_wakeup(m);
1606 			return(m);
1607 		}
1608 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1609 	} else if (ptepindex >= NUPDE) {
1610 		/*
1611 		 * Wire up a new PD page in the PDP
1612 		 */
1613 		vm_pindex_t pml4index;
1614 		vm_pindex_t pdpindex;
1615 		vm_page_t pdppg;
1616 		pml4_entry_t *pml4;
1617 		pdp_entry_t *pdp;
1618 
1619 		pdpindex = ptepindex - NUPDE;
1620 		pml4index = pdpindex >> NPML4EPGSHIFT;
1621 
1622 		pml4 = &pmap->pm_pml4[pml4index];
1623 		if ((*pml4 & PG_V) == 0) {
1624 			/*
1625 			 * Have to allocate a new PDP page, recurse.
1626 			 * This always succeeds.  Returned page will
1627 			 * be held.
1628 			 */
1629 			pdppg = _pmap_allocpte(pmap,
1630 					       NUPDE + NUPDPE + pml4index);
1631 		} else {
1632 			/*
1633 			 * Add a held reference to the PDP page.
1634 			 */
1635 			pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
1636 			pdppg->hold_count++;
1637 		}
1638 
1639 		/*
1640 		 * Now find the pdp_entry and map the PDP.  If the PDP
1641 		 * has already been mapped unwind and return the
1642 		 * already-mapped PDP held.
1643 		 *
1644 		 * pdppg is left held (hold_count is incremented for
1645 		 * each PD in the PDP).
1646 		 */
1647 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1648 		pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1649 		if (*pdp & PG_V) {
1650 			vm_page_unhold(pdppg);
1651 			if (--m->wire_count == 0)
1652 				--vmstats.v_wire_count;
1653 			vm_page_wakeup(m);
1654 			return(m);
1655 		}
1656 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1657 	} else {
1658 		/*
1659 		 * Wire up the new PT page in the PD
1660 		 */
1661 		vm_pindex_t pml4index;
1662 		vm_pindex_t pdpindex;
1663 		pml4_entry_t *pml4;
1664 		pdp_entry_t *pdp;
1665 		pd_entry_t *pd;
1666 		vm_page_t pdpg;
1667 
1668 		pdpindex = ptepindex >> NPDPEPGSHIFT;
1669 		pml4index = pdpindex >> NPML4EPGSHIFT;
1670 
1671 		/*
1672 		 * Locate the PDP page in the PML4, then the PD page in
1673 		 * the PDP.  If either does not exist we simply recurse
1674 		 * to allocate them.
1675 		 *
1676 		 * We can just recurse on the PD page as it will recurse
1677 		 * on the PDP if necessary.
1678 		 */
1679 		pml4 = &pmap->pm_pml4[pml4index];
1680 		if ((*pml4 & PG_V) == 0) {
1681 			pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex);
1682 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1683 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1684 		} else {
1685 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1686 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1687 			if ((*pdp & PG_V) == 0) {
1688 				pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex);
1689 			} else {
1690 				pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
1691 				pdpg->hold_count++;
1692 			}
1693 		}
1694 
1695 		/*
1696 		 * Now fill in the pte in the PD.  If the pte already exists
1697 		 * (again, if we raced the grab), unhold pdpg and unwire
1698 		 * m, returning a held m.
1699 		 *
1700 		 * pdpg is left held (hold_count is incremented for
1701 		 * each PT in the PD).
1702 		 */
1703 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
1704 		pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
1705 		if (*pd != 0) {
1706 			vm_page_unhold(pdpg);
1707 			if (--m->wire_count == 0)
1708 				--vmstats.v_wire_count;
1709 			vm_page_wakeup(m);
1710 			return(m);
1711 		}
1712 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1713 	}
1714 
1715 	/*
1716 	 * We successfully loaded a PDP, PD, or PTE.  Set the page table hint,
1717 	 * valid bits, mapped flag, unbusy, and we're done.
1718 	 */
1719 	pmap->pm_ptphint = m;
1720 	++pmap->pm_stats.resident_count;
1721 
1722 	m->valid = VM_PAGE_BITS_ALL;
1723 	vm_page_flag_clear(m, PG_ZERO);
1724 	vm_page_flag_set(m, PG_MAPPED);
1725 	vm_page_wakeup(m);
1726 
1727 	return (m);
1728 }
1729 
1730 static
1731 vm_page_t
1732 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1733 {
1734 	vm_pindex_t ptepindex;
1735 	pd_entry_t *pd;
1736 	vm_page_t m;
1737 
1738 	/*
1739 	 * Calculate pagetable page index
1740 	 */
1741 	ptepindex = pmap_pde_pindex(va);
1742 
1743 	/*
1744 	 * Get the page directory entry
1745 	 */
1746 	pd = pmap_pde(pmap, va);
1747 
1748 	/*
1749 	 * This supports switching from a 2MB page to a
1750 	 * normal 4K page.
1751 	 */
1752 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
1753 		panic("no promotion/demotion yet");
1754 		*pd = 0;
1755 		pd = NULL;
1756 		cpu_invltlb();
1757 		smp_invltlb();
1758 	}
1759 
1760 	/*
1761 	 * If the page table page is mapped, we just increment the
1762 	 * hold count, and activate it.
1763 	 */
1764 	if (pd != NULL && (*pd & PG_V) != 0) {
1765 		/* YYY hint is used here on i386 */
1766 		m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1767 		pmap->pm_ptphint = m;
1768 		m->hold_count++;
1769 		return m;
1770 	}
1771 	/*
1772 	 * Here if the pte page isn't mapped, or if it has been deallocated.
1773 	 */
1774 	return _pmap_allocpte(pmap, ptepindex);
1775 }
1776 
1777 
1778 /***************************************************
1779  * Pmap allocation/deallocation routines.
1780  ***************************************************/
1781 
1782 /*
1783  * Release any resources held by the given physical map.
1784  * Called when a pmap initialized by pmap_pinit is being released.
1785  * Should only be called if the map contains no valid mappings.
1786  */
1787 static int pmap_release_callback(struct vm_page *p, void *data);
1788 
1789 void
1790 pmap_release(struct pmap *pmap)
1791 {
1792 	vm_object_t object = pmap->pm_pteobj;
1793 	struct rb_vm_page_scan_info info;
1794 
1795 	KASSERT(pmap->pm_active == 0, ("pmap still active! %08x", pmap->pm_active));
1796 #if defined(DIAGNOSTIC)
1797 	if (object->ref_count != 1)
1798 		panic("pmap_release: pteobj reference count != 1");
1799 #endif
1800 
1801 	info.pmap = pmap;
1802 	info.object = object;
1803 	crit_enter();
1804 	TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
1805 	crit_exit();
1806 
1807 	do {
1808 		crit_enter();
1809 		info.error = 0;
1810 		info.mpte = NULL;
1811 		info.limit = object->generation;
1812 
1813 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1814 				        pmap_release_callback, &info);
1815 		if (info.error == 0 && info.mpte) {
1816 			if (!pmap_release_free_page(pmap, info.mpte))
1817 				info.error = 1;
1818 		}
1819 		crit_exit();
1820 	} while (info.error);
1821 }
1822 
1823 static
1824 int
1825 pmap_release_callback(struct vm_page *p, void *data)
1826 {
1827 	struct rb_vm_page_scan_info *info = data;
1828 
1829 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1830 		info->mpte = p;
1831 		return(0);
1832 	}
1833 	if (!pmap_release_free_page(info->pmap, p)) {
1834 		info->error = 1;
1835 		return(-1);
1836 	}
1837 	if (info->object->generation != info->limit) {
1838 		info->error = 1;
1839 		return(-1);
1840 	}
1841 	return(0);
1842 }
1843 
1844 /*
1845  * Grow the number of kernel page table entries, if needed.
1846  */
1847 void
1848 pmap_growkernel(vm_offset_t addr)
1849 {
1850 	vm_paddr_t paddr;
1851 	vm_offset_t ptppaddr;
1852 	vm_page_t nkpg;
1853 	pd_entry_t *pde, newpdir;
1854 	pdp_entry_t newpdp;
1855 
1856 	crit_enter();
1857 	if (kernel_vm_end == 0) {
1858 		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
1859 		nkpt = 0;
1860 		while ((*pmap_pde(&kernel_pmap, kernel_vm_end) & PG_V) != 0) {
1861 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1862 			nkpt++;
1863 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1864 				kernel_vm_end = kernel_map.max_offset;
1865 				break;
1866 			}
1867 		}
1868 	}
1869 	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1870 	if (addr - 1 >= kernel_map.max_offset)
1871 		addr = kernel_map.max_offset;
1872 	while (kernel_vm_end < addr) {
1873 		pde = pmap_pde(&kernel_pmap, kernel_vm_end);
1874 		if (pde == NULL) {
1875 			/* We need a new PDP entry */
1876 			nkpg = vm_page_alloc(kptobj, nkpt,
1877 			                     VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM
1878 					     | VM_ALLOC_INTERRUPT);
1879 			if (nkpg == NULL)
1880 				panic("pmap_growkernel: no memory to grow kernel");
1881 			paddr = VM_PAGE_TO_PHYS(nkpg);
1882 			if ((nkpg->flags & PG_ZERO) == 0)
1883 				pmap_zero_page(paddr);
1884 			vm_page_flag_clear(nkpg, PG_ZERO);
1885 			newpdp = (pdp_entry_t)
1886 				(paddr | PG_V | PG_RW | PG_A | PG_M);
1887 			*pmap_pdpe(&kernel_pmap, kernel_vm_end) = newpdp;
1888 			nkpt++;
1889 			continue; /* try again */
1890 		}
1891 		if ((*pde & PG_V) != 0) {
1892 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1893 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1894 				kernel_vm_end = kernel_map.max_offset;
1895 				break;
1896 			}
1897 			continue;
1898 		}
1899 
1900 		/*
1901 		 * This index is bogus, but out of the way
1902 		 */
1903 		nkpg = vm_page_alloc(kptobj, nkpt,
1904 			VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT);
1905 		if (nkpg == NULL)
1906 			panic("pmap_growkernel: no memory to grow kernel");
1907 
1908 		vm_page_wire(nkpg);
1909 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1910 		pmap_zero_page(ptppaddr);
1911 		vm_page_flag_clear(nkpg, PG_ZERO);
1912 		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1913 		*pmap_pde(&kernel_pmap, kernel_vm_end) = newpdir;
1914 		nkpt++;
1915 
1916 		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1917 		if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1918 			kernel_vm_end = kernel_map.max_offset;
1919 			break;
1920 		}
1921 	}
1922 	crit_exit();
1923 }
1924 
1925 /*
1926  *	Retire the given physical map from service.
1927  *	Should only be called if the map contains
1928  *	no valid mappings.
1929  */
1930 void
1931 pmap_destroy(pmap_t pmap)
1932 {
1933 	int count;
1934 
1935 	if (pmap == NULL)
1936 		return;
1937 
1938 	count = --pmap->pm_count;
1939 	if (count == 0) {
1940 		pmap_release(pmap);
1941 		panic("destroying a pmap is not yet implemented");
1942 	}
1943 }
1944 
1945 /*
1946  *	Add a reference to the specified pmap.
1947  */
1948 void
1949 pmap_reference(pmap_t pmap)
1950 {
1951 	if (pmap != NULL) {
1952 		pmap->pm_count++;
1953 	}
1954 }
1955 
1956 /***************************************************
1957 * page management routines.
1958  ***************************************************/
1959 
1960 /*
1961  * free the pv_entry back to the free list.  This function may be
1962  * called from an interrupt.
1963  */
1964 static __inline
1965 void
1966 free_pv_entry(pv_entry_t pv)
1967 {
1968 	pv_entry_count--;
1969 	KKASSERT(pv_entry_count >= 0);
1970 	zfree(pvzone, pv);
1971 }
1972 
1973 /*
1974  * get a new pv_entry, allocating a block from the system
1975  * when needed.  This function may be called from an interrupt.
1976  */
1977 static
1978 pv_entry_t
1979 get_pv_entry(void)
1980 {
1981 	pv_entry_count++;
1982 	if (pv_entry_high_water &&
1983 		(pv_entry_count > pv_entry_high_water) &&
1984 		(pmap_pagedaemon_waken == 0)) {
1985 		pmap_pagedaemon_waken = 1;
1986 		wakeup(&vm_pages_needed);
1987 	}
1988 	return zalloc(pvzone);
1989 }
1990 
1991 /*
1992  * This routine is very drastic, but can save the system
1993  * in a pinch.
1994  */
1995 void
1996 pmap_collect(void)
1997 {
1998 	int i;
1999 	vm_page_t m;
2000 	static int warningdone=0;
2001 
2002 	if (pmap_pagedaemon_waken == 0)
2003 		return;
2004 
2005 	if (warningdone < 5) {
2006 		kprintf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
2007 		warningdone++;
2008 	}
2009 
2010 	for(i = 0; i < vm_page_array_size; i++) {
2011 		m = &vm_page_array[i];
2012 		if (m->wire_count || m->hold_count || m->busy ||
2013 		    (m->flags & PG_BUSY))
2014 			continue;
2015 		pmap_remove_all(m);
2016 	}
2017 	pmap_pagedaemon_waken = 0;
2018 }
2019 
2020 
2021 /*
2022  * If it is the first entry on the list, it is actually
2023  * in the header and we must copy the following entry up
2024  * to the header.  Otherwise we must search the list for
2025  * the entry.  In either case we free the now unused entry.
2026  */
2027 static
2028 int
2029 pmap_remove_entry(struct pmap *pmap, vm_page_t m,
2030 			vm_offset_t va, pmap_inval_info_t info)
2031 {
2032 	pv_entry_t pv;
2033 	int rtval;
2034 
2035 	crit_enter();
2036 	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
2037 		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2038 			if (pmap == pv->pv_pmap && va == pv->pv_va)
2039 				break;
2040 		}
2041 	} else {
2042 		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
2043 			if (va == pv->pv_va)
2044 				break;
2045 		}
2046 	}
2047 
2048 	rtval = 0;
2049 	KKASSERT(pv);
2050 
2051 	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2052 	m->md.pv_list_count--;
2053 	KKASSERT(m->md.pv_list_count >= 0);
2054 	if (TAILQ_EMPTY(&m->md.pv_list))
2055 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2056 	TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2057 	++pmap->pm_generation;
2058 	rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem, info);
2059 	free_pv_entry(pv);
2060 
2061 	crit_exit();
2062 	return rtval;
2063 }
2064 
2065 /*
2066  * Create a pv entry for page at pa for
2067  * (pmap, va).
2068  */
2069 static
2070 void
2071 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
2072 {
2073 	pv_entry_t pv;
2074 
2075 	crit_enter();
2076 	pv = get_pv_entry();
2077 	pv->pv_va = va;
2078 	pv->pv_pmap = pmap;
2079 	pv->pv_ptem = mpte;
2080 
2081 	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
2082 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2083 	++pmap->pm_generation;
2084 	m->md.pv_list_count++;
2085 
2086 	crit_exit();
2087 }
2088 
2089 /*
2090  * pmap_remove_pte: do the things to unmap a page in a process
2091  */
2092 static
2093 int
2094 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
2095 	pmap_inval_info_t info)
2096 {
2097 	pt_entry_t oldpte;
2098 	vm_page_t m;
2099 
2100 	pmap_inval_interlock(info, pmap, va);
2101 	oldpte = pte_load_clear(ptq);
2102 	pmap_inval_deinterlock(info, pmap);
2103 	if (oldpte & PG_W)
2104 		pmap->pm_stats.wired_count -= 1;
2105 	/*
2106 	 * Machines that don't support invlpg, also don't support
2107 	 * PG_G.  XXX PG_G is disabled for SMP so don't worry about
2108 	 * the SMP case.
2109 	 */
2110 	if (oldpte & PG_G)
2111 		cpu_invlpg((void *)va);
2112 	KKASSERT(pmap->pm_stats.resident_count > 0);
2113 	--pmap->pm_stats.resident_count;
2114 	if (oldpte & PG_MANAGED) {
2115 		m = PHYS_TO_VM_PAGE(oldpte);
2116 		if (oldpte & PG_M) {
2117 #if defined(PMAP_DIAGNOSTIC)
2118 			if (pmap_nw_modified((pt_entry_t) oldpte)) {
2119 				kprintf(
2120 	"pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2121 				    va, oldpte);
2122 			}
2123 #endif
2124 			if (pmap_track_modified(va))
2125 				vm_page_dirty(m);
2126 		}
2127 		if (oldpte & PG_A)
2128 			vm_page_flag_set(m, PG_REFERENCED);
2129 		return pmap_remove_entry(pmap, m, va, info);
2130 	} else {
2131 		return pmap_unuse_pt(pmap, va, NULL, info);
2132 	}
2133 
2134 	return 0;
2135 }
2136 
2137 /*
2138  * pmap_remove_page:
2139  *
2140  *	Remove a single page from a process address space.
2141  *
2142  *	This function may not be called from an interrupt if the pmap is
2143  *	not kernel_pmap.
2144  */
2145 static
2146 void
2147 pmap_remove_page(struct pmap *pmap, vm_offset_t va, pmap_inval_info_t info)
2148 {
2149 	pt_entry_t *pte;
2150 
2151 	pte = pmap_pte(pmap, va);
2152 	if (pte == NULL)
2153 		return;
2154 	if ((*pte & PG_V) == 0)
2155 		return;
2156 	pmap_remove_pte(pmap, pte, va, info);
2157 }
2158 
2159 /*
2160  * pmap_remove:
2161  *
2162  *	Remove the given range of addresses from the specified map.
2163  *
2164  *	It is assumed that the start and end are properly
2165  *	rounded to the page size.
2166  *
2167  *	This function may not be called from an interrupt if the pmap is
2168  *	not kernel_pmap.
2169  */
2170 void
2171 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
2172 {
2173 	vm_offset_t va_next;
2174 	pml4_entry_t *pml4e;
2175 	pdp_entry_t *pdpe;
2176 	pd_entry_t ptpaddr, *pde;
2177 	pt_entry_t *pte;
2178 	struct pmap_inval_info info;
2179 
2180 	if (pmap == NULL)
2181 		return;
2182 
2183 	if (pmap->pm_stats.resident_count == 0)
2184 		return;
2185 
2186 	pmap_inval_init(&info);
2187 
2188 	/*
2189 	 * special handling of removing one page.  a very
2190 	 * common operation and easy to short circuit some
2191 	 * code.
2192 	 */
2193 	if (sva + PAGE_SIZE == eva) {
2194 		pde = pmap_pde(pmap, sva);
2195 		if (pde && (*pde & PG_PS) == 0) {
2196 			pmap_remove_page(pmap, sva, &info);
2197 			pmap_inval_done(&info);
2198 			return;
2199 		}
2200 	}
2201 
2202 	for (; sva < eva; sva = va_next) {
2203 		pml4e = pmap_pml4e(pmap, sva);
2204 		if ((*pml4e & PG_V) == 0) {
2205 			va_next = (sva + NBPML4) & ~PML4MASK;
2206 			if (va_next < sva)
2207 				va_next = eva;
2208 			continue;
2209 		}
2210 
2211 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2212 		if ((*pdpe & PG_V) == 0) {
2213 			va_next = (sva + NBPDP) & ~PDPMASK;
2214 			if (va_next < sva)
2215 				va_next = eva;
2216 			continue;
2217 		}
2218 
2219 		/*
2220 		 * Calculate index for next page table.
2221 		 */
2222 		va_next = (sva + NBPDR) & ~PDRMASK;
2223 		if (va_next < sva)
2224 			va_next = eva;
2225 
2226 		pde = pmap_pdpe_to_pde(pdpe, sva);
2227 		ptpaddr = *pde;
2228 
2229 		/*
2230 		 * Weed out invalid mappings.
2231 		 */
2232 		if (ptpaddr == 0)
2233 			continue;
2234 
2235 		/*
2236 		 * Check for large page.
2237 		 */
2238 		if ((ptpaddr & PG_PS) != 0) {
2239 			/* JG FreeBSD has more complex treatment here */
2240 			pmap_inval_interlock(&info, pmap, -1);
2241 			*pde = 0;
2242 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2243 			pmap_inval_deinterlock(&info, pmap);
2244 			continue;
2245 		}
2246 
2247 		/*
2248 		 * Limit our scan to either the end of the va represented
2249 		 * by the current page table page, or to the end of the
2250 		 * range being removed.
2251 		 */
2252 		if (va_next > eva)
2253 			va_next = eva;
2254 
2255 		/*
2256 		 * NOTE: pmap_remove_pte() can block.
2257 		 */
2258 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2259 		    sva += PAGE_SIZE) {
2260 			if (*pte == 0)
2261 				continue;
2262 			if (pmap_remove_pte(pmap, pte, sva, &info))
2263 				break;
2264 		}
2265 	}
2266 	pmap_inval_done(&info);
2267 }
2268 
2269 /*
2270  * pmap_remove_all:
2271  *
2272  *	Removes this physical page from all physical maps in which it resides.
2273  *	Reflects back modify bits to the pager.
2274  *
2275  *	This routine may not be called from an interrupt.
2276  */
2277 
2278 static
2279 void
2280 pmap_remove_all(vm_page_t m)
2281 {
2282 	struct pmap_inval_info info;
2283 	pt_entry_t *pte, tpte;
2284 	pv_entry_t pv;
2285 
2286 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2287 		return;
2288 
2289 	pmap_inval_init(&info);
2290 	crit_enter();
2291 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2292 		KKASSERT(pv->pv_pmap->pm_stats.resident_count > 0);
2293 		--pv->pv_pmap->pm_stats.resident_count;
2294 
2295 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2296 		pmap_inval_interlock(&info, pv->pv_pmap, pv->pv_va);
2297 		tpte = pte_load_clear(pte);
2298 		if (tpte & PG_W)
2299 			pv->pv_pmap->pm_stats.wired_count--;
2300 		pmap_inval_deinterlock(&info, pv->pv_pmap);
2301 		if (tpte & PG_A)
2302 			vm_page_flag_set(m, PG_REFERENCED);
2303 
2304 		/*
2305 		 * Update the vm_page_t clean and reference bits.
2306 		 */
2307 		if (tpte & PG_M) {
2308 #if defined(PMAP_DIAGNOSTIC)
2309 			if (pmap_nw_modified(tpte)) {
2310 				kprintf(
2311 	"pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2312 				    pv->pv_va, tpte);
2313 			}
2314 #endif
2315 			if (pmap_track_modified(pv->pv_va))
2316 				vm_page_dirty(m);
2317 		}
2318 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2319 		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2320 		++pv->pv_pmap->pm_generation;
2321 		m->md.pv_list_count--;
2322 		KKASSERT(m->md.pv_list_count >= 0);
2323 		if (TAILQ_EMPTY(&m->md.pv_list))
2324 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2325 		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem, &info);
2326 		free_pv_entry(pv);
2327 	}
2328 	crit_exit();
2329 	KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
2330 	pmap_inval_done(&info);
2331 }
2332 
2333 /*
2334  * pmap_protect:
2335  *
2336  *	Set the physical protection on the specified range of this map
2337  *	as requested.
2338  *
2339  *	This function may not be called from an interrupt if the map is
2340  *	not the kernel_pmap.
2341  */
2342 void
2343 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2344 {
2345 	vm_offset_t va_next;
2346 	pml4_entry_t *pml4e;
2347 	pdp_entry_t *pdpe;
2348 	pd_entry_t ptpaddr, *pde;
2349 	pt_entry_t *pte;
2350 	pmap_inval_info info;
2351 
2352 	/* JG review for NX */
2353 
2354 	if (pmap == NULL)
2355 		return;
2356 
2357 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2358 		pmap_remove(pmap, sva, eva);
2359 		return;
2360 	}
2361 
2362 	if (prot & VM_PROT_WRITE)
2363 		return;
2364 
2365 	pmap_inval_init(&info);
2366 
2367 	for (; sva < eva; sva = va_next) {
2368 
2369 		pml4e = pmap_pml4e(pmap, sva);
2370 		if ((*pml4e & PG_V) == 0) {
2371 			va_next = (sva + NBPML4) & ~PML4MASK;
2372 			if (va_next < sva)
2373 				va_next = eva;
2374 			continue;
2375 		}
2376 
2377 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2378 		if ((*pdpe & PG_V) == 0) {
2379 			va_next = (sva + NBPDP) & ~PDPMASK;
2380 			if (va_next < sva)
2381 				va_next = eva;
2382 			continue;
2383 		}
2384 
2385 		va_next = (sva + NBPDR) & ~PDRMASK;
2386 		if (va_next < sva)
2387 			va_next = eva;
2388 
2389 		pde = pmap_pdpe_to_pde(pdpe, sva);
2390 		ptpaddr = *pde;
2391 
2392 		/*
2393 		 * Check for large page.
2394 		 */
2395 		if ((ptpaddr & PG_PS) != 0) {
2396 			pmap_inval_interlock(&info, pmap, -1);
2397 			*pde &= ~(PG_M|PG_RW);
2398 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2399 			pmap_inval_deinterlock(&info, pmap);
2400 			continue;
2401 		}
2402 
2403 		/*
2404 		 * Weed out invalid mappings. Note: we assume that the page
2405 		 * directory table is always allocated, and in kernel virtual.
2406 		 */
2407 		if (ptpaddr == 0)
2408 			continue;
2409 
2410 		if (va_next > eva)
2411 			va_next = eva;
2412 
2413 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2414 		     sva += PAGE_SIZE) {
2415 			pt_entry_t pbits;
2416 			pt_entry_t cbits;
2417 			vm_page_t m;
2418 
2419 			/*
2420 			 * XXX non-optimal.  Note also that there can be
2421 			 * no pmap_inval_flush() calls until after we modify
2422 			 * ptbase[sindex] (or otherwise we have to do another
2423 			 * pmap_inval_add() call).
2424 			 */
2425 			pmap_inval_interlock(&info, pmap, sva);
2426 again:
2427 			pbits = *pte;
2428 			cbits = pbits;
2429 			if ((pbits & PG_V) == 0) {
2430 				pmap_inval_deinterlock(&info, pmap);
2431 				continue;
2432 			}
2433 			if (pbits & PG_MANAGED) {
2434 				m = NULL;
2435 				if (pbits & PG_A) {
2436 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2437 					vm_page_flag_set(m, PG_REFERENCED);
2438 					cbits &= ~PG_A;
2439 				}
2440 				if (pbits & PG_M) {
2441 					if (pmap_track_modified(sva)) {
2442 						if (m == NULL)
2443 							m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2444 						vm_page_dirty(m);
2445 						cbits &= ~PG_M;
2446 					}
2447 				}
2448 			}
2449 			cbits &= ~PG_RW;
2450 			if (pbits != cbits &&
2451 			    !atomic_cmpset_long(pte, pbits, cbits)) {
2452 				goto again;
2453 			}
2454 			pmap_inval_deinterlock(&info, pmap);
2455 		}
2456 	}
2457 	pmap_inval_done(&info);
2458 }
2459 
2460 /*
2461  *	Insert the given physical page (p) at
2462  *	the specified virtual address (v) in the
2463  *	target physical map with the protection requested.
2464  *
2465  *	If specified, the page will be wired down, meaning
2466  *	that the related pte can not be reclaimed.
2467  *
2468  *	NB:  This is the only routine which MAY NOT lazy-evaluate
2469  *	or lose information.  That is, this routine must actually
2470  *	insert this page into the given map NOW.
2471  */
2472 void
2473 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2474 	   boolean_t wired)
2475 {
2476 	vm_paddr_t pa;
2477 	pd_entry_t *pde;
2478 	pt_entry_t *pte;
2479 	vm_paddr_t opa;
2480 	pt_entry_t origpte, newpte;
2481 	vm_page_t mpte;
2482 	pmap_inval_info info;
2483 
2484 	if (pmap == NULL)
2485 		return;
2486 
2487 	va = trunc_page(va);
2488 #ifdef PMAP_DIAGNOSTIC
2489 	if (va >= KvaEnd)
2490 		panic("pmap_enter: toobig");
2491 	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2492 		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)", va);
2493 #endif
2494 	if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
2495 		kprintf("Warning: pmap_enter called on UVA with kernel_pmap\n");
2496 #ifdef DDB
2497 		db_print_backtrace();
2498 #endif
2499 	}
2500 	if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
2501 		kprintf("Warning: pmap_enter called on KVA without kernel_pmap\n");
2502 #ifdef DDB
2503 		db_print_backtrace();
2504 #endif
2505 	}
2506 
2507 	/*
2508 	 * In the case that a page table page is not
2509 	 * resident, we are creating it here.
2510 	 */
2511 	if (va < VM_MAX_USER_ADDRESS)
2512 		mpte = pmap_allocpte(pmap, va);
2513 	else
2514 		mpte = NULL;
2515 
2516 	pmap_inval_init(&info);
2517 	pde = pmap_pde(pmap, va);
2518 	if (pde != NULL && (*pde & PG_V) != 0) {
2519 		if ((*pde & PG_PS) != 0)
2520 			panic("pmap_enter: attempted pmap_enter on 2MB page");
2521 		pte = pmap_pde_to_pte(pde, va);
2522 	} else
2523 		panic("pmap_enter: invalid page directory va=%#lx", va);
2524 
2525 	KKASSERT(pte != NULL);
2526 	pa = VM_PAGE_TO_PHYS(m);
2527 	origpte = *pte;
2528 	opa = origpte & PG_FRAME;
2529 
2530 	/*
2531 	 * Mapping has not changed, must be protection or wiring change.
2532 	 */
2533 	if (origpte && (opa == pa)) {
2534 		/*
2535 		 * Wiring change, just update stats. We don't worry about
2536 		 * wiring PT pages as they remain resident as long as there
2537 		 * are valid mappings in them. Hence, if a user page is wired,
2538 		 * the PT page will be also.
2539 		 */
2540 		if (wired && ((origpte & PG_W) == 0))
2541 			pmap->pm_stats.wired_count++;
2542 		else if (!wired && (origpte & PG_W))
2543 			pmap->pm_stats.wired_count--;
2544 
2545 #if defined(PMAP_DIAGNOSTIC)
2546 		if (pmap_nw_modified(origpte)) {
2547 			kprintf(
2548 	"pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2549 			    va, origpte);
2550 		}
2551 #endif
2552 
2553 		/*
2554 		 * Remove the extra pte reference.  Note that we cannot
2555 		 * optimize the RO->RW case because we have adjusted the
2556 		 * wiring count above and may need to adjust the wiring
2557 		 * bits below.
2558 		 */
2559 		if (mpte)
2560 			mpte->hold_count--;
2561 
2562 		/*
2563 		 * We might be turning off write access to the page,
2564 		 * so we go ahead and sense modify status.
2565 		 */
2566 		if (origpte & PG_MANAGED) {
2567 			if ((origpte & PG_M) && pmap_track_modified(va)) {
2568 				vm_page_t om;
2569 				om = PHYS_TO_VM_PAGE(opa);
2570 				vm_page_dirty(om);
2571 			}
2572 			pa |= PG_MANAGED;
2573 			KKASSERT(m->flags & PG_MAPPED);
2574 		}
2575 		goto validate;
2576 	}
2577 	/*
2578 	 * Mapping has changed, invalidate old range and fall through to
2579 	 * handle validating new mapping.
2580 	 */
2581 	while (opa) {
2582 		int err;
2583 		err = pmap_remove_pte(pmap, pte, va, &info);
2584 		if (err)
2585 			panic("pmap_enter: pte vanished, va: 0x%lx", va);
2586 		origpte = *pte;
2587 		opa = origpte & PG_FRAME;
2588 		if (opa) {
2589 			kprintf("pmap_enter: Warning, raced pmap %p va %p\n",
2590 				pmap, (void *)va);
2591 		}
2592 	}
2593 
2594 	/*
2595 	 * Enter on the PV list if part of our managed memory. Note that we
2596 	 * raise IPL while manipulating pv_table since pmap_enter can be
2597 	 * called at interrupt time.
2598 	 */
2599 	if (pmap_initialized &&
2600 	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2601 		pmap_insert_entry(pmap, va, mpte, m);
2602 		pa |= PG_MANAGED;
2603 		vm_page_flag_set(m, PG_MAPPED);
2604 	}
2605 
2606 	/*
2607 	 * Increment counters
2608 	 */
2609 	++pmap->pm_stats.resident_count;
2610 	if (wired)
2611 		pmap->pm_stats.wired_count++;
2612 
2613 validate:
2614 	/*
2615 	 * Now validate mapping with desired protection/wiring.
2616 	 */
2617 	newpte = (pt_entry_t) (pa | pte_prot(pmap, prot) | PG_V);
2618 
2619 	if (wired)
2620 		newpte |= PG_W;
2621 	if (va < VM_MAX_USER_ADDRESS)
2622 		newpte |= PG_U;
2623 	if (pmap == &kernel_pmap)
2624 		newpte |= pgeflag;
2625 
2626 	/*
2627 	 * if the mapping or permission bits are different, we need
2628 	 * to update the pte.
2629 	 */
2630 	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2631 		pmap_inval_interlock(&info, pmap, va);
2632 		*pte = newpte | PG_A;
2633 		pmap_inval_deinterlock(&info, pmap);
2634 		if (newpte & PG_RW)
2635 			vm_page_flag_set(m, PG_WRITEABLE);
2636 	}
2637 	KKASSERT((newpte & PG_MANAGED) == 0 || (m->flags & PG_MAPPED));
2638 	pmap_inval_done(&info);
2639 }
2640 
2641 /*
2642  * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
2643  * This code also assumes that the pmap has no pre-existing entry for this
2644  * VA.
2645  *
2646  * This code currently may only be used on user pmaps, not kernel_pmap.
2647  */
2648 void
2649 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
2650 {
2651 	pt_entry_t *pte;
2652 	vm_paddr_t pa;
2653 	vm_page_t mpte;
2654 	vm_pindex_t ptepindex;
2655 	pd_entry_t *ptepa;
2656 	pmap_inval_info info;
2657 
2658 	pmap_inval_init(&info);
2659 
2660 	if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
2661 		kprintf("Warning: pmap_enter_quick called on UVA with kernel_pmap\n");
2662 #ifdef DDB
2663 		db_print_backtrace();
2664 #endif
2665 	}
2666 	if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
2667 		kprintf("Warning: pmap_enter_quick called on KVA without kernel_pmap\n");
2668 #ifdef DDB
2669 		db_print_backtrace();
2670 #endif
2671 	}
2672 
2673 	KKASSERT(va < UPT_MIN_ADDRESS);	/* assert used on user pmaps only */
2674 
2675 	/*
2676 	 * Calculate the page table page (mpte), allocating it if necessary.
2677 	 *
2678 	 * A held page table page (mpte), or NULL, is passed onto the
2679 	 * section following.
2680 	 */
2681 	if (va < VM_MAX_USER_ADDRESS) {
2682 		/*
2683 		 * Calculate pagetable page index
2684 		 */
2685 		ptepindex = pmap_pde_pindex(va);
2686 
2687 		do {
2688 			/*
2689 			 * Get the page directory entry
2690 			 */
2691 			ptepa = pmap_pde(pmap, va);
2692 
2693 			/*
2694 			 * If the page table page is mapped, we just increment
2695 			 * the hold count, and activate it.
2696 			 */
2697 			if (ptepa && (*ptepa & PG_V) != 0) {
2698 				if (*ptepa & PG_PS)
2699 					panic("pmap_enter_quick: unexpected mapping into 2MB page");
2700 //				if (pmap->pm_ptphint &&
2701 //				    (pmap->pm_ptphint->pindex == ptepindex)) {
2702 //					mpte = pmap->pm_ptphint;
2703 //				} else {
2704 					mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2705 					pmap->pm_ptphint = mpte;
2706 //				}
2707 				if (mpte)
2708 					mpte->hold_count++;
2709 			} else {
2710 				mpte = _pmap_allocpte(pmap, ptepindex);
2711 			}
2712 		} while (mpte == NULL);
2713 	} else {
2714 		mpte = NULL;
2715 		/* this code path is not yet used */
2716 	}
2717 
2718 	/*
2719 	 * With a valid (and held) page directory page, we can just use
2720 	 * vtopte() to get to the pte.  If the pte is already present
2721 	 * we do not disturb it.
2722 	 */
2723 	pte = vtopte(va);
2724 	if (*pte & PG_V) {
2725 		if (mpte)
2726 			pmap_unwire_pte_hold(pmap, va, mpte, &info);
2727 		pa = VM_PAGE_TO_PHYS(m);
2728 		KKASSERT(((*pte ^ pa) & PG_FRAME) == 0);
2729 		pmap_inval_done(&info);
2730 		return;
2731 	}
2732 
2733 	/*
2734 	 * Enter on the PV list if part of our managed memory
2735 	 */
2736 	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2737 		pmap_insert_entry(pmap, va, mpte, m);
2738 		vm_page_flag_set(m, PG_MAPPED);
2739 	}
2740 
2741 	/*
2742 	 * Increment counters
2743 	 */
2744 	++pmap->pm_stats.resident_count;
2745 
2746 	pa = VM_PAGE_TO_PHYS(m);
2747 
2748 	/*
2749 	 * Now validate mapping with RO protection
2750 	 */
2751 	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2752 		*pte = pa | PG_V | PG_U;
2753 	else
2754 		*pte = pa | PG_V | PG_U | PG_MANAGED;
2755 /*	pmap_inval_add(&info, pmap, va); shouldn't be needed inval->valid */
2756 	pmap_inval_done(&info);
2757 }
2758 
2759 /*
2760  * Make a temporary mapping for a physical address.  This is only intended
2761  * to be used for panic dumps.
2762  */
2763 /* JG Needed on x86_64? */
2764 void *
2765 pmap_kenter_temporary(vm_paddr_t pa, int i)
2766 {
2767 	pmap_kenter((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
2768 	return ((void *)crashdumpmap);
2769 }
2770 
2771 #define MAX_INIT_PT (96)
2772 
2773 /*
2774  * This routine preloads the ptes for a given object into the specified pmap.
2775  * This eliminates the blast of soft faults on process startup and
2776  * immediately after an mmap.
2777  */
2778 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2779 
2780 void
2781 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
2782 		    vm_object_t object, vm_pindex_t pindex,
2783 		    vm_size_t size, int limit)
2784 {
2785 	struct rb_vm_page_scan_info info;
2786 	struct lwp *lp;
2787 	vm_size_t psize;
2788 
2789 	/*
2790 	 * We can't preinit if read access isn't set or there is no pmap
2791 	 * or object.
2792 	 */
2793 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2794 		return;
2795 
2796 	/*
2797 	 * We can't preinit if the pmap is not the current pmap
2798 	 */
2799 	lp = curthread->td_lwp;
2800 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2801 		return;
2802 
2803 	psize = x86_64_btop(size);
2804 
2805 	if ((object->type != OBJT_VNODE) ||
2806 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2807 			(object->resident_page_count > MAX_INIT_PT))) {
2808 		return;
2809 	}
2810 
2811 	if (psize + pindex > object->size) {
2812 		if (object->size < pindex)
2813 			return;
2814 		psize = object->size - pindex;
2815 	}
2816 
2817 	if (psize == 0)
2818 		return;
2819 
2820 	/*
2821 	 * Use a red-black scan to traverse the requested range and load
2822 	 * any valid pages found into the pmap.
2823 	 *
2824 	 * We cannot safely scan the object's memq unless we are in a
2825 	 * critical section since interrupts can remove pages from objects.
2826 	 */
2827 	info.start_pindex = pindex;
2828 	info.end_pindex = pindex + psize - 1;
2829 	info.limit = limit;
2830 	info.mpte = NULL;
2831 	info.addr = addr;
2832 	info.pmap = pmap;
2833 
2834 	crit_enter();
2835 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2836 				pmap_object_init_pt_callback, &info);
2837 	crit_exit();
2838 }
2839 
2840 static
2841 int
2842 pmap_object_init_pt_callback(vm_page_t p, void *data)
2843 {
2844 	struct rb_vm_page_scan_info *info = data;
2845 	vm_pindex_t rel_index;
2846 	/*
2847 	 * don't allow an madvise to blow away our really
2848 	 * free pages allocating pv entries.
2849 	 */
2850 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
2851 		vmstats.v_free_count < vmstats.v_free_reserved) {
2852 		    return(-1);
2853 	}
2854 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2855 	    (p->busy == 0) && (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2856 		if ((p->queue - p->pc) == PQ_CACHE)
2857 			vm_page_deactivate(p);
2858 		vm_page_busy(p);
2859 		rel_index = p->pindex - info->start_pindex;
2860 		pmap_enter_quick(info->pmap,
2861 				 info->addr + x86_64_ptob(rel_index), p);
2862 		vm_page_wakeup(p);
2863 	}
2864 	return(0);
2865 }
2866 
2867 /*
2868  * Return TRUE if the pmap is in shape to trivially
2869  * pre-fault the specified address.
2870  *
2871  * Returns FALSE if it would be non-trivial or if a
2872  * pte is already loaded into the slot.
2873  */
2874 int
2875 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
2876 {
2877 	pt_entry_t *pte;
2878 	pd_entry_t *pde;
2879 
2880 	pde = pmap_pde(pmap, addr);
2881 	if (pde == NULL || *pde == 0)
2882 		return(0);
2883 
2884 	pte = vtopte(addr);
2885 	if (*pte)
2886 		return(0);
2887 
2888 	return(1);
2889 }
2890 
2891 /*
2892  *	Routine:	pmap_change_wiring
2893  *	Function:	Change the wiring attribute for a map/virtual-address
2894  *			pair.
2895  *	In/out conditions:
2896  *			The mapping must already exist in the pmap.
2897  */
2898 void
2899 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2900 {
2901 	pt_entry_t *pte;
2902 
2903 	if (pmap == NULL)
2904 		return;
2905 
2906 	pte = pmap_pte(pmap, va);
2907 
2908 	if (wired && !pmap_pte_w(pte))
2909 		pmap->pm_stats.wired_count++;
2910 	else if (!wired && pmap_pte_w(pte))
2911 		pmap->pm_stats.wired_count--;
2912 
2913 	/*
2914 	 * Wiring is not a hardware characteristic so there is no need to
2915 	 * invalidate TLB.  However, in an SMP environment we must use
2916 	 * a locked bus cycle to update the pte (if we are not using
2917 	 * the pmap_inval_*() API that is)... it's ok to do this for simple
2918 	 * wiring changes.
2919 	 */
2920 #ifdef SMP
2921 	if (wired)
2922 		atomic_set_long(pte, PG_W);
2923 	else
2924 		atomic_clear_long(pte, PG_W);
2925 #else
2926 	if (wired)
2927 		atomic_set_long_nonlocked(pte, PG_W);
2928 	else
2929 		atomic_clear_long_nonlocked(pte, PG_W);
2930 #endif
2931 }
2932 
2933 
2934 
2935 /*
2936  *	Copy the range specified by src_addr/len
2937  *	from the source map to the range dst_addr/len
2938  *	in the destination map.
2939  *
2940  *	This routine is only advisory and need not do anything.
2941  */
2942 void
2943 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2944 	  vm_size_t len, vm_offset_t src_addr)
2945 {
2946 	return;
2947 #if 0
2948 	pmap_inval_info info;
2949 	vm_offset_t addr;
2950 	vm_offset_t end_addr = src_addr + len;
2951 	vm_offset_t pdnxt;
2952 	pd_entry_t src_frame, dst_frame;
2953 	vm_page_t m;
2954 
2955 	if (dst_addr != src_addr)
2956 		return;
2957 #if JGPMAP32
2958 	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2959 	if (src_frame != (PTDpde & PG_FRAME)) {
2960 		return;
2961 	}
2962 
2963 	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2964 	if (dst_frame != (APTDpde & PG_FRAME)) {
2965 		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
2966 		/* The page directory is not shared between CPUs */
2967 		cpu_invltlb();
2968 	}
2969 #endif
2970 	pmap_inval_init(&info);
2971 	pmap_inval_add(&info, dst_pmap, -1);
2972 	pmap_inval_add(&info, src_pmap, -1);
2973 
2974 	/*
2975 	 * critical section protection is required to maintain the page/object
2976 	 * association, interrupts can free pages and remove them from
2977 	 * their objects.
2978 	 */
2979 	crit_enter();
2980 	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2981 		pt_entry_t *src_pte, *dst_pte;
2982 		vm_page_t dstmpte, srcmpte;
2983 		vm_offset_t srcptepaddr;
2984 		vm_pindex_t ptepindex;
2985 
2986 		if (addr >= UPT_MIN_ADDRESS)
2987 			panic("pmap_copy: invalid to pmap_copy page tables\n");
2988 
2989 		/*
2990 		 * Don't let optional prefaulting of pages make us go
2991 		 * way below the low water mark of free pages or way
2992 		 * above high water mark of used pv entries.
2993 		 */
2994 		if (vmstats.v_free_count < vmstats.v_free_reserved ||
2995 		    pv_entry_count > pv_entry_high_water)
2996 			break;
2997 
2998 		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2999 		ptepindex = addr >> PDRSHIFT;
3000 
3001 #if JGPMAP32
3002 		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
3003 #endif
3004 		if (srcptepaddr == 0)
3005 			continue;
3006 
3007 		if (srcptepaddr & PG_PS) {
3008 #if JGPMAP32
3009 			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3010 				dst_pmap->pm_pdir[ptepindex] = (pd_entry_t) srcptepaddr;
3011 				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3012 			}
3013 #endif
3014 			continue;
3015 		}
3016 
3017 		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
3018 		if ((srcmpte == NULL) || (srcmpte->hold_count == 0) ||
3019 		    (srcmpte->flags & PG_BUSY)) {
3020 			continue;
3021 		}
3022 
3023 		if (pdnxt > end_addr)
3024 			pdnxt = end_addr;
3025 
3026 		src_pte = vtopte(addr);
3027 #if JGPMAP32
3028 		dst_pte = avtopte(addr);
3029 #endif
3030 		while (addr < pdnxt) {
3031 			pt_entry_t ptetemp;
3032 
3033 			ptetemp = *src_pte;
3034 			/*
3035 			 * we only virtual copy managed pages
3036 			 */
3037 			if ((ptetemp & PG_MANAGED) != 0) {
3038 				/*
3039 				 * We have to check after allocpte for the
3040 				 * pte still being around...  allocpte can
3041 				 * block.
3042 				 *
3043 				 * pmap_allocpte() can block.  If we lose
3044 				 * our page directory mappings we stop.
3045 				 */
3046 				dstmpte = pmap_allocpte(dst_pmap, addr);
3047 
3048 #if JGPMAP32
3049 				if (src_frame != (PTDpde & PG_FRAME) ||
3050 				    dst_frame != (APTDpde & PG_FRAME)
3051 				) {
3052 					kprintf("WARNING: pmap_copy: detected and corrected race\n");
3053 					pmap_unwire_pte_hold(dst_pmap, dstmpte, &info);
3054 					goto failed;
3055 				} else if ((*dst_pte == 0) &&
3056 					   (ptetemp = *src_pte) != 0 &&
3057 					   (ptetemp & PG_MANAGED)) {
3058 					/*
3059 					 * Clear the modified and
3060 					 * accessed (referenced) bits
3061 					 * during the copy.
3062 					 */
3063 					m = PHYS_TO_VM_PAGE(ptetemp);
3064 					*dst_pte = ptetemp & ~(PG_M | PG_A);
3065 					++dst_pmap->pm_stats.resident_count;
3066 					pmap_insert_entry(dst_pmap, addr,
3067 						dstmpte, m);
3068 					KKASSERT(m->flags & PG_MAPPED);
3069 	 			} else {
3070 					kprintf("WARNING: pmap_copy: dst_pte race detected and corrected\n");
3071 					pmap_unwire_pte_hold(dst_pmap, dstmpte, &info);
3072 					goto failed;
3073 				}
3074 #endif
3075 				if (dstmpte->hold_count >= srcmpte->hold_count)
3076 					break;
3077 			}
3078 			addr += PAGE_SIZE;
3079 			src_pte++;
3080 			dst_pte++;
3081 		}
3082 	}
3083 failed:
3084 	crit_exit();
3085 	pmap_inval_done(&info);
3086 #endif
3087 }
3088 
3089 /*
3090  * pmap_zero_page:
3091  *
3092  *	Zero the specified physical page.
3093  *
3094  *	This function may be called from an interrupt and no locking is
3095  *	required.
3096  */
3097 void
3098 pmap_zero_page(vm_paddr_t phys)
3099 {
3100 	vm_offset_t va = PHYS_TO_DMAP(phys);
3101 
3102 	pagezero((void *)va);
3103 }
3104 
3105 /*
3106  * pmap_page_assertzero:
3107  *
3108  *	Assert that a page is empty, panic if it isn't.
3109  */
3110 void
3111 pmap_page_assertzero(vm_paddr_t phys)
3112 {
3113 	vm_offset_t virt = PHYS_TO_DMAP(phys);
3114 	int i;
3115 
3116 	for (i = 0; i < PAGE_SIZE; i += sizeof(long)) {
3117 	    if (*(long *)((char *)virt + i) != 0) {
3118 		panic("pmap_page_assertzero() @ %p not zero!\n", (void *)virt);
3119 	    }
3120 	}
3121 }
3122 
3123 /*
3124  * pmap_zero_page:
3125  *
3126  *	Zero part of a physical page by mapping it into memory and clearing
3127  *	its contents with bzero.
3128  *
3129  *	off and size may not cover an area beyond a single hardware page.
3130  */
3131 void
3132 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
3133 {
3134 	vm_offset_t virt = PHYS_TO_DMAP(phys);
3135 
3136 	bzero((char *)virt + off, size);
3137 }
3138 
3139 /*
3140  * pmap_copy_page:
3141  *
3142  *	Copy the physical page from the source PA to the target PA.
3143  *	This function may be called from an interrupt.  No locking
3144  *	is required.
3145  */
3146 void
3147 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
3148 {
3149 	vm_offset_t src_virt, dst_virt;
3150 
3151 	src_virt = PHYS_TO_DMAP(src);
3152 	dst_virt = PHYS_TO_DMAP(dst);
3153 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
3154 }
3155 
3156 /*
3157  * pmap_copy_page_frag:
3158  *
3159  *	Copy the physical page from the source PA to the target PA.
3160  *	This function may be called from an interrupt.  No locking
3161  *	is required.
3162  */
3163 void
3164 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
3165 {
3166 	vm_offset_t src_virt, dst_virt;
3167 
3168 	src_virt = PHYS_TO_DMAP(src);
3169 	dst_virt = PHYS_TO_DMAP(dst);
3170 
3171 	bcopy((char *)src_virt + (src & PAGE_MASK),
3172 	      (char *)dst_virt + (dst & PAGE_MASK),
3173 	      bytes);
3174 }
3175 
3176 /*
3177  * Returns true if the pmap's pv is one of the first
3178  * 16 pvs linked to from this page.  This count may
3179  * be changed upwards or downwards in the future; it
3180  * is only necessary that true be returned for a small
3181  * subset of pmaps for proper page aging.
3182  */
3183 boolean_t
3184 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3185 {
3186 	pv_entry_t pv;
3187 	int loops = 0;
3188 
3189 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3190 		return FALSE;
3191 
3192 	crit_enter();
3193 
3194 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3195 		if (pv->pv_pmap == pmap) {
3196 			crit_exit();
3197 			return TRUE;
3198 		}
3199 		loops++;
3200 		if (loops >= 16)
3201 			break;
3202 	}
3203 	crit_exit();
3204 	return (FALSE);
3205 }
3206 
3207 /*
3208  * Remove all pages from specified address space
3209  * this aids process exit speeds.  Also, this code
3210  * is special cased for current process only, but
3211  * can have the more generic (and slightly slower)
3212  * mode enabled.  This is much faster than pmap_remove
3213  * in the case of running down an entire address space.
3214  */
3215 void
3216 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3217 {
3218 	struct lwp *lp;
3219 	pt_entry_t *pte, tpte;
3220 	pv_entry_t pv, npv;
3221 	vm_page_t m;
3222 	pmap_inval_info info;
3223 	int iscurrentpmap;
3224 	int save_generation;
3225 
3226 	lp = curthread->td_lwp;
3227 	if (lp && pmap == vmspace_pmap(lp->lwp_vmspace))
3228 		iscurrentpmap = 1;
3229 	else
3230 		iscurrentpmap = 0;
3231 
3232 	pmap_inval_init(&info);
3233 	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
3234 		if (pv->pv_va >= eva || pv->pv_va < sva) {
3235 			npv = TAILQ_NEXT(pv, pv_plist);
3236 			continue;
3237 		}
3238 
3239 		KKASSERT(pmap == pv->pv_pmap);
3240 
3241 		if (iscurrentpmap)
3242 			pte = vtopte(pv->pv_va);
3243 		else
3244 			pte = pmap_pte_quick(pmap, pv->pv_va);
3245 		pmap_inval_interlock(&info, pmap, pv->pv_va);
3246 
3247 		/*
3248 		 * We cannot remove wired pages from a process' mapping
3249 		 * at this time
3250 		 */
3251 		if (*pte & PG_W) {
3252 			pmap_inval_deinterlock(&info, pmap);
3253 			npv = TAILQ_NEXT(pv, pv_plist);
3254 			continue;
3255 		}
3256 		tpte = pte_load_clear(pte);
3257 
3258 		m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3259 
3260 		KASSERT(m < &vm_page_array[vm_page_array_size],
3261 			("pmap_remove_pages: bad tpte %lx", tpte));
3262 
3263 		KKASSERT(pmap->pm_stats.resident_count > 0);
3264 		--pmap->pm_stats.resident_count;
3265 		pmap_inval_deinterlock(&info, pmap);
3266 
3267 		/*
3268 		 * Update the vm_page_t clean and reference bits.
3269 		 */
3270 		if (tpte & PG_M) {
3271 			vm_page_dirty(m);
3272 		}
3273 
3274 		npv = TAILQ_NEXT(pv, pv_plist);
3275 		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
3276 		save_generation = ++pmap->pm_generation;
3277 
3278 		m->md.pv_list_count--;
3279 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3280 		if (TAILQ_EMPTY(&m->md.pv_list))
3281 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3282 
3283 		pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem, &info);
3284 		free_pv_entry(pv);
3285 
3286 		/*
3287 		 * Restart the scan if we blocked during the unuse or free
3288 		 * calls and other removals were made.
3289 		 */
3290 		if (save_generation != pmap->pm_generation) {
3291 			kprintf("Warning: pmap_remove_pages race-A avoided\n");
3292 			npv = TAILQ_FIRST(&pmap->pm_pvlist);
3293 		}
3294 	}
3295 	pmap_inval_done(&info);
3296 }
3297 
3298 /*
3299  * pmap_testbit tests bits in pte's
3300  * note that the testbit/clearbit routines are inline,
3301  * and a lot of things compile-time evaluate.
3302  */
3303 static
3304 boolean_t
3305 pmap_testbit(vm_page_t m, int bit)
3306 {
3307 	pv_entry_t pv;
3308 	pt_entry_t *pte;
3309 
3310 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3311 		return FALSE;
3312 
3313 	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3314 		return FALSE;
3315 
3316 	crit_enter();
3317 
3318 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3319 		/*
3320 		 * if the bit being tested is the modified bit, then
3321 		 * mark clean_map and ptes as never
3322 		 * modified.
3323 		 */
3324 		if (bit & (PG_A|PG_M)) {
3325 			if (!pmap_track_modified(pv->pv_va))
3326 				continue;
3327 		}
3328 
3329 #if defined(PMAP_DIAGNOSTIC)
3330 		if (pv->pv_pmap == NULL) {
3331 			kprintf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
3332 			continue;
3333 		}
3334 #endif
3335 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3336 		if (*pte & bit) {
3337 			crit_exit();
3338 			return TRUE;
3339 		}
3340 	}
3341 	crit_exit();
3342 	return (FALSE);
3343 }
3344 
3345 /*
3346  * this routine is used to modify bits in ptes
3347  */
3348 static __inline
3349 void
3350 pmap_clearbit(vm_page_t m, int bit)
3351 {
3352 	struct pmap_inval_info info;
3353 	pv_entry_t pv;
3354 	pt_entry_t *pte;
3355 	pt_entry_t pbits;
3356 
3357 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3358 		return;
3359 
3360 	pmap_inval_init(&info);
3361 
3362 	/*
3363 	 * Loop over all current mappings setting/clearing as appropos If
3364 	 * setting RO do we need to clear the VAC?
3365 	 */
3366 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3367 		/*
3368 		 * don't write protect pager mappings
3369 		 */
3370 		if (bit == PG_RW) {
3371 			if (!pmap_track_modified(pv->pv_va))
3372 				continue;
3373 		}
3374 
3375 #if defined(PMAP_DIAGNOSTIC)
3376 		if (pv->pv_pmap == NULL) {
3377 			kprintf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
3378 			continue;
3379 		}
3380 #endif
3381 
3382 		/*
3383 		 * Careful here.  We can use a locked bus instruction to
3384 		 * clear PG_A or PG_M safely but we need to synchronize
3385 		 * with the target cpus when we mess with PG_RW.
3386 		 *
3387 		 * We do not have to force synchronization when clearing
3388 		 * PG_M even for PTEs generated via virtual memory maps,
3389 		 * because the virtual kernel will invalidate the pmap
3390 		 * entry when/if it needs to resynchronize the Modify bit.
3391 		 */
3392 		if (bit & PG_RW)
3393 			pmap_inval_interlock(&info, pv->pv_pmap, pv->pv_va);
3394 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3395 again:
3396 		pbits = *pte;
3397 		if (pbits & bit) {
3398 			if (bit == PG_RW) {
3399 				if (pbits & PG_M) {
3400 					vm_page_dirty(m);
3401 					atomic_clear_long(pte, PG_M|PG_RW);
3402 				} else {
3403 					/*
3404 					 * The cpu may be trying to set PG_M
3405 					 * simultaniously with our clearing
3406 					 * of PG_RW.
3407 					 */
3408 					if (!atomic_cmpset_long(pte, pbits,
3409 							       pbits & ~PG_RW))
3410 						goto again;
3411 				}
3412 			} else if (bit == PG_M) {
3413 				/*
3414 				 * We could also clear PG_RW here to force
3415 				 * a fault on write to redetect PG_M for
3416 				 * virtual kernels, but it isn't necessary
3417 				 * since virtual kernels invalidate the pte
3418 				 * when they clear the VPTE_M bit in their
3419 				 * virtual page tables.
3420 				 */
3421 				atomic_clear_long(pte, PG_M);
3422 			} else {
3423 				atomic_clear_long(pte, bit);
3424 			}
3425 		}
3426 		if (bit & PG_RW)
3427 			pmap_inval_deinterlock(&info, pv->pv_pmap);
3428 	}
3429 	pmap_inval_done(&info);
3430 }
3431 
3432 /*
3433  *      pmap_page_protect:
3434  *
3435  *      Lower the permission for all mappings to a given page.
3436  */
3437 void
3438 pmap_page_protect(vm_page_t m, vm_prot_t prot)
3439 {
3440 	/* JG NX support? */
3441 	if ((prot & VM_PROT_WRITE) == 0) {
3442 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3443 			pmap_clearbit(m, PG_RW);
3444 			vm_page_flag_clear(m, PG_WRITEABLE);
3445 		} else {
3446 			pmap_remove_all(m);
3447 		}
3448 	}
3449 }
3450 
3451 vm_paddr_t
3452 pmap_phys_address(vm_pindex_t ppn)
3453 {
3454 	return (x86_64_ptob(ppn));
3455 }
3456 
3457 /*
3458  *	pmap_ts_referenced:
3459  *
3460  *	Return a count of reference bits for a page, clearing those bits.
3461  *	It is not necessary for every reference bit to be cleared, but it
3462  *	is necessary that 0 only be returned when there are truly no
3463  *	reference bits set.
3464  *
3465  *	XXX: The exact number of bits to check and clear is a matter that
3466  *	should be tested and standardized at some point in the future for
3467  *	optimal aging of shared pages.
3468  */
3469 int
3470 pmap_ts_referenced(vm_page_t m)
3471 {
3472 	pv_entry_t pv, pvf, pvn;
3473 	pt_entry_t *pte;
3474 	int rtval = 0;
3475 
3476 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3477 		return (rtval);
3478 
3479 	crit_enter();
3480 
3481 	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3482 
3483 		pvf = pv;
3484 
3485 		do {
3486 			pvn = TAILQ_NEXT(pv, pv_list);
3487 
3488 			crit_enter();
3489 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3490 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3491 			crit_exit();
3492 
3493 			if (!pmap_track_modified(pv->pv_va))
3494 				continue;
3495 
3496 			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3497 
3498 			if (pte && (*pte & PG_A)) {
3499 #ifdef SMP
3500 				atomic_clear_long(pte, PG_A);
3501 #else
3502 				atomic_clear_long_nonlocked(pte, PG_A);
3503 #endif
3504 				rtval++;
3505 				if (rtval > 4) {
3506 					break;
3507 				}
3508 			}
3509 		} while ((pv = pvn) != NULL && pv != pvf);
3510 	}
3511 	crit_exit();
3512 
3513 	return (rtval);
3514 }
3515 
3516 /*
3517  *	pmap_is_modified:
3518  *
3519  *	Return whether or not the specified physical page was modified
3520  *	in any physical maps.
3521  */
3522 boolean_t
3523 pmap_is_modified(vm_page_t m)
3524 {
3525 	return pmap_testbit(m, PG_M);
3526 }
3527 
3528 /*
3529  *	Clear the modify bits on the specified physical page.
3530  */
3531 void
3532 pmap_clear_modify(vm_page_t m)
3533 {
3534 	pmap_clearbit(m, PG_M);
3535 }
3536 
3537 /*
3538  *	pmap_clear_reference:
3539  *
3540  *	Clear the reference bit on the specified physical page.
3541  */
3542 void
3543 pmap_clear_reference(vm_page_t m)
3544 {
3545 	pmap_clearbit(m, PG_A);
3546 }
3547 
3548 /*
3549  * Miscellaneous support routines follow
3550  */
3551 
3552 static
3553 void
3554 i386_protection_init(void)
3555 {
3556 	int *kp, prot;
3557 
3558 	/* JG NX support may go here; No VM_PROT_EXECUTE ==> set NX bit  */
3559 	kp = protection_codes;
3560 	for (prot = 0; prot < 8; prot++) {
3561 		switch (prot) {
3562 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3563 			/*
3564 			 * Read access is also 0. There isn't any execute bit,
3565 			 * so just make it readable.
3566 			 */
3567 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3568 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3569 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3570 			*kp++ = 0;
3571 			break;
3572 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3573 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3574 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3575 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3576 			*kp++ = PG_RW;
3577 			break;
3578 		}
3579 	}
3580 }
3581 
3582 /*
3583  * Map a set of physical memory pages into the kernel virtual
3584  * address space. Return a pointer to where it is mapped. This
3585  * routine is intended to be used for mapping device memory,
3586  * NOT real memory.
3587  *
3588  * NOTE: we can't use pgeflag unless we invalidate the pages one at
3589  * a time.
3590  */
3591 void *
3592 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3593 {
3594 	vm_offset_t va, tmpva, offset;
3595 	pt_entry_t *pte;
3596 
3597 	offset = pa & PAGE_MASK;
3598 	size = roundup(offset + size, PAGE_SIZE);
3599 
3600 	va = kmem_alloc_nofault(&kernel_map, size, PAGE_SIZE);
3601 	if (va == 0)
3602 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3603 
3604 	pa = pa & ~PAGE_MASK;
3605 	for (tmpva = va; size > 0;) {
3606 		pte = vtopte(tmpva);
3607 		*pte = pa | PG_RW | PG_V; /* | pgeflag; */
3608 		size -= PAGE_SIZE;
3609 		tmpva += PAGE_SIZE;
3610 		pa += PAGE_SIZE;
3611 	}
3612 	cpu_invltlb();
3613 	smp_invltlb();
3614 
3615 	return ((void *)(va + offset));
3616 }
3617 
3618 void *
3619 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
3620 {
3621 	vm_offset_t va, tmpva, offset;
3622 	pt_entry_t *pte;
3623 
3624 	offset = pa & PAGE_MASK;
3625 	size = roundup(offset + size, PAGE_SIZE);
3626 
3627 	va = kmem_alloc_nofault(&kernel_map, size, PAGE_SIZE);
3628 	if (va == 0)
3629 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3630 
3631 	pa = pa & ~PAGE_MASK;
3632 	for (tmpva = va; size > 0;) {
3633 		pte = vtopte(tmpva);
3634 		*pte = pa | PG_RW | PG_V | PG_N; /* | pgeflag; */
3635 		size -= PAGE_SIZE;
3636 		tmpva += PAGE_SIZE;
3637 		pa += PAGE_SIZE;
3638 	}
3639 	cpu_invltlb();
3640 	smp_invltlb();
3641 
3642 	return ((void *)(va + offset));
3643 }
3644 
3645 void
3646 pmap_unmapdev(vm_offset_t va, vm_size_t size)
3647 {
3648 	vm_offset_t base, offset;
3649 
3650 	base = va & ~PAGE_MASK;
3651 	offset = va & PAGE_MASK;
3652 	size = roundup(offset + size, PAGE_SIZE);
3653 	pmap_qremove(va, size >> PAGE_SHIFT);
3654 	kmem_free(&kernel_map, base, size);
3655 }
3656 
3657 /*
3658  * perform the pmap work for mincore
3659  */
3660 int
3661 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3662 {
3663 	pt_entry_t *ptep, pte;
3664 	vm_page_t m;
3665 	int val = 0;
3666 
3667 	ptep = pmap_pte(pmap, addr);
3668 	if (ptep == 0) {
3669 		return 0;
3670 	}
3671 
3672 	if ((pte = *ptep) != 0) {
3673 		vm_offset_t pa;
3674 
3675 		val = MINCORE_INCORE;
3676 		if ((pte & PG_MANAGED) == 0)
3677 			return val;
3678 
3679 		pa = pte & PG_FRAME;
3680 
3681 		m = PHYS_TO_VM_PAGE(pa);
3682 
3683 		/*
3684 		 * Modified by us
3685 		 */
3686 		if (pte & PG_M)
3687 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3688 		/*
3689 		 * Modified by someone
3690 		 */
3691 		else if (m->dirty || pmap_is_modified(m))
3692 			val |= MINCORE_MODIFIED_OTHER;
3693 		/*
3694 		 * Referenced by us
3695 		 */
3696 		if (pte & PG_A)
3697 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3698 
3699 		/*
3700 		 * Referenced by someone
3701 		 */
3702 		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3703 			val |= MINCORE_REFERENCED_OTHER;
3704 			vm_page_flag_set(m, PG_REFERENCED);
3705 		}
3706 	}
3707 	return val;
3708 }
3709 
3710 /*
3711  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
3712  * vmspace will be ref'd and the old one will be deref'd.
3713  *
3714  * The vmspace for all lwps associated with the process will be adjusted
3715  * and cr3 will be reloaded if any lwp is the current lwp.
3716  */
3717 void
3718 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3719 {
3720 	struct vmspace *oldvm;
3721 	struct lwp *lp;
3722 
3723 	crit_enter();
3724 	oldvm = p->p_vmspace;
3725 	if (oldvm != newvm) {
3726 		p->p_vmspace = newvm;
3727 		KKASSERT(p->p_nthreads == 1);
3728 		lp = RB_ROOT(&p->p_lwp_tree);
3729 		pmap_setlwpvm(lp, newvm);
3730 		if (adjrefs) {
3731 			sysref_get(&newvm->vm_sysref);
3732 			sysref_put(&oldvm->vm_sysref);
3733 		}
3734 	}
3735 	crit_exit();
3736 }
3737 
3738 /*
3739  * Set the vmspace for a LWP.  The vmspace is almost universally set the
3740  * same as the process vmspace, but virtual kernels need to swap out contexts
3741  * on a per-lwp basis.
3742  */
3743 void
3744 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3745 {
3746 	struct vmspace *oldvm;
3747 	struct pmap *pmap;
3748 
3749 	crit_enter();
3750 	oldvm = lp->lwp_vmspace;
3751 
3752 	if (oldvm != newvm) {
3753 		lp->lwp_vmspace = newvm;
3754 		if (curthread->td_lwp == lp) {
3755 			pmap = vmspace_pmap(newvm);
3756 #if defined(SMP)
3757 			atomic_set_int(&pmap->pm_active, mycpu->gd_cpumask);
3758 			if (pmap->pm_active & CPUMASK_LOCK)
3759 				pmap_interlock_wait(newvm);
3760 #else
3761 			pmap->pm_active |= 1;
3762 #endif
3763 #if defined(SWTCH_OPTIM_STATS)
3764 			tlb_flush_count++;
3765 #endif
3766 			curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
3767 			curthread->td_pcb->pcb_cr3 |= PG_RW | PG_U | PG_V;
3768 			load_cr3(curthread->td_pcb->pcb_cr3);
3769 			pmap = vmspace_pmap(oldvm);
3770 #if defined(SMP)
3771 			atomic_clear_int(&pmap->pm_active, mycpu->gd_cpumask);
3772 #else
3773 			pmap->pm_active &= ~1;
3774 #endif
3775 		}
3776 	}
3777 	crit_exit();
3778 }
3779 
3780 #ifdef SMP
3781 
3782 /*
3783  * Called when switching to a locked pmap
3784  */
3785 void
3786 pmap_interlock_wait(struct vmspace *vm)
3787 {
3788 	struct pmap *pmap = &vm->vm_pmap;
3789 
3790 	if (pmap->pm_active & CPUMASK_LOCK) {
3791 		kprintf("Warning: pmap_interlock %p %08x\n",
3792 			pmap, pmap->pm_active);
3793 		while (pmap->pm_active & CPUMASK_LOCK) {
3794 			cpu_pause();
3795 			cpu_ccfence();
3796 			lwkt_process_ipiq();
3797 		}
3798 	}
3799 }
3800 
3801 #endif
3802 
3803 vm_offset_t
3804 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3805 {
3806 
3807 	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3808 		return addr;
3809 	}
3810 
3811 	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3812 	return addr;
3813 }
3814 
3815 
3816 #if defined(DEBUG)
3817 
3818 static void	pads (pmap_t pm);
3819 void		pmap_pvdump (vm_paddr_t pa);
3820 
3821 /* print address space of pmap*/
3822 static
3823 void
3824 pads(pmap_t pm)
3825 {
3826 	vm_offset_t va;
3827 	unsigned i, j;
3828 	pt_entry_t *ptep;
3829 
3830 	if (pm == &kernel_pmap)
3831 		return;
3832 	crit_enter();
3833 	for (i = 0; i < NPDEPG; i++) {
3834 		;
3835 	}
3836 	crit_exit();
3837 
3838 }
3839 
3840 void
3841 pmap_pvdump(vm_paddr_t pa)
3842 {
3843 	pv_entry_t pv;
3844 	vm_page_t m;
3845 
3846 	kprintf("pa %08llx", (long long)pa);
3847 	m = PHYS_TO_VM_PAGE(pa);
3848 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3849 #ifdef used_to_be
3850 		kprintf(" -> pmap %p, va %x, flags %x",
3851 		    (void *)pv->pv_pmap, pv->pv_va, pv->pv_flags);
3852 #endif
3853 		kprintf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3854 		pads(pv->pv_pmap);
3855 	}
3856 	kprintf(" ");
3857 }
3858 #endif
3859