xref: /dflybsd-src/sys/platform/pc64/x86_64/mp_machdep.c (revision fc962bc679e9e19b6e8b92bfd9d55faf0515eacd)
1 /*
2  * Copyright (c) 1996, by Steve Passe
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. The name of the developer may NOT be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD: src/sys/i386/i386/mp_machdep.c,v 1.115.2.15 2003/03/14 21:22:35 jhb Exp $
26  */
27 
28 #include "opt_cpu.h"
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/sysctl.h>
34 #include <sys/malloc.h>
35 #include <sys/memrange.h>
36 #include <sys/cons.h>	/* cngetc() */
37 #include <sys/machintr.h>
38 #include <sys/cpu_topology.h>
39 
40 #include <sys/mplock2.h>
41 
42 #include <vm/vm.h>
43 #include <vm/vm_param.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_kern.h>
46 #include <vm/vm_extern.h>
47 #include <sys/lock.h>
48 #include <vm/vm_map.h>
49 #include <sys/user.h>
50 #ifdef GPROF
51 #include <sys/gmon.h>
52 #endif
53 
54 #include <machine/smp.h>
55 #include <machine_base/apic/apicreg.h>
56 #include <machine/atomic.h>
57 #include <machine/cpufunc.h>
58 #include <machine/cputypes.h>
59 #include <machine_base/apic/lapic.h>
60 #include <machine_base/apic/ioapic.h>
61 #include <machine_base/acpica/acpi_md_cpu.h>
62 #include <machine/psl.h>
63 #include <machine/segments.h>
64 #include <machine/tss.h>
65 #include <machine/specialreg.h>
66 #include <machine/globaldata.h>
67 #include <machine/pmap_inval.h>
68 #include <machine/clock.h>
69 
70 #include <machine/md_var.h>		/* setidt() */
71 #include <machine_base/icu/icu.h>	/* IPIs */
72 #include <machine_base/icu/icu_var.h>
73 #include <machine_base/apic/ioapic_abi.h>
74 #include <machine/intr_machdep.h>	/* IPIs */
75 
76 #define WARMBOOT_TARGET		0
77 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
78 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
79 
80 #define CMOS_REG		(0x70)
81 #define CMOS_DATA		(0x71)
82 #define BIOS_RESET		(0x0f)
83 #define BIOS_WARM		(0x0a)
84 
85 /*
86  * this code MUST be enabled here and in mpboot.s.
87  * it follows the very early stages of AP boot by placing values in CMOS ram.
88  * it NORMALLY will never be needed and thus the primitive method for enabling.
89  *
90  */
91 #if defined(CHECK_POINTS)
92 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
93 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
94 
95 #define CHECK_INIT(D);				\
96 	CHECK_WRITE(0x34, (D));			\
97 	CHECK_WRITE(0x35, (D));			\
98 	CHECK_WRITE(0x36, (D));			\
99 	CHECK_WRITE(0x37, (D));			\
100 	CHECK_WRITE(0x38, (D));			\
101 	CHECK_WRITE(0x39, (D));
102 
103 #define CHECK_PRINT(S);				\
104 	kprintf("%s: %d, %d, %d, %d, %d, %d\n",	\
105 	   (S),					\
106 	   CHECK_READ(0x34),			\
107 	   CHECK_READ(0x35),			\
108 	   CHECK_READ(0x36),			\
109 	   CHECK_READ(0x37),			\
110 	   CHECK_READ(0x38),			\
111 	   CHECK_READ(0x39));
112 
113 #else				/* CHECK_POINTS */
114 
115 #define CHECK_INIT(D)
116 #define CHECK_PRINT(S)
117 
118 #endif				/* CHECK_POINTS */
119 
120 /*
121  * Values to send to the POST hardware.
122  */
123 #define MP_BOOTADDRESS_POST	0x10
124 #define MP_PROBE_POST		0x11
125 #define MPTABLE_PASS1_POST	0x12
126 
127 #define MP_START_POST		0x13
128 #define MP_ENABLE_POST		0x14
129 #define MPTABLE_PASS2_POST	0x15
130 
131 #define START_ALL_APS_POST	0x16
132 #define INSTALL_AP_TRAMP_POST	0x17
133 #define START_AP_POST		0x18
134 
135 #define MP_ANNOUNCE_POST	0x19
136 
137 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
138 int	current_postcode;
139 
140 /** XXX FIXME: what system files declare these??? */
141 extern struct region_descriptor r_gdt;
142 
143 extern int nkpt;
144 extern int naps;
145 
146 int64_t tsc0_offset;
147 extern int64_t tsc_offsets[];
148 
149 /* AP uses this during bootstrap.  Do not staticize.  */
150 char *bootSTK;
151 static int bootAP;
152 
153 struct pcb stoppcbs[MAXCPU];
154 
155 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
156 
157 /*
158  * Local data and functions.
159  */
160 
161 static u_int	boot_address;
162 static int	mp_finish;
163 static int	mp_finish_lapic;
164 
165 static int	start_all_aps(u_int boot_addr);
166 #if 0
167 static void	install_ap_tramp(u_int boot_addr);
168 #endif
169 static int	start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest);
170 static int	smitest(void);
171 static void	mp_bsp_simple_setup(void);
172 
173 /* which cpus have been started */
174 static cpumask_t smp_startup_mask = CPUMASK_INITIALIZER_ONLYONE;
175 /* which cpus have lapic been inited */
176 static cpumask_t smp_lapic_mask = CPUMASK_INITIALIZER_ONLYONE;
177 /* which cpus are ready for IPIs etc? */
178 cpumask_t smp_active_mask = CPUMASK_INITIALIZER_ONLYONE;
179 cpumask_t smp_finalize_mask = CPUMASK_INITIALIZER_ONLYONE;
180 
181 SYSCTL_OPAQUE(_machdep, OID_AUTO, smp_active, CTLFLAG_RD,
182 	      &smp_active_mask, sizeof(smp_active_mask), "LU", "");
183 static u_int	bootMP_size;
184 static u_int	report_invlpg_src;
185 SYSCTL_INT(_machdep, OID_AUTO, report_invlpg_src, CTLFLAG_RW,
186 	&report_invlpg_src, 0, "");
187 static u_int	report_invltlb_src;
188 SYSCTL_INT(_machdep, OID_AUTO, report_invltlb_src, CTLFLAG_RW,
189 	&report_invltlb_src, 0, "");
190 static int	optimized_invltlb;
191 SYSCTL_INT(_machdep, OID_AUTO, optimized_invltlb, CTLFLAG_RW,
192 	&optimized_invltlb, 0, "");
193 static int	all_but_self_ipi_enable = 1;
194 SYSCTL_INT(_machdep, OID_AUTO, all_but_self_ipi_enable, CTLFLAG_RW,
195 	&all_but_self_ipi_enable, 0, "");
196 
197 /* Local data for detecting CPU TOPOLOGY */
198 static int core_bits = 0;
199 static int logical_CPU_bits = 0;
200 
201 
202 /*
203  * Calculate usable address in base memory for AP trampoline code.
204  */
205 u_int
206 mp_bootaddress(u_int basemem)
207 {
208 	POSTCODE(MP_BOOTADDRESS_POST);
209 
210 	bootMP_size = mptramp_end - mptramp_start;
211 	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
212 	if (((basemem * 1024) - boot_address) < bootMP_size)
213 		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
214 	/* 3 levels of page table pages */
215 	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
216 
217 	return mptramp_pagetables;
218 }
219 
220 /*
221  * Print various information about the SMP system hardware and setup.
222  */
223 void
224 mp_announce(void)
225 {
226 	int     x;
227 
228 	POSTCODE(MP_ANNOUNCE_POST);
229 
230 	kprintf("DragonFly/MP: Multiprocessor motherboard\n");
231 	kprintf(" cpu0 (BSP): apic id: %2d\n", CPUID_TO_APICID(0));
232 	for (x = 1; x <= naps; ++x)
233 		kprintf(" cpu%d (AP):  apic id: %2d\n", x, CPUID_TO_APICID(x));
234 
235 	if (!ioapic_enable)
236 		kprintf(" Warning: APIC I/O disabled\n");
237 }
238 
239 /*
240  * AP cpu's call this to sync up protected mode.
241  *
242  * WARNING! %gs is not set up on entry.  This routine sets up %gs.
243  */
244 void
245 init_secondary(void)
246 {
247 	int	gsel_tss;
248 	int	x, myid = bootAP;
249 	u_int64_t msr, cr0;
250 	struct mdglobaldata *md;
251 	struct privatespace *ps;
252 
253 	ps = CPU_prvspace[myid];
254 
255 	gdt_segs[GPROC0_SEL].ssd_base =
256 		(long) &ps->mdglobaldata.gd_common_tss;
257 	ps->mdglobaldata.mi.gd_prvspace = ps;
258 
259 	/* We fill the 32-bit segment descriptors */
260 	for (x = 0; x < NGDT; x++) {
261 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
262 			ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x]);
263 	}
264 	/* And now a 64-bit one */
265 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
266 	    (struct system_segment_descriptor *)&gdt[myid * NGDT + GPROC0_SEL]);
267 
268 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
269 	r_gdt.rd_base = (long) &gdt[myid * NGDT];
270 	lgdt(&r_gdt);			/* does magic intra-segment return */
271 
272 	/* lgdt() destroys the GSBASE value, so we load GSBASE after lgdt() */
273 	wrmsr(MSR_FSBASE, 0);		/* User value */
274 	wrmsr(MSR_GSBASE, (u_int64_t)ps);
275 	wrmsr(MSR_KGSBASE, 0);		/* XXX User value while we're in the kernel */
276 
277 	lidt(&r_idt_arr[mdcpu->mi.gd_cpuid]);
278 
279 #if 0
280 	lldt(_default_ldt);
281 	mdcpu->gd_currentldt = _default_ldt;
282 #endif
283 
284 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
285 	gdt[myid * NGDT + GPROC0_SEL].sd_type = SDT_SYSTSS;
286 
287 	md = mdcpu;	/* loaded through %gs:0 (mdglobaldata.mi.gd_prvspace)*/
288 
289 	md->gd_common_tss.tss_rsp0 = 0;	/* not used until after switch */
290 #if 0 /* JG XXX */
291 	md->gd_common_tss.tss_ioopt = (sizeof md->gd_common_tss) << 16;
292 #endif
293 	md->gd_tss_gdt = &gdt[myid * NGDT + GPROC0_SEL];
294 	md->gd_common_tssd = *md->gd_tss_gdt;
295 
296 	/* double fault stack */
297 	md->gd_common_tss.tss_ist1 =
298 		(long)&md->mi.gd_prvspace->idlestack[
299 			sizeof(md->mi.gd_prvspace->idlestack)];
300 
301 	ltr(gsel_tss);
302 
303 	/*
304 	 * Set to a known state:
305 	 * Set by mpboot.s: CR0_PG, CR0_PE
306 	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
307 	 */
308 	cr0 = rcr0();
309 	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
310 	load_cr0(cr0);
311 
312 	/* Set up the fast syscall stuff */
313 	msr = rdmsr(MSR_EFER) | EFER_SCE;
314 	wrmsr(MSR_EFER, msr);
315 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
316 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
317 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
318 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
319 	wrmsr(MSR_STAR, msr);
320 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
321 
322 	pmap_set_opt();		/* PSE/4MB pages, etc */
323 	pmap_init_pat();	/* Page Attribute Table */
324 
325 	/* set up CPU registers and state */
326 	cpu_setregs();
327 
328 	/* set up SSE/NX registers */
329 	initializecpu(myid);
330 
331 	/* set up FPU state on the AP */
332 	npxinit();
333 
334 	/* disable the APIC, just to be SURE */
335 	lapic->svr &= ~APIC_SVR_ENABLE;
336 }
337 
338 /*******************************************************************
339  * local functions and data
340  */
341 
342 /*
343  * Start the SMP system
344  */
345 static void
346 mp_start_aps(void *dummy __unused)
347 {
348 	if (lapic_enable) {
349 		/* start each Application Processor */
350 		start_all_aps(boot_address);
351 	} else {
352 		mp_bsp_simple_setup();
353 	}
354 }
355 SYSINIT(startaps, SI_BOOT2_START_APS, SI_ORDER_FIRST, mp_start_aps, NULL);
356 
357 /*
358  * start each AP in our list
359  */
360 static int
361 start_all_aps(u_int boot_addr)
362 {
363 	vm_offset_t va = boot_address + KERNBASE;
364 	u_int64_t *pt4, *pt3, *pt2;
365 	int	pssize;
366 	int     x, i;
367 	int	shift;
368 	int	smicount;
369 	int	smibest;
370 	int	smilast;
371 	u_char  mpbiosreason;
372 	u_long  mpbioswarmvec;
373 	struct mdglobaldata *gd;
374 	struct privatespace *ps;
375 	size_t ipiq_size;
376 
377 	POSTCODE(START_ALL_APS_POST);
378 
379 	/* install the AP 1st level boot code */
380 	pmap_kenter(va, boot_address);
381 	cpu_invlpg((void *)va);		/* JG XXX */
382 	bcopy(mptramp_start, (void *)va, bootMP_size);
383 
384 	/* Locate the page tables, they'll be below the trampoline */
385 	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
386 	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
387 	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
388 
389 	/* Create the initial 1GB replicated page tables */
390 	for (i = 0; i < 512; i++) {
391 		/* Each slot of the level 4 pages points to the same level 3 page */
392 		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
393 		pt4[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
394 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
395 		    kernel_pmap.pmap_bits[PG_U_IDX];
396 
397 		/* Each slot of the level 3 pages points to the same level 2 page */
398 		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
399 		pt3[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
400 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
401 		    kernel_pmap.pmap_bits[PG_U_IDX];
402 
403 		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
404 		pt2[i] = i * (2 * 1024 * 1024);
405 		pt2[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
406 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
407 		    kernel_pmap.pmap_bits[PG_PS_IDX] |
408 		    kernel_pmap.pmap_bits[PG_U_IDX];
409 	}
410 
411 	/* save the current value of the warm-start vector */
412 	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
413 	outb(CMOS_REG, BIOS_RESET);
414 	mpbiosreason = inb(CMOS_DATA);
415 
416 	/* setup a vector to our boot code */
417 	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
418 	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
419 	outb(CMOS_REG, BIOS_RESET);
420 	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
421 
422 	/*
423 	 * If we have a TSC we can figure out the SMI interrupt rate.
424 	 * The SMI does not necessarily use a constant rate.  Spend
425 	 * up to 250ms trying to figure it out.
426 	 */
427 	smibest = 0;
428 	if (cpu_feature & CPUID_TSC) {
429 		set_apic_timer(275000);
430 		smilast = read_apic_timer();
431 		for (x = 0; x < 20 && read_apic_timer(); ++x) {
432 			smicount = smitest();
433 			if (smibest == 0 || smilast - smicount < smibest)
434 				smibest = smilast - smicount;
435 			smilast = smicount;
436 		}
437 		if (smibest > 250000)
438 			smibest = 0;
439 	}
440 	if (smibest)
441 		kprintf("SMI Frequency (worst case): %d Hz (%d us)\n",
442 			1000000 / smibest, smibest);
443 
444 	/* start each AP */
445 	for (x = 1; x <= naps; ++x) {
446 		/* This is a bit verbose, it will go away soon.  */
447 
448 		pssize = sizeof(struct privatespace);
449 		ps = (void *)kmem_alloc3(&kernel_map, pssize, VM_SUBSYS_GD,
450 					 KM_CPU(x));
451 		CPU_prvspace[x] = ps;
452 #if 0
453 		kprintf("ps %d %p %d\n", x, ps, pssize);
454 #endif
455 		bzero(ps, pssize);
456 		gd = &ps->mdglobaldata;
457 		gd->mi.gd_prvspace = ps;
458 
459 		/* prime data page for it to use */
460 		mi_gdinit(&gd->mi, x);
461 		cpu_gdinit(gd, x);
462 		ipiq_size = sizeof(struct lwkt_ipiq) * (naps + 1);
463 		gd->mi.gd_ipiq = (void *)kmem_alloc3(&kernel_map, ipiq_size,
464 						    VM_SUBSYS_IPIQ,
465 						    KM_CPU(x));
466 		bzero(gd->mi.gd_ipiq, ipiq_size);
467 
468 		gd->gd_acpi_id = CPUID_TO_ACPIID(gd->mi.gd_cpuid);
469 
470 		/* setup a vector to our boot code */
471 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
472 		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
473 		outb(CMOS_REG, BIOS_RESET);
474 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
475 
476 		/*
477 		 * Setup the AP boot stack
478 		 */
479 		bootSTK = &ps->idlestack[UPAGES * PAGE_SIZE - PAGE_SIZE];
480 		bootAP = x;
481 
482 		/* attempt to start the Application Processor */
483 		CHECK_INIT(99);	/* setup checkpoints */
484 		if (!start_ap(gd, boot_addr, smibest)) {
485 			kprintf("\nAP #%d (PHY# %d) failed!\n",
486 				x, CPUID_TO_APICID(x));
487 			CHECK_PRINT("trace");	/* show checkpoints */
488 			/* better panic as the AP may be running loose */
489 			kprintf("panic y/n? [y] ");
490 			cnpoll(TRUE);
491 			if (cngetc() != 'n')
492 				panic("bye-bye");
493 			cnpoll(FALSE);
494 		}
495 		CHECK_PRINT("trace");		/* show checkpoints */
496 	}
497 
498 	/* set ncpus to 1 + highest logical cpu.  Not all may have come up */
499 	ncpus = x;
500 
501 	/* ncpus2 -- ncpus rounded down to the nearest power of 2 */
502 	for (shift = 0; (1 << shift) <= ncpus; ++shift)
503 		;
504 	--shift;
505 	ncpus2_shift = shift;
506 	ncpus2 = 1 << shift;
507 	ncpus2_mask = ncpus2 - 1;
508 
509 	/* ncpus_fit -- ncpus rounded up to the nearest power of 2 */
510 	if ((1 << shift) < ncpus)
511 		++shift;
512 	ncpus_fit = 1 << shift;
513 	ncpus_fit_mask = ncpus_fit - 1;
514 
515 	/* build our map of 'other' CPUs */
516 	mycpu->gd_other_cpus = smp_startup_mask;
517 	CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
518 
519 	gd = (struct mdglobaldata *)mycpu;
520 	gd->gd_acpi_id = CPUID_TO_ACPIID(mycpu->gd_cpuid);
521 
522 	ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
523 	mycpu->gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size,
524 					    VM_SUBSYS_IPIQ);
525 	bzero(mycpu->gd_ipiq, ipiq_size);
526 
527 	/* restore the warmstart vector */
528 	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
529 	outb(CMOS_REG, BIOS_RESET);
530 	outb(CMOS_DATA, mpbiosreason);
531 
532 	/*
533 	 * NOTE!  The idlestack for the BSP was setup by locore.  Finish
534 	 * up, clean out the P==V mapping we did earlier.
535 	 */
536 	pmap_set_opt();
537 
538 	/*
539 	 * Wait all APs to finish initializing LAPIC
540 	 */
541 	if (bootverbose)
542 		kprintf("SMP: Waiting APs LAPIC initialization\n");
543 	if (cpu_feature & CPUID_TSC)
544 		tsc0_offset = rdtsc();
545 	tsc_offsets[0] = 0;
546 	mp_finish_lapic = 1;
547 	rel_mplock();
548 
549 	while (CPUMASK_CMPMASKNEQ(smp_lapic_mask, smp_startup_mask)) {
550 		cpu_pause();
551 		cpu_lfence();
552 		if (cpu_feature & CPUID_TSC)
553 			tsc0_offset = rdtsc();
554 	}
555 	while (try_mplock() == 0) {
556 		cpu_pause();
557 		cpu_lfence();
558 	}
559 
560 	/* number of APs actually started */
561 	return ncpus - 1;
562 }
563 
564 
565 /*
566  * load the 1st level AP boot code into base memory.
567  */
568 
569 /* targets for relocation */
570 extern void bigJump(void);
571 extern void bootCodeSeg(void);
572 extern void bootDataSeg(void);
573 extern void MPentry(void);
574 extern u_int MP_GDT;
575 extern u_int mp_gdtbase;
576 
577 #if 0
578 
579 static void
580 install_ap_tramp(u_int boot_addr)
581 {
582 	int     x;
583 	int     size = *(int *) ((u_long) & bootMP_size);
584 	u_char *src = (u_char *) ((u_long) bootMP);
585 	u_char *dst = (u_char *) boot_addr + KERNBASE;
586 	u_int   boot_base = (u_int) bootMP;
587 	u_int8_t *dst8;
588 	u_int16_t *dst16;
589 	u_int32_t *dst32;
590 
591 	POSTCODE(INSTALL_AP_TRAMP_POST);
592 
593 	for (x = 0; x < size; ++x)
594 		*dst++ = *src++;
595 
596 	/*
597 	 * modify addresses in code we just moved to basemem. unfortunately we
598 	 * need fairly detailed info about mpboot.s for this to work.  changes
599 	 * to mpboot.s might require changes here.
600 	 */
601 
602 	/* boot code is located in KERNEL space */
603 	dst = (u_char *) boot_addr + KERNBASE;
604 
605 	/* modify the lgdt arg */
606 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
607 	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
608 
609 	/* modify the ljmp target for MPentry() */
610 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
611 	*dst32 = ((u_int) MPentry - KERNBASE);
612 
613 	/* modify the target for boot code segment */
614 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
615 	dst8 = (u_int8_t *) (dst16 + 1);
616 	*dst16 = (u_int) boot_addr & 0xffff;
617 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
618 
619 	/* modify the target for boot data segment */
620 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
621 	dst8 = (u_int8_t *) (dst16 + 1);
622 	*dst16 = (u_int) boot_addr & 0xffff;
623 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
624 }
625 
626 #endif
627 
628 /*
629  * This function starts the AP (application processor) identified
630  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
631  * to accomplish this.  This is necessary because of the nuances
632  * of the different hardware we might encounter.  It ain't pretty,
633  * but it seems to work.
634  *
635  * NOTE: eventually an AP gets to ap_init(), which is called just
636  * before the AP goes into the LWKT scheduler's idle loop.
637  */
638 static int
639 start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest)
640 {
641 	int     physical_cpu;
642 	int     vector;
643 	u_long  icr_lo, icr_hi;
644 
645 	POSTCODE(START_AP_POST);
646 
647 	/* get the PHYSICAL APIC ID# */
648 	physical_cpu = CPUID_TO_APICID(gd->mi.gd_cpuid);
649 
650 	/* calculate the vector */
651 	vector = (boot_addr >> 12) & 0xff;
652 
653 	/* We don't want anything interfering */
654 	cpu_disable_intr();
655 
656 	/* Make sure the target cpu sees everything */
657 	wbinvd();
658 
659 	/*
660 	 * Try to detect when a SMI has occurred, wait up to 200ms.
661 	 *
662 	 * If a SMI occurs during an AP reset but before we issue
663 	 * the STARTUP command, the AP may brick.  To work around
664 	 * this problem we hold off doing the AP startup until
665 	 * after we have detected the SMI.  Hopefully another SMI
666 	 * will not occur before we finish the AP startup.
667 	 *
668 	 * Retries don't seem to help.  SMIs have a window of opportunity
669 	 * and if USB->legacy keyboard emulation is enabled in the BIOS
670 	 * the interrupt rate can be quite high.
671 	 *
672 	 * NOTE: Don't worry about the L1 cache load, it might bloat
673 	 *	 ldelta a little but ndelta will be so huge when the SMI
674 	 *	 occurs the detection logic will still work fine.
675 	 */
676 	if (smibest) {
677 		set_apic_timer(200000);
678 		smitest();
679 	}
680 
681 	/*
682 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
683 	 * and running the target CPU. OR this INIT IPI might be latched (P5
684 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
685 	 * ignored.
686 	 *
687 	 * see apic/apicreg.h for icr bit definitions.
688 	 *
689 	 * TIME CRITICAL CODE, DO NOT DO ANY KPRINTFS IN THE HOT PATH.
690 	 */
691 
692 	/*
693 	 * Setup the address for the target AP.  We can setup
694 	 * icr_hi once and then just trigger operations with
695 	 * icr_lo.
696 	 */
697 	icr_hi = lapic->icr_hi & ~APIC_ID_MASK;
698 	icr_hi |= (physical_cpu << 24);
699 	icr_lo = lapic->icr_lo & 0xfff00000;
700 	lapic->icr_hi = icr_hi;
701 
702 	/*
703 	 * Do an INIT IPI: assert RESET
704 	 *
705 	 * Use edge triggered mode to assert INIT
706 	 */
707 	lapic->icr_lo = icr_lo | 0x00004500;
708 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
709 		 /* spin */ ;
710 
711 	/*
712 	 * The spec calls for a 10ms delay but we may have to use a
713 	 * MUCH lower delay to avoid bricking an AP due to a fast SMI
714 	 * interrupt.  We have other loops here too and dividing by 2
715 	 * doesn't seem to be enough even after subtracting 350us,
716 	 * so we divide by 4.
717 	 *
718 	 * Our minimum delay is 150uS, maximum is 10ms.  If no SMI
719 	 * interrupt was detected we use the full 10ms.
720 	 */
721 	if (smibest == 0)
722 		u_sleep(10000);
723 	else if (smibest < 150 * 4 + 350)
724 		u_sleep(150);
725 	else if ((smibest - 350) / 4 < 10000)
726 		u_sleep((smibest - 350) / 4);
727 	else
728 		u_sleep(10000);
729 
730 	/*
731 	 * Do an INIT IPI: deassert RESET
732 	 *
733 	 * Use level triggered mode to deassert.  It is unclear
734 	 * why we need to do this.
735 	 */
736 	lapic->icr_lo = icr_lo | 0x00008500;
737 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
738 		 /* spin */ ;
739 	u_sleep(150);				/* wait 150us */
740 
741 	/*
742 	 * Next we do a STARTUP IPI: the previous INIT IPI might still be
743 	 * latched, (P5 bug) this 1st STARTUP would then terminate
744 	 * immediately, and the previously started INIT IPI would continue. OR
745 	 * the previous INIT IPI has already run. and this STARTUP IPI will
746 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
747 	 * will run.
748 	 */
749 	lapic->icr_lo = icr_lo | 0x00000600 | vector;
750 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
751 		 /* spin */ ;
752 	u_sleep(200);		/* wait ~200uS */
753 
754 	/*
755 	 * Finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
756 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
757 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
758 	 * recognized after hardware RESET or INIT IPI.
759 	 */
760 	lapic->icr_lo = icr_lo | 0x00000600 | vector;
761 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
762 		 /* spin */ ;
763 
764 	/* Resume normal operation */
765 	cpu_enable_intr();
766 
767 	/* wait for it to start, see ap_init() */
768 	set_apic_timer(5000000);/* == 5 seconds */
769 	while (read_apic_timer()) {
770 		if (CPUMASK_TESTBIT(smp_startup_mask, gd->mi.gd_cpuid))
771 			return 1;	/* return SUCCESS */
772 	}
773 
774 	return 0;		/* return FAILURE */
775 }
776 
777 static
778 int
779 smitest(void)
780 {
781 	int64_t	ltsc;
782 	int64_t	ntsc;
783 	int64_t	ldelta;
784 	int64_t	ndelta;
785 	int count;
786 
787 	ldelta = 0;
788 	ndelta = 0;
789 	while (read_apic_timer()) {
790 		ltsc = rdtsc();
791 		for (count = 0; count < 100; ++count)
792 			ntsc = rdtsc();	/* force loop to occur */
793 		if (ldelta) {
794 			ndelta = ntsc - ltsc;
795 			if (ldelta > ndelta)
796 				ldelta = ndelta;
797 			if (ndelta > ldelta * 2)
798 				break;
799 		} else {
800 			ldelta = ntsc - ltsc;
801 		}
802 	}
803 	return(read_apic_timer());
804 }
805 
806 /*
807  * Synchronously flush the TLB on all other CPU's.  The current cpu's
808  * TLB is not flushed.  If the caller wishes to flush the current cpu's
809  * TLB the caller must call cpu_invltlb() in addition to smp_invltlb().
810  *
811  * This routine may be called concurrently from multiple cpus.  When this
812  * happens, smp_invltlb() can wind up sticking around in the confirmation
813  * while() loop at the end as additional cpus are added to the global
814  * cpumask, until they are acknowledged by another IPI.
815  *
816  * NOTE: If for some reason we were unable to start all cpus we cannot
817  *	 safely use broadcast IPIs.
818  */
819 
820 cpumask_t smp_smurf_mask;
821 static cpumask_t smp_invltlb_mask;
822 #define LOOPRECOVER
823 #define LOOPMASK_IN
824 #ifdef LOOPMASK_IN
825 cpumask_t smp_in_mask;
826 #endif
827 cpumask_t smp_invmask;
828 extern cpumask_t smp_idleinvl_mask;
829 extern cpumask_t smp_idleinvl_reqs;
830 
831 /*
832  * Atomically OR bits in *mask to smp_smurf_mask.  Adjust *mask to remove
833  * bits that do not need to be IPId.  These bits are still part of the command,
834  * but the target cpus have already been signalled and do not need to be
835  * sigalled again.
836  */
837 #include <sys/spinlock.h>
838 #include <sys/spinlock2.h>
839 
840 static __noinline
841 void
842 smp_smurf_fetchset(cpumask_t *mask)
843 {
844 	cpumask_t omask;
845 	int i;
846 	__uint64_t obits;
847 	__uint64_t nbits;
848 
849 	i = 0;
850 	while (i < CPUMASK_ELEMENTS) {
851 		obits = smp_smurf_mask.ary[i];
852 		cpu_ccfence();
853 		nbits = obits | mask->ary[i];
854 		if (atomic_cmpset_long(&smp_smurf_mask.ary[i], obits, nbits)) {
855 			omask.ary[i] = obits;
856 			++i;
857 		}
858 	}
859 	CPUMASK_NANDMASK(*mask, omask);
860 }
861 
862 /*
863  * This is a mechanism which guarantees that cpu_invltlb() will be executed
864  * on idle cpus without having to signal or wake them up.  The invltlb will be
865  * executed when they wake up, prior to any scheduling or interrupt thread.
866  *
867  * (*mask) is modified to remove the cpus we successfully negotiate this
868  * function with.  This function may only be used with semi-synchronous
869  * commands (typically invltlb's or semi-synchronous invalidations which
870  * are usually associated only with kernel memory).
871  */
872 void
873 smp_smurf_idleinvlclr(cpumask_t *mask)
874 {
875 	if (optimized_invltlb) {
876 		ATOMIC_CPUMASK_ORMASK(smp_idleinvl_reqs, *mask);
877 		/* cpu_lfence() not needed */
878 		CPUMASK_NANDMASK(*mask, smp_idleinvl_mask);
879 	}
880 }
881 
882 /*
883  * Issue cpu_invltlb() across all cpus except the current cpu.
884  *
885  * This function will arrange to avoid idle cpus, but still gurantee that
886  * invltlb is run on them when they wake up prior to any scheduling or
887  * nominal interrupt.
888  */
889 void
890 smp_invltlb(void)
891 {
892 	struct mdglobaldata *md = mdcpu;
893 	cpumask_t mask;
894 	unsigned long rflags;
895 #ifdef LOOPRECOVER
896 	uint64_t tsc_base = rdtsc();
897 	int repeats = 0;
898 #endif
899 
900 	if (report_invltlb_src > 0) {
901 		if (--report_invltlb_src <= 0)
902 			print_backtrace(8);
903 	}
904 
905 	/*
906 	 * Disallow normal interrupts, set all active cpus except our own
907 	 * in the global smp_invltlb_mask.
908 	 */
909 	++md->mi.gd_cnt.v_smpinvltlb;
910 	crit_enter_gd(&md->mi);
911 
912 	/*
913 	 * Bits we want to set in smp_invltlb_mask.  We do not want to signal
914 	 * our own cpu.  Also try to remove bits associated with idle cpus
915 	 * that we can flag for auto-invltlb.
916 	 */
917 	mask = smp_active_mask;
918 	CPUMASK_NANDBIT(mask, md->mi.gd_cpuid);
919 	smp_smurf_idleinvlclr(&mask);
920 
921 	rflags = read_rflags();
922 	cpu_disable_intr();
923 	ATOMIC_CPUMASK_ORMASK(smp_invltlb_mask, mask);
924 
925 	/*
926 	 * IPI non-idle cpus represented by mask.  The omask calculation
927 	 * removes cpus from the mask which already have a Xinvltlb IPI
928 	 * pending (avoid double-queueing the IPI).
929 	 *
930 	 * We must disable real interrupts when setting the smurf flags or
931 	 * we might race a XINVLTLB before we manage to send the ipi's for
932 	 * the bits we set.
933 	 *
934 	 * NOTE: We are not signalling ourselves, mask already does NOT
935 	 * include our own cpu.
936 	 */
937 	smp_smurf_fetchset(&mask);
938 
939 	/*
940 	 * Issue the IPI.  Note that the XINVLTLB IPI runs regardless of
941 	 * the critical section count on the target cpus.
942 	 */
943 	CPUMASK_ORMASK(mask, md->mi.gd_cpumask);
944 	if (all_but_self_ipi_enable &&
945 	    (all_but_self_ipi_enable >= 2 ||
946 	     CPUMASK_CMPMASKEQ(smp_startup_mask, mask))) {
947 		all_but_self_ipi(XINVLTLB_OFFSET);
948 	} else {
949 		CPUMASK_NANDMASK(mask, md->mi.gd_cpumask);
950 		selected_apic_ipi(mask, XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
951 	}
952 
953 	/*
954 	 * Wait for acknowledgement by all cpus.  smp_inval_intr() will
955 	 * temporarily enable interrupts to avoid deadlocking the lapic,
956 	 * and will also handle running cpu_invltlb() and remote invlpg
957 	 * command son our cpu if some other cpu requests it of us.
958 	 *
959 	 * WARNING! I originally tried to implement this as a hard loop
960 	 *	    checking only smp_invltlb_mask (and issuing a local
961 	 *	    cpu_invltlb() if requested), with interrupts enabled
962 	 *	    and without calling smp_inval_intr().  This DID NOT WORK.
963 	 *	    It resulted in weird races where smurf bits would get
964 	 *	    cleared without any action being taken.
965 	 */
966 	smp_inval_intr();
967 	CPUMASK_ASSZERO(mask);
968 	while (CPUMASK_CMPMASKNEQ(smp_invltlb_mask, mask)) {
969 		smp_inval_intr();
970 		cpu_pause();
971 #ifdef LOOPRECOVER
972 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
973 			/*
974 			 * cpuid 	- cpu doing the waiting
975 			 * invltlb_mask - IPI in progress
976 			 */
977 			kprintf("smp_invltlb %d: waited too long inv=%08jx "
978 				"smurf=%08jx "
979 #ifdef LOOPMASK_IN
980 				"in=%08jx "
981 #endif
982 				"idle=%08jx/%08jx\n",
983 				md->mi.gd_cpuid,
984 				smp_invltlb_mask.ary[0],
985 				smp_smurf_mask.ary[0],
986 #ifdef LOOPMASK_IN
987 				smp_in_mask.ary[0],
988 #endif
989 				smp_idleinvl_mask.ary[0],
990 				smp_idleinvl_reqs.ary[0]);
991 			mdcpu->gd_xinvaltlb = 0;
992 			ATOMIC_CPUMASK_NANDMASK(smp_smurf_mask,
993 						smp_invltlb_mask);
994 			smp_invlpg(&smp_active_mask);
995 			tsc_base = rdtsc();
996 			if (++repeats > 10) {
997 				kprintf("smp_invltlb: giving up\n");
998 				CPUMASK_ASSZERO(smp_invltlb_mask);
999 			}
1000 		}
1001 #endif
1002 	}
1003 	write_rflags(rflags);
1004 	crit_exit_gd(&md->mi);
1005 }
1006 
1007 /*
1008  * Called from a critical section with interrupts hard-disabled.
1009  * This function issues an XINVLTLB IPI and then executes any pending
1010  * command on the current cpu before returning.
1011  */
1012 void
1013 smp_invlpg(cpumask_t *cmdmask)
1014 {
1015 	struct mdglobaldata *md = mdcpu;
1016 	cpumask_t mask;
1017 
1018 	if (report_invlpg_src > 0) {
1019 		if (--report_invlpg_src <= 0)
1020 			print_backtrace(8);
1021 	}
1022 
1023 	/*
1024 	 * Disallow normal interrupts, set all active cpus in the pmap,
1025 	 * plus our own for completion processing (it might or might not
1026 	 * be part of the set).
1027 	 */
1028 	mask = smp_active_mask;
1029 	CPUMASK_ANDMASK(mask, *cmdmask);
1030 	CPUMASK_ORMASK(mask, md->mi.gd_cpumask);
1031 
1032 	/*
1033 	 * Avoid double-queuing IPIs, which can deadlock us.  We must disable
1034 	 * real interrupts when setting the smurf flags or we might race a
1035 	 * XINVLTLB before we manage to send the ipi's for the bits we set.
1036 	 *
1037 	 * NOTE: We might be including our own cpu in the smurf mask.
1038 	 */
1039 	smp_smurf_fetchset(&mask);
1040 
1041 	/*
1042 	 * Issue the IPI.  Note that the XINVLTLB IPI runs regardless of
1043 	 * the critical section count on the target cpus.
1044 	 *
1045 	 * We do not include our own cpu when issuing the IPI.
1046 	 */
1047 	if (all_but_self_ipi_enable &&
1048 	    (all_but_self_ipi_enable >= 2 ||
1049 	     CPUMASK_CMPMASKEQ(smp_startup_mask, mask))) {
1050 		all_but_self_ipi(XINVLTLB_OFFSET);
1051 	} else {
1052 		CPUMASK_NANDMASK(mask, md->mi.gd_cpumask);
1053 		selected_apic_ipi(mask, XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
1054 	}
1055 
1056 	/*
1057 	 * This will synchronously wait for our command to complete,
1058 	 * as well as process commands from other cpus.  It also handles
1059 	 * reentrancy.
1060 	 *
1061 	 * (interrupts are disabled and we are in a critical section here)
1062 	 */
1063 	smp_inval_intr();
1064 }
1065 
1066 void
1067 smp_sniff(void)
1068 {
1069 	globaldata_t gd = mycpu;
1070 	int dummy;
1071 	register_t rflags;
1072 
1073 	/*
1074 	 * Ignore all_but_self_ipi_enable here and just use it.
1075 	 */
1076 	rflags = read_rflags();
1077 	cpu_disable_intr();
1078 	all_but_self_ipi(XSNIFF_OFFSET);
1079 	gd->gd_sample_pc = smp_sniff;
1080 	gd->gd_sample_sp = &dummy;
1081 	write_rflags(rflags);
1082 }
1083 
1084 void
1085 cpu_sniff(int dcpu)
1086 {
1087 	globaldata_t rgd = globaldata_find(dcpu);
1088 	register_t rflags;
1089 	int dummy;
1090 
1091 	/*
1092 	 * Ignore all_but_self_ipi_enable here and just use it.
1093 	 */
1094 	rflags = read_rflags();
1095 	cpu_disable_intr();
1096 	single_apic_ipi(dcpu, XSNIFF_OFFSET, APIC_DELMODE_FIXED);
1097 	rgd->gd_sample_pc = cpu_sniff;
1098 	rgd->gd_sample_sp = &dummy;
1099 	write_rflags(rflags);
1100 }
1101 
1102 /*
1103  * Called from Xinvltlb assembly with interrupts hard-disabled and in a
1104  * critical section.  gd_intr_nesting_level may or may not be bumped
1105  * depending on entry.
1106  *
1107  * THIS CODE IS INTENDED TO EXPLICITLY IGNORE THE CRITICAL SECTION COUNT.
1108  * THAT IS, THE INTERRUPT IS INTENDED TO FUNCTION EVEN WHEN MAINLINE CODE
1109  * IS IN A CRITICAL SECTION.
1110  */
1111 void
1112 smp_inval_intr(void)
1113 {
1114 	struct mdglobaldata *md = mdcpu;
1115 	cpumask_t cpumask;
1116 #ifdef LOOPRECOVER
1117 	uint64_t tsc_base = rdtsc();
1118 #endif
1119 
1120 #if 0
1121 	/*
1122 	 * The idle code is in a critical section, but that doesn't stop
1123 	 * Xinvltlb from executing, so deal with the race which can occur
1124 	 * in that situation.  Otherwise r-m-w operations by pmap_inval_intr()
1125 	 * may have problems.
1126 	 */
1127 	if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs, md->mi.gd_cpuid)) {
1128 		ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask, md->mi.gd_cpuid);
1129 		cpu_invltlb();
1130 		cpu_mfence();
1131 	}
1132 #endif
1133 
1134 	/*
1135 	 * This is a real mess.  I'd like to just leave interrupts disabled
1136 	 * but it can cause the lapic to deadlock if too many interrupts queue
1137 	 * to it, due to the idiotic design of the lapic.  So instead we have
1138 	 * to enter a critical section so normal interrupts are made pending
1139 	 * and track whether this one was reentered.
1140 	 */
1141 	if (md->gd_xinvaltlb) {		/* reentrant on cpu */
1142 		md->gd_xinvaltlb = 2;
1143 		return;
1144 	}
1145 	md->gd_xinvaltlb = 1;
1146 
1147 	/*
1148 	 * Check only those cpus with active Xinvl* commands pending.
1149 	 *
1150 	 * We are going to enable interrupts so make sure we are in a
1151 	 * critical section.  This is necessary to avoid deadlocking
1152 	 * the lapic and to ensure that we execute our commands prior to
1153 	 * any nominal interrupt or preemption.
1154 	 *
1155 	 * WARNING! It is very important that we only clear out but in
1156 	 *	    smp_smurf_mask once for each interrupt we take.  In
1157 	 *	    this case, we clear it on initial entry and only loop
1158 	 *	    on the reentrancy detect (caused by another interrupt).
1159 	 */
1160 	cpumask = smp_invmask;
1161 #ifdef LOOPMASK_IN
1162 	ATOMIC_CPUMASK_ORBIT(smp_in_mask, md->mi.gd_cpuid);
1163 #endif
1164 loop:
1165 	cpu_enable_intr();
1166 	ATOMIC_CPUMASK_NANDBIT(smp_smurf_mask, md->mi.gd_cpuid);
1167 
1168 	/*
1169 	 * Specific page request(s), and we can't return until all bits
1170 	 * are zero.
1171 	 */
1172 	for (;;) {
1173 		int toolong;
1174 
1175 		/*
1176 		 * Also execute any pending full invalidation request in
1177 		 * this loop.
1178 		 */
1179 		if (CPUMASK_TESTBIT(smp_invltlb_mask, md->mi.gd_cpuid)) {
1180 			ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask,
1181 					       md->mi.gd_cpuid);
1182 			cpu_invltlb();
1183 			cpu_mfence();
1184 		}
1185 
1186 #ifdef LOOPRECOVER
1187 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1188 			/*
1189 			 * cpuid 	- cpu doing the waiting
1190 			 * invmask	- IPI in progress
1191 			 * invltlb_mask - which ones are TLB invalidations?
1192 			 */
1193 			kprintf("smp_inval_intr %d inv=%08jx tlbm=%08jx "
1194 				"smurf=%08jx "
1195 #ifdef LOOPMASK_IN
1196 				"in=%08jx "
1197 #endif
1198 				"idle=%08jx/%08jx\n",
1199 				md->mi.gd_cpuid,
1200 				smp_invmask.ary[0],
1201 				smp_invltlb_mask.ary[0],
1202 				smp_smurf_mask.ary[0],
1203 #ifdef LOOPMASK_IN
1204 				smp_in_mask.ary[0],
1205 #endif
1206 				smp_idleinvl_mask.ary[0],
1207 				smp_idleinvl_reqs.ary[0]);
1208 			tsc_base = rdtsc();
1209 			toolong = 1;
1210 		} else {
1211 			toolong = 0;
1212 		}
1213 #else
1214 		toolong = 0;
1215 #endif
1216 
1217 		/*
1218 		 * We can only add bits to the cpumask to test during the
1219 		 * loop because the smp_invmask bit is cleared once the
1220 		 * originator completes the command (the targets may still
1221 		 * be cycling their own completions in this loop, afterwords).
1222 		 *
1223 		 * lfence required prior to all tests as this Xinvltlb
1224 		 * interrupt could race the originator (already be in progress
1225 		 * wnen the originator decides to issue, due to an issue by
1226 		 * another cpu).
1227 		 */
1228 		cpu_lfence();
1229 		CPUMASK_ORMASK(cpumask, smp_invmask);
1230 		/*cpumask = smp_active_mask;*/	/* XXX */
1231 		cpu_lfence();
1232 
1233 		if (pmap_inval_intr(&cpumask, toolong) == 0) {
1234 			/*
1235 			 * Clear our smurf mask to allow new IPIs, but deal
1236 			 * with potential races.
1237 			 */
1238 			break;
1239 		}
1240 
1241 		/*
1242 		 * Test if someone sent us another invalidation IPI, break
1243 		 * out so we can take it to avoid deadlocking the lapic
1244 		 * interrupt queue (? stupid intel, amd).
1245 		 */
1246 		if (md->gd_xinvaltlb == 2)
1247 			break;
1248 		/*
1249 		if (CPUMASK_TESTBIT(smp_smurf_mask, md->mi.gd_cpuid))
1250 			break;
1251 		*/
1252 	}
1253 
1254 	/*
1255 	 * Full invalidation request
1256 	 */
1257 	if (CPUMASK_TESTBIT(smp_invltlb_mask, md->mi.gd_cpuid)) {
1258 		ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask,
1259 				       md->mi.gd_cpuid);
1260 		cpu_invltlb();
1261 		cpu_mfence();
1262 	}
1263 
1264 	/*
1265 	 * Check to see if another Xinvltlb interrupt occurred and loop up
1266 	 * if it did.
1267 	 */
1268 	cpu_disable_intr();
1269 	if (md->gd_xinvaltlb == 2) {
1270 		md->gd_xinvaltlb = 1;
1271 		goto loop;
1272 	}
1273 #ifdef LOOPMASK_IN
1274 	ATOMIC_CPUMASK_NANDBIT(smp_in_mask, md->mi.gd_cpuid);
1275 #endif
1276 	md->gd_xinvaltlb = 0;
1277 }
1278 
1279 void
1280 cpu_wbinvd_on_all_cpus_callback(void *arg)
1281 {
1282 	wbinvd();
1283 }
1284 
1285 /*
1286  * When called the executing CPU will send an IPI to all other CPUs
1287  * requesting that they halt execution.
1288  *
1289  * Usually (but not necessarily) called with 'other_cpus' as its arg.
1290  *
1291  *  - Signals all CPUs in map to stop.
1292  *  - Waits for each to stop.
1293  *
1294  * Returns:
1295  *  -1: error
1296  *   0: NA
1297  *   1: ok
1298  *
1299  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
1300  *            from executing at same time.
1301  */
1302 int
1303 stop_cpus(cpumask_t map)
1304 {
1305 	cpumask_t mask;
1306 
1307 	CPUMASK_ANDMASK(map, smp_active_mask);
1308 
1309 	/* send the Xcpustop IPI to all CPUs in map */
1310 	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
1311 
1312 	do {
1313 		mask = stopped_cpus;
1314 		CPUMASK_ANDMASK(mask, map);
1315 		/* spin */
1316 	} while (CPUMASK_CMPMASKNEQ(mask, map));
1317 
1318 	return 1;
1319 }
1320 
1321 
1322 /*
1323  * Called by a CPU to restart stopped CPUs.
1324  *
1325  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
1326  *
1327  *  - Signals all CPUs in map to restart.
1328  *  - Waits for each to restart.
1329  *
1330  * Returns:
1331  *  -1: error
1332  *   0: NA
1333  *   1: ok
1334  */
1335 int
1336 restart_cpus(cpumask_t map)
1337 {
1338 	cpumask_t mask;
1339 
1340 	/* signal other cpus to restart */
1341 	mask = map;
1342 	CPUMASK_ANDMASK(mask, smp_active_mask);
1343 	cpu_ccfence();
1344 	started_cpus = mask;
1345 	cpu_ccfence();
1346 
1347 	/* wait for each to clear its bit */
1348 	while (CPUMASK_CMPMASKNEQ(stopped_cpus, map))
1349 		cpu_pause();
1350 
1351 	return 1;
1352 }
1353 
1354 /*
1355  * This is called once the mpboot code has gotten us properly relocated
1356  * and the MMU turned on, etc.   ap_init() is actually the idle thread,
1357  * and when it returns the scheduler will call the real cpu_idle() main
1358  * loop for the idlethread.  Interrupts are disabled on entry and should
1359  * remain disabled at return.
1360  */
1361 void
1362 ap_init(void)
1363 {
1364 	int	cpu_id;
1365 
1366 	/*
1367 	 * Adjust smp_startup_mask to signal the BSP that we have started
1368 	 * up successfully.  Note that we do not yet hold the BGL.  The BSP
1369 	 * is waiting for our signal.
1370 	 *
1371 	 * We can't set our bit in smp_active_mask yet because we are holding
1372 	 * interrupts physically disabled and remote cpus could deadlock
1373 	 * trying to send us an IPI.
1374 	 */
1375 	ATOMIC_CPUMASK_ORBIT(smp_startup_mask, mycpu->gd_cpuid);
1376 	cpu_mfence();
1377 
1378 	/*
1379 	 * Interlock for LAPIC initialization.  Wait until mp_finish_lapic is
1380 	 * non-zero, then get the MP lock.
1381 	 *
1382 	 * Note: We are in a critical section.
1383 	 *
1384 	 * Note: we are the idle thread, we can only spin.
1385 	 *
1386 	 * Note: The load fence is memory volatile and prevents the compiler
1387 	 * from improperly caching mp_finish_lapic, and the cpu from improperly
1388 	 * caching it.
1389 	 */
1390 	while (mp_finish_lapic == 0) {
1391 		cpu_pause();
1392 		cpu_lfence();
1393 	}
1394 #if 0
1395 	while (try_mplock() == 0) {
1396 		cpu_pause();
1397 		cpu_lfence();
1398 	}
1399 #endif
1400 
1401 	if (cpu_feature & CPUID_TSC) {
1402 		/*
1403 		 * The BSP is constantly updating tsc0_offset, figure out
1404 		 * the relative difference to synchronize ktrdump.
1405 		 */
1406 		tsc_offsets[mycpu->gd_cpuid] = rdtsc() - tsc0_offset;
1407 	}
1408 
1409 	/* BSP may have changed PTD while we're waiting for the lock */
1410 	cpu_invltlb();
1411 
1412 	/* Build our map of 'other' CPUs. */
1413 	mycpu->gd_other_cpus = smp_startup_mask;
1414 	ATOMIC_CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1415 
1416 	/* A quick check from sanity claus */
1417 	cpu_id = APICID_TO_CPUID((lapic->id & 0xff000000) >> 24);
1418 	if (mycpu->gd_cpuid != cpu_id) {
1419 		kprintf("SMP: assigned cpuid = %d\n", mycpu->gd_cpuid);
1420 		kprintf("SMP: actual cpuid = %d lapicid %d\n",
1421 			cpu_id, (lapic->id & 0xff000000) >> 24);
1422 #if 0 /* JGXXX */
1423 		kprintf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
1424 #endif
1425 		panic("cpuid mismatch! boom!!");
1426 	}
1427 
1428 	/* Initialize AP's local APIC for irq's */
1429 	lapic_init(FALSE);
1430 
1431 	/* LAPIC initialization is done */
1432 	ATOMIC_CPUMASK_ORBIT(smp_lapic_mask, mycpu->gd_cpuid);
1433 	cpu_mfence();
1434 
1435 #if 0
1436 	/* Let BSP move onto the next initialization stage */
1437 	rel_mplock();
1438 #endif
1439 
1440 	/*
1441 	 * Interlock for finalization.  Wait until mp_finish is non-zero,
1442 	 * then get the MP lock.
1443 	 *
1444 	 * Note: We are in a critical section.
1445 	 *
1446 	 * Note: we are the idle thread, we can only spin.
1447 	 *
1448 	 * Note: The load fence is memory volatile and prevents the compiler
1449 	 * from improperly caching mp_finish, and the cpu from improperly
1450 	 * caching it.
1451 	 */
1452 	while (mp_finish == 0) {
1453 		cpu_pause();
1454 		cpu_lfence();
1455 	}
1456 
1457 	/* BSP may have changed PTD while we're waiting for the lock */
1458 	cpu_invltlb();
1459 
1460 	/* Set memory range attributes for this CPU to match the BSP */
1461 	mem_range_AP_init();
1462 
1463 	/*
1464 	 * Once we go active we must process any IPIQ messages that may
1465 	 * have been queued, because no actual IPI will occur until we
1466 	 * set our bit in the smp_active_mask.  If we don't the IPI
1467 	 * message interlock could be left set which would also prevent
1468 	 * further IPIs.
1469 	 *
1470 	 * The idle loop doesn't expect the BGL to be held and while
1471 	 * lwkt_switch() normally cleans things up this is a special case
1472 	 * because we returning almost directly into the idle loop.
1473 	 *
1474 	 * The idle thread is never placed on the runq, make sure
1475 	 * nothing we've done put it there.
1476 	 */
1477 
1478 	/*
1479 	 * Hold a critical section and allow real interrupts to occur.  Zero
1480 	 * any spurious interrupts which have accumulated, then set our
1481 	 * smp_active_mask indicating that we are fully operational.
1482 	 */
1483 	crit_enter();
1484 	__asm __volatile("sti; pause; pause"::);
1485 	bzero(mdcpu->gd_ipending, sizeof(mdcpu->gd_ipending));
1486 	ATOMIC_CPUMASK_ORBIT(smp_active_mask, mycpu->gd_cpuid);
1487 
1488 	/*
1489 	 * Wait until all cpus have set their smp_active_mask and have fully
1490 	 * operational interrupts before proceeding.
1491 	 *
1492 	 * We need a final cpu_invltlb() because we would not have received
1493 	 * any until we set our bit in smp_active_mask.
1494 	 */
1495 	while (mp_finish == 1) {
1496 		cpu_pause();
1497 		cpu_lfence();
1498 	}
1499 	cpu_invltlb();
1500 
1501 	/*
1502 	 * Initialize per-cpu clocks and do other per-cpu initialization.
1503 	 * At this point code is expected to be able to use the full kernel
1504 	 * API.
1505 	 */
1506 	initclocks_pcpu();	/* clock interrupts (via IPIs) */
1507 
1508 	/*
1509 	 * Since we may have cleaned up the interrupt triggers, manually
1510 	 * process any pending IPIs before exiting our critical section.
1511 	 * Once the critical section has exited, normal interrupt processing
1512 	 * may occur.
1513 	 */
1514 	atomic_swap_int(&mycpu->gd_npoll, 0);
1515 	lwkt_process_ipiq();
1516 	crit_exit();
1517 
1518 	/*
1519 	 * Final final, allow the waiting BSP to resume the boot process,
1520 	 * return 'into' the idle thread bootstrap.
1521 	 */
1522 	ATOMIC_CPUMASK_ORBIT(smp_finalize_mask, mycpu->gd_cpuid);
1523 	KKASSERT((curthread->td_flags & TDF_RUNQ) == 0);
1524 }
1525 
1526 /*
1527  * Get SMP fully working before we start initializing devices.
1528  */
1529 static
1530 void
1531 ap_finish(void)
1532 {
1533 	if (bootverbose)
1534 		kprintf("Finish MP startup\n");
1535 	rel_mplock();
1536 
1537 	/*
1538 	 * Wait for the active mask to complete, after which all cpus will
1539 	 * be accepting interrupts.
1540 	 */
1541 	mp_finish = 1;
1542 	while (CPUMASK_CMPMASKNEQ(smp_active_mask, smp_startup_mask)) {
1543 		cpu_pause();
1544 		cpu_lfence();
1545 	}
1546 
1547 	/*
1548 	 * Wait for the finalization mask to complete, after which all cpus
1549 	 * have completely finished initializing and are entering or are in
1550 	 * their idle thread.
1551 	 *
1552 	 * BSP should have received all required invltlbs but do another
1553 	 * one just in case.
1554 	 */
1555 	cpu_invltlb();
1556 	mp_finish = 2;
1557 	while (CPUMASK_CMPMASKNEQ(smp_finalize_mask, smp_startup_mask)) {
1558 		cpu_pause();
1559 		cpu_lfence();
1560 	}
1561 
1562 	while (try_mplock() == 0) {
1563 		cpu_pause();
1564 		cpu_lfence();
1565 	}
1566 
1567 	if (bootverbose) {
1568 		kprintf("Active CPU Mask: %016jx\n",
1569 			(uintmax_t)CPUMASK_LOWMASK(smp_active_mask));
1570 	}
1571 }
1572 
1573 SYSINIT(finishsmp, SI_BOOT2_FINISH_SMP, SI_ORDER_FIRST, ap_finish, NULL);
1574 
1575 /*
1576  * Interrupts must be hard-disabled by caller
1577  */
1578 void
1579 cpu_send_ipiq(int dcpu)
1580 {
1581 	if (CPUMASK_TESTBIT(smp_active_mask, dcpu))
1582                 single_apic_ipi(dcpu, XIPIQ_OFFSET, APIC_DELMODE_FIXED);
1583 }
1584 
1585 #if 0	/* single_apic_ipi_passive() not working yet */
1586 /*
1587  * Returns 0 on failure, 1 on success
1588  */
1589 int
1590 cpu_send_ipiq_passive(int dcpu)
1591 {
1592         int r = 0;
1593 	if (CPUMASK_TESTBIT(smp_active_mask, dcpu)) {
1594                 r = single_apic_ipi_passive(dcpu, XIPIQ_OFFSET,
1595                                         APIC_DELMODE_FIXED);
1596         }
1597 	return(r);
1598 }
1599 #endif
1600 
1601 static void
1602 mp_bsp_simple_setup(void)
1603 {
1604 	struct mdglobaldata *gd;
1605 	size_t ipiq_size;
1606 
1607 	/* build our map of 'other' CPUs */
1608 	mycpu->gd_other_cpus = smp_startup_mask;
1609 	CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1610 
1611 	gd = (struct mdglobaldata *)mycpu;
1612 	gd->gd_acpi_id = CPUID_TO_ACPIID(mycpu->gd_cpuid);
1613 
1614 	ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
1615 	mycpu->gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size,
1616 					    VM_SUBSYS_IPIQ);
1617 	bzero(mycpu->gd_ipiq, ipiq_size);
1618 
1619 	pmap_set_opt();
1620 
1621 	if (cpu_feature & CPUID_TSC)
1622 		tsc0_offset = rdtsc();
1623 }
1624 
1625 
1626 /*
1627  * CPU TOPOLOGY DETECTION FUNCTIONS
1628  */
1629 
1630 /* Detect intel topology using CPUID
1631  * Ref: http://www.intel.com/Assets/PDF/appnote/241618.pdf, pg 41
1632  */
1633 static void
1634 detect_intel_topology(int count_htt_cores)
1635 {
1636 	int shift = 0;
1637 	int ecx_index = 0;
1638 	int core_plus_logical_bits = 0;
1639 	int cores_per_package;
1640 	int logical_per_package;
1641 	int logical_per_core;
1642 	unsigned int p[4];
1643 
1644 	if (cpu_high >= 0xb) {
1645 		goto FUNC_B;
1646 
1647 	} else if (cpu_high >= 0x4) {
1648 		goto FUNC_4;
1649 
1650 	} else {
1651 		core_bits = 0;
1652 		for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1653 			;
1654 		logical_CPU_bits = 1 << shift;
1655 		return;
1656 	}
1657 
1658 FUNC_B:
1659 	cpuid_count(0xb, FUNC_B_THREAD_LEVEL, p);
1660 
1661 	/* if 0xb not supported - fallback to 0x4 */
1662 	if (p[1] == 0 || (FUNC_B_TYPE(p[2]) != FUNC_B_THREAD_TYPE)) {
1663 		goto FUNC_4;
1664 	}
1665 
1666 	logical_CPU_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1667 
1668 	ecx_index = FUNC_B_THREAD_LEVEL + 1;
1669 	do {
1670 		cpuid_count(0xb, ecx_index, p);
1671 
1672 		/* Check for the Core type in the implemented sub leaves. */
1673 		if (FUNC_B_TYPE(p[2]) == FUNC_B_CORE_TYPE) {
1674 			core_plus_logical_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1675 			break;
1676 		}
1677 
1678 		ecx_index++;
1679 
1680 	} while (FUNC_B_TYPE(p[2]) != FUNC_B_INVALID_TYPE);
1681 
1682 	core_bits = core_plus_logical_bits - logical_CPU_bits;
1683 
1684 	return;
1685 
1686 FUNC_4:
1687 	cpuid_count(0x4, 0, p);
1688 	cores_per_package = FUNC_4_MAX_CORE_NO(p[0]) + 1;
1689 
1690 	logical_per_package = count_htt_cores;
1691 	logical_per_core = logical_per_package / cores_per_package;
1692 
1693 	for (shift = 0; (1 << shift) < logical_per_core; ++shift)
1694 		;
1695 	logical_CPU_bits = shift;
1696 
1697 	for (shift = 0; (1 << shift) < cores_per_package; ++shift)
1698 		;
1699 	core_bits = shift;
1700 
1701 	return;
1702 }
1703 
1704 /* Detect AMD topology using CPUID
1705  * Ref: http://support.amd.com/us/Embedded_TechDocs/25481.pdf, last page
1706  */
1707 static void
1708 detect_amd_topology(int count_htt_cores)
1709 {
1710 	int shift = 0;
1711 	if ((cpu_feature & CPUID_HTT) && (amd_feature2 & AMDID2_CMP)) {
1712 		if (cpu_procinfo2 & AMDID_COREID_SIZE) {
1713 			core_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
1714 				    AMDID_COREID_SIZE_SHIFT;
1715 		} else {
1716 			core_bits = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
1717 			for (shift = 0; (1 << shift) < core_bits; ++shift)
1718 				;
1719 			core_bits = shift;
1720 		}
1721 
1722 		logical_CPU_bits = count_htt_cores >> core_bits;
1723 		for (shift = 0; (1 << shift) < logical_CPU_bits; ++shift)
1724 			;
1725 		logical_CPU_bits = shift;
1726 	} else {
1727 		for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1728 			;
1729 		core_bits = shift;
1730 		logical_CPU_bits = 0;
1731 	}
1732 }
1733 
1734 static void
1735 amd_get_compute_unit_id(void *arg)
1736 {
1737 	u_int regs[4];
1738 
1739 	do_cpuid(0x8000001e, regs);
1740 	cpu_node_t * mynode = get_cpu_node_by_cpuid(mycpuid);
1741 
1742 	/*
1743 	 * AMD - CPUID Specification September 2010
1744 	 * page 34 - //ComputeUnitID = ebx[0:7]//
1745 	 */
1746 	mynode->compute_unit_id = regs[1] & 0xff;
1747 }
1748 
1749 int
1750 fix_amd_topology(void)
1751 {
1752 	cpumask_t mask;
1753 
1754 	if (cpu_vendor_id != CPU_VENDOR_AMD)
1755 		return -1;
1756 	if ((amd_feature2 & AMDID2_TOPOEXT) == 0)
1757 		return -1;
1758 
1759 	CPUMASK_ASSALLONES(mask);
1760 	lwkt_cpusync_simple(mask, amd_get_compute_unit_id, NULL);
1761 
1762 	kprintf("Compute unit iDS:\n");
1763 	int i;
1764 	for (i = 0; i < ncpus; i++) {
1765 		kprintf("%d-%d; \n",
1766 			i, get_cpu_node_by_cpuid(i)->compute_unit_id);
1767 	}
1768 	return 0;
1769 }
1770 
1771 /*
1772  * Calculate
1773  * - logical_CPU_bits
1774  * - core_bits
1775  * With the values above (for AMD or INTEL) we are able to generally
1776  * detect the CPU topology (number of cores for each level):
1777  * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1778  * Ref: http://www.multicoreinfo.com/research/papers/whitepapers/Intel-detect-topology.pdf
1779  */
1780 void
1781 detect_cpu_topology(void)
1782 {
1783 	static int topology_detected = 0;
1784 	int count = 0;
1785 
1786 	if (topology_detected)
1787 		goto OUT;
1788 	if ((cpu_feature & CPUID_HTT) == 0) {
1789 		core_bits = 0;
1790 		logical_CPU_bits = 0;
1791 		goto OUT;
1792 	}
1793 	count = (cpu_procinfo & CPUID_HTT_CORES) >> CPUID_HTT_CORE_SHIFT;
1794 
1795 	if (cpu_vendor_id == CPU_VENDOR_INTEL)
1796 		detect_intel_topology(count);
1797 	else if (cpu_vendor_id == CPU_VENDOR_AMD)
1798 		detect_amd_topology(count);
1799 	topology_detected = 1;
1800 
1801 OUT:
1802 	if (bootverbose) {
1803 		kprintf("Bits within APICID: logical_CPU_bits: %d; "
1804 			"core_bits: %d\n",
1805 			logical_CPU_bits, core_bits);
1806 	}
1807 }
1808 
1809 /*
1810  * Interface functions to calculate chip_ID,
1811  * core_number and logical_number
1812  * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1813  */
1814 int
1815 get_chip_ID(int cpuid)
1816 {
1817 	return get_apicid_from_cpuid(cpuid) >>
1818 	    (logical_CPU_bits + core_bits);
1819 }
1820 
1821 int
1822 get_chip_ID_from_APICID(int apicid)
1823 {
1824 	return apicid >> (logical_CPU_bits + core_bits);
1825 }
1826 
1827 int
1828 get_core_number_within_chip(int cpuid)
1829 {
1830 	return ((get_apicid_from_cpuid(cpuid) >> logical_CPU_bits) &
1831 		((1 << core_bits) - 1));
1832 }
1833 
1834 int
1835 get_logical_CPU_number_within_core(int cpuid)
1836 {
1837 	return (get_apicid_from_cpuid(cpuid) &
1838 		((1 << logical_CPU_bits) - 1));
1839 }
1840