xref: /dflybsd-src/sys/netproto/802_11/wlan/ieee80211_proto.c (revision a9656fbcd49c376aba5e04370d8b0f1fa96e063c)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: head/sys/net80211/ieee80211_proto.c 195618 2009-07-11 15:02:45Z rpaulo $
27  * $DragonFly$
28  */
29 
30 /*
31  * IEEE 802.11 protocol support.
32  */
33 
34 #include "opt_inet.h"
35 #include "opt_wlan.h"
36 
37 #include <sys/param.h>
38 #include <sys/kernel.h>
39 #include <sys/systm.h>
40 
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 
44 #include <net/if.h>
45 #include <net/if_media.h>
46 #include <net/route.h>
47 
48 #include <netproto/802_11/ieee80211_var.h>
49 #include <netproto/802_11/ieee80211_adhoc.h>
50 #include <netproto/802_11/ieee80211_sta.h>
51 #include <netproto/802_11/ieee80211_hostap.h>
52 #include <netproto/802_11/ieee80211_wds.h>
53 #ifdef IEEE80211_SUPPORT_MESH
54 #include <netproto/802_11/ieee80211_mesh.h>
55 #endif
56 #include <netproto/802_11/ieee80211_monitor.h>
57 #include <netproto/802_11/ieee80211_input.h>
58 
59 /* XXX tunables */
60 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
61 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
62 
63 const char *ieee80211_mgt_subtype_name[] = {
64 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
65 	"probe_req",	"probe_resp",	"reserved#6",	"reserved#7",
66 	"beacon",	"atim",		"disassoc",	"auth",
67 	"deauth",	"action",	"reserved#14",	"reserved#15"
68 };
69 const char *ieee80211_ctl_subtype_name[] = {
70 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
71 	"reserved#3",	"reserved#5",	"reserved#6",	"reserved#7",
72 	"reserved#8",	"reserved#9",	"ps_poll",	"rts",
73 	"cts",		"ack",		"cf_end",	"cf_end_ack"
74 };
75 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
76 	"IBSS",		/* IEEE80211_M_IBSS */
77 	"STA",		/* IEEE80211_M_STA */
78 	"WDS",		/* IEEE80211_M_WDS */
79 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
80 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
81 	"MONITOR",	/* IEEE80211_M_MONITOR */
82 	"MBSS"		/* IEEE80211_M_MBSS */
83 };
84 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
85 	"INIT",		/* IEEE80211_S_INIT */
86 	"SCAN",		/* IEEE80211_S_SCAN */
87 	"AUTH",		/* IEEE80211_S_AUTH */
88 	"ASSOC",	/* IEEE80211_S_ASSOC */
89 	"CAC",		/* IEEE80211_S_CAC */
90 	"RUN",		/* IEEE80211_S_RUN */
91 	"CSA",		/* IEEE80211_S_CSA */
92 	"SLEEP",	/* IEEE80211_S_SLEEP */
93 };
94 const char *ieee80211_wme_acnames[] = {
95 	"WME_AC_BE",
96 	"WME_AC_BK",
97 	"WME_AC_VI",
98 	"WME_AC_VO",
99 	"WME_UPSD",
100 };
101 
102 static void beacon_miss(void *, int);
103 static void beacon_swmiss(void *, int);
104 static void parent_updown(void *, int);
105 static void update_mcast(void *, int);
106 static void update_promisc(void *, int);
107 static void update_channel(void *, int);
108 static void ieee80211_newstate_cb(void *, int);
109 static int ieee80211_new_state_locked(struct ieee80211vap *,
110 	enum ieee80211_state, int);
111 
112 static int
113 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
114 	const struct ieee80211_bpf_params *params)
115 {
116 	struct ifnet *ifp = ni->ni_ic->ic_ifp;
117 
118 	if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n");
119 	m_freem(m);
120 	return ENETDOWN;
121 }
122 
123 void
124 ieee80211_proto_attach(struct ieee80211com *ic)
125 {
126 	struct ifnet *ifp = ic->ic_ifp;
127 
128 	/* override the 802.3 setting */
129 	ifp->if_hdrlen = ic->ic_headroom
130 		+ sizeof(struct ieee80211_qosframe_addr4)
131 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
132 		+ IEEE80211_WEP_EXTIVLEN;
133 	/* XXX no way to recalculate on ifdetach */
134 	if (ALIGN(ifp->if_hdrlen) > max_linkhdr) {
135 		/* XXX sanity check... */
136 		max_linkhdr = ALIGN(ifp->if_hdrlen);
137 		max_hdr = max_linkhdr + max_protohdr;
138 		max_datalen = MHLEN - max_hdr;
139 	}
140 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
141 
142 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ifp);
143 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
144 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
145 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
146 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
147 
148 	ic->ic_wme.wme_hipri_switch_hysteresis =
149 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
150 
151 	/* initialize management frame handlers */
152 	ic->ic_send_mgmt = ieee80211_send_mgmt;
153 	ic->ic_raw_xmit = null_raw_xmit;
154 
155 	ieee80211_adhoc_attach(ic);
156 	ieee80211_sta_attach(ic);
157 	ieee80211_wds_attach(ic);
158 	ieee80211_hostap_attach(ic);
159 #ifdef IEEE80211_SUPPORT_MESH
160 	ieee80211_mesh_attach(ic);
161 #endif
162 	ieee80211_monitor_attach(ic);
163 }
164 
165 void
166 ieee80211_proto_detach(struct ieee80211com *ic)
167 {
168 	ieee80211_monitor_detach(ic);
169 #ifdef IEEE80211_SUPPORT_MESH
170 	ieee80211_mesh_detach(ic);
171 #endif
172 	ieee80211_hostap_detach(ic);
173 	ieee80211_wds_detach(ic);
174 	ieee80211_adhoc_detach(ic);
175 	ieee80211_sta_detach(ic);
176 }
177 
178 static void
179 null_update_beacon(struct ieee80211vap *vap, int item)
180 {
181 }
182 
183 void
184 ieee80211_proto_vattach(struct ieee80211vap *vap)
185 {
186 	struct ieee80211com *ic = vap->iv_ic;
187 	struct ifnet *ifp = vap->iv_ifp;
188 	int i;
189 
190 	/* override the 802.3 setting */
191 	ifp->if_hdrlen = ic->ic_ifp->if_hdrlen;
192 
193 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
194 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
195 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
196 	callout_init_mp(&vap->iv_swbmiss);
197 	callout_init_mp(&vap->iv_mgtsend);
198 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
199 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
200 	/*
201 	 * Install default tx rate handling: no fixed rate, lowest
202 	 * supported rate for mgmt and multicast frames.  Default
203 	 * max retry count.  These settings can be changed by the
204 	 * driver and/or user applications.
205 	 */
206 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
207 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
208 
209 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
210 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
211 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
212 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
213 		} else {
214 			vap->iv_txparms[i].mgmtrate =
215 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
216 			vap->iv_txparms[i].mcastrate =
217 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
218 		}
219 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
220 	}
221 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
222 
223 	vap->iv_update_beacon = null_update_beacon;
224 	vap->iv_deliver_data = ieee80211_deliver_data;
225 
226 	/* attach support for operating mode */
227 	ic->ic_vattach[vap->iv_opmode](vap);
228 }
229 
230 void
231 ieee80211_proto_vdetach(struct ieee80211vap *vap)
232 {
233 #define	FREEAPPIE(ie) do { \
234 	if (ie != NULL) \
235 		kfree(ie, M_80211_NODE_IE); \
236 } while (0)
237 	/*
238 	 * Detach operating mode module.
239 	 */
240 	if (vap->iv_opdetach != NULL)
241 		vap->iv_opdetach(vap);
242 	/*
243 	 * This should not be needed as we detach when reseting
244 	 * the state but be conservative here since the
245 	 * authenticator may do things like spawn kernel threads.
246 	 */
247 	if (vap->iv_auth->ia_detach != NULL)
248 		vap->iv_auth->ia_detach(vap);
249 	/*
250 	 * Detach any ACL'ator.
251 	 */
252 	if (vap->iv_acl != NULL)
253 		vap->iv_acl->iac_detach(vap);
254 
255 	FREEAPPIE(vap->iv_appie_beacon);
256 	FREEAPPIE(vap->iv_appie_probereq);
257 	FREEAPPIE(vap->iv_appie_proberesp);
258 	FREEAPPIE(vap->iv_appie_assocreq);
259 	FREEAPPIE(vap->iv_appie_assocresp);
260 	FREEAPPIE(vap->iv_appie_wpa);
261 #undef FREEAPPIE
262 }
263 
264 /*
265  * Simple-minded authenticator module support.
266  */
267 
268 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
269 /* XXX well-known names */
270 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
271 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
272 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
273 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
274 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
275 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
276 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
277 };
278 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
279 
280 static const struct ieee80211_authenticator auth_internal = {
281 	.ia_name		= "wlan_internal",
282 	.ia_attach		= NULL,
283 	.ia_detach		= NULL,
284 	.ia_node_join		= NULL,
285 	.ia_node_leave		= NULL,
286 };
287 
288 /*
289  * Setup internal authenticators once; they are never unregistered.
290  */
291 static void
292 ieee80211_auth_setup(void)
293 {
294 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
295 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
296 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
297 }
298 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
299 
300 const struct ieee80211_authenticator *
301 ieee80211_authenticator_get(int auth)
302 {
303 	if (auth >= IEEE80211_AUTH_MAX)
304 		return NULL;
305 	if (authenticators[auth] == NULL)
306 		ieee80211_load_module(auth_modnames[auth]);
307 	return authenticators[auth];
308 }
309 
310 void
311 ieee80211_authenticator_register(int type,
312 	const struct ieee80211_authenticator *auth)
313 {
314 	if (type >= IEEE80211_AUTH_MAX)
315 		return;
316 	authenticators[type] = auth;
317 }
318 
319 void
320 ieee80211_authenticator_unregister(int type)
321 {
322 
323 	if (type >= IEEE80211_AUTH_MAX)
324 		return;
325 	authenticators[type] = NULL;
326 }
327 
328 /*
329  * Very simple-minded ACL module support.
330  */
331 /* XXX just one for now */
332 static	const struct ieee80211_aclator *acl = NULL;
333 
334 void
335 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
336 {
337 	kprintf("wlan: %s acl policy registered\n", iac->iac_name);
338 	acl = iac;
339 }
340 
341 void
342 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
343 {
344 	if (acl == iac)
345 		acl = NULL;
346 	kprintf("wlan: %s acl policy unregistered\n", iac->iac_name);
347 }
348 
349 const struct ieee80211_aclator *
350 ieee80211_aclator_get(const char *name)
351 {
352 	if (acl == NULL)
353 		ieee80211_load_module("wlan_acl");
354 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
355 }
356 
357 void
358 ieee80211_print_essid(const uint8_t *essid, int len)
359 {
360 	const uint8_t *p;
361 	int i;
362 
363 	if (len > IEEE80211_NWID_LEN)
364 		len = IEEE80211_NWID_LEN;
365 	/* determine printable or not */
366 	for (i = 0, p = essid; i < len; i++, p++) {
367 		if (*p < ' ' || *p > 0x7e)
368 			break;
369 	}
370 	if (i == len) {
371 		kprintf("\"");
372 		for (i = 0, p = essid; i < len; i++, p++)
373 			kprintf("%c", *p);
374 		kprintf("\"");
375 	} else {
376 		kprintf("0x");
377 		for (i = 0, p = essid; i < len; i++, p++)
378 			kprintf("%02x", *p);
379 	}
380 }
381 
382 void
383 ieee80211_dump_pkt(struct ieee80211com *ic,
384 	const uint8_t *buf, int len, int rate, int rssi)
385 {
386 	const struct ieee80211_frame *wh;
387 	int i;
388 
389 	wh = (const struct ieee80211_frame *)buf;
390 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
391 	case IEEE80211_FC1_DIR_NODS:
392 		kprintf("NODS %6D", wh->i_addr2, ":");
393 		kprintf("->%6D", wh->i_addr1, ":");
394 		kprintf("(%6D)", wh->i_addr3, ":");
395 		break;
396 	case IEEE80211_FC1_DIR_TODS:
397 		kprintf("TODS %6D", wh->i_addr2, ":");
398 		kprintf("->%6D", wh->i_addr3, ":");
399 		kprintf("(%6D)", wh->i_addr1, ":");
400 		break;
401 	case IEEE80211_FC1_DIR_FROMDS:
402 		kprintf("FRDS %6D", wh->i_addr3, ":");
403 		kprintf("->%6D", wh->i_addr1, ":");
404 		kprintf("(%6D)", wh->i_addr2, ":");
405 		break;
406 	case IEEE80211_FC1_DIR_DSTODS:
407 		kprintf("DSDS %6D", (const uint8_t *)&wh[1], ":");
408 		kprintf("->%6D", wh->i_addr3, ":");
409 		kprintf("(%6D", wh->i_addr2, ":");
410 		kprintf("->%6D)", wh->i_addr1, ":");
411 		break;
412 	}
413 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
414 	case IEEE80211_FC0_TYPE_DATA:
415 		kprintf(" data");
416 		break;
417 	case IEEE80211_FC0_TYPE_MGT:
418 		kprintf(" %s", ieee80211_mgt_subtype_name[
419 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
420 		    >> IEEE80211_FC0_SUBTYPE_SHIFT]);
421 		break;
422 	default:
423 		kprintf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
424 		break;
425 	}
426 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
427 		const struct ieee80211_qosframe *qwh =
428 			(const struct ieee80211_qosframe *)buf;
429 		kprintf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
430 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
431 	}
432 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
433 		int off;
434 
435 		off = ieee80211_anyhdrspace(ic, wh);
436 		kprintf(" WEP [IV %.02x %.02x %.02x",
437 			buf[off+0], buf[off+1], buf[off+2]);
438 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
439 			kprintf(" %.02x %.02x %.02x",
440 				buf[off+4], buf[off+5], buf[off+6]);
441 		kprintf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
442 	}
443 	if (rate >= 0)
444 		kprintf(" %dM", rate / 2);
445 	if (rssi >= 0)
446 		kprintf(" +%d", rssi);
447 	kprintf("\n");
448 	if (len > 0) {
449 		for (i = 0; i < len; i++) {
450 			if ((i & 1) == 0)
451 				kprintf(" ");
452 			kprintf("%02x", buf[i]);
453 		}
454 		kprintf("\n");
455 	}
456 }
457 
458 static __inline int
459 findrix(const struct ieee80211_rateset *rs, int r)
460 {
461 	int i;
462 
463 	for (i = 0; i < rs->rs_nrates; i++)
464 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
465 			return i;
466 	return -1;
467 }
468 
469 int
470 ieee80211_fix_rate(struct ieee80211_node *ni,
471 	struct ieee80211_rateset *nrs, int flags)
472 {
473 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
474 	struct ieee80211vap *vap = ni->ni_vap;
475 	struct ieee80211com *ic = ni->ni_ic;
476 	int i, j, rix, error;
477 	int okrate, badrate, fixedrate, ucastrate;
478 	const struct ieee80211_rateset *srs;
479 	uint8_t r;
480 
481 	error = 0;
482 	okrate = badrate = 0;
483 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
484 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
485 		/*
486 		 * Workaround awkwardness with fixed rate.  We are called
487 		 * to check both the legacy rate set and the HT rate set
488 		 * but we must apply any legacy fixed rate check only to the
489 		 * legacy rate set and vice versa.  We cannot tell what type
490 		 * of rate set we've been given (legacy or HT) but we can
491 		 * distinguish the fixed rate type (MCS have 0x80 set).
492 		 * So to deal with this the caller communicates whether to
493 		 * check MCS or legacy rate using the flags and we use the
494 		 * type of any fixed rate to avoid applying an MCS to a
495 		 * legacy rate and vice versa.
496 		 */
497 		if (ucastrate & 0x80) {
498 			if (flags & IEEE80211_F_DOFRATE)
499 				flags &= ~IEEE80211_F_DOFRATE;
500 		} else if ((ucastrate & 0x80) == 0) {
501 			if (flags & IEEE80211_F_DOFMCS)
502 				flags &= ~IEEE80211_F_DOFMCS;
503 		}
504 		/* NB: required to make MCS match below work */
505 		ucastrate &= IEEE80211_RATE_VAL;
506 	}
507 	fixedrate = IEEE80211_FIXED_RATE_NONE;
508 	/*
509 	 * XXX we are called to process both MCS and legacy rates;
510 	 * we must use the appropriate basic rate set or chaos will
511 	 * ensue; for now callers that want MCS must supply
512 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
513 	 * function so there are two variants, one for MCS and one
514 	 * for legacy rates.
515 	 */
516 	if (flags & IEEE80211_F_DOBRS)
517 		srs = (const struct ieee80211_rateset *)
518 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
519 	else
520 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
521 	for (i = 0; i < nrs->rs_nrates; ) {
522 		if (flags & IEEE80211_F_DOSORT) {
523 			/*
524 			 * Sort rates.
525 			 */
526 			for (j = i + 1; j < nrs->rs_nrates; j++) {
527 				if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) {
528 					r = nrs->rs_rates[i];
529 					nrs->rs_rates[i] = nrs->rs_rates[j];
530 					nrs->rs_rates[j] = r;
531 				}
532 			}
533 		}
534 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
535 		badrate = r;
536 		/*
537 		 * Check for fixed rate.
538 		 */
539 		if (r == ucastrate)
540 			fixedrate = r;
541 		/*
542 		 * Check against supported rates.
543 		 */
544 		rix = findrix(srs, r);
545 		if (flags & IEEE80211_F_DONEGO) {
546 			if (rix < 0) {
547 				/*
548 				 * A rate in the node's rate set is not
549 				 * supported.  If this is a basic rate and we
550 				 * are operating as a STA then this is an error.
551 				 * Otherwise we just discard/ignore the rate.
552 				 */
553 				if ((flags & IEEE80211_F_JOIN) &&
554 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
555 					error++;
556 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
557 				/*
558 				 * Overwrite with the supported rate
559 				 * value so any basic rate bit is set.
560 				 */
561 				nrs->rs_rates[i] = srs->rs_rates[rix];
562 			}
563 		}
564 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
565 			/*
566 			 * Delete unacceptable rates.
567 			 */
568 			nrs->rs_nrates--;
569 			for (j = i; j < nrs->rs_nrates; j++)
570 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
571 			nrs->rs_rates[j] = 0;
572 			continue;
573 		}
574 		if (rix >= 0)
575 			okrate = nrs->rs_rates[i];
576 		i++;
577 	}
578 	if (okrate == 0 || error != 0 ||
579 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
580 	     fixedrate != ucastrate)) {
581 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
582 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
583 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
584 		return badrate | IEEE80211_RATE_BASIC;
585 	} else
586 		return RV(okrate);
587 #undef RV
588 }
589 
590 /*
591  * Reset 11g-related state.
592  */
593 void
594 ieee80211_reset_erp(struct ieee80211com *ic)
595 {
596 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
597 	ic->ic_nonerpsta = 0;
598 	ic->ic_longslotsta = 0;
599 	/*
600 	 * Short slot time is enabled only when operating in 11g
601 	 * and not in an IBSS.  We must also honor whether or not
602 	 * the driver is capable of doing it.
603 	 */
604 	ieee80211_set_shortslottime(ic,
605 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
606 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
607 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
608 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
609 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
610 	/*
611 	 * Set short preamble and ERP barker-preamble flags.
612 	 */
613 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
614 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
615 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
616 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
617 	} else {
618 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
619 		ic->ic_flags |= IEEE80211_F_USEBARKER;
620 	}
621 }
622 
623 /*
624  * Set the short slot time state and notify the driver.
625  */
626 void
627 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
628 {
629 	if (onoff)
630 		ic->ic_flags |= IEEE80211_F_SHSLOT;
631 	else
632 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
633 	/* notify driver */
634 	if (ic->ic_updateslot != NULL)
635 		ic->ic_updateslot(ic->ic_ifp);
636 }
637 
638 /*
639  * Check if the specified rate set supports ERP.
640  * NB: the rate set is assumed to be sorted.
641  */
642 int
643 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
644 {
645 #define N(a)	(sizeof(a) / sizeof(a[0]))
646 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
647 	int i, j;
648 
649 	if (rs->rs_nrates < N(rates))
650 		return 0;
651 	for (i = 0; i < N(rates); i++) {
652 		for (j = 0; j < rs->rs_nrates; j++) {
653 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
654 			if (rates[i] == r)
655 				goto next;
656 			if (r > rates[i])
657 				return 0;
658 		}
659 		return 0;
660 	next:
661 		;
662 	}
663 	return 1;
664 #undef N
665 }
666 
667 /*
668  * Mark the basic rates for the rate table based on the
669  * operating mode.  For real 11g we mark all the 11b rates
670  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
671  * 11b rates.  There's also a pseudo 11a-mode used to mark only
672  * the basic OFDM rates.
673  */
674 static void
675 setbasicrates(struct ieee80211_rateset *rs,
676     enum ieee80211_phymode mode, int add)
677 {
678 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
679 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
680 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
681 					    /* NB: mixed b/g */
682 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
683 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
684 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
685 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
686 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
687 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
688 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
689 					    /* NB: mixed b/g */
690 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
691 	};
692 	int i, j;
693 
694 	for (i = 0; i < rs->rs_nrates; i++) {
695 		if (!add)
696 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
697 		for (j = 0; j < basic[mode].rs_nrates; j++)
698 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
699 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
700 				break;
701 			}
702 	}
703 }
704 
705 /*
706  * Set the basic rates in a rate set.
707  */
708 void
709 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
710     enum ieee80211_phymode mode)
711 {
712 	setbasicrates(rs, mode, 0);
713 }
714 
715 /*
716  * Add basic rates to a rate set.
717  */
718 void
719 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
720     enum ieee80211_phymode mode)
721 {
722 	setbasicrates(rs, mode, 1);
723 }
724 
725 /*
726  * WME protocol support.
727  *
728  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
729  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
730  * Draft 2.0 Test Plan (Appendix D).
731  *
732  * Static/Dynamic Turbo mode settings come from Atheros.
733  */
734 typedef struct phyParamType {
735 	uint8_t		aifsn;
736 	uint8_t		logcwmin;
737 	uint8_t		logcwmax;
738 	uint16_t	txopLimit;
739 	uint8_t 	acm;
740 } paramType;
741 
742 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
743 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
744 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
745 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
746 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
747 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
748 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
749 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
750 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
751 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
752 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
753 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
754 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
755 };
756 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
757 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
758 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
759 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
760 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
761 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
762 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
763 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
764 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
765 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
766 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
767 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
768 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
769 };
770 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
771 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
772 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
773 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
774 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
775 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
776 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
777 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
778 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
779 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
780 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
781 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
782 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
783 };
784 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
785 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
786 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
787 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
788 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
789 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
790 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
791 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
792 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
793 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
794 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
795 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
796 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
797 };
798 
799 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
800 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
801 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
802 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
803 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
804 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
805 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
806 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
807 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
808 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
809 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
810 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
811 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
812 };
813 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
814 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
815 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
816 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
817 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
818 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
819 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
820 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
821 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
822 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
823 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
824 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
825 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
826 };
827 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
828 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
829 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
830 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
831 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
832 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
833 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
834 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
835 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
836 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
837 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
838 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
839 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
840 };
841 
842 static void
843 _setifsparams(struct wmeParams *wmep, const paramType *phy)
844 {
845 	wmep->wmep_aifsn = phy->aifsn;
846 	wmep->wmep_logcwmin = phy->logcwmin;
847 	wmep->wmep_logcwmax = phy->logcwmax;
848 	wmep->wmep_txopLimit = phy->txopLimit;
849 }
850 
851 static void
852 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
853 	struct wmeParams *wmep, const paramType *phy)
854 {
855 	wmep->wmep_acm = phy->acm;
856 	_setifsparams(wmep, phy);
857 
858 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
859 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
860 	    ieee80211_wme_acnames[ac], type,
861 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
862 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
863 }
864 
865 static void
866 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
867 {
868 	struct ieee80211com *ic = vap->iv_ic;
869 	struct ieee80211_wme_state *wme = &ic->ic_wme;
870 	const paramType *pPhyParam, *pBssPhyParam;
871 	struct wmeParams *wmep;
872 	enum ieee80211_phymode mode;
873 	int i;
874 
875 	IEEE80211_LOCK_ASSERT(ic);
876 
877 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
878 		return;
879 
880 	/*
881 	 * Select mode; we can be called early in which case we
882 	 * always use auto mode.  We know we'll be called when
883 	 * entering the RUN state with bsschan setup properly
884 	 * so state will eventually get set correctly
885 	 */
886 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
887 		mode = ieee80211_chan2mode(ic->ic_bsschan);
888 	else
889 		mode = IEEE80211_MODE_AUTO;
890 	for (i = 0; i < WME_NUM_AC; i++) {
891 		switch (i) {
892 		case WME_AC_BK:
893 			pPhyParam = &phyParamForAC_BK[mode];
894 			pBssPhyParam = &phyParamForAC_BK[mode];
895 			break;
896 		case WME_AC_VI:
897 			pPhyParam = &phyParamForAC_VI[mode];
898 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
899 			break;
900 		case WME_AC_VO:
901 			pPhyParam = &phyParamForAC_VO[mode];
902 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
903 			break;
904 		case WME_AC_BE:
905 		default:
906 			pPhyParam = &phyParamForAC_BE[mode];
907 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
908 			break;
909 		}
910 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
911 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
912 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
913 		} else {
914 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
915 		}
916 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
917 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
918 	}
919 	/* NB: check ic_bss to avoid NULL deref on initial attach */
920 	if (vap->iv_bss != NULL) {
921 		/*
922 		 * Calculate agressive mode switching threshold based
923 		 * on beacon interval.  This doesn't need locking since
924 		 * we're only called before entering the RUN state at
925 		 * which point we start sending beacon frames.
926 		 */
927 		wme->wme_hipri_switch_thresh =
928 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
929 		wme->wme_flags &= ~WME_F_AGGRMODE;
930 		ieee80211_wme_updateparams(vap);
931 	}
932 }
933 
934 void
935 ieee80211_wme_initparams(struct ieee80211vap *vap)
936 {
937 	struct ieee80211com *ic = vap->iv_ic;
938 
939 	ic = vap->iv_ic;
940 	IEEE80211_LOCK(ic);
941 	ieee80211_wme_initparams_locked(vap);
942 	IEEE80211_UNLOCK(ic);
943 }
944 
945 /*
946  * Update WME parameters for ourself and the BSS.
947  */
948 void
949 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
950 {
951 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
952 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
953 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
954 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
955 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
956 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
957 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
958 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
959 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
960 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
961 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
962 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
963 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
964 	};
965 	struct ieee80211com *ic = vap->iv_ic;
966 	struct ieee80211_wme_state *wme = &ic->ic_wme;
967 	const struct wmeParams *wmep;
968 	struct wmeParams *chanp, *bssp;
969 	enum ieee80211_phymode mode;
970 	int i;
971 
972        	/*
973 	 * Set up the channel access parameters for the physical
974 	 * device.  First populate the configured settings.
975 	 */
976 	for (i = 0; i < WME_NUM_AC; i++) {
977 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
978 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
979 		chanp->wmep_aifsn = wmep->wmep_aifsn;
980 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
981 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
982 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
983 
984 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
985 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
986 		chanp->wmep_aifsn = wmep->wmep_aifsn;
987 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
988 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
989 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
990 	}
991 
992 	/*
993 	 * Select mode; we can be called early in which case we
994 	 * always use auto mode.  We know we'll be called when
995 	 * entering the RUN state with bsschan setup properly
996 	 * so state will eventually get set correctly
997 	 */
998 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
999 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1000 	else
1001 		mode = IEEE80211_MODE_AUTO;
1002 
1003 	/*
1004 	 * This implements agressive mode as found in certain
1005 	 * vendors' AP's.  When there is significant high
1006 	 * priority (VI/VO) traffic in the BSS throttle back BE
1007 	 * traffic by using conservative parameters.  Otherwise
1008 	 * BE uses agressive params to optimize performance of
1009 	 * legacy/non-QoS traffic.
1010 	 */
1011         if ((vap->iv_opmode == IEEE80211_M_HOSTAP &&
1012 	     (wme->wme_flags & WME_F_AGGRMODE) != 0) ||
1013 	    (vap->iv_opmode == IEEE80211_M_STA &&
1014 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0) ||
1015 	    (vap->iv_flags & IEEE80211_F_WME) == 0) {
1016 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1017 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1018 
1019 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1020 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1021 		    aggrParam[mode].logcwmin;
1022 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1023 		    aggrParam[mode].logcwmax;
1024 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1025 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1026 			aggrParam[mode].txopLimit : 0;
1027 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1028 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1029 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1030 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1031 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1032 	}
1033 
1034 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1035 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1036 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1037 		    [IEEE80211_MODE_AUTO]	= 3,
1038 		    [IEEE80211_MODE_11A]	= 3,
1039 		    [IEEE80211_MODE_11B]	= 4,
1040 		    [IEEE80211_MODE_11G]	= 3,
1041 		    [IEEE80211_MODE_FH]		= 4,
1042 		    [IEEE80211_MODE_TURBO_A]	= 3,
1043 		    [IEEE80211_MODE_TURBO_G]	= 3,
1044 		    [IEEE80211_MODE_STURBO_A]	= 3,
1045 		    [IEEE80211_MODE_HALF]	= 3,
1046 		    [IEEE80211_MODE_QUARTER]	= 3,
1047 		    [IEEE80211_MODE_11NA]	= 3,
1048 		    [IEEE80211_MODE_11NG]	= 3,
1049 		};
1050 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1051 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1052 
1053 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1054 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1055 		    "update %s (chan+bss) logcwmin %u\n",
1056 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1057     	}
1058 	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {	/* XXX ibss? */
1059 		/*
1060 		 * Arrange for a beacon update and bump the parameter
1061 		 * set number so associated stations load the new values.
1062 		 */
1063 		wme->wme_bssChanParams.cap_info =
1064 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1065 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1066 	}
1067 
1068 	wme->wme_update(ic);
1069 
1070 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1071 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1072 	    vap->iv_opmode == IEEE80211_M_STA ?
1073 		wme->wme_wmeChanParams.cap_info :
1074 		wme->wme_bssChanParams.cap_info);
1075 }
1076 
1077 void
1078 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1079 {
1080 	struct ieee80211com *ic = vap->iv_ic;
1081 
1082 	if (ic->ic_caps & IEEE80211_C_WME) {
1083 		IEEE80211_LOCK(ic);
1084 		ieee80211_wme_updateparams_locked(vap);
1085 		IEEE80211_UNLOCK(ic);
1086 	}
1087 }
1088 
1089 static void
1090 parent_updown(void *arg, int npending)
1091 {
1092 	struct ifnet *parent = arg;
1093 
1094 	parent->if_ioctl(parent, SIOCSIFFLAGS, NULL, curthread->td_ucred);
1095 }
1096 
1097 static void
1098 update_mcast(void *arg, int npending)
1099 {
1100 	struct ieee80211com *ic = arg;
1101 	struct ifnet *parent = ic->ic_ifp;
1102 
1103 	ic->ic_update_mcast(parent);
1104 }
1105 
1106 static void
1107 update_promisc(void *arg, int npending)
1108 {
1109 	struct ieee80211com *ic = arg;
1110 	struct ifnet *parent = ic->ic_ifp;
1111 
1112 	ic->ic_update_promisc(parent);
1113 }
1114 
1115 static void
1116 update_channel(void *arg, int npending)
1117 {
1118 	struct ieee80211com *ic = arg;
1119 
1120 	ic->ic_set_channel(ic);
1121 	ieee80211_radiotap_chan_change(ic);
1122 }
1123 
1124 /*
1125  * Block until the parent is in a known state.  This is
1126  * used after any operations that dispatch a task (e.g.
1127  * to auto-configure the parent device up/down).
1128  */
1129 void
1130 ieee80211_waitfor_parent(struct ieee80211com *ic)
1131 {
1132 	taskqueue_block(ic->ic_tq);
1133 	ieee80211_draintask(ic, &ic->ic_parent_task);
1134 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1135 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1136 	ieee80211_draintask(ic, &ic->ic_chan_task);
1137 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1138 	taskqueue_unblock(ic->ic_tq);
1139 }
1140 
1141 /*
1142  * Start a vap running.  If this is the first vap to be
1143  * set running on the underlying device then we
1144  * automatically bring the device up.
1145  */
1146 void
1147 ieee80211_start_locked(struct ieee80211vap *vap)
1148 {
1149 	struct ifnet *ifp = vap->iv_ifp;
1150 	struct ieee80211com *ic = vap->iv_ic;
1151 	struct ifnet *parent = ic->ic_ifp;
1152 
1153 	IEEE80211_LOCK_ASSERT(ic);
1154 
1155 	IEEE80211_DPRINTF(vap,
1156 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1157 		"start running, %d vaps running\n", ic->ic_nrunning);
1158 
1159 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1160 		/*
1161 		 * Mark us running.  Note that it's ok to do this first;
1162 		 * if we need to bring the parent device up we defer that
1163 		 * to avoid dropping the com lock.  We expect the device
1164 		 * to respond to being marked up by calling back into us
1165 		 * through ieee80211_start_all at which point we'll come
1166 		 * back in here and complete the work.
1167 		 */
1168 		ifp->if_flags |= IFF_RUNNING;
1169 		/*
1170 		 * We are not running; if this we are the first vap
1171 		 * to be brought up auto-up the parent if necessary.
1172 		 */
1173 		if (ic->ic_nrunning++ == 0 &&
1174 		    (parent->if_flags & IFF_RUNNING) == 0) {
1175 			IEEE80211_DPRINTF(vap,
1176 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1177 			    "%s: up parent %s\n", __func__, parent->if_xname);
1178 			parent->if_flags |= IFF_UP;
1179 			ieee80211_runtask(ic, &ic->ic_parent_task);
1180 			return;
1181 		}
1182 	}
1183 	/*
1184 	 * If the parent is up and running, then kick the
1185 	 * 802.11 state machine as appropriate.
1186 	 */
1187 	if ((parent->if_flags & IFF_RUNNING) &&
1188 	    vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1189 		if (vap->iv_opmode == IEEE80211_M_STA) {
1190 #if 0
1191 			/* XXX bypasses scan too easily; disable for now */
1192 			/*
1193 			 * Try to be intelligent about clocking the state
1194 			 * machine.  If we're currently in RUN state then
1195 			 * we should be able to apply any new state/parameters
1196 			 * simply by re-associating.  Otherwise we need to
1197 			 * re-scan to select an appropriate ap.
1198 			 */
1199 			if (vap->iv_state >= IEEE80211_S_RUN)
1200 				ieee80211_new_state_locked(vap,
1201 				    IEEE80211_S_ASSOC, 1);
1202 			else
1203 #endif
1204 				ieee80211_new_state_locked(vap,
1205 				    IEEE80211_S_SCAN, 0);
1206 		} else {
1207 			/*
1208 			 * For monitor+wds mode there's nothing to do but
1209 			 * start running.  Otherwise if this is the first
1210 			 * vap to be brought up, start a scan which may be
1211 			 * preempted if the station is locked to a particular
1212 			 * channel.
1213 			 */
1214 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1215 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1216 			    vap->iv_opmode == IEEE80211_M_WDS)
1217 				ieee80211_new_state_locked(vap,
1218 				    IEEE80211_S_RUN, -1);
1219 			else
1220 				ieee80211_new_state_locked(vap,
1221 				    IEEE80211_S_SCAN, 0);
1222 		}
1223 	}
1224 }
1225 
1226 /*
1227  * Start a single vap.
1228  */
1229 void
1230 ieee80211_init(void *arg)
1231 {
1232 	struct ieee80211vap *vap = arg;
1233 
1234 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1235 	    "%s\n", __func__);
1236 
1237 	IEEE80211_LOCK(vap->iv_ic);
1238 	ieee80211_start_locked(vap);
1239 	IEEE80211_UNLOCK(vap->iv_ic);
1240 }
1241 
1242 /*
1243  * Start all runnable vap's on a device.
1244  */
1245 void
1246 ieee80211_start_all(struct ieee80211com *ic)
1247 {
1248 	struct ieee80211vap *vap;
1249 
1250 	IEEE80211_LOCK(ic);
1251 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1252 		struct ifnet *ifp = vap->iv_ifp;
1253 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1254 			ieee80211_start_locked(vap);
1255 	}
1256 	IEEE80211_UNLOCK(ic);
1257 }
1258 
1259 /*
1260  * Stop a vap.  We force it down using the state machine
1261  * then mark it's ifnet not running.  If this is the last
1262  * vap running on the underlying device then we close it
1263  * too to insure it will be properly initialized when the
1264  * next vap is brought up.
1265  */
1266 void
1267 ieee80211_stop_locked(struct ieee80211vap *vap)
1268 {
1269 	struct ieee80211com *ic = vap->iv_ic;
1270 	struct ifnet *ifp = vap->iv_ifp;
1271 	struct ifnet *parent = ic->ic_ifp;
1272 
1273 	IEEE80211_LOCK_ASSERT(ic);
1274 
1275 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1276 	    "stop running, %d vaps running\n", ic->ic_nrunning);
1277 
1278 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1279 	if (ifp->if_flags & IFF_RUNNING) {
1280 		ifp->if_flags &= ~IFF_RUNNING;	/* mark us stopped */
1281 		if (--ic->ic_nrunning == 0 &&
1282 		    (parent->if_flags & IFF_RUNNING)) {
1283 			IEEE80211_DPRINTF(vap,
1284 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1285 			    "down parent %s\n", parent->if_xname);
1286 			parent->if_flags &= ~IFF_UP;
1287 			ieee80211_runtask(ic, &ic->ic_parent_task);
1288 		}
1289 	}
1290 }
1291 
1292 void
1293 ieee80211_stop(struct ieee80211vap *vap)
1294 {
1295 	struct ieee80211com *ic = vap->iv_ic;
1296 
1297 	ic = vap->iv_ic;
1298 	IEEE80211_LOCK(ic);
1299 	ieee80211_stop_locked(vap);
1300 	IEEE80211_UNLOCK(ic);
1301 }
1302 
1303 /*
1304  * Stop all vap's running on a device.
1305  */
1306 void
1307 ieee80211_stop_all(struct ieee80211com *ic)
1308 {
1309 	struct ieee80211vap *vap;
1310 
1311 	IEEE80211_LOCK(ic);
1312 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1313 		struct ifnet *ifp = vap->iv_ifp;
1314 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1315 			ieee80211_stop_locked(vap);
1316 	}
1317 	IEEE80211_UNLOCK(ic);
1318 
1319 	ieee80211_waitfor_parent(ic);
1320 }
1321 
1322 /*
1323  * Stop all vap's running on a device and arrange
1324  * for those that were running to be resumed.
1325  */
1326 void
1327 ieee80211_suspend_all(struct ieee80211com *ic)
1328 {
1329 	struct ieee80211vap *vap;
1330 
1331 	IEEE80211_LOCK(ic);
1332 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1333 		struct ifnet *ifp = vap->iv_ifp;
1334 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1335 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1336 			ieee80211_stop_locked(vap);
1337 		}
1338 	}
1339 	IEEE80211_UNLOCK(ic);
1340 
1341 	ieee80211_waitfor_parent(ic);
1342 }
1343 
1344 /*
1345  * Start all vap's marked for resume.
1346  */
1347 void
1348 ieee80211_resume_all(struct ieee80211com *ic)
1349 {
1350 	struct ieee80211vap *vap;
1351 
1352 	IEEE80211_LOCK(ic);
1353 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1354 		struct ifnet *ifp = vap->iv_ifp;
1355 		if (!IFNET_IS_UP_RUNNING(ifp) &&
1356 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1357 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1358 			ieee80211_start_locked(vap);
1359 		}
1360 	}
1361 	IEEE80211_UNLOCK(ic);
1362 }
1363 
1364 void
1365 ieee80211_beacon_miss(struct ieee80211com *ic)
1366 {
1367 	IEEE80211_LOCK(ic);
1368 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1369 		/* Process in a taskq, the handler may reenter the driver */
1370 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1371 	}
1372 	IEEE80211_UNLOCK(ic);
1373 }
1374 
1375 static void
1376 beacon_miss(void *arg, int npending)
1377 {
1378 	struct ieee80211com *ic = arg;
1379 	struct ieee80211vap *vap;
1380 
1381 	/* XXX locking */
1382 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1383 		/*
1384 		 * We only pass events through for sta vap's in RUN state;
1385 		 * may be too restrictive but for now this saves all the
1386 		 * handlers duplicating these checks.
1387 		 */
1388 		if (vap->iv_opmode == IEEE80211_M_STA &&
1389 		    vap->iv_state >= IEEE80211_S_RUN &&
1390 		    vap->iv_bmiss != NULL)
1391 			vap->iv_bmiss(vap);
1392 	}
1393 }
1394 
1395 static void
1396 beacon_swmiss(void *arg, int npending)
1397 {
1398 	struct ieee80211vap *vap = arg;
1399 
1400 	if (vap->iv_state != IEEE80211_S_RUN)
1401 		return;
1402 
1403 	/* XXX Call multiple times if npending > zero? */
1404 	vap->iv_bmiss(vap);
1405 }
1406 
1407 /*
1408  * Software beacon miss handling.  Check if any beacons
1409  * were received in the last period.  If not post a
1410  * beacon miss; otherwise reset the counter.
1411  */
1412 void
1413 ieee80211_swbmiss(void *arg)
1414 {
1415 	struct ieee80211vap *vap = arg;
1416 	struct ieee80211com *ic = vap->iv_ic;
1417 
1418 	/* XXX sleep state? */
1419 	KASSERT(vap->iv_state == IEEE80211_S_RUN,
1420 	    ("wrong state %d", vap->iv_state));
1421 
1422 	if (ic->ic_flags & IEEE80211_F_SCAN) {
1423 		/*
1424 		 * If scanning just ignore and reset state.  If we get a
1425 		 * bmiss after coming out of scan because we haven't had
1426 		 * time to receive a beacon then we should probe the AP
1427 		 * before posting a real bmiss (unless iv_bmiss_max has
1428 		 * been artifiically lowered).  A cleaner solution might
1429 		 * be to disable the timer on scan start/end but to handle
1430 		 * case of multiple sta vap's we'd need to disable the
1431 		 * timers of all affected vap's.
1432 		 */
1433 		vap->iv_swbmiss_count = 0;
1434 	} else if (vap->iv_swbmiss_count == 0) {
1435 		if (vap->iv_bmiss != NULL)
1436 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1437 		if (vap->iv_bmiss_count == 0)	/* don't re-arm timer */
1438 			return;
1439 	} else
1440 		vap->iv_swbmiss_count = 0;
1441 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1442 		ieee80211_swbmiss, vap);
1443 }
1444 
1445 /*
1446  * Start an 802.11h channel switch.  We record the parameters,
1447  * mark the operation pending, notify each vap through the
1448  * beacon update mechanism so it can update the beacon frame
1449  * contents, and then switch vap's to CSA state to block outbound
1450  * traffic.  Devices that handle CSA directly can use the state
1451  * switch to do the right thing so long as they call
1452  * ieee80211_csa_completeswitch when it's time to complete the
1453  * channel change.  Devices that depend on the net80211 layer can
1454  * use ieee80211_beacon_update to handle the countdown and the
1455  * channel switch.
1456  */
1457 void
1458 ieee80211_csa_startswitch(struct ieee80211com *ic,
1459 	struct ieee80211_channel *c, int mode, int count)
1460 {
1461 	struct ieee80211vap *vap;
1462 
1463 	IEEE80211_LOCK_ASSERT(ic);
1464 
1465 	ic->ic_csa_newchan = c;
1466 	ic->ic_csa_mode = mode;
1467 	ic->ic_csa_count = count;
1468 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1469 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1470 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1471 		    vap->iv_opmode == IEEE80211_M_IBSS ||
1472 		    vap->iv_opmode == IEEE80211_M_MBSS)
1473 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1474 		/* switch to CSA state to block outbound traffic */
1475 		if (vap->iv_state == IEEE80211_S_RUN)
1476 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1477 	}
1478 	ieee80211_notify_csa(ic, c, mode, count);
1479 }
1480 
1481 static void
1482 csa_completeswitch(struct ieee80211com *ic)
1483 {
1484 	struct ieee80211vap *vap;
1485 
1486 	ic->ic_csa_newchan = NULL;
1487 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1488 
1489 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1490 		if (vap->iv_state == IEEE80211_S_CSA)
1491 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1492 }
1493 
1494 /*
1495  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1496  * We clear state and move all vap's in CSA state to RUN state
1497  * so they can again transmit.
1498  */
1499 void
1500 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1501 {
1502 	IEEE80211_LOCK_ASSERT(ic);
1503 
1504 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1505 
1506 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1507 	csa_completeswitch(ic);
1508 }
1509 
1510 /*
1511  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1512  * We clear state and move all vap's in CSA state to RUN state
1513  * so they can again transmit.
1514  */
1515 void
1516 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1517 {
1518 	IEEE80211_LOCK_ASSERT(ic);
1519 
1520 	csa_completeswitch(ic);
1521 }
1522 
1523 /*
1524  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1525  * We clear state and move all vap's in CAC state to RUN state.
1526  */
1527 void
1528 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1529 {
1530 	struct ieee80211com *ic = vap0->iv_ic;
1531 	struct ieee80211vap *vap;
1532 
1533 	IEEE80211_LOCK(ic);
1534 	/*
1535 	 * Complete CAC state change for lead vap first; then
1536 	 * clock all the other vap's waiting.
1537 	 */
1538 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1539 	    ("wrong state %d", vap0->iv_state));
1540 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1541 
1542 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1543 		if (vap->iv_state == IEEE80211_S_CAC)
1544 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1545 	IEEE80211_UNLOCK(ic);
1546 }
1547 
1548 /*
1549  * Force all vap's other than the specified vap to the INIT state
1550  * and mark them as waiting for a scan to complete.  These vaps
1551  * will be brought up when the scan completes and the scanning vap
1552  * reaches RUN state by wakeupwaiting.
1553  */
1554 static void
1555 markwaiting(struct ieee80211vap *vap0)
1556 {
1557 	struct ieee80211com *ic = vap0->iv_ic;
1558 	struct ieee80211vap *vap;
1559 
1560 	IEEE80211_LOCK_ASSERT(ic);
1561 
1562 	/*
1563 	 * A vap list entry can not disappear since we are running on the
1564 	 * taskqueue and a vap destroy will queue and drain another state
1565 	 * change task.
1566 	 */
1567 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1568 		if (vap == vap0)
1569 			continue;
1570 		if (vap->iv_state != IEEE80211_S_INIT) {
1571 			/* NB: iv_newstate may drop the lock */
1572 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1573 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1574 		}
1575 	}
1576 }
1577 
1578 /*
1579  * Wakeup all vap's waiting for a scan to complete.  This is the
1580  * companion to markwaiting (above) and is used to coordinate
1581  * multiple vaps scanning.
1582  * This is called from the state taskqueue.
1583  */
1584 static void
1585 wakeupwaiting(struct ieee80211vap *vap0)
1586 {
1587 	struct ieee80211com *ic = vap0->iv_ic;
1588 	struct ieee80211vap *vap;
1589 
1590 	IEEE80211_LOCK_ASSERT(ic);
1591 
1592 	/*
1593 	 * A vap list entry can not disappear since we are running on the
1594 	 * taskqueue and a vap destroy will queue and drain another state
1595 	 * change task.
1596 	 */
1597 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1598 		if (vap == vap0)
1599 			continue;
1600 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1601 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1602 			/* NB: sta's cannot go INIT->RUN */
1603 			/* NB: iv_newstate may drop the lock */
1604 			vap->iv_newstate(vap,
1605 			    vap->iv_opmode == IEEE80211_M_STA ?
1606 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1607 		}
1608 	}
1609 }
1610 
1611 /*
1612  * Handle post state change work common to all operating modes.
1613  */
1614 static void
1615 ieee80211_newstate_cb(void *xvap, int npending)
1616 {
1617 	struct ieee80211vap *vap = xvap;
1618 	struct ieee80211com *ic = vap->iv_ic;
1619 	enum ieee80211_state nstate, ostate;
1620 	int arg, rc;
1621 
1622 	IEEE80211_LOCK(ic);
1623 	nstate = vap->iv_nstate;
1624 	arg = vap->iv_nstate_arg;
1625 
1626 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1627 		/*
1628 		 * We have been requested to drop back to the INIT before
1629 		 * proceeding to the new state.
1630 		 */
1631 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1632 		    "%s: %s -> %s arg %d\n", __func__,
1633 		    ieee80211_state_name[vap->iv_state],
1634 		    ieee80211_state_name[IEEE80211_S_INIT], arg);
1635 		vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
1636 		vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT;
1637 	}
1638 
1639 	ostate = vap->iv_state;
1640 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1641 		/*
1642 		 * SCAN was forced; e.g. on beacon miss.  Force other running
1643 		 * vap's to INIT state and mark them as waiting for the scan to
1644 		 * complete.  This insures they don't interfere with our
1645 		 * scanning.  Since we are single threaded the vaps can not
1646 		 * transition again while we are executing.
1647 		 *
1648 		 * XXX not always right, assumes ap follows sta
1649 		 */
1650 		markwaiting(vap);
1651 	}
1652 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1653 	    "%s: %s -> %s arg %d\n", __func__,
1654 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1655 
1656 	rc = vap->iv_newstate(vap, nstate, arg);
1657 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1658 	if (rc != 0) {
1659 		/* State transition failed */
1660 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1661 		KASSERT(nstate != IEEE80211_S_INIT,
1662 		    ("INIT state change failed"));
1663 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1664 		    "%s: %s returned error %d\n", __func__,
1665 		    ieee80211_state_name[nstate], rc);
1666 		goto done;
1667 	}
1668 
1669 	/* No actual transition, skip post processing */
1670 	if (ostate == nstate)
1671 		goto done;
1672 
1673 	if (nstate == IEEE80211_S_RUN) {
1674 		/*
1675 		 * OACTIVE may be set on the vap if the upper layer
1676 		 * tried to transmit (e.g. IPv6 NDP) before we reach
1677 		 * RUN state.  Clear it and restart xmit.
1678 		 *
1679 		 * Note this can also happen as a result of SLEEP->RUN
1680 		 * (i.e. coming out of power save mode).
1681 		 */
1682 		vap->iv_ifp->if_flags &= ~IFF_OACTIVE;
1683 		vap->iv_ifp->if_start(vap->iv_ifp);
1684 
1685 		/* bring up any vaps waiting on us */
1686 		wakeupwaiting(vap);
1687 	} else if (nstate == IEEE80211_S_INIT) {
1688 		/*
1689 		 * Flush the scan cache if we did the last scan (XXX?)
1690 		 * and flush any frames on send queues from this vap.
1691 		 * Note the mgt q is used only for legacy drivers and
1692 		 * will go away shortly.
1693 		 */
1694 		ieee80211_scan_flush(vap);
1695 
1696 		/* XXX NB: cast for altq */
1697 		ieee80211_flush_ifq((struct ifqueue *)&ic->ic_ifp->if_snd, vap);
1698 	}
1699 done:
1700 	IEEE80211_UNLOCK(ic);
1701 }
1702 
1703 /*
1704  * Public interface for initiating a state machine change.
1705  * This routine single-threads the request and coordinates
1706  * the scheduling of multiple vaps for the purpose of selecting
1707  * an operating channel.  Specifically the following scenarios
1708  * are handled:
1709  * o only one vap can be selecting a channel so on transition to
1710  *   SCAN state if another vap is already scanning then
1711  *   mark the caller for later processing and return without
1712  *   doing anything (XXX? expectations by caller of synchronous operation)
1713  * o only one vap can be doing CAC of a channel so on transition to
1714  *   CAC state if another vap is already scanning for radar then
1715  *   mark the caller for later processing and return without
1716  *   doing anything (XXX? expectations by caller of synchronous operation)
1717  * o if another vap is already running when a request is made
1718  *   to SCAN then an operating channel has been chosen; bypass
1719  *   the scan and just join the channel
1720  *
1721  * Note that the state change call is done through the iv_newstate
1722  * method pointer so any driver routine gets invoked.  The driver
1723  * will normally call back into operating mode-specific
1724  * ieee80211_newstate routines (below) unless it needs to completely
1725  * bypass the state machine (e.g. because the firmware has it's
1726  * own idea how things should work).  Bypassing the net80211 layer
1727  * is usually a mistake and indicates lack of proper integration
1728  * with the net80211 layer.
1729  */
1730 static int
1731 ieee80211_new_state_locked(struct ieee80211vap *vap,
1732 	enum ieee80211_state nstate, int arg)
1733 {
1734 	struct ieee80211com *ic = vap->iv_ic;
1735 	struct ieee80211vap *vp;
1736 	enum ieee80211_state ostate;
1737 	int nrunning, nscanning;
1738 
1739 	IEEE80211_LOCK_ASSERT(ic);
1740 
1741 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
1742 		if (vap->iv_nstate == IEEE80211_S_INIT) {
1743 			/*
1744 			 * XXX The vap is being stopped, do no allow any other
1745 			 * state changes until this is completed.
1746 			 */
1747 			return -1;
1748 		} else if (vap->iv_state != vap->iv_nstate) {
1749 #if 0
1750 			/* Warn if the previous state hasn't completed. */
1751 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1752 			    "%s: pending %s -> %s transition lost\n", __func__,
1753 			    ieee80211_state_name[vap->iv_state],
1754 			    ieee80211_state_name[vap->iv_nstate]);
1755 #else
1756 			/* XXX temporarily enable to identify issues */
1757 			if_printf(vap->iv_ifp,
1758 			    "%s: pending %s -> %s transition lost\n",
1759 			    __func__, ieee80211_state_name[vap->iv_state],
1760 			    ieee80211_state_name[vap->iv_nstate]);
1761 #endif
1762 		}
1763 	}
1764 
1765 	nrunning = nscanning = 0;
1766 	/* XXX can track this state instead of calculating */
1767 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
1768 		if (vp != vap) {
1769 			if (vp->iv_state >= IEEE80211_S_RUN)
1770 				nrunning++;
1771 			/* XXX doesn't handle bg scan */
1772 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
1773 			else if (vp->iv_state > IEEE80211_S_INIT)
1774 				nscanning++;
1775 		}
1776 	}
1777 	ostate = vap->iv_state;
1778 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1779 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
1780 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
1781 	    nrunning, nscanning);
1782 	switch (nstate) {
1783 	case IEEE80211_S_SCAN:
1784 		if (ostate == IEEE80211_S_INIT) {
1785 			/*
1786 			 * INIT -> SCAN happens on initial bringup.
1787 			 */
1788 			KASSERT(!(nscanning && nrunning),
1789 			    ("%d scanning and %d running", nscanning, nrunning));
1790 			if (nscanning) {
1791 				/*
1792 				 * Someone is scanning, defer our state
1793 				 * change until the work has completed.
1794 				 */
1795 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1796 				    "%s: defer %s -> %s\n",
1797 				    __func__, ieee80211_state_name[ostate],
1798 				    ieee80211_state_name[nstate]);
1799 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1800 				return 0;
1801 			}
1802 			if (nrunning) {
1803 				/*
1804 				 * Someone is operating; just join the channel
1805 				 * they have chosen.
1806 				 */
1807 				/* XXX kill arg? */
1808 				/* XXX check each opmode, adhoc? */
1809 				if (vap->iv_opmode == IEEE80211_M_STA)
1810 					nstate = IEEE80211_S_SCAN;
1811 				else
1812 					nstate = IEEE80211_S_RUN;
1813 #ifdef IEEE80211_DEBUG
1814 				if (nstate != IEEE80211_S_SCAN) {
1815 					IEEE80211_DPRINTF(vap,
1816 					    IEEE80211_MSG_STATE,
1817 					    "%s: override, now %s -> %s\n",
1818 					    __func__,
1819 					    ieee80211_state_name[ostate],
1820 					    ieee80211_state_name[nstate]);
1821 				}
1822 #endif
1823 			}
1824 		}
1825 		break;
1826 	case IEEE80211_S_RUN:
1827 		if (vap->iv_opmode == IEEE80211_M_WDS &&
1828 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
1829 		    nscanning) {
1830 			/*
1831 			 * Legacy WDS with someone else scanning; don't
1832 			 * go online until that completes as we should
1833 			 * follow the other vap to the channel they choose.
1834 			 */
1835 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1836 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
1837 			     ieee80211_state_name[ostate],
1838 			     ieee80211_state_name[nstate]);
1839 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1840 			return 0;
1841 		}
1842 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1843 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
1844 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
1845 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
1846 			/*
1847 			 * This is a DFS channel, transition to CAC state
1848 			 * instead of RUN.  This allows us to initiate
1849 			 * Channel Availability Check (CAC) as specified
1850 			 * by 11h/DFS.
1851 			 */
1852 			nstate = IEEE80211_S_CAC;
1853 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1854 			     "%s: override %s -> %s (DFS)\n", __func__,
1855 			     ieee80211_state_name[ostate],
1856 			     ieee80211_state_name[nstate]);
1857 		}
1858 		break;
1859 	case IEEE80211_S_INIT:
1860 		/* cancel any scan in progress */
1861 		ieee80211_cancel_scan(vap);
1862 		if (ostate == IEEE80211_S_INIT ) {
1863 			/* XXX don't believe this */
1864 			/* INIT -> INIT. nothing to do */
1865 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1866 		}
1867 		/* fall thru... */
1868 	default:
1869 		break;
1870 	}
1871 	/* defer the state change to a thread */
1872 	vap->iv_nstate = nstate;
1873 	vap->iv_nstate_arg = arg;
1874 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
1875 	ieee80211_runtask(ic, &vap->iv_nstate_task);
1876 	return EINPROGRESS;
1877 }
1878 
1879 int
1880 ieee80211_new_state(struct ieee80211vap *vap,
1881 	enum ieee80211_state nstate, int arg)
1882 {
1883 	struct ieee80211com *ic = vap->iv_ic;
1884 	int rc;
1885 
1886 	ic = vap->iv_ic;
1887 	IEEE80211_LOCK(ic);
1888 	rc = ieee80211_new_state_locked(vap, nstate, arg);
1889 	IEEE80211_UNLOCK(ic);
1890 	return rc;
1891 }
1892