xref: /dflybsd-src/sys/platform/pc64/x86_64/machdep.c (revision 97f56c04a1883982f4dbdc041369fd047c3d4d66)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_compat.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_directio.h"
49 #include "opt_inet.h"
50 #include "opt_msgbuf.h"
51 #include "opt_swap.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/sysproto.h>
56 #include <sys/signalvar.h>
57 #include <sys/kernel.h>
58 #include <sys/linker.h>
59 #include <sys/malloc.h>
60 #include <sys/proc.h>
61 #include <sys/priv.h>
62 #include <sys/buf.h>
63 #include <sys/reboot.h>
64 #include <sys/mbuf.h>
65 #include <sys/msgbuf.h>
66 #include <sys/sysent.h>
67 #include <sys/sysctl.h>
68 #include <sys/vmmeter.h>
69 #include <sys/bus.h>
70 #include <sys/usched.h>
71 #include <sys/reg.h>
72 #include <sys/sbuf.h>
73 #include <sys/ctype.h>
74 #include <sys/serialize.h>
75 #include <sys/systimer.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vm_extern.h>
86 
87 #include <sys/thread2.h>
88 #include <sys/mplock2.h>
89 #include <sys/mutex2.h>
90 
91 #include <sys/user.h>
92 #include <sys/exec.h>
93 #include <sys/cons.h>
94 
95 #include <ddb/ddb.h>
96 
97 #include <machine/cpu.h>
98 #include <machine/clock.h>
99 #include <machine/specialreg.h>
100 #if 0 /* JG */
101 #include <machine/bootinfo.h>
102 #endif
103 #include <machine/md_var.h>
104 #include <machine/metadata.h>
105 #include <machine/pc/bios.h>
106 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
107 #include <machine/globaldata.h>		/* CPU_prvspace */
108 #include <machine/smp.h>
109 #ifdef PERFMON
110 #include <machine/perfmon.h>
111 #endif
112 #include <machine/cputypes.h>
113 #include <machine/intr_machdep.h>
114 
115 #ifdef OLD_BUS_ARCH
116 #include <bus/isa/isa_device.h>
117 #endif
118 #include <machine_base/isa/isa_intr.h>
119 #include <bus/isa/rtc.h>
120 #include <sys/random.h>
121 #include <sys/ptrace.h>
122 #include <machine/sigframe.h>
123 
124 #include <sys/machintr.h>
125 #include <machine_base/icu/icu_abi.h>
126 #include <machine_base/icu/elcr_var.h>
127 #include <machine_base/apic/lapic.h>
128 #include <machine_base/apic/ioapic.h>
129 #include <machine_base/apic/ioapic_abi.h>
130 #include <machine/mptable.h>
131 
132 #define PHYSMAP_ENTRIES		10
133 
134 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
135 
136 extern void printcpuinfo(void);	/* XXX header file */
137 extern void identify_cpu(void);
138 #if 0 /* JG */
139 extern void finishidentcpu(void);
140 #endif
141 extern void panicifcpuunsupported(void);
142 
143 static void cpu_startup(void *);
144 static void pic_finish(void *);
145 static void cpu_finish(void *);
146 
147 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
148 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
149 #ifdef DIRECTIO
150 extern void ffs_rawread_setup(void);
151 #endif /* DIRECTIO */
152 static void init_locks(void);
153 
154 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
155 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
156 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
157 
158 #ifdef DDB
159 extern vm_offset_t ksym_start, ksym_end;
160 #endif
161 
162 struct privatespace CPU_prvspace_bsp __aligned(4096);
163 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
164 
165 int	_udatasel, _ucodesel, _ucode32sel;
166 u_long	atdevbase;
167 int64_t tsc_offsets[MAXCPU];
168 
169 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
170 
171 #if defined(SWTCH_OPTIM_STATS)
172 extern int swtch_optim_stats;
173 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
174 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
175 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
176 	CTLFLAG_RD, &tlb_flush_count, 0, "");
177 #endif
178 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
179 	CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
180 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
181     "monitor/mwait target state");
182 
183 #define CPU_MWAIT_HAS_CX	\
184 	((cpu_feature2 & CPUID2_MON) && \
185 	 (cpu_mwait_feature & CPUID_MWAIT_EXT))
186 
187 #define CPU_MWAIT_CX_NAMELEN	16
188 
189 #define CPU_MWAIT_C1		1
190 #define CPU_MWAIT_C2		2
191 #define CPU_MWAIT_C3		3
192 #define CPU_MWAIT_CX_MAX	8
193 
194 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
195 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
196 
197 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
198 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
199 
200 struct cpu_mwait_cx {
201 	int			subcnt;
202 	char			name[4];
203 	struct sysctl_ctx_list	sysctl_ctx;
204 	struct sysctl_oid	*sysctl_tree;
205 };
206 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
207 static char			cpu_mwait_cx_supported[256];
208 
209 static int			cpu_mwait_c1_hints_cnt;
210 static int			cpu_mwait_hints_cnt;
211 static int			*cpu_mwait_hints;
212 
213 static int			cpu_mwait_deep_hints_cnt;
214 static int			*cpu_mwait_deep_hints;
215 
216 #define CPU_IDLE_REPEAT_DEFAULT	750
217 
218 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
219 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
220 static u_int			cpu_mwait_repeat_shift = 1;
221 
222 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
223 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
224 
225 static int			cpu_mwait_c3_preamble =
226 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
227 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
228 
229 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
230     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
231 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
232     &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
233 
234 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
235 		    int *, boolean_t);
236 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
237 static int	cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
238 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
239 
240 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
241     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
242 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
243     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
244 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
245     &cpu_mwait_repeat_shift, 0, "");
246 
247 long physmem = 0;
248 
249 u_long ebda_addr = 0;
250 
251 int imcr_present = 0;
252 
253 int naps = 0; /* # of Applications processors */
254 
255 u_int base_memory;
256 struct mtx dt_lock;		/* lock for GDT and LDT */
257 
258 static int
259 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
260 {
261 	u_long pmem = ctob(physmem);
262 
263 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
264 	return (error);
265 }
266 
267 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
268 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
269 
270 static int
271 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
272 {
273 	int error = sysctl_handle_int(oidp, 0,
274 		ctob(physmem - vmstats.v_wire_count), req);
275 	return (error);
276 }
277 
278 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
279 	0, 0, sysctl_hw_usermem, "IU", "");
280 
281 static int
282 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
283 {
284 	int error = sysctl_handle_int(oidp, 0,
285 		x86_64_btop(avail_end - avail_start), req);
286 	return (error);
287 }
288 
289 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
290 	0, 0, sysctl_hw_availpages, "I", "");
291 
292 vm_paddr_t Maxmem;
293 vm_paddr_t Realmem;
294 
295 /*
296  * The number of PHYSMAP entries must be one less than the number of
297  * PHYSSEG entries because the PHYSMAP entry that spans the largest
298  * physical address that is accessible by ISA DMA is split into two
299  * PHYSSEG entries.
300  */
301 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
302 
303 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
304 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
305 
306 /* must be 2 less so 0 0 can signal end of chunks */
307 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
308 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
309 
310 static vm_offset_t buffer_sva, buffer_eva;
311 vm_offset_t clean_sva, clean_eva;
312 static vm_offset_t pager_sva, pager_eva;
313 static struct trapframe proc0_tf;
314 
315 static void
316 cpu_startup(void *dummy)
317 {
318 	caddr_t v;
319 	vm_size_t size = 0;
320 	vm_offset_t firstaddr;
321 
322 	/*
323 	 * Good {morning,afternoon,evening,night}.
324 	 */
325 	kprintf("%s", version);
326 	startrtclock();
327 	printcpuinfo();
328 	panicifcpuunsupported();
329 #ifdef PERFMON
330 	perfmon_init();
331 #endif
332 	kprintf("real memory  = %ju (%ju MB)\n",
333 		(intmax_t)Realmem,
334 		(intmax_t)Realmem / 1024 / 1024);
335 	/*
336 	 * Display any holes after the first chunk of extended memory.
337 	 */
338 	if (bootverbose) {
339 		int indx;
340 
341 		kprintf("Physical memory chunk(s):\n");
342 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
343 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
344 
345 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
346 				(intmax_t)phys_avail[indx],
347 				(intmax_t)phys_avail[indx + 1] - 1,
348 				(intmax_t)size1,
349 				(intmax_t)(size1 / PAGE_SIZE));
350 		}
351 	}
352 
353 	/*
354 	 * Allocate space for system data structures.
355 	 * The first available kernel virtual address is in "v".
356 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
357 	 * As pages of memory are allocated and cleared,
358 	 * "firstaddr" is incremented.
359 	 * An index into the kernel page table corresponding to the
360 	 * virtual memory address maintained in "v" is kept in "mapaddr".
361 	 */
362 
363 	/*
364 	 * Make two passes.  The first pass calculates how much memory is
365 	 * needed and allocates it.  The second pass assigns virtual
366 	 * addresses to the various data structures.
367 	 */
368 	firstaddr = 0;
369 again:
370 	v = (caddr_t)firstaddr;
371 
372 #define	valloc(name, type, num) \
373 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
374 #define	valloclim(name, type, num, lim) \
375 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
376 
377 	/*
378 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
379 	 * For the first 64MB of ram nominally allocate sufficient buffers to
380 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
381 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
382 	 * the buffer cache we limit the eventual kva reservation to
383 	 * maxbcache bytes.
384 	 *
385 	 * factor represents the 1/4 x ram conversion.
386 	 */
387 	if (nbuf == 0) {
388 		long factor = 4 * BKVASIZE / 1024;
389 		long kbytes = physmem * (PAGE_SIZE / 1024);
390 
391 		nbuf = 50;
392 		if (kbytes > 4096)
393 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
394 		if (kbytes > 65536)
395 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
396 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
397 			nbuf = maxbcache / BKVASIZE;
398 	}
399 
400 	/*
401 	 * Do not allow the buffer_map to be more then 1/2 the size of the
402 	 * kernel_map.
403 	 */
404 	if (nbuf > (virtual_end - virtual_start +
405 		    virtual2_end - virtual2_start) / (BKVASIZE * 2)) {
406 		nbuf = (virtual_end - virtual_start +
407 			virtual2_end - virtual2_start) / (BKVASIZE * 2);
408 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
409 	}
410 
411 	/*
412 	 * Do not allow the buffer_map to use more than 50% of available
413 	 * physical-equivalent memory.  Since the VM pages which back
414 	 * individual buffers are typically wired, having too many bufs
415 	 * can prevent the system from paging properly.
416 	 */
417 	if (nbuf > physmem * PAGE_SIZE / (BKVASIZE * 2)) {
418 		nbuf = physmem * PAGE_SIZE / (BKVASIZE * 2);
419 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
420 	}
421 
422 	/*
423 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
424 	 * the valloc space which is just the virtual_end - virtual_start
425 	 * section.  We use valloc() to allocate the buf header array.
426 	 */
427 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
428 		nbuf = (virtual_end - virtual_start) /
429 		       sizeof(struct buf) / 2;
430 		kprintf("Warning: nbufs capped at %ld due to valloc "
431 			"considerations", nbuf);
432 	}
433 
434 	nswbuf = lmax(lmin(nbuf / 4, 256), 16);
435 #ifdef NSWBUF_MIN
436 	if (nswbuf < NSWBUF_MIN)
437 		nswbuf = NSWBUF_MIN;
438 #endif
439 #ifdef DIRECTIO
440 	ffs_rawread_setup();
441 #endif
442 
443 	valloc(swbuf, struct buf, nswbuf);
444 	valloc(buf, struct buf, nbuf);
445 
446 	/*
447 	 * End of first pass, size has been calculated so allocate memory
448 	 */
449 	if (firstaddr == 0) {
450 		size = (vm_size_t)(v - firstaddr);
451 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
452 		if (firstaddr == 0)
453 			panic("startup: no room for tables");
454 		goto again;
455 	}
456 
457 	/*
458 	 * End of second pass, addresses have been assigned
459 	 *
460 	 * nbuf is an int, make sure we don't overflow the field.
461 	 *
462 	 * On 64-bit systems we always reserve maximal allocations for
463 	 * buffer cache buffers and there are no fragmentation issues,
464 	 * so the KVA segment does not have to be excessively oversized.
465 	 */
466 	if ((vm_size_t)(v - firstaddr) != size)
467 		panic("startup: table size inconsistency");
468 
469 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
470 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE) +
471 		      (nswbuf * MAXPHYS) + pager_map_size);
472 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
473 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE));
474 	buffer_map.system_map = 1;
475 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
476 		      ((vm_offset_t)nswbuf * MAXPHYS) + pager_map_size);
477 	pager_map.system_map = 1;
478 	kprintf("avail memory = %ju (%ju MB)\n",
479 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
480 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
481 		1024 / 1024);
482 }
483 
484 struct cpu_idle_stat {
485 	int	hint;
486 	int	reserved;
487 	u_long	halt;
488 	u_long	spin;
489 	u_long	repeat;
490 	u_long	repeat_last;
491 	u_long	repeat_delta;
492 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
493 } __cachealign;
494 
495 #define CPU_IDLE_STAT_HALT	-1
496 #define CPU_IDLE_STAT_SPIN	-2
497 
498 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
499 
500 static int
501 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
502 {
503 	int idx = arg2, cpu, error;
504 	u_long val = 0;
505 
506 	if (idx == CPU_IDLE_STAT_HALT) {
507 		for (cpu = 0; cpu < ncpus; ++cpu)
508 			val += cpu_idle_stats[cpu].halt;
509 	} else if (idx == CPU_IDLE_STAT_SPIN) {
510 		for (cpu = 0; cpu < ncpus; ++cpu)
511 			val += cpu_idle_stats[cpu].spin;
512 	} else {
513 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
514 		    ("invalid index %d", idx));
515 		for (cpu = 0; cpu < ncpus; ++cpu)
516 			val += cpu_idle_stats[cpu].mwait_cx[idx];
517 	}
518 
519 	error = sysctl_handle_quad(oidp, &val, 0, req);
520         if (error || req->newptr == NULL)
521 	        return error;
522 
523 	if (idx == CPU_IDLE_STAT_HALT) {
524 		for (cpu = 0; cpu < ncpus; ++cpu)
525 			cpu_idle_stats[cpu].halt = 0;
526 		cpu_idle_stats[0].halt = val;
527 	} else if (idx == CPU_IDLE_STAT_SPIN) {
528 		for (cpu = 0; cpu < ncpus; ++cpu)
529 			cpu_idle_stats[cpu].spin = 0;
530 		cpu_idle_stats[0].spin = val;
531 	} else {
532 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
533 		    ("invalid index %d", idx));
534 		for (cpu = 0; cpu < ncpus; ++cpu)
535 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
536 		cpu_idle_stats[0].mwait_cx[idx] = val;
537 	}
538 	return 0;
539 }
540 
541 static void
542 cpu_mwait_attach(void)
543 {
544 	struct sbuf sb;
545 	int hint_idx, i;
546 
547 	if (!CPU_MWAIT_HAS_CX)
548 		return;
549 
550 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
551 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
552 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
553 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
554 		int bm_sts = 1;
555 
556 		/*
557 		 * Pentium dual-core, Core 2 and beyond do not need any
558 		 * additional activities to enter deep C-state, i.e. C3(+).
559 		 */
560 		cpu_mwait_cx_no_bmarb();
561 
562 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
563 		if (!bm_sts)
564 			cpu_mwait_cx_no_bmsts();
565 	}
566 
567 	sbuf_new(&sb, cpu_mwait_cx_supported,
568 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
569 
570 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
571 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
572 		int sub;
573 
574 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
575 
576 		sysctl_ctx_init(&cx->sysctl_ctx);
577 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
578 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
579 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
580 		if (cx->sysctl_tree == NULL)
581 			continue;
582 
583 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
584 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
585 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
586 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
587 		    "sub-state count");
588 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
589 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
590 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
591 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
592 
593 		for (sub = 0; sub < cx->subcnt; ++sub)
594 			sbuf_printf(&sb, "C%d/%d ", i, sub);
595 	}
596 	sbuf_trim(&sb);
597 	sbuf_finish(&sb);
598 
599 	/*
600 	 * Non-deep C-states
601 	 */
602 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
603 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
604 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
605 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
606 	    M_DEVBUF, M_WAITOK);
607 
608 	hint_idx = 0;
609 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
610 		int j, subcnt;
611 
612 		subcnt = cpu_mwait_cx_info[i].subcnt;
613 		for (j = 0; j < subcnt; ++j) {
614 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
615 			    ("invalid mwait hint index %d", hint_idx));
616 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
617 			++hint_idx;
618 		}
619 	}
620 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
621 	    ("mwait hint count %d != index %d",
622 	     cpu_mwait_hints_cnt, hint_idx));
623 
624 	if (bootverbose) {
625 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
626 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
627 			int hint = cpu_mwait_hints[i];
628 
629 			kprintf("  C%d/%d hint 0x%04x\n",
630 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
631 			    hint);
632 		}
633 	}
634 
635 	/*
636 	 * Deep C-states
637 	 */
638 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
639 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
640 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
641 	    M_DEVBUF, M_WAITOK);
642 
643 	hint_idx = 0;
644 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
645 		int j, subcnt;
646 
647 		subcnt = cpu_mwait_cx_info[i].subcnt;
648 		for (j = 0; j < subcnt; ++j) {
649 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
650 			    ("invalid mwait deep hint index %d", hint_idx));
651 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
652 			++hint_idx;
653 		}
654 	}
655 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
656 	    ("mwait deep hint count %d != index %d",
657 	     cpu_mwait_deep_hints_cnt, hint_idx));
658 
659 	if (bootverbose) {
660 		kprintf("MWAIT deep hints:\n");
661 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
662 			int hint = cpu_mwait_deep_hints[i];
663 
664 			kprintf("  C%d/%d hint 0x%04x\n",
665 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
666 			    hint);
667 		}
668 	}
669 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
670 
671 	for (i = 0; i < ncpus; ++i) {
672 		char name[16];
673 
674 		ksnprintf(name, sizeof(name), "idle%d", i);
675 		SYSCTL_ADD_PROC(NULL,
676 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
677 		    name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
678 		    0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
679 	}
680 }
681 
682 static void
683 cpu_finish(void *dummy __unused)
684 {
685 	cpu_setregs();
686 	cpu_mwait_attach();
687 }
688 
689 static void
690 pic_finish(void *dummy __unused)
691 {
692 	/* Log ELCR information */
693 	elcr_dump();
694 
695 	/* Log MPTABLE information */
696 	mptable_pci_int_dump();
697 
698 	/* Finalize PCI */
699 	MachIntrABI.finalize();
700 }
701 
702 /*
703  * Send an interrupt to process.
704  *
705  * Stack is set up to allow sigcode stored
706  * at top to call routine, followed by kcall
707  * to sigreturn routine below.  After sigreturn
708  * resets the signal mask, the stack, and the
709  * frame pointer, it returns to the user
710  * specified pc, psl.
711  */
712 void
713 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
714 {
715 	struct lwp *lp = curthread->td_lwp;
716 	struct proc *p = lp->lwp_proc;
717 	struct trapframe *regs;
718 	struct sigacts *psp = p->p_sigacts;
719 	struct sigframe sf, *sfp;
720 	int oonstack;
721 	char *sp;
722 
723 	regs = lp->lwp_md.md_regs;
724 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
725 
726 	/* Save user context */
727 	bzero(&sf, sizeof(struct sigframe));
728 	sf.sf_uc.uc_sigmask = *mask;
729 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
730 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
731 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
732 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
733 
734 	/* Make the size of the saved context visible to userland */
735 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
736 
737 	/* Allocate and validate space for the signal handler context. */
738         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
739 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
740 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
741 			      sizeof(struct sigframe));
742 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
743 	} else {
744 		/* We take red zone into account */
745 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
746 	}
747 
748 	/*
749 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
750 	 * the embedded ucontext is not at the front, so aligning this won't
751 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
752 	 * kernel is ok.
753 	 *
754 	 * The problem though is if userland winds up trying to use the
755 	 * context directly.
756 	 */
757 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
758 
759 	/* Translate the signal is appropriate */
760 	if (p->p_sysent->sv_sigtbl) {
761 		if (sig <= p->p_sysent->sv_sigsize)
762 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
763 	}
764 
765 	/*
766 	 * Build the argument list for the signal handler.
767 	 *
768 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
769 	 */
770 	regs->tf_rdi = sig;				/* argument 1 */
771 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
772 
773 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
774 		/*
775 		 * Signal handler installed with SA_SIGINFO.
776 		 *
777 		 * action(signo, siginfo, ucontext)
778 		 */
779 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
780 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
781 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
782 
783 		/* fill siginfo structure */
784 		sf.sf_si.si_signo = sig;
785 		sf.sf_si.si_code = code;
786 		sf.sf_si.si_addr = (void *)regs->tf_addr;
787 	} else {
788 		/*
789 		 * Old FreeBSD-style arguments.
790 		 *
791 		 * handler (signo, code, [uc], addr)
792 		 */
793 		regs->tf_rsi = (register_t)code;	/* argument 2 */
794 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
795 		sf.sf_ahu.sf_handler = catcher;
796 	}
797 
798 	/*
799 	 * If we're a vm86 process, we want to save the segment registers.
800 	 * We also change eflags to be our emulated eflags, not the actual
801 	 * eflags.
802 	 */
803 #if 0 /* JG */
804 	if (regs->tf_eflags & PSL_VM) {
805 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
806 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
807 
808 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
809 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
810 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
811 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
812 
813 		if (vm86->vm86_has_vme == 0)
814 			sf.sf_uc.uc_mcontext.mc_eflags =
815 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
816 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
817 
818 		/*
819 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
820 		 * syscalls made by the signal handler.  This just avoids
821 		 * wasting time for our lazy fixup of such faults.  PSL_NT
822 		 * does nothing in vm86 mode, but vm86 programs can set it
823 		 * almost legitimately in probes for old cpu types.
824 		 */
825 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
826 	}
827 #endif
828 
829 	/*
830 	 * Save the FPU state and reinit the FP unit
831 	 */
832 	npxpush(&sf.sf_uc.uc_mcontext);
833 
834 	/*
835 	 * Copy the sigframe out to the user's stack.
836 	 */
837 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
838 		/*
839 		 * Something is wrong with the stack pointer.
840 		 * ...Kill the process.
841 		 */
842 		sigexit(lp, SIGILL);
843 	}
844 
845 	regs->tf_rsp = (register_t)sfp;
846 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
847 
848 	/*
849 	 * i386 abi specifies that the direction flag must be cleared
850 	 * on function entry
851 	 */
852 	regs->tf_rflags &= ~(PSL_T|PSL_D);
853 
854 	/*
855 	 * 64 bit mode has a code and stack selector but
856 	 * no data or extra selector.  %fs and %gs are not
857 	 * stored in-context.
858 	 */
859 	regs->tf_cs = _ucodesel;
860 	regs->tf_ss = _udatasel;
861 	clear_quickret();
862 }
863 
864 /*
865  * Sanitize the trapframe for a virtual kernel passing control to a custom
866  * VM context.  Remove any items that would otherwise create a privilage
867  * issue.
868  *
869  * XXX at the moment we allow userland to set the resume flag.  Is this a
870  * bad idea?
871  */
872 int
873 cpu_sanitize_frame(struct trapframe *frame)
874 {
875 	frame->tf_cs = _ucodesel;
876 	frame->tf_ss = _udatasel;
877 	/* XXX VM (8086) mode not supported? */
878 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
879 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
880 
881 	return(0);
882 }
883 
884 /*
885  * Sanitize the tls so loading the descriptor does not blow up
886  * on us.  For x86_64 we don't have to do anything.
887  */
888 int
889 cpu_sanitize_tls(struct savetls *tls)
890 {
891 	return(0);
892 }
893 
894 /*
895  * sigreturn(ucontext_t *sigcntxp)
896  *
897  * System call to cleanup state after a signal
898  * has been taken.  Reset signal mask and
899  * stack state from context left by sendsig (above).
900  * Return to previous pc and psl as specified by
901  * context left by sendsig. Check carefully to
902  * make sure that the user has not modified the
903  * state to gain improper privileges.
904  *
905  * MPSAFE
906  */
907 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
908 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
909 
910 int
911 sys_sigreturn(struct sigreturn_args *uap)
912 {
913 	struct lwp *lp = curthread->td_lwp;
914 	struct trapframe *regs;
915 	ucontext_t uc;
916 	ucontext_t *ucp;
917 	register_t rflags;
918 	int cs;
919 	int error;
920 
921 	/*
922 	 * We have to copy the information into kernel space so userland
923 	 * can't modify it while we are sniffing it.
924 	 */
925 	regs = lp->lwp_md.md_regs;
926 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
927 	if (error)
928 		return (error);
929 	ucp = &uc;
930 	rflags = ucp->uc_mcontext.mc_rflags;
931 
932 	/* VM (8086) mode not supported */
933 	rflags &= ~PSL_VM_UNSUPP;
934 
935 #if 0 /* JG */
936 	if (eflags & PSL_VM) {
937 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
938 		struct vm86_kernel *vm86;
939 
940 		/*
941 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
942 		 * set up the vm86 area, and we can't enter vm86 mode.
943 		 */
944 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
945 			return (EINVAL);
946 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
947 		if (vm86->vm86_inited == 0)
948 			return (EINVAL);
949 
950 		/* go back to user mode if both flags are set */
951 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
952 			trapsignal(lp, SIGBUS, 0);
953 
954 		if (vm86->vm86_has_vme) {
955 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
956 			    (eflags & VME_USERCHANGE) | PSL_VM;
957 		} else {
958 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
959 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
960 			    (eflags & VM_USERCHANGE) | PSL_VM;
961 		}
962 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
963 		tf->tf_eflags = eflags;
964 		tf->tf_vm86_ds = tf->tf_ds;
965 		tf->tf_vm86_es = tf->tf_es;
966 		tf->tf_vm86_fs = tf->tf_fs;
967 		tf->tf_vm86_gs = tf->tf_gs;
968 		tf->tf_ds = _udatasel;
969 		tf->tf_es = _udatasel;
970 		tf->tf_fs = _udatasel;
971 		tf->tf_gs = _udatasel;
972 	} else
973 #endif
974 	{
975 		/*
976 		 * Don't allow users to change privileged or reserved flags.
977 		 */
978 		/*
979 		 * XXX do allow users to change the privileged flag PSL_RF.
980 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
981 		 * should sometimes set it there too.  tf_eflags is kept in
982 		 * the signal context during signal handling and there is no
983 		 * other place to remember it, so the PSL_RF bit may be
984 		 * corrupted by the signal handler without us knowing.
985 		 * Corruption of the PSL_RF bit at worst causes one more or
986 		 * one less debugger trap, so allowing it is fairly harmless.
987 		 */
988 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
989 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
990 	    		return(EINVAL);
991 		}
992 
993 		/*
994 		 * Don't allow users to load a valid privileged %cs.  Let the
995 		 * hardware check for invalid selectors, excess privilege in
996 		 * other selectors, invalid %eip's and invalid %esp's.
997 		 */
998 		cs = ucp->uc_mcontext.mc_cs;
999 		if (!CS_SECURE(cs)) {
1000 			kprintf("sigreturn: cs = 0x%x\n", cs);
1001 			trapsignal(lp, SIGBUS, T_PROTFLT);
1002 			return(EINVAL);
1003 		}
1004 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1005 	}
1006 
1007 	/*
1008 	 * Restore the FPU state from the frame
1009 	 */
1010 	crit_enter();
1011 	npxpop(&ucp->uc_mcontext);
1012 
1013 	if (ucp->uc_mcontext.mc_onstack & 1)
1014 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1015 	else
1016 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1017 
1018 	lp->lwp_sigmask = ucp->uc_sigmask;
1019 	SIG_CANTMASK(lp->lwp_sigmask);
1020 	clear_quickret();
1021 	crit_exit();
1022 	return(EJUSTRETURN);
1023 }
1024 
1025 /*
1026  * Machine dependent boot() routine
1027  *
1028  * I haven't seen anything to put here yet
1029  * Possibly some stuff might be grafted back here from boot()
1030  */
1031 void
1032 cpu_boot(int howto)
1033 {
1034 }
1035 
1036 /*
1037  * Shutdown the CPU as much as possible
1038  */
1039 void
1040 cpu_halt(void)
1041 {
1042 	for (;;)
1043 		__asm__ __volatile("hlt");
1044 }
1045 
1046 /*
1047  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1048  * (unless you want to blow things up!).  Instead we look for runnable threads
1049  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1050  *
1051  * The main loop is entered with a critical section held, we must release
1052  * the critical section before doing anything else.  lwkt_switch() will
1053  * check for pending interrupts due to entering and exiting its own
1054  * critical section.
1055  *
1056  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1057  *	 However, there are cases where the idlethread will be entered with
1058  *	 the possibility that no IPI will occur and in such cases
1059  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1060  *
1061  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1062  *	 must occur before it starts using ACPI halt.
1063  *
1064  * NOTE: Value overridden in hammer_time().
1065  */
1066 static int	cpu_idle_hlt = 2;
1067 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1068     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1069 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1070     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1071 
1072 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1073     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1074 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1075     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1076 
1077 static void
1078 cpu_idle_default_hook(void)
1079 {
1080 	/*
1081 	 * We must guarentee that hlt is exactly the instruction
1082 	 * following the sti.
1083 	 */
1084 	__asm __volatile("sti; hlt");
1085 }
1086 
1087 /* Other subsystems (e.g., ACPI) can hook this later. */
1088 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1089 
1090 static __inline int
1091 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1092 {
1093 	int hint, cx_idx;
1094 	u_int idx;
1095 
1096 	hint = stat->hint;
1097 	if (hint >= 0)
1098 		goto done;
1099 
1100 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1101 	    cpu_mwait_repeat_shift;
1102 	if (idx >= cpu_mwait_c1_hints_cnt) {
1103 		/* Step up faster, once we walked through all C1 states */
1104 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1105 	}
1106 	if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1107 		if (idx >= cpu_mwait_deep_hints_cnt)
1108 			idx = cpu_mwait_deep_hints_cnt - 1;
1109 		hint = cpu_mwait_deep_hints[idx];
1110 	} else {
1111 		if (idx >= cpu_mwait_hints_cnt)
1112 			idx = cpu_mwait_hints_cnt - 1;
1113 		hint = cpu_mwait_hints[idx];
1114 	}
1115 done:
1116 	cx_idx = MWAIT_EAX_TO_CX(hint);
1117 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1118 		stat->mwait_cx[cx_idx]++;
1119 	return hint;
1120 }
1121 
1122 void
1123 cpu_idle(void)
1124 {
1125 	globaldata_t gd = mycpu;
1126 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1127 	struct thread *td __debugvar = gd->gd_curthread;
1128 	int reqflags;
1129 	int quick;
1130 
1131 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1132 
1133 	crit_exit();
1134 	KKASSERT(td->td_critcount == 0);
1135 
1136 	for (;;) {
1137 		/*
1138 		 * See if there are any LWKTs ready to go.
1139 		 */
1140 		lwkt_switch();
1141 
1142 		/*
1143 		 * When halting inside a cli we must check for reqflags
1144 		 * races, particularly [re]schedule requests.  Running
1145 		 * splz() does the job.
1146 		 *
1147 		 * cpu_idle_hlt:
1148 		 *	0	Never halt, just spin
1149 		 *
1150 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
1151 		 *
1152 		 *		Better default for modern (Haswell+) Intel
1153 		 *		cpus.
1154 		 *
1155 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1156 		 *		use the ACPI halt (default).  This is a hybrid
1157 		 *		approach.  See machdep.cpu_idle_repeat.
1158 		 *
1159 		 *		Better default for modern AMD cpus and older
1160 		 *		Intel cpus.
1161 		 *
1162 		 *	3	Always use the ACPI halt.  This typically
1163 		 *		eats the least amount of power but the cpu
1164 		 *		will be slow waking up.  Slows down e.g.
1165 		 *		compiles and other pipe/event oriented stuff.
1166 		 *
1167 		 *	4	Always use HLT.
1168 		 *
1169 		 * NOTE: Interrupts are enabled and we are not in a critical
1170 		 *	 section.
1171 		 *
1172 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1173 		 *	 don't bother capping gd_idle_repeat, it is ok if
1174 		 *	 it overflows.
1175 		 */
1176 		if (gd->gd_idle_repeat == 0) {
1177 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1178 			if (stat->repeat > cpu_idle_repeat_max)
1179 				stat->repeat = cpu_idle_repeat_max;
1180 			stat->repeat_last = 0;
1181 			stat->repeat_delta = 0;
1182 		}
1183 		++stat->repeat_last;
1184 
1185 		++gd->gd_idle_repeat;
1186 		reqflags = gd->gd_reqflags;
1187 		quick = (cpu_idle_hlt == 1) ||
1188 			(cpu_idle_hlt < 3 &&
1189 			 gd->gd_idle_repeat < cpu_idle_repeat);
1190 
1191 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1192 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1193 			splz(); /* XXX */
1194 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1195 			    cpu_mwait_cx_hint(stat), 0);
1196 			stat->halt++;
1197 		} else if (cpu_idle_hlt) {
1198 			__asm __volatile("cli");
1199 			splz();
1200 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1201 				if (quick)
1202 					cpu_idle_default_hook();
1203 				else
1204 					cpu_idle_hook();
1205 			}
1206 			__asm __volatile("sti");
1207 			stat->halt++;
1208 		} else {
1209 			splz();
1210 			__asm __volatile("sti");
1211 			stat->spin++;
1212 		}
1213 	}
1214 }
1215 
1216 /*
1217  * This routine is called if a spinlock has been held through the
1218  * exponential backoff period and is seriously contested.  On a real cpu
1219  * we let it spin.
1220  */
1221 void
1222 cpu_spinlock_contested(void)
1223 {
1224 	cpu_pause();
1225 }
1226 
1227 /*
1228  * Clear registers on exec
1229  */
1230 void
1231 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1232 {
1233 	struct thread *td = curthread;
1234 	struct lwp *lp = td->td_lwp;
1235 	struct pcb *pcb = td->td_pcb;
1236 	struct trapframe *regs = lp->lwp_md.md_regs;
1237 
1238 	/* was i386_user_cleanup() in NetBSD */
1239 	user_ldt_free(pcb);
1240 
1241 	clear_quickret();
1242 	bzero((char *)regs, sizeof(struct trapframe));
1243 	regs->tf_rip = entry;
1244 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1245 	regs->tf_rdi = stack;		/* argv */
1246 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1247 	regs->tf_ss = _udatasel;
1248 	regs->tf_cs = _ucodesel;
1249 	regs->tf_rbx = ps_strings;
1250 
1251 	/*
1252 	 * Reset the hardware debug registers if they were in use.
1253 	 * They won't have any meaning for the newly exec'd process.
1254 	 */
1255 	if (pcb->pcb_flags & PCB_DBREGS) {
1256 		pcb->pcb_dr0 = 0;
1257 		pcb->pcb_dr1 = 0;
1258 		pcb->pcb_dr2 = 0;
1259 		pcb->pcb_dr3 = 0;
1260 		pcb->pcb_dr6 = 0;
1261 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1262 		if (pcb == td->td_pcb) {
1263 			/*
1264 			 * Clear the debug registers on the running
1265 			 * CPU, otherwise they will end up affecting
1266 			 * the next process we switch to.
1267 			 */
1268 			reset_dbregs();
1269 		}
1270 		pcb->pcb_flags &= ~PCB_DBREGS;
1271 	}
1272 
1273 	/*
1274 	 * Initialize the math emulator (if any) for the current process.
1275 	 * Actually, just clear the bit that says that the emulator has
1276 	 * been initialized.  Initialization is delayed until the process
1277 	 * traps to the emulator (if it is done at all) mainly because
1278 	 * emulators don't provide an entry point for initialization.
1279 	 */
1280 	pcb->pcb_flags &= ~FP_SOFTFP;
1281 
1282 	/*
1283 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1284 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1285 	 *	 may panic in npxdna().
1286 	 */
1287 	crit_enter();
1288 	load_cr0(rcr0() | CR0_MP);
1289 
1290 	/*
1291 	 * NOTE: The MSR values must be correct so we can return to
1292 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1293 	 *	 code knows what the current MSR values are.
1294 	 */
1295 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1296 	pcb->pcb_gsbase = 0;
1297 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1298 	mdcpu->gd_user_gs = 0;
1299 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1300 	wrmsr(MSR_KGSBASE, 0);
1301 
1302 	/* Initialize the npx (if any) for the current process. */
1303 	npxinit();
1304 	crit_exit();
1305 
1306 	pcb->pcb_ds = _udatasel;
1307 	pcb->pcb_es = _udatasel;
1308 	pcb->pcb_fs = _udatasel;
1309 	pcb->pcb_gs = _udatasel;
1310 }
1311 
1312 void
1313 cpu_setregs(void)
1314 {
1315 	register_t cr0;
1316 
1317 	cr0 = rcr0();
1318 	cr0 |= CR0_NE;			/* Done by npxinit() */
1319 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1320 	cr0 |= CR0_WP | CR0_AM;
1321 	load_cr0(cr0);
1322 	load_gs(_udatasel);
1323 }
1324 
1325 static int
1326 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1327 {
1328 	int error;
1329 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1330 		req);
1331 	if (!error && req->newptr)
1332 		resettodr();
1333 	return (error);
1334 }
1335 
1336 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1337 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1338 
1339 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1340 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1341 
1342 #if 0 /* JG */
1343 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1344 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1345 #endif
1346 
1347 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1348 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1349 
1350 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1351 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1352 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1353 
1354 /*
1355  * Initialize 386 and configure to run kernel
1356  */
1357 
1358 /*
1359  * Initialize segments & interrupt table
1360  */
1361 
1362 int _default_ldt;
1363 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1364 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1365 #if 0 /* JG */
1366 union descriptor ldt[NLDT];		/* local descriptor table */
1367 #endif
1368 
1369 /* table descriptors - used to load tables by cpu */
1370 struct region_descriptor r_gdt;
1371 struct region_descriptor r_idt_arr[MAXCPU];
1372 
1373 /* JG proc0paddr is a virtual address */
1374 void *proc0paddr;
1375 /* JG alignment? */
1376 char proc0paddr_buff[LWKT_THREAD_STACK];
1377 
1378 
1379 /* software prototypes -- in more palatable form */
1380 struct soft_segment_descriptor gdt_segs[] = {
1381 /* GNULL_SEL	0 Null Descriptor */
1382 {	0x0,			/* segment base address  */
1383 	0x0,			/* length */
1384 	0,			/* segment type */
1385 	0,			/* segment descriptor priority level */
1386 	0,			/* segment descriptor present */
1387 	0,			/* long */
1388 	0,			/* default 32 vs 16 bit size */
1389 	0  			/* limit granularity (byte/page units)*/ },
1390 /* GCODE_SEL	1 Code Descriptor for kernel */
1391 {	0x0,			/* segment base address  */
1392 	0xfffff,		/* length - all address space */
1393 	SDT_MEMERA,		/* segment type */
1394 	SEL_KPL,		/* segment descriptor priority level */
1395 	1,			/* segment descriptor present */
1396 	1,			/* long */
1397 	0,			/* default 32 vs 16 bit size */
1398 	1  			/* limit granularity (byte/page units)*/ },
1399 /* GDATA_SEL	2 Data Descriptor for kernel */
1400 {	0x0,			/* segment base address  */
1401 	0xfffff,		/* length - all address space */
1402 	SDT_MEMRWA,		/* segment type */
1403 	SEL_KPL,		/* segment descriptor priority level */
1404 	1,			/* segment descriptor present */
1405 	1,			/* long */
1406 	0,			/* default 32 vs 16 bit size */
1407 	1  			/* limit granularity (byte/page units)*/ },
1408 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1409 {	0x0,			/* segment base address  */
1410 	0xfffff,		/* length - all address space */
1411 	SDT_MEMERA,		/* segment type */
1412 	SEL_UPL,		/* segment descriptor priority level */
1413 	1,			/* segment descriptor present */
1414 	0,			/* long */
1415 	1,			/* default 32 vs 16 bit size */
1416 	1  			/* limit granularity (byte/page units)*/ },
1417 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1418 {	0x0,			/* segment base address  */
1419 	0xfffff,		/* length - all address space */
1420 	SDT_MEMRWA,		/* segment type */
1421 	SEL_UPL,		/* segment descriptor priority level */
1422 	1,			/* segment descriptor present */
1423 	0,			/* long */
1424 	1,			/* default 32 vs 16 bit size */
1425 	1  			/* limit granularity (byte/page units)*/ },
1426 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1427 {	0x0,			/* segment base address  */
1428 	0xfffff,		/* length - all address space */
1429 	SDT_MEMERA,		/* segment type */
1430 	SEL_UPL,		/* segment descriptor priority level */
1431 	1,			/* segment descriptor present */
1432 	1,			/* long */
1433 	0,			/* default 32 vs 16 bit size */
1434 	1  			/* limit granularity (byte/page units)*/ },
1435 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1436 {
1437 	0x0,			/* segment base address */
1438 	sizeof(struct x86_64tss)-1,/* length - all address space */
1439 	SDT_SYSTSS,		/* segment type */
1440 	SEL_KPL,		/* segment descriptor priority level */
1441 	1,			/* segment descriptor present */
1442 	0,			/* long */
1443 	0,			/* unused - default 32 vs 16 bit size */
1444 	0  			/* limit granularity (byte/page units)*/ },
1445 /* Actually, the TSS is a system descriptor which is double size */
1446 {	0x0,			/* segment base address  */
1447 	0x0,			/* length */
1448 	0,			/* segment type */
1449 	0,			/* segment descriptor priority level */
1450 	0,			/* segment descriptor present */
1451 	0,			/* long */
1452 	0,			/* default 32 vs 16 bit size */
1453 	0  			/* limit granularity (byte/page units)*/ },
1454 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1455 {	0x0,			/* segment base address  */
1456 	0xfffff,		/* length - all address space */
1457 	SDT_MEMRWA,		/* segment type */
1458 	SEL_UPL,		/* segment descriptor priority level */
1459 	1,			/* segment descriptor present */
1460 	0,			/* long */
1461 	1,			/* default 32 vs 16 bit size */
1462 	1  			/* limit granularity (byte/page units)*/ },
1463 };
1464 
1465 void
1466 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1467 {
1468 	int cpu;
1469 
1470 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1471 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1472 
1473 		ip->gd_looffset = (uintptr_t)func;
1474 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1475 		ip->gd_ist = ist;
1476 		ip->gd_xx = 0;
1477 		ip->gd_type = typ;
1478 		ip->gd_dpl = dpl;
1479 		ip->gd_p = 1;
1480 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1481 	}
1482 }
1483 
1484 void
1485 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1486 {
1487 	struct gate_descriptor *ip;
1488 
1489 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1490 
1491 	ip = &idt_arr[cpu][idx];
1492 	ip->gd_looffset = (uintptr_t)func;
1493 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1494 	ip->gd_ist = ist;
1495 	ip->gd_xx = 0;
1496 	ip->gd_type = typ;
1497 	ip->gd_dpl = dpl;
1498 	ip->gd_p = 1;
1499 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1500 }
1501 
1502 #define	IDTVEC(name)	__CONCAT(X,name)
1503 
1504 extern inthand_t
1505 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1506 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1507 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1508 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1509 	IDTVEC(xmm), IDTVEC(dblfault),
1510 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1511 
1512 #ifdef DEBUG_INTERRUPTS
1513 extern inthand_t *Xrsvdary[256];
1514 #endif
1515 
1516 void
1517 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1518 {
1519 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1520 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1521 	ssd->ssd_type  = sd->sd_type;
1522 	ssd->ssd_dpl   = sd->sd_dpl;
1523 	ssd->ssd_p     = sd->sd_p;
1524 	ssd->ssd_def32 = sd->sd_def32;
1525 	ssd->ssd_gran  = sd->sd_gran;
1526 }
1527 
1528 void
1529 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1530 {
1531 
1532 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1533 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1534 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1535 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1536 	sd->sd_type  = ssd->ssd_type;
1537 	sd->sd_dpl   = ssd->ssd_dpl;
1538 	sd->sd_p     = ssd->ssd_p;
1539 	sd->sd_long  = ssd->ssd_long;
1540 	sd->sd_def32 = ssd->ssd_def32;
1541 	sd->sd_gran  = ssd->ssd_gran;
1542 }
1543 
1544 void
1545 ssdtosyssd(struct soft_segment_descriptor *ssd,
1546     struct system_segment_descriptor *sd)
1547 {
1548 
1549 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1550 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1551 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1552 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1553 	sd->sd_type  = ssd->ssd_type;
1554 	sd->sd_dpl   = ssd->ssd_dpl;
1555 	sd->sd_p     = ssd->ssd_p;
1556 	sd->sd_gran  = ssd->ssd_gran;
1557 }
1558 
1559 /*
1560  * Populate the (physmap) array with base/bound pairs describing the
1561  * available physical memory in the system, then test this memory and
1562  * build the phys_avail array describing the actually-available memory.
1563  *
1564  * If we cannot accurately determine the physical memory map, then use
1565  * value from the 0xE801 call, and failing that, the RTC.
1566  *
1567  * Total memory size may be set by the kernel environment variable
1568  * hw.physmem or the compile-time define MAXMEM.
1569  *
1570  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1571  * of PAGE_SIZE.  This also greatly reduces the memory test time
1572  * which would otherwise be excessive on machines with > 8G of ram.
1573  *
1574  * XXX first should be vm_paddr_t.
1575  */
1576 
1577 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1578 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1579 	vm_paddr_t physmap[PHYSMAP_SIZE];
1580 	struct bios_smap *smapbase, *smap, *smapend;
1581 	u_int32_t smapsize;
1582 
1583 static void
1584 getmemsize(caddr_t kmdp, u_int64_t first)
1585 {
1586 	int off, physmap_idx, pa_indx, da_indx;
1587 	int i, j;
1588 	vm_paddr_t pa;
1589 	vm_paddr_t msgbuf_size;
1590 	u_long physmem_tunable;
1591 	pt_entry_t *pte;
1592 	quad_t dcons_addr, dcons_size;
1593 
1594 	bzero(physmap, sizeof(physmap));
1595 	physmap_idx = 0;
1596 
1597 	/*
1598 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1599 	 *
1600 	 * subr_module.c says:
1601 	 * "Consumer may safely assume that size value precedes data."
1602 	 * ie: an int32_t immediately precedes smap.
1603 	 */
1604 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1605 	    MODINFO_METADATA | MODINFOMD_SMAP);
1606 	if (smapbase == NULL)
1607 		panic("No BIOS smap info from loader!");
1608 
1609 	smapsize = *((u_int32_t *)smapbase - 1);
1610 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1611 
1612 	for (smap = smapbase; smap < smapend; smap++) {
1613 		if (boothowto & RB_VERBOSE)
1614 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1615 			    smap->type, smap->base, smap->length);
1616 
1617 		if (smap->type != SMAP_TYPE_MEMORY)
1618 			continue;
1619 
1620 		if (smap->length == 0)
1621 			continue;
1622 
1623 		for (i = 0; i <= physmap_idx; i += 2) {
1624 			if (smap->base < physmap[i + 1]) {
1625 				if (boothowto & RB_VERBOSE) {
1626 					kprintf("Overlapping or non-monotonic "
1627 						"memory region, ignoring "
1628 						"second region\n");
1629 				}
1630 				break;
1631 			}
1632 		}
1633 		if (i <= physmap_idx)
1634 			continue;
1635 
1636 		Realmem += smap->length;
1637 
1638 		if (smap->base == physmap[physmap_idx + 1]) {
1639 			physmap[physmap_idx + 1] += smap->length;
1640 			continue;
1641 		}
1642 
1643 		physmap_idx += 2;
1644 		if (physmap_idx == PHYSMAP_SIZE) {
1645 			kprintf("Too many segments in the physical "
1646 				"address map, giving up\n");
1647 			break;
1648 		}
1649 		physmap[physmap_idx] = smap->base;
1650 		physmap[physmap_idx + 1] = smap->base + smap->length;
1651 	}
1652 
1653 	base_memory = physmap[1] / 1024;
1654 	/* make hole for AP bootstrap code */
1655 	physmap[1] = mp_bootaddress(base_memory);
1656 
1657 	/* Save EBDA address, if any */
1658 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1659 	ebda_addr <<= 4;
1660 
1661 	/*
1662 	 * Maxmem isn't the "maximum memory", it's one larger than the
1663 	 * highest page of the physical address space.  It should be
1664 	 * called something like "Maxphyspage".  We may adjust this
1665 	 * based on ``hw.physmem'' and the results of the memory test.
1666 	 */
1667 	Maxmem = atop(physmap[physmap_idx + 1]);
1668 
1669 #ifdef MAXMEM
1670 	Maxmem = MAXMEM / 4;
1671 #endif
1672 
1673 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1674 		Maxmem = atop(physmem_tunable);
1675 
1676 	/*
1677 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1678 	 * in the system.
1679 	 */
1680 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1681 		Maxmem = atop(physmap[physmap_idx + 1]);
1682 
1683 	/*
1684 	 * Blowing out the DMAP will blow up the system.
1685 	 */
1686 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1687 		kprintf("Limiting Maxmem due to DMAP size\n");
1688 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1689 	}
1690 
1691 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1692 	    (boothowto & RB_VERBOSE)) {
1693 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1694 	}
1695 
1696 	/*
1697 	 * Call pmap initialization to make new kernel address space
1698 	 *
1699 	 * Mask off page 0.
1700 	 */
1701 	pmap_bootstrap(&first);
1702 	physmap[0] = PAGE_SIZE;
1703 
1704 	/*
1705 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1706 	 * exceeding Maxmem.
1707 	 */
1708 	for (i = j = 0; i <= physmap_idx; i += 2) {
1709 		if (physmap[i+1] > ptoa(Maxmem))
1710 			physmap[i+1] = ptoa(Maxmem);
1711 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1712 			     ~PHYSMAP_ALIGN_MASK;
1713 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1714 
1715 		physmap[j] = physmap[i];
1716 		physmap[j+1] = physmap[i+1];
1717 
1718 		if (physmap[i] < physmap[i+1])
1719 			j += 2;
1720 	}
1721 	physmap_idx = j - 2;
1722 
1723 	/*
1724 	 * Align anything else used in the validation loop.
1725 	 */
1726 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1727 
1728 	/*
1729 	 * Size up each available chunk of physical memory.
1730 	 */
1731 	pa_indx = 0;
1732 	da_indx = 1;
1733 	phys_avail[pa_indx++] = physmap[0];
1734 	phys_avail[pa_indx] = physmap[0];
1735 	dump_avail[da_indx] = physmap[0];
1736 	pte = CMAP1;
1737 
1738 	/*
1739 	 * Get dcons buffer address
1740 	 */
1741 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1742 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1743 		dcons_addr = 0;
1744 
1745 	/*
1746 	 * Validate the physical memory.  The physical memory segments
1747 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1748 	 * of PAGE_SIZE.
1749 	 */
1750 	for (i = 0; i <= physmap_idx; i += 2) {
1751 		vm_paddr_t end;
1752 
1753 		end = physmap[i + 1];
1754 
1755 		for (pa = physmap[i]; pa < end; pa += PHYSMAP_ALIGN) {
1756 			int tmp, page_bad, full;
1757 			int *ptr = (int *)CADDR1;
1758 
1759 			full = FALSE;
1760 			/*
1761 			 * block out kernel memory as not available.
1762 			 */
1763 			if (pa >= 0x200000 && pa < first)
1764 				goto do_dump_avail;
1765 
1766 			/*
1767 			 * block out dcons buffer
1768 			 */
1769 			if (dcons_addr > 0
1770 			    && pa >= trunc_page(dcons_addr)
1771 			    && pa < dcons_addr + dcons_size) {
1772 				goto do_dump_avail;
1773 			}
1774 
1775 			page_bad = FALSE;
1776 
1777 			/*
1778 			 * map page into kernel: valid, read/write,non-cacheable
1779 			 */
1780 			*pte = pa |
1781 			    kernel_pmap.pmap_bits[PG_V_IDX] |
1782 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
1783 			    kernel_pmap.pmap_bits[PG_N_IDX];
1784 			cpu_invltlb();
1785 
1786 			tmp = *ptr;
1787 			/*
1788 			 * Test for alternating 1's and 0's
1789 			 */
1790 			*(volatile int *)ptr = 0xaaaaaaaa;
1791 			cpu_mfence();
1792 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1793 				page_bad = TRUE;
1794 			/*
1795 			 * Test for alternating 0's and 1's
1796 			 */
1797 			*(volatile int *)ptr = 0x55555555;
1798 			cpu_mfence();
1799 			if (*(volatile int *)ptr != 0x55555555)
1800 				page_bad = TRUE;
1801 			/*
1802 			 * Test for all 1's
1803 			 */
1804 			*(volatile int *)ptr = 0xffffffff;
1805 			cpu_mfence();
1806 			if (*(volatile int *)ptr != 0xffffffff)
1807 				page_bad = TRUE;
1808 			/*
1809 			 * Test for all 0's
1810 			 */
1811 			*(volatile int *)ptr = 0x0;
1812 			cpu_mfence();
1813 			if (*(volatile int *)ptr != 0x0)
1814 				page_bad = TRUE;
1815 			/*
1816 			 * Restore original value.
1817 			 */
1818 			*ptr = tmp;
1819 
1820 			/*
1821 			 * Adjust array of valid/good pages.
1822 			 */
1823 			if (page_bad == TRUE)
1824 				continue;
1825 			/*
1826 			 * If this good page is a continuation of the
1827 			 * previous set of good pages, then just increase
1828 			 * the end pointer. Otherwise start a new chunk.
1829 			 * Note that "end" points one higher than end,
1830 			 * making the range >= start and < end.
1831 			 * If we're also doing a speculative memory
1832 			 * test and we at or past the end, bump up Maxmem
1833 			 * so that we keep going. The first bad page
1834 			 * will terminate the loop.
1835 			 */
1836 			if (phys_avail[pa_indx] == pa) {
1837 				phys_avail[pa_indx] += PHYSMAP_ALIGN;
1838 			} else {
1839 				pa_indx++;
1840 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1841 					kprintf(
1842 		"Too many holes in the physical address space, giving up\n");
1843 					pa_indx--;
1844 					full = TRUE;
1845 					goto do_dump_avail;
1846 				}
1847 				phys_avail[pa_indx++] = pa;
1848 				phys_avail[pa_indx] = pa + PHYSMAP_ALIGN;
1849 			}
1850 			physmem += PHYSMAP_ALIGN / PAGE_SIZE;
1851 do_dump_avail:
1852 			if (dump_avail[da_indx] == pa) {
1853 				dump_avail[da_indx] += PHYSMAP_ALIGN;
1854 			} else {
1855 				da_indx++;
1856 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1857 					da_indx--;
1858 					goto do_next;
1859 				}
1860 				dump_avail[da_indx++] = pa;
1861 				dump_avail[da_indx] = pa + PHYSMAP_ALIGN;
1862 			}
1863 do_next:
1864 			if (full)
1865 				break;
1866 		}
1867 	}
1868 	*pte = 0;
1869 	cpu_invltlb();
1870 
1871 	/*
1872 	 * The last chunk must contain at least one page plus the message
1873 	 * buffer to avoid complicating other code (message buffer address
1874 	 * calculation, etc.).
1875 	 */
1876 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1877 
1878 	while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
1879 	       msgbuf_size >= phys_avail[pa_indx]) {
1880 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1881 		phys_avail[pa_indx--] = 0;
1882 		phys_avail[pa_indx--] = 0;
1883 	}
1884 
1885 	Maxmem = atop(phys_avail[pa_indx]);
1886 
1887 	/* Trim off space for the message buffer. */
1888 	phys_avail[pa_indx] -= msgbuf_size;
1889 
1890 	avail_end = phys_avail[pa_indx];
1891 
1892 	/* Map the message buffer. */
1893 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
1894 		pmap_kenter((vm_offset_t)msgbufp + off,
1895 			    phys_avail[pa_indx] + off);
1896 	}
1897 }
1898 
1899 struct machintr_abi MachIntrABI;
1900 
1901 /*
1902  * IDT VECTORS:
1903  *	0	Divide by zero
1904  *	1	Debug
1905  *	2	NMI
1906  *	3	BreakPoint
1907  *	4	OverFlow
1908  *	5	Bound-Range
1909  *	6	Invalid OpCode
1910  *	7	Device Not Available (x87)
1911  *	8	Double-Fault
1912  *	9	Coprocessor Segment overrun (unsupported, reserved)
1913  *	10	Invalid-TSS
1914  *	11	Segment not present
1915  *	12	Stack
1916  *	13	General Protection
1917  *	14	Page Fault
1918  *	15	Reserved
1919  *	16	x87 FP Exception pending
1920  *	17	Alignment Check
1921  *	18	Machine Check
1922  *	19	SIMD floating point
1923  *	20-31	reserved
1924  *	32-255	INTn/external sources
1925  */
1926 u_int64_t
1927 hammer_time(u_int64_t modulep, u_int64_t physfree)
1928 {
1929 	caddr_t kmdp;
1930 	int gsel_tss, x, cpu;
1931 #if 0 /* JG */
1932 	int metadata_missing, off;
1933 #endif
1934 	struct mdglobaldata *gd;
1935 	u_int64_t msr;
1936 
1937 	/*
1938 	 * Prevent lowering of the ipl if we call tsleep() early.
1939 	 */
1940 	gd = &CPU_prvspace[0]->mdglobaldata;
1941 	bzero(gd, sizeof(*gd));
1942 
1943 	/*
1944 	 * Note: on both UP and SMP curthread must be set non-NULL
1945 	 * early in the boot sequence because the system assumes
1946 	 * that 'curthread' is never NULL.
1947 	 */
1948 
1949 	gd->mi.gd_curthread = &thread0;
1950 	thread0.td_gd = &gd->mi;
1951 
1952 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1953 
1954 #if 0 /* JG */
1955 	metadata_missing = 0;
1956 	if (bootinfo.bi_modulep) {
1957 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1958 		preload_bootstrap_relocate(KERNBASE);
1959 	} else {
1960 		metadata_missing = 1;
1961 	}
1962 	if (bootinfo.bi_envp)
1963 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1964 #endif
1965 
1966 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1967 	preload_bootstrap_relocate(PTOV_OFFSET);
1968 	kmdp = preload_search_by_type("elf kernel");
1969 	if (kmdp == NULL)
1970 		kmdp = preload_search_by_type("elf64 kernel");
1971 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1972 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1973 #ifdef DDB
1974 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1975 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1976 #endif
1977 
1978 	if (boothowto & RB_VERBOSE)
1979 		bootverbose++;
1980 
1981 	/*
1982 	 * Default MachIntrABI to ICU
1983 	 */
1984 	MachIntrABI = MachIntrABI_ICU;
1985 
1986 	/*
1987 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
1988 	 * and ncpus_fit_mask remain 0.
1989 	 */
1990 	ncpus = 1;
1991 	ncpus2 = 1;
1992 	ncpus_fit = 1;
1993 	/* Init basic tunables, hz etc */
1994 	init_param1();
1995 
1996 	/*
1997 	 * make gdt memory segments
1998 	 */
1999 	gdt_segs[GPROC0_SEL].ssd_base =
2000 		(uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
2001 
2002 	gd->mi.gd_prvspace = CPU_prvspace[0];
2003 
2004 	for (x = 0; x < NGDT; x++) {
2005 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2006 			ssdtosd(&gdt_segs[x], &gdt[x]);
2007 	}
2008 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2009 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2010 
2011 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2012 	r_gdt.rd_base =  (long) gdt;
2013 	lgdt(&r_gdt);
2014 
2015 	wrmsr(MSR_FSBASE, 0);		/* User value */
2016 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2017 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
2018 
2019 	mi_gdinit(&gd->mi, 0);
2020 	cpu_gdinit(gd, 0);
2021 	proc0paddr = proc0paddr_buff;
2022 	mi_proc0init(&gd->mi, proc0paddr);
2023 	safepri = TDPRI_MAX;
2024 
2025 	/* spinlocks and the BGL */
2026 	init_locks();
2027 
2028 	/* exceptions */
2029 	for (x = 0; x < NIDT; x++)
2030 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2031 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2032 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
2033 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2034  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2035 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2036 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2037 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2038 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2039 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2040 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2041 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2042 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2043 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2044 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2045 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2046 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2047 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2048 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2049 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2050 
2051 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2052 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2053 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2054 	}
2055 
2056 	lidt(&r_idt_arr[0]);
2057 
2058 	/*
2059 	 * Initialize the console before we print anything out.
2060 	 */
2061 	cninit();
2062 
2063 #if 0 /* JG */
2064 	if (metadata_missing)
2065 		kprintf("WARNING: loader(8) metadata is missing!\n");
2066 #endif
2067 
2068 #if	NISA >0
2069 	elcr_probe();
2070 	isa_defaultirq();
2071 #endif
2072 	rand_initialize();
2073 
2074 	/*
2075 	 * Initialize IRQ mapping
2076 	 *
2077 	 * NOTE:
2078 	 * SHOULD be after elcr_probe()
2079 	 */
2080 	MachIntrABI_ICU.initmap();
2081 	MachIntrABI_IOAPIC.initmap();
2082 
2083 #ifdef DDB
2084 	kdb_init();
2085 	if (boothowto & RB_KDB)
2086 		Debugger("Boot flags requested debugger");
2087 #endif
2088 
2089 #if 0 /* JG */
2090 	finishidentcpu();	/* Final stage of CPU initialization */
2091 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2092 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2093 #endif
2094 	identify_cpu();		/* Final stage of CPU initialization */
2095 	initializecpu(0);	/* Initialize CPU registers */
2096 
2097 	/*
2098 	 * On modern intel cpus, haswell or later, cpu_idle_hlt=1 is better
2099 	 * becaue the cpu does significant power management in HLT
2100 	 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2101 	 *
2102 	 * On modern amd cpus or on any older amd or intel cpu,
2103 	 * cpu_idle_hlt=2 is better because ACPI is needed to reduce power
2104 	 * consumption.
2105 	 */
2106 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2107 	    CPUID_TO_MODEL(cpu_id) >= 0x3C) {	/* Haswell or later */
2108 		cpu_idle_hlt = 1;
2109 	}
2110 
2111 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2112 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2113 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2114 	TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2115 
2116 	/*
2117 	 * Some of the virtual machines do not work w/ I/O APIC
2118 	 * enabled.  If the user does not explicitly enable or
2119 	 * disable the I/O APIC (ioapic_enable < 0), then we
2120 	 * disable I/O APIC on all virtual machines.
2121 	 *
2122 	 * NOTE:
2123 	 * This must be done after identify_cpu(), which sets
2124 	 * 'cpu_feature2'
2125 	 */
2126 	if (ioapic_enable < 0) {
2127 		if (cpu_feature2 & CPUID2_VMM)
2128 			ioapic_enable = 0;
2129 		else
2130 			ioapic_enable = 1;
2131 	}
2132 
2133 	/* make an initial tss so cpu can get interrupt stack on syscall! */
2134 	gd->gd_common_tss.tss_rsp0 =
2135 		(register_t)(thread0.td_kstack +
2136 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2137 	/* Ensure the stack is aligned to 16 bytes */
2138 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2139 
2140 	/* double fault stack */
2141 	gd->gd_common_tss.tss_ist1 =
2142 		(long)&gd->mi.gd_prvspace->idlestack[
2143 			sizeof(gd->mi.gd_prvspace->idlestack)];
2144 
2145 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2146 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2147 
2148 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2149 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2150 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2151 	ltr(gsel_tss);
2152 
2153 	/* Set up the fast syscall stuff */
2154 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2155 	wrmsr(MSR_EFER, msr);
2156 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2157 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2158 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2159 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2160 	wrmsr(MSR_STAR, msr);
2161 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2162 
2163 	getmemsize(kmdp, physfree);
2164 	init_param2(physmem);
2165 
2166 	/* now running on new page tables, configured,and u/iom is accessible */
2167 
2168 	/* Map the message buffer. */
2169 #if 0 /* JG */
2170 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2171 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2172 #endif
2173 
2174 	msgbufinit(msgbufp, MSGBUF_SIZE);
2175 
2176 
2177 	/* transfer to user mode */
2178 
2179 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2180 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2181 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2182 
2183 	load_ds(_udatasel);
2184 	load_es(_udatasel);
2185 	load_fs(_udatasel);
2186 
2187 	/* setup proc 0's pcb */
2188 	thread0.td_pcb->pcb_flags = 0;
2189 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2190 	thread0.td_pcb->pcb_ext = NULL;
2191 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2192 
2193 	/* Location of kernel stack for locore */
2194 	return ((u_int64_t)thread0.td_pcb);
2195 }
2196 
2197 /*
2198  * Initialize machine-dependant portions of the global data structure.
2199  * Note that the global data area and cpu0's idlestack in the private
2200  * data space were allocated in locore.
2201  *
2202  * Note: the idlethread's cpl is 0
2203  *
2204  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2205  */
2206 void
2207 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2208 {
2209 	if (cpu)
2210 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2211 
2212 	lwkt_init_thread(&gd->mi.gd_idlethread,
2213 			gd->mi.gd_prvspace->idlestack,
2214 			sizeof(gd->mi.gd_prvspace->idlestack),
2215 			0, &gd->mi);
2216 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2217 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2218 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2219 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2220 }
2221 
2222 /*
2223  * We only have to check for DMAP bounds, the globaldata space is
2224  * actually part of the kernel_map so we don't have to waste time
2225  * checking CPU_prvspace[*].
2226  */
2227 int
2228 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2229 {
2230 #if 0
2231 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2232 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2233 		return (TRUE);
2234 	}
2235 #endif
2236 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2237 		return (TRUE);
2238 	return (FALSE);
2239 }
2240 
2241 struct globaldata *
2242 globaldata_find(int cpu)
2243 {
2244 	KKASSERT(cpu >= 0 && cpu < ncpus);
2245 	return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2246 }
2247 
2248 /*
2249  * This path should be safe from the SYSRET issue because only stopped threads
2250  * can have their %rip adjusted this way (and all heavy weight thread switches
2251  * clear QUICKREF and thus do not use SYSRET).  However, the code path is
2252  * convoluted so add a safety by forcing %rip to be cannonical.
2253  */
2254 int
2255 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2256 {
2257 	if (addr & 0x0000800000000000LLU)
2258 		lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2259 	else
2260 		lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2261 	return (0);
2262 }
2263 
2264 int
2265 ptrace_single_step(struct lwp *lp)
2266 {
2267 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2268 	return (0);
2269 }
2270 
2271 int
2272 fill_regs(struct lwp *lp, struct reg *regs)
2273 {
2274 	struct trapframe *tp;
2275 
2276 	if ((tp = lp->lwp_md.md_regs) == NULL)
2277 		return EINVAL;
2278 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2279 	return (0);
2280 }
2281 
2282 int
2283 set_regs(struct lwp *lp, struct reg *regs)
2284 {
2285 	struct trapframe *tp;
2286 
2287 	tp = lp->lwp_md.md_regs;
2288 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2289 	    !CS_SECURE(regs->r_cs))
2290 		return (EINVAL);
2291 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2292 	clear_quickret();
2293 	return (0);
2294 }
2295 
2296 static void
2297 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2298 {
2299 	struct env87 *penv_87 = &sv_87->sv_env;
2300 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2301 	int i;
2302 
2303 	/* FPU control/status */
2304 	penv_87->en_cw = penv_xmm->en_cw;
2305 	penv_87->en_sw = penv_xmm->en_sw;
2306 	penv_87->en_tw = penv_xmm->en_tw;
2307 	penv_87->en_fip = penv_xmm->en_fip;
2308 	penv_87->en_fcs = penv_xmm->en_fcs;
2309 	penv_87->en_opcode = penv_xmm->en_opcode;
2310 	penv_87->en_foo = penv_xmm->en_foo;
2311 	penv_87->en_fos = penv_xmm->en_fos;
2312 
2313 	/* FPU registers */
2314 	for (i = 0; i < 8; ++i)
2315 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2316 }
2317 
2318 static void
2319 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2320 {
2321 	struct env87 *penv_87 = &sv_87->sv_env;
2322 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2323 	int i;
2324 
2325 	/* FPU control/status */
2326 	penv_xmm->en_cw = penv_87->en_cw;
2327 	penv_xmm->en_sw = penv_87->en_sw;
2328 	penv_xmm->en_tw = penv_87->en_tw;
2329 	penv_xmm->en_fip = penv_87->en_fip;
2330 	penv_xmm->en_fcs = penv_87->en_fcs;
2331 	penv_xmm->en_opcode = penv_87->en_opcode;
2332 	penv_xmm->en_foo = penv_87->en_foo;
2333 	penv_xmm->en_fos = penv_87->en_fos;
2334 
2335 	/* FPU registers */
2336 	for (i = 0; i < 8; ++i)
2337 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2338 }
2339 
2340 int
2341 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2342 {
2343 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2344 		return EINVAL;
2345 	if (cpu_fxsr) {
2346 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2347 				(struct save87 *)fpregs);
2348 		return (0);
2349 	}
2350 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2351 	return (0);
2352 }
2353 
2354 int
2355 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2356 {
2357 	if (cpu_fxsr) {
2358 		set_fpregs_xmm((struct save87 *)fpregs,
2359 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2360 		return (0);
2361 	}
2362 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2363 	return (0);
2364 }
2365 
2366 int
2367 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2368 {
2369 	struct pcb *pcb;
2370 
2371         if (lp == NULL) {
2372                 dbregs->dr[0] = rdr0();
2373                 dbregs->dr[1] = rdr1();
2374                 dbregs->dr[2] = rdr2();
2375                 dbregs->dr[3] = rdr3();
2376                 dbregs->dr[4] = rdr4();
2377                 dbregs->dr[5] = rdr5();
2378                 dbregs->dr[6] = rdr6();
2379                 dbregs->dr[7] = rdr7();
2380 		return (0);
2381         }
2382 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2383 		return EINVAL;
2384 	dbregs->dr[0] = pcb->pcb_dr0;
2385 	dbregs->dr[1] = pcb->pcb_dr1;
2386 	dbregs->dr[2] = pcb->pcb_dr2;
2387 	dbregs->dr[3] = pcb->pcb_dr3;
2388 	dbregs->dr[4] = 0;
2389 	dbregs->dr[5] = 0;
2390 	dbregs->dr[6] = pcb->pcb_dr6;
2391 	dbregs->dr[7] = pcb->pcb_dr7;
2392 	return (0);
2393 }
2394 
2395 int
2396 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2397 {
2398 	if (lp == NULL) {
2399 		load_dr0(dbregs->dr[0]);
2400 		load_dr1(dbregs->dr[1]);
2401 		load_dr2(dbregs->dr[2]);
2402 		load_dr3(dbregs->dr[3]);
2403 		load_dr4(dbregs->dr[4]);
2404 		load_dr5(dbregs->dr[5]);
2405 		load_dr6(dbregs->dr[6]);
2406 		load_dr7(dbregs->dr[7]);
2407 	} else {
2408 		struct pcb *pcb;
2409 		struct ucred *ucred;
2410 		int i;
2411 		uint64_t mask1, mask2;
2412 
2413 		/*
2414 		 * Don't let an illegal value for dr7 get set.	Specifically,
2415 		 * check for undefined settings.  Setting these bit patterns
2416 		 * result in undefined behaviour and can lead to an unexpected
2417 		 * TRCTRAP.
2418 		 */
2419 		/* JG this loop looks unreadable */
2420 		/* Check 4 2-bit fields for invalid patterns.
2421 		 * These fields are R/Wi, for i = 0..3
2422 		 */
2423 		/* Is 10 in LENi allowed when running in compatibility mode? */
2424 		/* Pattern 10 in R/Wi might be used to indicate
2425 		 * breakpoint on I/O. Further analysis should be
2426 		 * carried to decide if it is safe and useful to
2427 		 * provide access to that capability
2428 		 */
2429 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2430 		     i++, mask1 <<= 4, mask2 <<= 4)
2431 			if ((dbregs->dr[7] & mask1) == mask2)
2432 				return (EINVAL);
2433 
2434 		pcb = lp->lwp_thread->td_pcb;
2435 		ucred = lp->lwp_proc->p_ucred;
2436 
2437 		/*
2438 		 * Don't let a process set a breakpoint that is not within the
2439 		 * process's address space.  If a process could do this, it
2440 		 * could halt the system by setting a breakpoint in the kernel
2441 		 * (if ddb was enabled).  Thus, we need to check to make sure
2442 		 * that no breakpoints are being enabled for addresses outside
2443 		 * process's address space, unless, perhaps, we were called by
2444 		 * uid 0.
2445 		 *
2446 		 * XXX - what about when the watched area of the user's
2447 		 * address space is written into from within the kernel
2448 		 * ... wouldn't that still cause a breakpoint to be generated
2449 		 * from within kernel mode?
2450 		 */
2451 
2452 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2453 			if (dbregs->dr[7] & 0x3) {
2454 				/* dr0 is enabled */
2455 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2456 					return (EINVAL);
2457 			}
2458 
2459 			if (dbregs->dr[7] & (0x3<<2)) {
2460 				/* dr1 is enabled */
2461 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2462 					return (EINVAL);
2463 			}
2464 
2465 			if (dbregs->dr[7] & (0x3<<4)) {
2466 				/* dr2 is enabled */
2467 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2468 					return (EINVAL);
2469 			}
2470 
2471 			if (dbregs->dr[7] & (0x3<<6)) {
2472 				/* dr3 is enabled */
2473 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2474 					return (EINVAL);
2475 			}
2476 		}
2477 
2478 		pcb->pcb_dr0 = dbregs->dr[0];
2479 		pcb->pcb_dr1 = dbregs->dr[1];
2480 		pcb->pcb_dr2 = dbregs->dr[2];
2481 		pcb->pcb_dr3 = dbregs->dr[3];
2482 		pcb->pcb_dr6 = dbregs->dr[6];
2483 		pcb->pcb_dr7 = dbregs->dr[7];
2484 
2485 		pcb->pcb_flags |= PCB_DBREGS;
2486 	}
2487 
2488 	return (0);
2489 }
2490 
2491 /*
2492  * Return > 0 if a hardware breakpoint has been hit, and the
2493  * breakpoint was in user space.  Return 0, otherwise.
2494  */
2495 int
2496 user_dbreg_trap(void)
2497 {
2498         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2499         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2500         int nbp;            /* number of breakpoints that triggered */
2501         caddr_t addr[4];    /* breakpoint addresses */
2502         int i;
2503 
2504         dr7 = rdr7();
2505         if ((dr7 & 0xff) == 0) {
2506                 /*
2507                  * all GE and LE bits in the dr7 register are zero,
2508                  * thus the trap couldn't have been caused by the
2509                  * hardware debug registers
2510                  */
2511                 return 0;
2512         }
2513 
2514         nbp = 0;
2515         dr6 = rdr6();
2516         bp = dr6 & 0xf;
2517 
2518         if (bp == 0) {
2519                 /*
2520                  * None of the breakpoint bits are set meaning this
2521                  * trap was not caused by any of the debug registers
2522                  */
2523                 return 0;
2524         }
2525 
2526         /*
2527          * at least one of the breakpoints were hit, check to see
2528          * which ones and if any of them are user space addresses
2529          */
2530 
2531         if (bp & 0x01) {
2532                 addr[nbp++] = (caddr_t)rdr0();
2533         }
2534         if (bp & 0x02) {
2535                 addr[nbp++] = (caddr_t)rdr1();
2536         }
2537         if (bp & 0x04) {
2538                 addr[nbp++] = (caddr_t)rdr2();
2539         }
2540         if (bp & 0x08) {
2541                 addr[nbp++] = (caddr_t)rdr3();
2542         }
2543 
2544         for (i=0; i<nbp; i++) {
2545                 if (addr[i] <
2546                     (caddr_t)VM_MAX_USER_ADDRESS) {
2547                         /*
2548                          * addr[i] is in user space
2549                          */
2550                         return nbp;
2551                 }
2552         }
2553 
2554         /*
2555          * None of the breakpoints are in user space.
2556          */
2557         return 0;
2558 }
2559 
2560 
2561 #ifndef DDB
2562 void
2563 Debugger(const char *msg)
2564 {
2565 	kprintf("Debugger(\"%s\") called.\n", msg);
2566 }
2567 #endif /* no DDB */
2568 
2569 #ifdef DDB
2570 
2571 /*
2572  * Provide inb() and outb() as functions.  They are normally only
2573  * available as macros calling inlined functions, thus cannot be
2574  * called inside DDB.
2575  *
2576  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2577  */
2578 
2579 #undef inb
2580 #undef outb
2581 
2582 /* silence compiler warnings */
2583 u_char inb(u_int);
2584 void outb(u_int, u_char);
2585 
2586 u_char
2587 inb(u_int port)
2588 {
2589 	u_char	data;
2590 	/*
2591 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2592 	 * %edx, while gcc generates inferior code (movw instead of movl)
2593 	 * if we tell it to load (u_short) port.
2594 	 */
2595 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2596 	return (data);
2597 }
2598 
2599 void
2600 outb(u_int port, u_char data)
2601 {
2602 	u_char	al;
2603 	/*
2604 	 * Use an unnecessary assignment to help gcc's register allocator.
2605 	 * This make a large difference for gcc-1.40 and a tiny difference
2606 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2607 	 * best results.  gcc-2.6.0 can't handle this.
2608 	 */
2609 	al = data;
2610 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2611 }
2612 
2613 #endif /* DDB */
2614 
2615 
2616 
2617 /*
2618  * initialize all the SMP locks
2619  */
2620 
2621 /* critical region when masking or unmasking interupts */
2622 struct spinlock_deprecated imen_spinlock;
2623 
2624 /* critical region for old style disable_intr/enable_intr */
2625 struct spinlock_deprecated mpintr_spinlock;
2626 
2627 /* critical region around INTR() routines */
2628 struct spinlock_deprecated intr_spinlock;
2629 
2630 /* lock region used by kernel profiling */
2631 struct spinlock_deprecated mcount_spinlock;
2632 
2633 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2634 struct spinlock_deprecated com_spinlock;
2635 
2636 /* lock regions around the clock hardware */
2637 struct spinlock_deprecated clock_spinlock;
2638 
2639 static void
2640 init_locks(void)
2641 {
2642 	/*
2643 	 * Get the initial mplock with a count of 1 for the BSP.
2644 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2645 	 */
2646 	cpu_get_initial_mplock();
2647 	/* DEPRECATED */
2648 	spin_lock_init(&mcount_spinlock);
2649 	spin_lock_init(&intr_spinlock);
2650 	spin_lock_init(&mpintr_spinlock);
2651 	spin_lock_init(&imen_spinlock);
2652 	spin_lock_init(&com_spinlock);
2653 	spin_lock_init(&clock_spinlock);
2654 
2655 	/* our token pool needs to work early */
2656 	lwkt_token_pool_init();
2657 }
2658 
2659 boolean_t
2660 cpu_mwait_hint_valid(uint32_t hint)
2661 {
2662 	int cx_idx, sub;
2663 
2664 	cx_idx = MWAIT_EAX_TO_CX(hint);
2665 	if (cx_idx >= CPU_MWAIT_CX_MAX)
2666 		return FALSE;
2667 
2668 	sub = MWAIT_EAX_TO_CX_SUB(hint);
2669 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2670 		return FALSE;
2671 
2672 	return TRUE;
2673 }
2674 
2675 void
2676 cpu_mwait_cx_no_bmsts(void)
2677 {
2678 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
2679 }
2680 
2681 void
2682 cpu_mwait_cx_no_bmarb(void)
2683 {
2684 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
2685 }
2686 
2687 static int
2688 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
2689 {
2690 	int old_cx_idx, sub = 0;
2691 
2692 	if (hint >= 0) {
2693 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
2694 		sub = MWAIT_EAX_TO_CX_SUB(hint);
2695 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
2696 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
2697 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
2698 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
2699 	} else {
2700 		old_cx_idx = CPU_MWAIT_CX_MAX;
2701 	}
2702 
2703 	if (!CPU_MWAIT_HAS_CX)
2704 		strlcpy(name, "NONE", namelen);
2705 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
2706 		strlcpy(name, "AUTO", namelen);
2707 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
2708 		strlcpy(name, "AUTODEEP", namelen);
2709 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
2710 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
2711 		strlcpy(name, "INVALID", namelen);
2712 	else
2713 		ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
2714 
2715 	return old_cx_idx;
2716 }
2717 
2718 static int
2719 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
2720 {
2721 	int cx_idx, sub, hint;
2722 	char *ptr, *start;
2723 
2724 	if (allow_auto && strcmp(name, "AUTO") == 0) {
2725 		hint = CPU_MWAIT_HINT_AUTO;
2726 		cx_idx = CPU_MWAIT_C2;
2727 		goto done;
2728 	}
2729 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
2730 		hint = CPU_MWAIT_HINT_AUTODEEP;
2731 		cx_idx = CPU_MWAIT_C3;
2732 		goto done;
2733 	}
2734 
2735 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
2736 		return -1;
2737 	start = &name[1];
2738 	ptr = NULL;
2739 
2740 	cx_idx = strtol(start, &ptr, 10);
2741 	if (ptr == start || *ptr != '/')
2742 		return -1;
2743 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
2744 		return -1;
2745 
2746 	start = ptr + 1;
2747 	ptr = NULL;
2748 
2749 	sub = strtol(start, &ptr, 10);
2750 	if (*ptr != '\0')
2751 		return -1;
2752 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2753 		return -1;
2754 
2755 	hint = MWAIT_EAX_HINT(cx_idx, sub);
2756 done:
2757 	*hint0 = hint;
2758 	return cx_idx;
2759 }
2760 
2761 static int
2762 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
2763 {
2764 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
2765 		return EOPNOTSUPP;
2766 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
2767 		int error;
2768 
2769 		error = cputimer_intr_powersave_addreq();
2770 		if (error)
2771 			return error;
2772 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
2773 		cputimer_intr_powersave_remreq();
2774 	}
2775 	return 0;
2776 }
2777 
2778 static int
2779 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
2780     boolean_t allow_auto)
2781 {
2782 	int error, cx_idx, old_cx_idx, hint;
2783 	char name[CPU_MWAIT_CX_NAMELEN];
2784 
2785 	hint = *hint0;
2786 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
2787 	    allow_auto);
2788 
2789 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
2790 	if (error != 0 || req->newptr == NULL)
2791 		return error;
2792 
2793 	if (!CPU_MWAIT_HAS_CX)
2794 		return EOPNOTSUPP;
2795 
2796 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
2797 	if (cx_idx < 0)
2798 		return EINVAL;
2799 
2800 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
2801 	if (error)
2802 		return error;
2803 
2804 	*hint0 = hint;
2805 	return 0;
2806 }
2807 
2808 static int
2809 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
2810 {
2811 	int error, cx_idx, old_cx_idx, hint;
2812 	char name[CPU_MWAIT_CX_NAMELEN];
2813 
2814 	KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
2815 
2816 	hint = stat->hint;
2817 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
2818 
2819 	strlcpy(name, cx_name, sizeof(name));
2820 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
2821 	if (cx_idx < 0)
2822 		return EINVAL;
2823 
2824 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
2825 	if (error)
2826 		return error;
2827 
2828 	stat->hint = hint;
2829 	return 0;
2830 }
2831 
2832 static int
2833 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
2834 {
2835 	int hint = cpu_mwait_halt_global;
2836 	int error, cx_idx, cpu;
2837 	char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
2838 
2839 	cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
2840 
2841 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
2842 	if (error != 0 || req->newptr == NULL)
2843 		return error;
2844 
2845 	if (!CPU_MWAIT_HAS_CX)
2846 		return EOPNOTSUPP;
2847 
2848 	/* Save name for later per-cpu CX configuration */
2849 	strlcpy(cx_name, name, sizeof(cx_name));
2850 
2851 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
2852 	if (cx_idx < 0)
2853 		return EINVAL;
2854 
2855 	/* Change per-cpu CX configuration */
2856 	for (cpu = 0; cpu < ncpus; ++cpu) {
2857 		error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
2858 		if (error)
2859 			return error;
2860 	}
2861 
2862 	cpu_mwait_halt_global = hint;
2863 	return 0;
2864 }
2865 
2866 static int
2867 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
2868 {
2869 	struct cpu_idle_stat *stat = arg1;
2870 	int error;
2871 
2872 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
2873 	    &stat->hint, TRUE);
2874 	return error;
2875 }
2876 
2877 static int
2878 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
2879 {
2880 	int error;
2881 
2882 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
2883 	    &cpu_mwait_spin, FALSE);
2884 	return error;
2885 }
2886