xref: /dflybsd-src/sys/platform/pc64/isa/clock.c (revision 45a9a2ebaf2f5483318be2a12c19b4c477512c7a)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * Copyright (c) 2008 The DragonFly Project.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * William Jolitz and Don Ahn.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
38  * $FreeBSD: src/sys/i386/isa/clock.c,v 1.149.2.6 2002/11/02 04:41:50 iwasaki Exp $
39  */
40 
41 /*
42  * Routines to handle clock hardware.
43  */
44 
45 /*
46  * inittodr, settodr and support routines written
47  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
48  *
49  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
50  */
51 
52 #if 0
53 #include "opt_clock.h"
54 #endif
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/eventhandler.h>
59 #include <sys/time.h>
60 #include <sys/kernel.h>
61 #include <sys/bus.h>
62 #include <sys/sysctl.h>
63 #include <sys/cons.h>
64 #include <sys/systimer.h>
65 #include <sys/globaldata.h>
66 #include <sys/thread2.h>
67 #include <sys/systimer.h>
68 #include <sys/machintr.h>
69 #include <sys/interrupt.h>
70 
71 #include <machine/clock.h>
72 #include <machine/cputypes.h>
73 #include <machine/frame.h>
74 #include <machine/ipl.h>
75 #include <machine/limits.h>
76 #include <machine/md_var.h>
77 #include <machine/psl.h>
78 #include <machine/segments.h>
79 #include <machine/smp.h>
80 #include <machine/specialreg.h>
81 #include <machine/intr_machdep.h>
82 
83 #include <machine_base/apic/ioapic.h>
84 #include <machine_base/apic/ioapic_abi.h>
85 #include <machine_base/icu/icu.h>
86 #include <bus/isa/isa.h>
87 #include <bus/isa/rtc.h>
88 #include <machine_base/isa/timerreg.h>
89 
90 static void i8254_restore(void);
91 static void resettodr_on_shutdown(void *arg __unused);
92 
93 /*
94  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
95  * can use a simple formula for leap years.
96  */
97 #define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
98 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
99 
100 #ifndef TIMER_FREQ
101 #define TIMER_FREQ   1193182
102 #endif
103 
104 static uint8_t i8254_walltimer_sel;
105 static uint16_t i8254_walltimer_cntr;
106 
107 int	adjkerntz;		/* local offset from GMT in seconds */
108 int	disable_rtc_set;	/* disable resettodr() if != 0 */
109 int	tsc_present;
110 int64_t	tsc_frequency;
111 int	tsc_is_broken;
112 int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
113 int	timer0_running;
114 enum tstate { RELEASED, ACQUIRED };
115 enum tstate timer0_state;
116 enum tstate timer1_state;
117 enum tstate timer2_state;
118 
119 static	int	beeping = 0;
120 static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
121 static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
122 static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
123 static  int	rtc_loaded;
124 
125 static int i8254_cputimer_div;
126 
127 static int i8254_nointr;
128 static int i8254_intr_disable = 1;
129 TUNABLE_INT("hw.i8254.intr_disable", &i8254_intr_disable);
130 
131 static struct callout sysbeepstop_ch;
132 
133 static sysclock_t i8254_cputimer_count(void);
134 static void i8254_cputimer_construct(struct cputimer *cputimer, sysclock_t last);
135 static void i8254_cputimer_destruct(struct cputimer *cputimer);
136 
137 static struct cputimer	i8254_cputimer = {
138     SLIST_ENTRY_INITIALIZER,
139     "i8254",
140     CPUTIMER_PRI_8254,
141     0,
142     i8254_cputimer_count,
143     cputimer_default_fromhz,
144     cputimer_default_fromus,
145     i8254_cputimer_construct,
146     i8254_cputimer_destruct,
147     TIMER_FREQ,
148     0, 0, 0
149 };
150 
151 static void i8254_intr_reload(struct cputimer_intr *, sysclock_t);
152 static void i8254_intr_config(struct cputimer_intr *, const struct cputimer *);
153 static void i8254_intr_initclock(struct cputimer_intr *, boolean_t);
154 
155 static struct cputimer_intr i8254_cputimer_intr = {
156     .freq = TIMER_FREQ,
157     .reload = i8254_intr_reload,
158     .enable = cputimer_intr_default_enable,
159     .config = i8254_intr_config,
160     .restart = cputimer_intr_default_restart,
161     .pmfixup = cputimer_intr_default_pmfixup,
162     .initclock = i8254_intr_initclock,
163     .next = SLIST_ENTRY_INITIALIZER,
164     .name = "i8254",
165     .type = CPUTIMER_INTR_8254,
166     .prio = CPUTIMER_INTR_PRIO_8254,
167     .caps = CPUTIMER_INTR_CAP_PS
168 };
169 
170 /*
171  * timer0 clock interrupt.  Timer0 is in one-shot mode and has stopped
172  * counting as of this interrupt.  We use timer1 in free-running mode (not
173  * generating any interrupts) as our main counter.  Each cpu has timeouts
174  * pending.
175  *
176  * This code is INTR_MPSAFE and may be called without the BGL held.
177  */
178 static void
179 clkintr(void *dummy, void *frame_arg)
180 {
181 	static sysclock_t sysclock_count;	/* NOTE! Must be static */
182 	struct globaldata *gd = mycpu;
183 	struct globaldata *gscan;
184 	int n;
185 
186 	/*
187 	 * SWSTROBE mode is a one-shot, the timer is no longer running
188 	 */
189 	timer0_running = 0;
190 
191 	/*
192 	 * XXX the dispatcher needs work.  right now we call systimer_intr()
193 	 * directly or via IPI for any cpu with systimers queued, which is
194 	 * usually *ALL* of them.  We need to use the LAPIC timer for this.
195 	 */
196 	sysclock_count = sys_cputimer->count();
197 	for (n = 0; n < ncpus; ++n) {
198 	    gscan = globaldata_find(n);
199 	    if (TAILQ_FIRST(&gscan->gd_systimerq) == NULL)
200 		continue;
201 	    if (gscan != gd) {
202 		lwkt_send_ipiq3(gscan, (ipifunc3_t)systimer_intr,
203 				&sysclock_count, 1);
204 	    } else {
205 		systimer_intr(&sysclock_count, 0, frame_arg);
206 	    }
207 	}
208 }
209 
210 
211 /*
212  * NOTE! not MP safe.
213  */
214 int
215 acquire_timer2(int mode)
216 {
217 	if (timer2_state != RELEASED)
218 		return (-1);
219 	timer2_state = ACQUIRED;
220 
221 	/*
222 	 * This access to the timer registers is as atomic as possible
223 	 * because it is a single instruction.  We could do better if we
224 	 * knew the rate.
225 	 */
226 	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
227 	return (0);
228 }
229 
230 int
231 release_timer2(void)
232 {
233 	if (timer2_state != ACQUIRED)
234 		return (-1);
235 	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
236 	timer2_state = RELEASED;
237 	return (0);
238 }
239 
240 #include "opt_ddb.h"
241 #ifdef DDB
242 #include <ddb/ddb.h>
243 
244 DB_SHOW_COMMAND(rtc, rtc)
245 {
246 	kprintf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
247 	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
248 	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
249 	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
250 }
251 #endif /* DDB */
252 
253 /*
254  * Return the current cpu timer count as a 32 bit integer.
255  */
256 static
257 sysclock_t
258 i8254_cputimer_count(void)
259 {
260 	static __uint16_t cputimer_last;
261 	__uint16_t count;
262 	sysclock_t ret;
263 
264 	clock_lock();
265 	outb(TIMER_MODE, i8254_walltimer_sel | TIMER_LATCH);
266 	count = (__uint8_t)inb(i8254_walltimer_cntr);		/* get countdown */
267 	count |= ((__uint8_t)inb(i8254_walltimer_cntr) << 8);
268 	count = -count;					/* -> countup */
269 	if (count < cputimer_last)			/* rollover */
270 		i8254_cputimer.base += 0x00010000;
271 	ret = i8254_cputimer.base | count;
272 	cputimer_last = count;
273 	clock_unlock();
274 	return(ret);
275 }
276 
277 /*
278  * This function is called whenever the system timebase changes, allowing
279  * us to calculate what is needed to convert a system timebase tick
280  * into an 8254 tick for the interrupt timer.  If we can convert to a
281  * simple shift, multiplication, or division, we do so.  Otherwise 64
282  * bit arithmatic is required every time the interrupt timer is reloaded.
283  */
284 static void
285 i8254_intr_config(struct cputimer_intr *cti, const struct cputimer *timer)
286 {
287     int freq;
288     int div;
289 
290     /*
291      * Will a simple divide do the trick?
292      */
293     div = (timer->freq + (cti->freq / 2)) / cti->freq;
294     freq = cti->freq * div;
295 
296     if (freq >= timer->freq - 1 && freq <= timer->freq + 1)
297 	i8254_cputimer_div = div;
298     else
299 	i8254_cputimer_div = 0;
300 }
301 
302 /*
303  * Reload for the next timeout.  It is possible for the reload value
304  * to be 0 or negative, indicating that an immediate timer interrupt
305  * is desired.  For now make the minimum 2 ticks.
306  *
307  * We may have to convert from the system timebase to the 8254 timebase.
308  */
309 static void
310 i8254_intr_reload(struct cputimer_intr *cti, sysclock_t reload)
311 {
312     __uint16_t count;
313 
314     if (i8254_cputimer_div)
315 	reload /= i8254_cputimer_div;
316     else
317 	reload = (int64_t)reload * cti->freq / sys_cputimer->freq;
318 
319     if ((int)reload < 2)
320 	reload = 2;
321 
322     clock_lock();
323     if (timer0_running) {
324 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);	/* count-down timer */
325 	count = (__uint8_t)inb(TIMER_CNTR0);		/* lsb */
326 	count |= ((__uint8_t)inb(TIMER_CNTR0) << 8);	/* msb */
327 	if (reload < count) {
328 	    outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
329 	    outb(TIMER_CNTR0, (__uint8_t)reload); 	/* lsb */
330 	    outb(TIMER_CNTR0, (__uint8_t)(reload >> 8)); /* msb */
331 	}
332     } else {
333 	timer0_running = 1;
334 	if (reload > 0xFFFF)
335 	    reload = 0;		/* full count */
336 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
337 	outb(TIMER_CNTR0, (__uint8_t)reload); 		/* lsb */
338 	outb(TIMER_CNTR0, (__uint8_t)(reload >> 8));	/* msb */
339     }
340     clock_unlock();
341 }
342 
343 /*
344  * DELAY(usec)	     - Spin for the specified number of microseconds.
345  * DRIVERSLEEP(usec) - Spin for the specified number of microseconds,
346  *		       but do a thread switch in the loop
347  *
348  * Relies on timer 1 counting down from (cputimer_freq / hz)
349  * Note: timer had better have been programmed before this is first used!
350  */
351 static void
352 DODELAY(int n, int doswitch)
353 {
354 	int delta, prev_tick, tick, ticks_left;
355 
356 #ifdef DELAYDEBUG
357 	int getit_calls = 1;
358 	int n1;
359 	static int state = 0;
360 
361 	if (state == 0) {
362 		state = 1;
363 		for (n1 = 1; n1 <= 10000000; n1 *= 10)
364 			DELAY(n1);
365 		state = 2;
366 	}
367 	if (state == 1)
368 		kprintf("DELAY(%d)...", n);
369 #endif
370 	/*
371 	 * Guard against the timer being uninitialized if we are called
372 	 * early for console i/o.
373 	 */
374 	if (timer0_state == RELEASED)
375 		i8254_restore();
376 
377 	/*
378 	 * Read the counter first, so that the rest of the setup overhead is
379 	 * counted.  Then calculate the number of hardware timer ticks
380 	 * required, rounding up to be sure we delay at least the requested
381 	 * number of microseconds.
382 	 */
383 	prev_tick = sys_cputimer->count();
384 	ticks_left = ((u_int)n * (int64_t)sys_cputimer->freq + 999999) /
385 		     1000000;
386 
387 	/*
388 	 * Loop until done.
389 	 */
390 	while (ticks_left > 0) {
391 		tick = sys_cputimer->count();
392 #ifdef DELAYDEBUG
393 		++getit_calls;
394 #endif
395 		delta = tick - prev_tick;
396 		prev_tick = tick;
397 		if (delta < 0)
398 			delta = 0;
399 		ticks_left -= delta;
400 		if (doswitch && ticks_left > 0)
401 			lwkt_switch();
402 		cpu_pause();
403 	}
404 #ifdef DELAYDEBUG
405 	if (state == 1)
406 		kprintf(" %d calls to getit() at %d usec each\n",
407 		       getit_calls, (n + 5) / getit_calls);
408 #endif
409 }
410 
411 /*
412  * DELAY() never switches.
413  */
414 void
415 DELAY(int n)
416 {
417 	DODELAY(n, 0);
418 }
419 
420 /*
421  * Returns non-zero if the specified time period has elapsed.  Call
422  * first with last_clock set to 0.
423  */
424 int
425 CHECKTIMEOUT(TOTALDELAY *tdd)
426 {
427 	sysclock_t delta;
428 	int us;
429 
430 	if (tdd->started == 0) {
431 		if (timer0_state == RELEASED)
432 			i8254_restore();
433 		tdd->last_clock = sys_cputimer->count();
434 		tdd->started = 1;
435 		return(0);
436 	}
437 	delta = sys_cputimer->count() - tdd->last_clock;
438 	us = (u_int64_t)delta * (u_int64_t)1000000 /
439 	     (u_int64_t)sys_cputimer->freq;
440 	tdd->last_clock += (u_int64_t)us * (u_int64_t)sys_cputimer->freq /
441 			   1000000;
442 	tdd->us -= us;
443 	return (tdd->us < 0);
444 }
445 
446 
447 /*
448  * DRIVERSLEEP() does not switch if called with a spinlock held or
449  * from a hard interrupt.
450  */
451 void
452 DRIVERSLEEP(int usec)
453 {
454 	globaldata_t gd = mycpu;
455 
456 	if (gd->gd_intr_nesting_level || gd->gd_spinlocks) {
457 		DODELAY(usec, 0);
458 	} else {
459 		DODELAY(usec, 1);
460 	}
461 }
462 
463 static void
464 sysbeepstop(void *chan)
465 {
466 	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
467 	beeping = 0;
468 	release_timer2();
469 }
470 
471 int
472 sysbeep(int pitch, int period)
473 {
474 	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
475 		return(-1);
476 	if (sysbeep_enable == 0)
477 		return(-1);
478 	/*
479 	 * Nobody else is using timer2, we do not need the clock lock
480 	 */
481 	outb(TIMER_CNTR2, pitch);
482 	outb(TIMER_CNTR2, (pitch>>8));
483 	if (!beeping) {
484 		/* enable counter2 output to speaker */
485 		outb(IO_PPI, inb(IO_PPI) | 3);
486 		beeping = period;
487 		callout_reset(&sysbeepstop_ch, period, sysbeepstop, NULL);
488 	}
489 	return (0);
490 }
491 
492 /*
493  * RTC support routines
494  */
495 
496 int
497 rtcin(int reg)
498 {
499 	u_char val;
500 
501 	crit_enter();
502 	outb(IO_RTC, reg);
503 	inb(0x84);
504 	val = inb(IO_RTC + 1);
505 	inb(0x84);
506 	crit_exit();
507 	return (val);
508 }
509 
510 static __inline void
511 writertc(u_char reg, u_char val)
512 {
513 	crit_enter();
514 	inb(0x84);
515 	outb(IO_RTC, reg);
516 	inb(0x84);
517 	outb(IO_RTC + 1, val);
518 	inb(0x84);		/* XXX work around wrong order in rtcin() */
519 	crit_exit();
520 }
521 
522 static __inline int
523 readrtc(int port)
524 {
525 	return(bcd2bin(rtcin(port)));
526 }
527 
528 static u_int
529 calibrate_clocks(void)
530 {
531 	u_int64_t old_tsc;
532 	u_int count, prev_count, tot_count;
533 	int sec, start_sec, timeout;
534 
535 	if (bootverbose)
536 	        kprintf("Calibrating clock(s) ... ");
537 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
538 		goto fail;
539 	timeout = 100000000;
540 
541 	/* Read the mc146818A seconds counter. */
542 	for (;;) {
543 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
544 			sec = rtcin(RTC_SEC);
545 			break;
546 		}
547 		if (--timeout == 0)
548 			goto fail;
549 	}
550 
551 	/* Wait for the mC146818A seconds counter to change. */
552 	start_sec = sec;
553 	for (;;) {
554 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
555 			sec = rtcin(RTC_SEC);
556 			if (sec != start_sec)
557 				break;
558 		}
559 		if (--timeout == 0)
560 			goto fail;
561 	}
562 
563 	/* Start keeping track of the i8254 counter. */
564 	prev_count = sys_cputimer->count();
565 	tot_count = 0;
566 
567 	if (tsc_present)
568 		old_tsc = rdtsc();
569 	else
570 		old_tsc = 0;		/* shut up gcc */
571 
572 	/*
573 	 * Wait for the mc146818A seconds counter to change.  Read the i8254
574 	 * counter for each iteration since this is convenient and only
575 	 * costs a few usec of inaccuracy. The timing of the final reads
576 	 * of the counters almost matches the timing of the initial reads,
577 	 * so the main cause of inaccuracy is the varying latency from
578 	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
579 	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
580 	 * maximum inaccuracy from this cause is < 10 usec on 486's.
581 	 */
582 	start_sec = sec;
583 	for (;;) {
584 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
585 			sec = rtcin(RTC_SEC);
586 		count = sys_cputimer->count();
587 		tot_count += (int)(count - prev_count);
588 		prev_count = count;
589 		if (sec != start_sec)
590 			break;
591 		if (--timeout == 0)
592 			goto fail;
593 	}
594 
595 	/*
596 	 * Read the cpu cycle counter.  The timing considerations are
597 	 * similar to those for the i8254 clock.
598 	 */
599 	if (tsc_present) {
600 		tsc_frequency = rdtsc() - old_tsc;
601 	}
602 
603 	if (tsc_present)
604 		kprintf("TSC clock: %llu Hz, ", (long long)tsc_frequency);
605 	kprintf("i8254 clock: %u Hz\n", tot_count);
606 	return (tot_count);
607 
608 fail:
609 	kprintf("failed, using default i8254 clock of %u Hz\n",
610 		i8254_cputimer.freq);
611 	return (i8254_cputimer.freq);
612 }
613 
614 static void
615 i8254_restore(void)
616 {
617 	timer0_state = ACQUIRED;
618 
619 	clock_lock();
620 
621 	/*
622 	 * Timer0 is our fine-grained variable clock interrupt
623 	 */
624 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
625 	outb(TIMER_CNTR0, 2);	/* lsb */
626 	outb(TIMER_CNTR0, 0);	/* msb */
627 	clock_unlock();
628 
629 	if (!i8254_nointr) {
630 		cputimer_intr_register(&i8254_cputimer_intr);
631 		cputimer_intr_select(&i8254_cputimer_intr, 0);
632 	}
633 
634 	/*
635 	 * Timer1 or timer2 is our free-running clock, but only if another
636 	 * has not been selected.
637 	 */
638 	cputimer_register(&i8254_cputimer);
639 	cputimer_select(&i8254_cputimer, 0);
640 }
641 
642 static void
643 i8254_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
644 {
645  	int which;
646 
647 	/*
648 	 * Should we use timer 1 or timer 2 ?
649 	 */
650 	which = 0;
651 	TUNABLE_INT_FETCH("hw.i8254.walltimer", &which);
652 	if (which != 1 && which != 2)
653 		which = 2;
654 
655 	switch(which) {
656 	case 1:
657 		timer->name = "i8254_timer1";
658 		timer->type = CPUTIMER_8254_SEL1;
659 		i8254_walltimer_sel = TIMER_SEL1;
660 		i8254_walltimer_cntr = TIMER_CNTR1;
661 		timer1_state = ACQUIRED;
662 		break;
663 	case 2:
664 		timer->name = "i8254_timer2";
665 		timer->type = CPUTIMER_8254_SEL2;
666 		i8254_walltimer_sel = TIMER_SEL2;
667 		i8254_walltimer_cntr = TIMER_CNTR2;
668 		timer2_state = ACQUIRED;
669 		break;
670 	}
671 
672 	timer->base = (oldclock + 0xFFFF) & ~0xFFFF;
673 
674 	clock_lock();
675 	outb(TIMER_MODE, i8254_walltimer_sel | TIMER_RATEGEN | TIMER_16BIT);
676 	outb(i8254_walltimer_cntr, 0);	/* lsb */
677 	outb(i8254_walltimer_cntr, 0);	/* msb */
678 	outb(IO_PPI, inb(IO_PPI) | 1);	/* bit 0: enable gate, bit 1: spkr */
679 	clock_unlock();
680 }
681 
682 static void
683 i8254_cputimer_destruct(struct cputimer *timer)
684 {
685 	switch(timer->type) {
686 	case CPUTIMER_8254_SEL1:
687 	    timer1_state = RELEASED;
688 	    break;
689 	case CPUTIMER_8254_SEL2:
690 	    timer2_state = RELEASED;
691 	    break;
692 	default:
693 	    break;
694 	}
695 	timer->type = 0;
696 }
697 
698 static void
699 rtc_restore(void)
700 {
701 	/* Restore all of the RTC's "status" (actually, control) registers. */
702 	writertc(RTC_STATUSB, RTCSB_24HR);
703 	writertc(RTC_STATUSA, rtc_statusa);
704 	writertc(RTC_STATUSB, rtc_statusb);
705 }
706 
707 /*
708  * Restore all the timers.
709  *
710  * This function is called to resynchronize our core timekeeping after a
711  * long halt, e.g. from apm_default_resume() and friends.  It is also
712  * called if after a BIOS call we have detected munging of the 8254.
713  * It is necessary because cputimer_count() counter's delta may have grown
714  * too large for nanouptime() and friends to handle, or (in the case of 8254
715  * munging) might cause the SYSTIMER code to prematurely trigger.
716  */
717 void
718 timer_restore(void)
719 {
720 	crit_enter();
721 	i8254_restore();		/* restore timer_freq and hz */
722 	rtc_restore();			/* reenable RTC interrupts */
723 	crit_exit();
724 }
725 
726 /*
727  * Initialize 8254 timer 0 early so that it can be used in DELAY().
728  */
729 void
730 startrtclock(void)
731 {
732 	u_int delta, freq;
733 
734 	/*
735 	 * Can we use the TSC?
736 	 */
737 	if (cpu_feature & CPUID_TSC)
738 		tsc_present = 1;
739 	else
740 		tsc_present = 0;
741 
742 	/*
743 	 * Initial RTC state, don't do anything unexpected
744 	 */
745 	writertc(RTC_STATUSA, rtc_statusa);
746 	writertc(RTC_STATUSB, RTCSB_24HR);
747 
748 	/*
749 	 * Set the 8254 timer0 in TIMER_SWSTROBE mode and cause it to
750 	 * generate an interrupt, which we will ignore for now.
751 	 *
752 	 * Set the 8254 timer1 in TIMER_RATEGEN mode and load 0x0000
753 	 * (so it counts a full 2^16 and repeats).  We will use this timer
754 	 * for our counting.
755 	 */
756 	i8254_restore();
757 	freq = calibrate_clocks();
758 #ifdef CLK_CALIBRATION_LOOP
759 	if (bootverbose) {
760 		kprintf(
761 		"Press a key on the console to abort clock calibration\n");
762 		while (cncheckc() == -1)
763 			calibrate_clocks();
764 	}
765 #endif
766 
767 	/*
768 	 * Use the calibrated i8254 frequency if it seems reasonable.
769 	 * Otherwise use the default, and don't use the calibrated i586
770 	 * frequency.
771 	 */
772 	delta = freq > i8254_cputimer.freq ?
773 			freq - i8254_cputimer.freq : i8254_cputimer.freq - freq;
774 	if (delta < i8254_cputimer.freq / 100) {
775 #ifndef CLK_USE_I8254_CALIBRATION
776 		if (bootverbose)
777 			kprintf(
778 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
779 		freq = i8254_cputimer.freq;
780 #endif
781 		/*
782 		 * NOTE:
783 		 * Interrupt timer's freq must be adjusted
784 		 * before we change the cuptimer's frequency.
785 		 */
786 		i8254_cputimer_intr.freq = freq;
787 		cputimer_set_frequency(&i8254_cputimer, freq);
788 	} else {
789 		if (bootverbose)
790 			kprintf(
791 		    "%d Hz differs from default of %d Hz by more than 1%%\n",
792 			       freq, i8254_cputimer.freq);
793 		tsc_frequency = 0;
794 	}
795 
796 #ifndef CLK_USE_TSC_CALIBRATION
797 	if (tsc_frequency != 0) {
798 		if (bootverbose)
799 			kprintf(
800 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
801 		tsc_frequency = 0;
802 	}
803 #endif
804 	if (tsc_present && tsc_frequency == 0) {
805 		/*
806 		 * Calibration of the i586 clock relative to the mc146818A
807 		 * clock failed.  Do a less accurate calibration relative
808 		 * to the i8254 clock.
809 		 */
810 		u_int64_t old_tsc = rdtsc();
811 
812 		DELAY(1000000);
813 		tsc_frequency = rdtsc() - old_tsc;
814 #ifdef CLK_USE_TSC_CALIBRATION
815 		if (bootverbose) {
816 			kprintf("TSC clock: %llu Hz (Method B)\n",
817 				tsc_frequency);
818 		}
819 #endif
820 	}
821 
822 	EVENTHANDLER_REGISTER(shutdown_post_sync, resettodr_on_shutdown, NULL, SHUTDOWN_PRI_LAST);
823 }
824 
825 /*
826  * Sync the time of day back to the RTC on shutdown, but only if
827  * we have already loaded it and have not crashed.
828  */
829 static void
830 resettodr_on_shutdown(void *arg __unused)
831 {
832  	if (rtc_loaded && panicstr == NULL) {
833 		resettodr();
834 	}
835 }
836 
837 /*
838  * Initialize the time of day register, based on the time base which is, e.g.
839  * from a filesystem.
840  */
841 void
842 inittodr(time_t base)
843 {
844 	unsigned long	sec, days;
845 	int		year, month;
846 	int		y, m;
847 	struct timespec ts;
848 
849 	if (base) {
850 		ts.tv_sec = base;
851 		ts.tv_nsec = 0;
852 		set_timeofday(&ts);
853 	}
854 
855 	/* Look if we have a RTC present and the time is valid */
856 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
857 		goto wrong_time;
858 
859 	/* wait for time update to complete */
860 	/* If RTCSA_TUP is zero, we have at least 244us before next update */
861 	crit_enter();
862 	while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
863 		crit_exit();
864 		crit_enter();
865 	}
866 
867 	days = 0;
868 #ifdef USE_RTC_CENTURY
869 	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
870 #else
871 	year = readrtc(RTC_YEAR) + 1900;
872 	if (year < 1970)
873 		year += 100;
874 #endif
875 	if (year < 1970) {
876 		crit_exit();
877 		goto wrong_time;
878 	}
879 	month = readrtc(RTC_MONTH);
880 	for (m = 1; m < month; m++)
881 		days += daysinmonth[m-1];
882 	if ((month > 2) && LEAPYEAR(year))
883 		days ++;
884 	days += readrtc(RTC_DAY) - 1;
885 	for (y = 1970; y < year; y++)
886 		days += DAYSPERYEAR + LEAPYEAR(y);
887 	sec = ((( days * 24 +
888 		  readrtc(RTC_HRS)) * 60 +
889 		  readrtc(RTC_MIN)) * 60 +
890 		  readrtc(RTC_SEC));
891 	/* sec now contains the number of seconds, since Jan 1 1970,
892 	   in the local time zone */
893 
894 	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
895 
896 	y = time_second - sec;
897 	if (y <= -2 || y >= 2) {
898 		/* badly off, adjust it */
899 		ts.tv_sec = sec;
900 		ts.tv_nsec = 0;
901 		set_timeofday(&ts);
902 	}
903 	rtc_loaded = 1;
904 	crit_exit();
905 	return;
906 
907 wrong_time:
908 	kprintf("Invalid time in real time clock.\n");
909 	kprintf("Check and reset the date immediately!\n");
910 }
911 
912 /*
913  * Write system time back to RTC
914  */
915 void
916 resettodr(void)
917 {
918 	struct timeval tv;
919 	unsigned long tm;
920 	int m;
921 	int y;
922 
923 	if (disable_rtc_set)
924 		return;
925 
926 	microtime(&tv);
927 	tm = tv.tv_sec;
928 
929 	crit_enter();
930 	/* Disable RTC updates and interrupts. */
931 	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
932 
933 	/* Calculate local time to put in RTC */
934 
935 	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
936 
937 	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
938 	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
939 	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
940 
941 	/* We have now the days since 01-01-1970 in tm */
942 	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
943 	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
944 	     tm >= m;
945 	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
946 	     tm -= m;
947 
948 	/* Now we have the years in y and the day-of-the-year in tm */
949 	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
950 #ifdef USE_RTC_CENTURY
951 	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
952 #endif
953 	for (m = 0; ; m++) {
954 		int ml;
955 
956 		ml = daysinmonth[m];
957 		if (m == 1 && LEAPYEAR(y))
958 			ml++;
959 		if (tm < ml)
960 			break;
961 		tm -= ml;
962 	}
963 
964 	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
965 	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
966 
967 	/* Reenable RTC updates and interrupts. */
968 	writertc(RTC_STATUSB, rtc_statusb);
969 	crit_exit();
970 }
971 
972 static int
973 i8254_ioapic_trial(int irq, struct cputimer_intr *cti)
974 {
975 	sysclock_t base;
976 	long lastcnt;
977 
978 	/*
979 	 * Following code assumes the 8254 is the cpu timer,
980 	 * so make sure it is.
981 	 */
982 	KKASSERT(sys_cputimer == &i8254_cputimer);
983 	KKASSERT(cti == &i8254_cputimer_intr);
984 
985 	lastcnt = get_interrupt_counter(irq, mycpuid);
986 
987 	/*
988 	 * Force an 8254 Timer0 interrupt and wait 1/100s for
989 	 * it to happen, then see if we got it.
990 	 */
991 	kprintf("IOAPIC: testing 8254 interrupt delivery\n");
992 
993 	i8254_intr_reload(cti, 2);
994 	base = sys_cputimer->count();
995 	while (sys_cputimer->count() - base < sys_cputimer->freq / 100)
996 		; /* nothing */
997 
998 	if (get_interrupt_counter(irq, mycpuid) - lastcnt == 0)
999 		return ENOENT;
1000 	return 0;
1001 }
1002 
1003 /*
1004  * Start both clocks running.  DragonFly note: the stat clock is no longer
1005  * used.  Instead, 8254 based systimers are used for all major clock
1006  * interrupts.
1007  */
1008 static void
1009 i8254_intr_initclock(struct cputimer_intr *cti, boolean_t selected)
1010 {
1011 	void *clkdesc = NULL;
1012 	int irq = 0, mixed_mode = 0, error;
1013 
1014 	KKASSERT(mycpuid == 0);
1015 	callout_init_mp(&sysbeepstop_ch);
1016 
1017 	if (!selected && i8254_intr_disable)
1018 		goto nointr;
1019 
1020 	/*
1021 	 * The stat interrupt mask is different without the
1022 	 * statistics clock.  Also, don't set the interrupt
1023 	 * flag which would normally cause the RTC to generate
1024 	 * interrupts.
1025 	 */
1026 	rtc_statusb = RTCSB_24HR;
1027 
1028 	/* Finish initializing 8254 timer 0. */
1029 	if (ioapic_enable) {
1030 		irq = machintr_legacy_intr_find(0, INTR_TRIGGER_EDGE,
1031 			INTR_POLARITY_HIGH);
1032 		if (irq < 0) {
1033 mixed_mode_setup:
1034 			error = ioapic_conf_legacy_extint(0);
1035 			if (!error) {
1036 				irq = machintr_legacy_intr_find(0,
1037 				    INTR_TRIGGER_EDGE, INTR_POLARITY_HIGH);
1038 				if (irq < 0)
1039 					error = ENOENT;
1040 			}
1041 
1042 			if (error) {
1043 				if (!selected) {
1044 					kprintf("IOAPIC: setup mixed mode for "
1045 						"irq 0 failed: %d\n", error);
1046 					goto nointr;
1047 				} else {
1048 					panic("IOAPIC: setup mixed mode for "
1049 					      "irq 0 failed: %d\n", error);
1050 				}
1051 			}
1052 			mixed_mode = 1;
1053 		}
1054 		clkdesc = register_int(irq, clkintr, NULL, "clk",
1055 				       NULL,
1056 				       INTR_EXCL | INTR_CLOCK |
1057 				       INTR_NOPOLL | INTR_MPSAFE |
1058 				       INTR_NOENTROPY, 0);
1059 	} else {
1060 		register_int(0, clkintr, NULL, "clk", NULL,
1061 			     INTR_EXCL | INTR_CLOCK |
1062 			     INTR_NOPOLL | INTR_MPSAFE |
1063 			     INTR_NOENTROPY, 0);
1064 	}
1065 
1066 	/* Initialize RTC. */
1067 	writertc(RTC_STATUSA, rtc_statusa);
1068 	writertc(RTC_STATUSB, RTCSB_24HR);
1069 
1070 	if (ioapic_enable) {
1071 		error = i8254_ioapic_trial(irq, cti);
1072 		if (error) {
1073 			if (mixed_mode) {
1074 				if (!selected) {
1075 					kprintf("IOAPIC: mixed mode for irq %d "
1076 						"trial failed: %d\n",
1077 						irq, error);
1078 					goto nointr;
1079 				} else {
1080 					panic("IOAPIC: mixed mode for irq %d "
1081 					      "trial failed: %d\n", irq, error);
1082 				}
1083 			} else {
1084 				kprintf("IOAPIC: warning 8254 is not connected "
1085 					"to the correct pin, try mixed mode\n");
1086 				unregister_int(clkdesc, 0);
1087 				goto mixed_mode_setup;
1088 			}
1089 		}
1090 	}
1091 	return;
1092 
1093 nointr:
1094 	i8254_nointr = 1; /* don't try to register again */
1095 	cputimer_intr_deregister(cti);
1096 }
1097 
1098 void
1099 setstatclockrate(int newhz)
1100 {
1101 	if (newhz == RTC_PROFRATE)
1102 		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1103 	else
1104 		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1105 	writertc(RTC_STATUSA, rtc_statusa);
1106 }
1107 
1108 #if 0
1109 static unsigned
1110 tsc_get_timecount(struct timecounter *tc)
1111 {
1112 	return (rdtsc());
1113 }
1114 #endif
1115 
1116 #ifdef KERN_TIMESTAMP
1117 #define KERN_TIMESTAMP_SIZE 16384
1118 static u_long tsc[KERN_TIMESTAMP_SIZE] ;
1119 SYSCTL_OPAQUE(_debug, OID_AUTO, timestamp, CTLFLAG_RD, tsc,
1120 	sizeof(tsc), "LU", "Kernel timestamps");
1121 void
1122 _TSTMP(u_int32_t x)
1123 {
1124 	static int i;
1125 
1126 	tsc[i] = (u_int32_t)rdtsc();
1127 	tsc[i+1] = x;
1128 	i = i + 2;
1129 	if (i >= KERN_TIMESTAMP_SIZE)
1130 		i = 0;
1131 	tsc[i] = 0; /* mark last entry */
1132 }
1133 #endif /* KERN_TIMESTAMP */
1134 
1135 /*
1136  *
1137  */
1138 
1139 static int
1140 hw_i8254_timestamp(SYSCTL_HANDLER_ARGS)
1141 {
1142     sysclock_t count;
1143     __uint64_t tscval;
1144     char buf[32];
1145 
1146     crit_enter();
1147     if (sys_cputimer == &i8254_cputimer)
1148 	count = sys_cputimer->count();
1149     else
1150 	count = 0;
1151     if (tsc_present)
1152 	tscval = rdtsc();
1153     else
1154 	tscval = 0;
1155     crit_exit();
1156     ksnprintf(buf, sizeof(buf), "%08x %016llx", count, (long long)tscval);
1157     return(SYSCTL_OUT(req, buf, strlen(buf) + 1));
1158 }
1159 
1160 SYSCTL_NODE(_hw, OID_AUTO, i8254, CTLFLAG_RW, 0, "I8254");
1161 SYSCTL_UINT(_hw_i8254, OID_AUTO, freq, CTLFLAG_RD, &i8254_cputimer.freq, 0,
1162 	    "frequency");
1163 SYSCTL_PROC(_hw_i8254, OID_AUTO, timestamp, CTLTYPE_STRING|CTLFLAG_RD,
1164 	    0, 0, hw_i8254_timestamp, "A", "");
1165 
1166 SYSCTL_INT(_hw, OID_AUTO, tsc_present, CTLFLAG_RD,
1167 	    &tsc_present, 0, "TSC Available");
1168 SYSCTL_QUAD(_hw, OID_AUTO, tsc_frequency, CTLFLAG_RD,
1169 	    &tsc_frequency, 0, "TSC Frequency");
1170 
1171