1 /* 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * Alternatively, this software may be distributed under the terms of the 18 * GNU General Public License ("GPL") version 2 as published by the Free 19 * Software Foundation. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 * 32 * $FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.26.2.8 2006/09/02 15:06:04 sam Exp $ 33 * $DragonFly: src/sys/netproto/802_11/wlan/ieee80211_output.c,v 1.20 2007/04/01 13:59:41 sephe Exp $ 34 */ 35 36 #include "opt_inet.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/mbuf.h> 41 #include <sys/kernel.h> 42 #include <sys/endian.h> 43 44 #include <sys/socket.h> 45 46 #include <net/bpf.h> 47 #include <net/ethernet.h> 48 #include <net/if.h> 49 #include <net/if_arp.h> 50 #include <net/if_llc.h> 51 #include <net/if_media.h> 52 #include <net/vlan/if_vlan_var.h> 53 54 #include <netproto/802_11/ieee80211_var.h> 55 56 #ifdef INET 57 #include <netinet/in.h> 58 #include <netinet/if_ether.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/ip.h> 61 #endif 62 63 #ifdef IEEE80211_DEBUG 64 /* 65 * Decide if an outbound management frame should be 66 * printed when debugging is enabled. This filters some 67 * of the less interesting frames that come frequently 68 * (e.g. beacons). 69 */ 70 static __inline int 71 doprint(struct ieee80211com *ic, int subtype) 72 { 73 switch (subtype) { 74 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 75 return (ic->ic_opmode == IEEE80211_M_IBSS); 76 } 77 return 1; 78 } 79 #endif 80 81 /* 82 * Set the direction field and address fields of an outgoing 83 * non-QoS frame. Note this should be called early on in 84 * constructing a frame as it sets i_fc[1]; other bits can 85 * then be or'd in. 86 */ 87 static void 88 ieee80211_send_setup(struct ieee80211com *ic, 89 struct ieee80211_node *ni, 90 struct ieee80211_frame *wh, 91 int type, 92 const uint8_t sa[IEEE80211_ADDR_LEN], 93 const uint8_t da[IEEE80211_ADDR_LEN], 94 const uint8_t bssid[IEEE80211_ADDR_LEN]) 95 { 96 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 97 98 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 99 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 100 switch (ic->ic_opmode) { 101 case IEEE80211_M_STA: 102 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 103 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 104 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 105 IEEE80211_ADDR_COPY(wh->i_addr3, da); 106 break; 107 case IEEE80211_M_IBSS: 108 case IEEE80211_M_AHDEMO: 109 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 110 IEEE80211_ADDR_COPY(wh->i_addr1, da); 111 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 112 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 113 break; 114 case IEEE80211_M_HOSTAP: 115 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 116 IEEE80211_ADDR_COPY(wh->i_addr1, da); 117 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 118 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 119 break; 120 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 121 break; 122 } 123 } else { 124 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 125 IEEE80211_ADDR_COPY(wh->i_addr1, da); 126 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 127 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 128 } 129 *(uint16_t *)&wh->i_dur[0] = 0; 130 /* NB: use non-QoS tid */ 131 *(uint16_t *)&wh->i_seq[0] = 132 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 133 ni->ni_txseqs[0]++; 134 #undef WH4 135 } 136 137 /* 138 * Send a management frame to the specified node. The node pointer 139 * must have a reference as the pointer will be passed to the driver 140 * and potentially held for a long time. If the frame is successfully 141 * dispatched to the driver, then it is responsible for freeing the 142 * reference (and potentially free'ing up any associated storage). 143 */ 144 static int 145 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni, 146 struct mbuf *m, int type, int timer, int encrypt) 147 { 148 struct ifnet *ifp = ic->ic_ifp; 149 struct ieee80211_frame *wh; 150 151 KASSERT(ni != NULL, ("null node")); 152 153 /* 154 * Yech, hack alert! We want to pass the node down to the 155 * driver's start routine. If we don't do so then the start 156 * routine must immediately look it up again and that can 157 * cause a lock order reversal if, for example, this frame 158 * is being sent because the station is being timedout and 159 * the frame being sent is a DEAUTH message. We could stick 160 * this in an m_tag and tack that on to the mbuf. However 161 * that's rather expensive to do for every frame so instead 162 * we stuff it in the rcvif field since outbound frames do 163 * not (presently) use this. 164 */ 165 M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT); 166 if (m == NULL) 167 return ENOMEM; 168 KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null")); 169 m->m_pkthdr.rcvif = (void *)ni; 170 171 wh = mtod(m, struct ieee80211_frame *); 172 ieee80211_send_setup(ic, ni, wh, 173 IEEE80211_FC0_TYPE_MGT | type, 174 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 175 if (encrypt) { 176 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 177 "[%6D] encrypting frame (%s)\n", 178 wh->i_addr1, ":", __func__); 179 wh->i_fc[1] |= IEEE80211_FC1_WEP; 180 } 181 #ifdef IEEE80211_DEBUG 182 /* avoid printing too many frames */ 183 if ((ieee80211_msg_debug(ic) && doprint(ic, type)) || 184 ieee80211_msg_dumppkts(ic)) { 185 kprintf("[%6D] send %s on channel %u\n", 186 wh->i_addr1, ":", 187 ieee80211_mgt_subtype_name[ 188 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 189 IEEE80211_FC0_SUBTYPE_SHIFT], 190 ieee80211_chan2ieee(ic, ic->ic_curchan)); 191 } 192 #endif 193 IEEE80211_NODE_STAT(ni, tx_mgmt); 194 IF_ENQUEUE(&ic->ic_mgtq, m); 195 if (timer) { 196 /* 197 * Set the mgt frame timeout. 198 */ 199 ic->ic_mgt_timer = timer; 200 ifp->if_timer = 1; 201 } 202 ifp->if_start(ifp); 203 return 0; 204 } 205 206 /* 207 * Send a null data frame to the specified node. 208 * 209 * NB: the caller is assumed to have setup a node reference 210 * for use; this is necessary to deal with a race condition 211 * when probing for inactive stations. 212 */ 213 int 214 ieee80211_send_nulldata(struct ieee80211_node *ni) 215 { 216 struct ieee80211com *ic = ni->ni_ic; 217 struct ifnet *ifp = ic->ic_ifp; 218 struct mbuf *m; 219 struct ieee80211_frame *wh; 220 221 MGETHDR(m, MB_DONTWAIT, MT_HEADER); 222 if (m == NULL) { 223 /* XXX debug msg */ 224 ic->ic_stats.is_tx_nobuf++; 225 ieee80211_unref_node(&ni); 226 return ENOMEM; 227 } 228 m->m_pkthdr.rcvif = (void *) ni; 229 230 wh = mtod(m, struct ieee80211_frame *); 231 ieee80211_send_setup(ic, ni, wh, 232 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 233 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 234 /* NB: power management bit is never sent by an AP */ 235 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 236 ic->ic_opmode != IEEE80211_M_HOSTAP) 237 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 238 m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame); 239 240 IEEE80211_NODE_STAT(ni, tx_data); 241 242 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 243 "[%s] send null data frame on channel %u, pwr mgt %s\n", 244 ni->ni_macaddr, ":", 245 ieee80211_chan2ieee(ic, ic->ic_curchan), 246 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 247 248 IF_ENQUEUE(&ic->ic_mgtq, m); /* cheat */ 249 ifp->if_start(ifp); 250 return 0; 251 } 252 253 /* 254 * Assign priority to a frame based on any vlan tag assigned 255 * to the station and/or any Diffserv setting in an IP header. 256 * Finally, if an ACM policy is setup (in station mode) it's 257 * applied. 258 */ 259 int 260 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni) 261 { 262 int v_wme_ac = 0, d_wme_ac, ac; 263 #ifdef INET 264 struct ether_header *eh; 265 #endif 266 267 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 268 ac = WME_AC_BE; 269 goto done; 270 } 271 272 #ifdef FREEBSD_VLAN 273 /* 274 * If node has a vlan tag then all traffic 275 * to it must have a matching tag. 276 */ 277 v_wme_ac = 0; 278 if (ni->ni_vlan != 0) { 279 struct m_tag *mtag = VLAN_OUTPUT_TAG(ic->ic_ifp, m); 280 if (mtag == NULL) { 281 IEEE80211_NODE_STAT(ni, tx_novlantag); 282 return 1; 283 } 284 if (EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)) != 285 EVL_VLANOFTAG(ni->ni_vlan)) { 286 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 287 return 1; 288 } 289 /* map vlan priority to AC */ 290 switch (EVL_PRIOFTAG(ni->ni_vlan)) { 291 case 1: 292 case 2: 293 v_wme_ac = WME_AC_BK; 294 break; 295 case 0: 296 case 3: 297 v_wme_ac = WME_AC_BE; 298 break; 299 case 4: 300 case 5: 301 v_wme_ac = WME_AC_VI; 302 break; 303 case 6: 304 case 7: 305 v_wme_ac = WME_AC_VO; 306 break; 307 } 308 } 309 #endif /* FREEBSD_VLAN */ 310 311 #ifdef INET 312 eh = mtod(m, struct ether_header *); 313 if (eh->ether_type == htons(ETHERTYPE_IP)) { 314 const struct ip *ip = (struct ip *) 315 (mtod(m, uint8_t *) + sizeof (*eh)); 316 /* 317 * IP frame, map the TOS field. 318 */ 319 switch (ip->ip_tos) { 320 case 0x08: 321 case 0x20: 322 d_wme_ac = WME_AC_BK; /* background */ 323 break; 324 case 0x28: 325 case 0xa0: 326 d_wme_ac = WME_AC_VI; /* video */ 327 break; 328 case 0x30: /* voice */ 329 case 0xe0: 330 case 0x88: /* XXX UPSD */ 331 case 0xb8: 332 d_wme_ac = WME_AC_VO; 333 break; 334 default: 335 d_wme_ac = WME_AC_BE; 336 break; 337 } 338 } else { 339 #endif /* INET */ 340 d_wme_ac = WME_AC_BE; 341 #ifdef INET 342 } 343 #endif 344 /* 345 * Use highest priority AC. 346 */ 347 if (v_wme_ac > d_wme_ac) 348 ac = v_wme_ac; 349 else 350 ac = d_wme_ac; 351 352 /* 353 * Apply ACM policy. 354 */ 355 if (ic->ic_opmode == IEEE80211_M_STA) { 356 static const int acmap[4] = { 357 WME_AC_BK, /* WME_AC_BE */ 358 WME_AC_BK, /* WME_AC_BK */ 359 WME_AC_BE, /* WME_AC_VI */ 360 WME_AC_VI, /* WME_AC_VO */ 361 }; 362 while (ac != WME_AC_BK && 363 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 364 ac = acmap[ac]; 365 } 366 done: 367 M_WME_SETAC(m, ac); 368 return 0; 369 } 370 371 /* 372 * Insure there is sufficient contiguous space to encapsulate the 373 * 802.11 data frame. If room isn't already there, arrange for it. 374 * Drivers and cipher modules assume we have done the necessary work 375 * and fail rudely if they don't find the space they need. 376 */ 377 static struct mbuf * 378 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize, 379 struct ieee80211_key *key, struct mbuf *m) 380 { 381 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 382 int needed_space = hdrsize; 383 384 if (key != NULL) { 385 /* XXX belongs in crypto code? */ 386 needed_space += key->wk_cipher->ic_header; 387 /* XXX frags */ 388 /* 389 * When crypto is being done in the host we must insure 390 * the data are writable for the cipher routines; clone 391 * a writable mbuf chain. 392 * XXX handle SWMIC specially 393 */ 394 if (key->wk_flags & (IEEE80211_KEY_SWCRYPT|IEEE80211_KEY_SWMIC)) { 395 m = ieee80211_mbuf_clone(m, MB_DONTWAIT); 396 if (m == NULL) { 397 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 398 "%s: cannot get writable mbuf\n", __func__); 399 ic->ic_stats.is_tx_nobuf++; /* XXX new stat */ 400 return NULL; 401 } 402 } 403 } 404 /* 405 * We know we are called just before stripping an Ethernet 406 * header and prepending an LLC header. This means we know 407 * there will be 408 * sizeof(struct ether_header) - sizeof(struct llc) 409 * bytes recovered to which we need additional space for the 410 * 802.11 header and any crypto header. 411 */ 412 /* XXX check trailing space and copy instead? */ 413 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 414 struct mbuf *n = m_gethdr(MB_DONTWAIT, m->m_type); 415 if (n == NULL) { 416 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 417 "%s: cannot expand storage\n", __func__); 418 ic->ic_stats.is_tx_nobuf++; 419 m_freem(m); 420 return NULL; 421 } 422 KASSERT(needed_space <= MHLEN, 423 ("not enough room, need %u got %zu\n", needed_space, MHLEN)); 424 /* 425 * Setup new mbuf to have leading space to prepend the 426 * 802.11 header and any crypto header bits that are 427 * required (the latter are added when the driver calls 428 * back to ieee80211_crypto_encap to do crypto encapsulation). 429 */ 430 /* NB: must be first 'cuz it clobbers m_data */ 431 m_move_pkthdr(n, m); 432 n->m_len = 0; /* NB: m_gethdr does not set */ 433 n->m_data += needed_space; 434 /* 435 * Pull up Ethernet header to create the expected layout. 436 * We could use m_pullup but that's overkill (i.e. we don't 437 * need the actual data) and it cannot fail so do it inline 438 * for speed. 439 */ 440 /* NB: struct ether_header is known to be contiguous */ 441 n->m_len += sizeof(struct ether_header); 442 m->m_len -= sizeof(struct ether_header); 443 m->m_data += sizeof(struct ether_header); 444 /* 445 * Replace the head of the chain. 446 */ 447 n->m_next = m; 448 m = n; 449 } 450 return m; 451 #undef TO_BE_RECLAIMED 452 } 453 454 #define KEY_UNDEFINED(k) ((k).wk_cipher == &ieee80211_cipher_none) 455 /* 456 * Return the transmit key to use in sending a unicast frame. 457 * If a unicast key is set we use that. When no unicast key is set 458 * we fall back to the default transmit key. 459 */ 460 static __inline struct ieee80211_key * 461 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni) 462 { 463 if (KEY_UNDEFINED(ni->ni_ucastkey)) { 464 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 465 KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 466 return NULL; 467 return &ic->ic_nw_keys[ic->ic_def_txkey]; 468 } else { 469 return &ni->ni_ucastkey; 470 } 471 } 472 473 /* 474 * Return the transmit key to use in sending a multicast frame. 475 * Multicast traffic always uses the group key which is installed as 476 * the default tx key. 477 */ 478 static __inline struct ieee80211_key * 479 ieee80211_crypto_getmcastkey(struct ieee80211com *ic, struct ieee80211_node *ni) 480 { 481 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 482 KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 483 return NULL; 484 return &ic->ic_nw_keys[ic->ic_def_txkey]; 485 } 486 487 /* 488 * Encapsulate an outbound data frame. The mbuf chain is updated. 489 * If an error is encountered NULL is returned. The caller is required 490 * to provide a node reference and pullup the ethernet header in the 491 * first mbuf. 492 */ 493 struct mbuf * 494 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m, 495 struct ieee80211_node *ni) 496 { 497 struct ether_header eh; 498 struct ieee80211_frame *wh; 499 struct ieee80211_key *key; 500 struct llc *llc; 501 int hdrsize, datalen, addqos; 502 503 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 504 memcpy(&eh, mtod(m, caddr_t), sizeof(struct ether_header)); 505 506 /* 507 * Insure space for additional headers. First identify 508 * transmit key to use in calculating any buffer adjustments 509 * required. This is also used below to do privacy 510 * encapsulation work. Then calculate the 802.11 header 511 * size and any padding required by the driver. 512 * 513 * Note key may be NULL if we fall back to the default 514 * transmit key and that is not set. In that case the 515 * buffer may not be expanded as needed by the cipher 516 * routines, but they will/should discard it. 517 */ 518 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 519 if (ic->ic_opmode == IEEE80211_M_STA || 520 !IEEE80211_IS_MULTICAST(eh.ether_dhost)) 521 key = ieee80211_crypto_getucastkey(ic, ni); 522 else 523 key = ieee80211_crypto_getmcastkey(ic, ni); 524 if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) { 525 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO, 526 "[%6D] no default transmit key (%s) deftxkey %u\n", 527 eh.ether_dhost, ":", __func__, 528 ic->ic_def_txkey); 529 ic->ic_stats.is_tx_nodefkey++; 530 } 531 } else 532 key = NULL; 533 /* XXX 4-address format */ 534 /* 535 * XXX Some ap's don't handle QoS-encapsulated EAPOL 536 * frames so suppress use. This may be an issue if other 537 * ap's require all data frames to be QoS-encapsulated 538 * once negotiated in which case we'll need to make this 539 * configurable. 540 */ 541 addqos = (ni->ni_flags & IEEE80211_NODE_QOS) && 542 eh.ether_type != htons(ETHERTYPE_PAE); 543 if (addqos) 544 hdrsize = sizeof(struct ieee80211_qosframe); 545 else 546 hdrsize = sizeof(struct ieee80211_frame); 547 if (ic->ic_flags & IEEE80211_F_DATAPAD) 548 hdrsize = roundup(hdrsize, sizeof(uint32_t)); 549 m = ieee80211_mbuf_adjust(ic, hdrsize, key, m); 550 if (m == NULL) { 551 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 552 goto bad; 553 } 554 555 /* NB: this could be optimized because of ieee80211_mbuf_adjust */ 556 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 557 llc = mtod(m, struct llc *); 558 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 559 llc->llc_control = LLC_UI; 560 llc->llc_snap.org_code[0] = 0; 561 llc->llc_snap.org_code[1] = 0; 562 llc->llc_snap.org_code[2] = 0; 563 llc->llc_snap.ether_type = eh.ether_type; 564 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 565 566 M_PREPEND(m, hdrsize, MB_DONTWAIT); 567 if (m == NULL) { 568 ic->ic_stats.is_tx_nobuf++; 569 goto bad; 570 } 571 wh = mtod(m, struct ieee80211_frame *); 572 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 573 *(uint16_t *)wh->i_dur = 0; 574 switch (ic->ic_opmode) { 575 case IEEE80211_M_STA: 576 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 577 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 578 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 579 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 580 break; 581 case IEEE80211_M_IBSS: 582 case IEEE80211_M_AHDEMO: 583 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 584 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 585 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 586 /* 587 * NB: always use the bssid from ic_bss as the 588 * neighbor's may be stale after an ibss merge 589 */ 590 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid); 591 break; 592 case IEEE80211_M_HOSTAP: 593 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 594 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 595 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 596 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 597 break; 598 case IEEE80211_M_MONITOR: 599 goto bad; 600 } 601 if (m->m_flags & M_MORE_DATA) 602 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 603 if (addqos) { 604 struct ieee80211_qosframe *qwh = 605 (struct ieee80211_qosframe *) wh; 606 int ac, tid; 607 608 ac = M_WME_GETAC(m); 609 /* map from access class/queue to 11e header priorty value */ 610 tid = WME_AC_TO_TID(ac); 611 qwh->i_qos[0] = tid & IEEE80211_QOS_TID; 612 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 613 qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S; 614 qwh->i_qos[1] = 0; 615 qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 616 617 *(uint16_t *)wh->i_seq = 618 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT); 619 ni->ni_txseqs[tid]++; 620 } else { 621 *(uint16_t *)wh->i_seq = 622 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 623 ni->ni_txseqs[0]++; 624 } 625 if (key != NULL) { 626 /* 627 * IEEE 802.1X: send EAPOL frames always in the clear. 628 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 629 */ 630 if (eh.ether_type != htons(ETHERTYPE_PAE) || 631 ((ic->ic_flags & IEEE80211_F_WPA) && 632 (ic->ic_opmode == IEEE80211_M_STA ? 633 !KEY_UNDEFINED(*key) : !KEY_UNDEFINED(ni->ni_ucastkey)))) { 634 wh->i_fc[1] |= IEEE80211_FC1_WEP; 635 /* XXX do fragmentation */ 636 if (!ieee80211_crypto_enmic(ic, key, m, 0)) { 637 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 638 "[%6D] enmic failed, discard frame\n", 639 eh.ether_dhost, ":"); 640 ic->ic_stats.is_crypto_enmicfail++; 641 goto bad; 642 } 643 } 644 } 645 646 IEEE80211_NODE_STAT(ni, tx_data); 647 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 648 IEEE80211_NODE_STAT(ni, tx_mcast); 649 else 650 IEEE80211_NODE_STAT(ni, tx_ucast); 651 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 652 653 return m; 654 bad: 655 if (m != NULL) 656 m_freem(m); 657 return NULL; 658 } 659 660 /* 661 * Add a supported rates element id to a frame. 662 */ 663 uint8_t * 664 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 665 { 666 int nrates; 667 668 *frm++ = IEEE80211_ELEMID_RATES; 669 nrates = rs->rs_nrates; 670 if (nrates > IEEE80211_RATE_SIZE) 671 nrates = IEEE80211_RATE_SIZE; 672 *frm++ = nrates; 673 memcpy(frm, rs->rs_rates, nrates); 674 return frm + nrates; 675 } 676 677 /* 678 * Add an extended supported rates element id to a frame. 679 */ 680 uint8_t * 681 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 682 { 683 /* 684 * Add an extended supported rates element if operating in 11g mode. 685 */ 686 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 687 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 688 *frm++ = IEEE80211_ELEMID_XRATES; 689 *frm++ = nrates; 690 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 691 frm += nrates; 692 } 693 return frm; 694 } 695 696 /* 697 * Add an ssid elemet to a frame. 698 */ 699 uint8_t * 700 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 701 { 702 *frm++ = IEEE80211_ELEMID_SSID; 703 *frm++ = len; 704 memcpy(frm, ssid, len); 705 return frm + len; 706 } 707 708 /* 709 * Add an erp element to a frame. 710 */ 711 static uint8_t * 712 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 713 { 714 uint8_t erp; 715 716 *frm++ = IEEE80211_ELEMID_ERP; 717 *frm++ = 1; 718 erp = 0; 719 if (ic->ic_nonerpsta != 0) 720 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 721 if (ic->ic_flags & IEEE80211_F_USEPROT) 722 erp |= IEEE80211_ERP_USE_PROTECTION; 723 if (ic->ic_flags & IEEE80211_F_USEBARKER) 724 erp |= IEEE80211_ERP_LONG_PREAMBLE; 725 *frm++ = erp; 726 return frm; 727 } 728 729 static uint8_t * 730 ieee80211_setup_wpa_ie(struct ieee80211com *ic, uint8_t *ie) 731 { 732 #define WPA_OUI_BYTES 0x00, 0x50, 0xf2 733 #define ADDSHORT(frm, v) do { \ 734 frm[0] = (v) & 0xff; \ 735 frm[1] = (v) >> 8; \ 736 frm += 2; \ 737 } while (0) 738 #define ADDSELECTOR(frm, sel) do { \ 739 memcpy(frm, sel, 4); \ 740 frm += 4; \ 741 } while (0) 742 static const uint8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE }; 743 static const uint8_t cipher_suite[][4] = { 744 { WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */ 745 { WPA_OUI_BYTES, WPA_CSE_TKIP }, 746 { 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */ 747 { WPA_OUI_BYTES, WPA_CSE_CCMP }, 748 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 749 { WPA_OUI_BYTES, WPA_CSE_NULL }, 750 }; 751 static const uint8_t wep104_suite[4] = 752 { WPA_OUI_BYTES, WPA_CSE_WEP104 }; 753 static const uint8_t key_mgt_unspec[4] = 754 { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC }; 755 static const uint8_t key_mgt_psk[4] = 756 { WPA_OUI_BYTES, WPA_ASE_8021X_PSK }; 757 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 758 uint8_t *frm = ie; 759 uint8_t *selcnt; 760 761 *frm++ = IEEE80211_ELEMID_VENDOR; 762 *frm++ = 0; /* length filled in below */ 763 memcpy(frm, oui, sizeof(oui)); /* WPA OUI */ 764 frm += sizeof(oui); 765 ADDSHORT(frm, WPA_VERSION); 766 767 /* XXX filter out CKIP */ 768 769 /* multicast cipher */ 770 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 771 rsn->rsn_mcastkeylen >= 13) 772 ADDSELECTOR(frm, wep104_suite); 773 else 774 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 775 776 /* unicast cipher list */ 777 selcnt = frm; 778 ADDSHORT(frm, 0); /* selector count */ 779 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) { 780 selcnt[0]++; 781 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 782 } 783 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) { 784 selcnt[0]++; 785 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 786 } 787 788 /* authenticator selector list */ 789 selcnt = frm; 790 ADDSHORT(frm, 0); /* selector count */ 791 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 792 selcnt[0]++; 793 ADDSELECTOR(frm, key_mgt_unspec); 794 } 795 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 796 selcnt[0]++; 797 ADDSELECTOR(frm, key_mgt_psk); 798 } 799 800 /* optional capabilities */ 801 if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH) 802 ADDSHORT(frm, rsn->rsn_caps); 803 804 /* calculate element length */ 805 ie[1] = frm - ie - 2; 806 KASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 807 ("WPA IE too big, %u > %zu", 808 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 809 return frm; 810 #undef ADDSHORT 811 #undef ADDSELECTOR 812 #undef WPA_OUI_BYTES 813 } 814 815 static uint8_t * 816 ieee80211_setup_rsn_ie(struct ieee80211com *ic, uint8_t *ie) 817 { 818 #define RSN_OUI_BYTES 0x00, 0x0f, 0xac 819 #define ADDSHORT(frm, v) do { \ 820 frm[0] = (v) & 0xff; \ 821 frm[1] = (v) >> 8; \ 822 frm += 2; \ 823 } while (0) 824 #define ADDSELECTOR(frm, sel) do { \ 825 memcpy(frm, sel, 4); \ 826 frm += 4; \ 827 } while (0) 828 static const uint8_t cipher_suite[][4] = { 829 { RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */ 830 { RSN_OUI_BYTES, RSN_CSE_TKIP }, 831 { RSN_OUI_BYTES, RSN_CSE_WRAP }, 832 { RSN_OUI_BYTES, RSN_CSE_CCMP }, 833 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 834 { RSN_OUI_BYTES, RSN_CSE_NULL }, 835 }; 836 static const uint8_t wep104_suite[4] = 837 { RSN_OUI_BYTES, RSN_CSE_WEP104 }; 838 static const uint8_t key_mgt_unspec[4] = 839 { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC }; 840 static const uint8_t key_mgt_psk[4] = 841 { RSN_OUI_BYTES, RSN_ASE_8021X_PSK }; 842 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 843 uint8_t *frm = ie; 844 uint8_t *selcnt; 845 846 *frm++ = IEEE80211_ELEMID_RSN; 847 *frm++ = 0; /* length filled in below */ 848 ADDSHORT(frm, RSN_VERSION); 849 850 /* XXX filter out CKIP */ 851 852 /* multicast cipher */ 853 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 854 rsn->rsn_mcastkeylen >= 13) 855 ADDSELECTOR(frm, wep104_suite); 856 else 857 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 858 859 /* unicast cipher list */ 860 selcnt = frm; 861 ADDSHORT(frm, 0); /* selector count */ 862 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) { 863 selcnt[0]++; 864 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 865 } 866 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) { 867 selcnt[0]++; 868 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 869 } 870 871 /* authenticator selector list */ 872 selcnt = frm; 873 ADDSHORT(frm, 0); /* selector count */ 874 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 875 selcnt[0]++; 876 ADDSELECTOR(frm, key_mgt_unspec); 877 } 878 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 879 selcnt[0]++; 880 ADDSELECTOR(frm, key_mgt_psk); 881 } 882 883 /* optional capabilities */ 884 ADDSHORT(frm, rsn->rsn_caps); 885 /* XXX PMKID */ 886 887 /* calculate element length */ 888 ie[1] = frm - ie - 2; 889 KASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 890 ("RSN IE too big, %u > %zu", 891 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 892 return frm; 893 #undef ADDSELECTOR 894 #undef ADDSHORT 895 #undef RSN_OUI_BYTES 896 } 897 898 /* 899 * Add a WPA/RSN element to a frame. 900 */ 901 static uint8_t * 902 ieee80211_add_wpa(uint8_t *frm, struct ieee80211com *ic) 903 { 904 905 KASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!")); 906 if (ic->ic_flags & IEEE80211_F_WPA2) 907 frm = ieee80211_setup_rsn_ie(ic, frm); 908 if (ic->ic_flags & IEEE80211_F_WPA1) 909 frm = ieee80211_setup_wpa_ie(ic, frm); 910 return frm; 911 } 912 913 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 914 /* 915 * Add a WME information element to a frame. 916 */ 917 static uint8_t * 918 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 919 { 920 static const struct ieee80211_wme_info info = { 921 .wme_id = IEEE80211_ELEMID_VENDOR, 922 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 923 .wme_oui = { WME_OUI_BYTES }, 924 .wme_type = WME_OUI_TYPE, 925 .wme_subtype = WME_INFO_OUI_SUBTYPE, 926 .wme_version = WME_VERSION, 927 .wme_info = 0, 928 }; 929 memcpy(frm, &info, sizeof(info)); 930 return frm + sizeof(info); 931 } 932 933 /* 934 * Add a WME parameters element to a frame. 935 */ 936 static uint8_t * 937 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 938 { 939 #define SM(_v, _f) (((_v) << _f##_S) & _f) 940 #define ADDSHORT(frm, v) do { \ 941 frm[0] = (v) & 0xff; \ 942 frm[1] = (v) >> 8; \ 943 frm += 2; \ 944 } while (0) 945 /* NB: this works 'cuz a param has an info at the front */ 946 static const struct ieee80211_wme_info param = { 947 .wme_id = IEEE80211_ELEMID_VENDOR, 948 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 949 .wme_oui = { WME_OUI_BYTES }, 950 .wme_type = WME_OUI_TYPE, 951 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 952 .wme_version = WME_VERSION, 953 }; 954 int i; 955 956 memcpy(frm, ¶m, sizeof(param)); 957 frm += __offsetof(struct ieee80211_wme_info, wme_info); 958 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 959 *frm++ = 0; /* reserved field */ 960 for (i = 0; i < WME_NUM_AC; i++) { 961 const struct wmeParams *ac = 962 &wme->wme_bssChanParams.cap_wmeParams[i]; 963 *frm++ = SM(i, WME_PARAM_ACI) 964 | SM(ac->wmep_acm, WME_PARAM_ACM) 965 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 966 ; 967 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 968 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 969 ; 970 ADDSHORT(frm, ac->wmep_txopLimit); 971 } 972 return frm; 973 #undef SM 974 #undef ADDSHORT 975 } 976 #undef WME_OUI_BYTES 977 978 /* 979 * Send a probe request frame with the specified ssid 980 * and any optional information element data. 981 */ 982 int 983 ieee80211_send_probereq(struct ieee80211_node *ni, 984 const uint8_t sa[IEEE80211_ADDR_LEN], 985 const uint8_t da[IEEE80211_ADDR_LEN], 986 const uint8_t bssid[IEEE80211_ADDR_LEN], 987 const uint8_t *ssid, size_t ssidlen, 988 const void *optie, size_t optielen) 989 { 990 struct ieee80211com *ic = ni->ni_ic; 991 struct ifnet *ifp = ic->ic_ifp; 992 enum ieee80211_phymode mode; 993 struct ieee80211_frame *wh; 994 struct ieee80211_rateset rs; 995 struct mbuf *m; 996 uint8_t *frm; 997 998 /* 999 * Hold a reference on the node so it doesn't go away until after 1000 * the xmit is complete all the way in the driver. On error we 1001 * will remove our reference. 1002 */ 1003 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1004 "ieee80211_ref_node (%s:%u) %p<%6D> refcnt %d\n", 1005 __func__, __LINE__, 1006 ni, ni->ni_macaddr, ":", 1007 ieee80211_node_refcnt(ni) + 1); 1008 ieee80211_ref_node(ni); 1009 1010 /* 1011 * prreq frame format 1012 * [tlv] ssid 1013 * [tlv] supported rates 1014 * [tlv] extended supported rates 1015 * [tlv] user-specified ie's 1016 */ 1017 m = ieee80211_getmgtframe(&frm, 1018 2 + IEEE80211_NWID_LEN 1019 + 2 + IEEE80211_RATE_SIZE 1020 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1021 + (optie != NULL ? optielen : 0) 1022 ); 1023 if (m == NULL) { 1024 ic->ic_stats.is_tx_nobuf++; 1025 ieee80211_free_node(ni); 1026 return ENOMEM; 1027 } 1028 1029 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 1030 1031 /* 1032 * XXX 1033 * Clear basic rates. 1034 * 1035 * Though according to 802.11 standard: MSB of each supported rate 1036 * octet in (Extended) Supported Rates ie of probe requests should 1037 * be ignored, some HostAP implementations still check it ... 1038 */ 1039 mode = ieee80211_chan2mode(ic, ic->ic_curchan); 1040 rs = ic->ic_sup_rates[mode]; 1041 ieee80211_set_basicrates(&rs, IEEE80211_MODE_AUTO, 0); 1042 frm = ieee80211_add_rates(frm, &rs); 1043 frm = ieee80211_add_xrates(frm, &rs); 1044 1045 if (optie != NULL) { 1046 memcpy(frm, optie, optielen); 1047 frm += optielen; 1048 } 1049 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 1050 1051 M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT); 1052 if (m == NULL) 1053 return ENOMEM; 1054 KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null")); 1055 m->m_pkthdr.rcvif = (void *)ni; 1056 1057 wh = mtod(m, struct ieee80211_frame *); 1058 ieee80211_send_setup(ic, ni, wh, 1059 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 1060 sa, da, bssid); 1061 /* XXX power management? */ 1062 1063 IEEE80211_NODE_STAT(ni, tx_probereq); 1064 IEEE80211_NODE_STAT(ni, tx_mgmt); 1065 1066 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 1067 "[%6D] send probe req on channel %u\n", 1068 wh->i_addr1, ":", 1069 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1070 1071 IF_ENQUEUE(&ic->ic_mgtq, m); 1072 ifp->if_start(ifp); 1073 return 0; 1074 } 1075 1076 /* 1077 * Calculate capability information for mgt frames. 1078 */ 1079 static uint16_t 1080 getcapinfo(struct ieee80211com *ic, struct ieee80211_channel *chan) 1081 { 1082 uint16_t capinfo; 1083 1084 KASSERT(ic->ic_opmode != IEEE80211_M_STA, ("station mode")); 1085 1086 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1087 capinfo = IEEE80211_CAPINFO_ESS; 1088 else if (ic->ic_opmode == IEEE80211_M_IBSS) 1089 capinfo = IEEE80211_CAPINFO_IBSS; 1090 else 1091 capinfo = 0; 1092 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1093 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1094 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1095 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1096 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1097 if (ic->ic_caps_ext & IEEE80211_CEXT_PBCC) 1098 capinfo |= IEEE80211_CAPINFO_PBCC; 1099 } 1100 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1101 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1102 return capinfo; 1103 } 1104 1105 static struct mbuf * 1106 _ieee80211_probe_resp_alloc(struct ieee80211com *ic, struct ieee80211_node *ni) 1107 { 1108 const struct ieee80211_rateset *rs; 1109 uint16_t capinfo; 1110 struct mbuf *m; 1111 uint8_t *frm; 1112 int pktlen; 1113 1114 /* 1115 * probe response frame format 1116 * [8] time stamp 1117 * [2] beacon interval 1118 * [2] cabability information 1119 * [tlv] ssid 1120 * [tlv] supported rates 1121 * [tlv] parameter set (FH/DS) 1122 * [4] parameter set (IBSS) 1123 * [tlv] extended rate phy (ERP) 1124 * [tlv] extended supported rates 1125 * [tlv] WPA 1126 * [tlv] WME (optional) 1127 */ 1128 KKASSERT(ic->ic_curmode != IEEE80211_MODE_AUTO); 1129 rs = &ic->ic_sup_rates[ic->ic_curmode]; 1130 pktlen = 8 /* time stamp */ 1131 + sizeof(uint16_t) /* beacon interval */ 1132 + sizeof(uint16_t) /* capabilities */ 1133 + 2 + ni->ni_esslen /* ssid */ 1134 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 1135 + 2 + 5 /* max(5,1) */ /* DS/FH parameters */ 1136 + 2 + 2 /* IBSS parameters */ 1137 + 2 + 1 /* ERP */ 1138 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1139 /* XXX !WPA1+WPA2 fits w/o a cluster */ 1140 + (ic->ic_flags & IEEE80211_F_WPA ? /* WPA 1+2 */ 1141 2*sizeof(struct ieee80211_ie_wpa) : 0) 1142 + sizeof(struct ieee80211_wme_param); /* WME */ 1143 1144 m = ieee80211_getmgtframe(&frm, pktlen); 1145 if (m == NULL) { 1146 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1147 "%s: cannot get buf; size %u\n", __func__, pktlen); 1148 ic->ic_stats.is_tx_nobuf++; 1149 return NULL; 1150 } 1151 1152 memset(frm, 0, 8); /* timestamp should be filled later */ 1153 frm += 8; 1154 *(uint16_t *)frm = htole16(ni->ni_intval); 1155 frm += 2; 1156 capinfo = getcapinfo(ic, ni->ni_chan); 1157 *(uint16_t *)frm = htole16(capinfo); 1158 frm += 2; 1159 1160 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 1161 frm = ieee80211_add_rates(frm, rs); 1162 1163 if (ic->ic_phytype == IEEE80211_T_FH) { 1164 *frm++ = IEEE80211_ELEMID_FHPARMS; 1165 *frm++ = 5; 1166 *frm++ = ni->ni_fhdwell & 0x00ff; 1167 *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff; 1168 *frm++ = IEEE80211_FH_CHANSET( 1169 ieee80211_chan2ieee(ic, ni->ni_chan)); 1170 *frm++ = IEEE80211_FH_CHANPAT( 1171 ieee80211_chan2ieee(ic, ni->ni_chan)); 1172 *frm++ = ni->ni_fhindex; 1173 } else { 1174 *frm++ = IEEE80211_ELEMID_DSPARMS; 1175 *frm++ = 1; 1176 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 1177 } 1178 1179 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1180 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1181 *frm++ = 2; 1182 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1183 } 1184 if (ic->ic_flags & IEEE80211_F_WPA) 1185 frm = ieee80211_add_wpa(frm, ic); 1186 if (ic->ic_curmode == IEEE80211_MODE_11G) 1187 frm = ieee80211_add_erp(frm, ic); 1188 frm = ieee80211_add_xrates(frm, rs); 1189 if (ic->ic_flags & IEEE80211_F_WME) 1190 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1191 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 1192 KKASSERT(m->m_len <= pktlen); 1193 1194 return m; 1195 } 1196 1197 /* 1198 * Send a management frame. The node is for the destination (or ic_bss 1199 * when in station mode). Nodes other than ic_bss have their reference 1200 * count bumped to reflect our use for an indeterminant time. 1201 */ 1202 int 1203 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni, 1204 int type, int arg) 1205 { 1206 #define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0) 1207 struct mbuf *m; 1208 uint8_t *frm; 1209 uint16_t capinfo; 1210 int has_challenge, is_shared_key, ret, timer, status, encrypt; 1211 const struct ieee80211_rateset *rs; 1212 1213 KASSERT(ni != NULL, ("null node")); 1214 1215 /* 1216 * Hold a reference on the node so it doesn't go away until after 1217 * the xmit is complete all the way in the driver. On error we 1218 * will remove our reference. 1219 */ 1220 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1221 "ieee80211_ref_node (%s:%u) %p<%6D> refcnt %d\n", 1222 __func__, __LINE__, 1223 ni, ni->ni_macaddr, ":", 1224 ieee80211_node_refcnt(ni) + 1); 1225 ieee80211_ref_node(ni); 1226 1227 encrypt = 0; 1228 timer = 0; 1229 switch (type) { 1230 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 1231 m = _ieee80211_probe_resp_alloc(ic, ic->ic_bss); 1232 if (m == NULL) { 1233 /* NB: Statistics have been updated. */ 1234 ret = ENOMEM; 1235 goto bad; 1236 } 1237 break; 1238 1239 case IEEE80211_FC0_SUBTYPE_AUTH: 1240 status = arg >> 16; 1241 arg &= 0xffff; 1242 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 1243 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 1244 ni->ni_challenge != NULL); 1245 1246 /* 1247 * Deduce whether we're doing open authentication or 1248 * shared key authentication. We do the latter if 1249 * we're in the middle of a shared key authentication 1250 * handshake or if we're initiating an authentication 1251 * request and configured to use shared key. 1252 */ 1253 is_shared_key = has_challenge || 1254 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 1255 (arg == IEEE80211_AUTH_SHARED_REQUEST && 1256 ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED); 1257 1258 m = ieee80211_getmgtframe(&frm, 1259 3 * sizeof(uint16_t) 1260 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 1261 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 1262 ); 1263 if (m == NULL) 1264 senderr(ENOMEM, is_tx_nobuf); 1265 1266 ((uint16_t *)frm)[0] = 1267 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 1268 : htole16(IEEE80211_AUTH_ALG_OPEN); 1269 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 1270 ((uint16_t *)frm)[2] = htole16(status);/* status */ 1271 1272 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 1273 ((uint16_t *)frm)[3] = 1274 htole16((IEEE80211_CHALLENGE_LEN << 8) | 1275 IEEE80211_ELEMID_CHALLENGE); 1276 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 1277 IEEE80211_CHALLENGE_LEN); 1278 m->m_pkthdr.len = m->m_len = 1279 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 1280 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 1281 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1282 "[%6D] request encrypt frame (%s)\n", 1283 ni->ni_macaddr, ":", __func__); 1284 encrypt = 1; /* WEP-encrypt, please */ 1285 } 1286 } else 1287 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 1288 1289 /* XXX not right for shared key */ 1290 if (status == IEEE80211_STATUS_SUCCESS) 1291 IEEE80211_NODE_STAT(ni, tx_auth); 1292 else 1293 IEEE80211_NODE_STAT(ni, tx_auth_fail); 1294 1295 if (ic->ic_opmode == IEEE80211_M_STA) 1296 timer = IEEE80211_TRANS_WAIT; 1297 break; 1298 1299 case IEEE80211_FC0_SUBTYPE_DEAUTH: 1300 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1301 "[%6D] send station deauthenticate (reason %d)\n", 1302 ni->ni_macaddr, ":", arg); 1303 m = ieee80211_getmgtframe(&frm, sizeof(uint16_t)); 1304 if (m == NULL) 1305 senderr(ENOMEM, is_tx_nobuf); 1306 *(uint16_t *)frm = htole16(arg); /* reason */ 1307 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 1308 1309 IEEE80211_NODE_STAT(ni, tx_deauth); 1310 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 1311 1312 ieee80211_node_unauthorize(ni); /* port closed */ 1313 break; 1314 1315 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 1316 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 1317 /* 1318 * asreq frame format 1319 * [2] capability information 1320 * [2] listen interval 1321 * [6*] current AP address (reassoc only) 1322 * [tlv] ssid 1323 * [tlv] supported rates 1324 * [tlv] extended supported rates 1325 * [tlv] WME 1326 * [tlv] user-specified ie's 1327 */ 1328 m = ieee80211_getmgtframe(&frm, 1329 sizeof(uint16_t) 1330 + sizeof(uint16_t) 1331 + IEEE80211_ADDR_LEN 1332 + 2 + IEEE80211_NWID_LEN 1333 + 2 + IEEE80211_RATE_SIZE 1334 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1335 + sizeof(struct ieee80211_wme_info) 1336 + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0) 1337 ); 1338 if (m == NULL) 1339 senderr(ENOMEM, is_tx_nobuf); 1340 1341 KASSERT(ic->ic_opmode == IEEE80211_M_STA, 1342 ("wrong mode %u", ic->ic_opmode)); 1343 capinfo = IEEE80211_CAPINFO_ESS; 1344 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1345 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1346 /* 1347 * NB: Some 11a AP's reject the request when 1348 * short premable or PBCC modulation is set. 1349 */ 1350 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 1351 if (ic->ic_caps & IEEE80211_C_SHPREAMBLE) 1352 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1353 if (ic->ic_caps_ext & IEEE80211_CEXT_PBCC) 1354 capinfo |= IEEE80211_CAPINFO_PBCC; 1355 } 1356 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan) && 1357 (ic->ic_caps & IEEE80211_C_SHSLOT)) 1358 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1359 *(uint16_t *)frm = htole16(capinfo); 1360 frm += 2; 1361 1362 KKASSERT(ic->ic_bss->ni_intval != 0); 1363 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 1364 ic->ic_bss->ni_intval)); 1365 frm += 2; 1366 1367 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 1368 IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid); 1369 frm += IEEE80211_ADDR_LEN; 1370 } 1371 1372 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 1373 1374 rs = &ic->ic_sup_rates[ieee80211_chan2mode(ic, ni->ni_chan)]; 1375 frm = ieee80211_add_rates(frm, rs); 1376 frm = ieee80211_add_xrates(frm, rs); 1377 1378 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1379 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 1380 if (ic->ic_opt_ie != NULL) { 1381 memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len); 1382 frm += ic->ic_opt_ie_len; 1383 } 1384 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 1385 1386 timer = IEEE80211_TRANS_WAIT; 1387 break; 1388 1389 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 1390 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 1391 /* 1392 * asreq frame format 1393 * [2] capability information 1394 * [2] status 1395 * [2] association ID 1396 * [tlv] supported rates 1397 * [tlv] extended supported rates 1398 * [tlv] WME (if enabled and STA enabled) 1399 */ 1400 m = ieee80211_getmgtframe(&frm, 1401 sizeof(uint16_t) 1402 + sizeof(uint16_t) 1403 + sizeof(uint16_t) 1404 + 2 + IEEE80211_RATE_SIZE 1405 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1406 + sizeof(struct ieee80211_wme_param) 1407 ); 1408 if (m == NULL) 1409 senderr(ENOMEM, is_tx_nobuf); 1410 1411 capinfo = getcapinfo(ic, ic->ic_curchan); 1412 *(uint16_t *)frm = htole16(capinfo); 1413 frm += 2; 1414 1415 *(uint16_t *)frm = htole16(arg); /* status */ 1416 frm += 2; 1417 1418 if (arg == IEEE80211_STATUS_SUCCESS) { 1419 *(uint16_t *)frm = htole16(ni->ni_associd); 1420 IEEE80211_NODE_STAT(ni, tx_assoc); 1421 } else 1422 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 1423 frm += 2; 1424 1425 KKASSERT(ic->ic_curmode != IEEE80211_MODE_AUTO); 1426 rs = &ic->ic_sup_rates[ic->ic_curmode]; 1427 frm = ieee80211_add_rates(frm, rs); 1428 frm = ieee80211_add_xrates(frm, rs); 1429 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1430 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1431 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 1432 break; 1433 1434 case IEEE80211_FC0_SUBTYPE_DISASSOC: 1435 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC, 1436 "[%6D] send station disassociate (reason %d)\n", 1437 ni->ni_macaddr, ":", arg); 1438 m = ieee80211_getmgtframe(&frm, sizeof(uint16_t)); 1439 if (m == NULL) 1440 senderr(ENOMEM, is_tx_nobuf); 1441 *(uint16_t *)frm = htole16(arg); /* reason */ 1442 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 1443 1444 IEEE80211_NODE_STAT(ni, tx_disassoc); 1445 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 1446 break; 1447 1448 default: 1449 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1450 "[%6D] invalid mgmt frame type %u\n", 1451 ni->ni_macaddr, ":", type); 1452 senderr(EINVAL, is_tx_unknownmgt); 1453 /* NOTREACHED */ 1454 } 1455 ret = ieee80211_mgmt_output(ic, ni, m, type, timer, encrypt); 1456 if (ret != 0) { 1457 bad: 1458 ieee80211_free_node(ni); 1459 } 1460 return ret; 1461 #undef senderr 1462 } 1463 1464 /* 1465 * Allocate a probe response frame and fillin the appropriate bits. 1466 */ 1467 struct mbuf * 1468 ieee80211_probe_resp_alloc(struct ieee80211com *ic, struct ieee80211_node *ni) 1469 { 1470 struct ieee80211_frame *wh; 1471 struct mbuf *m; 1472 1473 m = _ieee80211_probe_resp_alloc(ic, ni); 1474 if (m == NULL) 1475 return NULL; 1476 1477 M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT); 1478 KASSERT(m != NULL, ("no space for 802.11 header?")); 1479 1480 wh = mtod(m, struct ieee80211_frame *); 1481 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 1482 IEEE80211_FC0_SUBTYPE_PROBE_RESP; 1483 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1484 *(uint16_t *)wh->i_dur = 0; 1485 bzero(wh->i_addr1, sizeof(wh->i_addr1)); 1486 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 1487 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 1488 *(uint16_t *)wh->i_seq = 0; 1489 1490 return m; 1491 } 1492 1493 /* 1494 * Allocate a beacon frame and fillin the appropriate bits. 1495 */ 1496 struct mbuf * 1497 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni, 1498 struct ieee80211_beacon_offsets *bo) 1499 { 1500 struct ifnet *ifp = ic->ic_ifp; 1501 struct ieee80211_frame *wh; 1502 struct mbuf *m; 1503 int pktlen; 1504 uint8_t *frm, *efrm; 1505 uint16_t capinfo; 1506 const struct ieee80211_rateset *rs; 1507 1508 /* 1509 * beacon frame format 1510 * [8] time stamp 1511 * [2] beacon interval 1512 * [2] cabability information 1513 * [tlv] ssid 1514 * [tlv] supported rates 1515 * [3] parameter set (DS) 1516 * [tlv] parameter set (IBSS/TIM) 1517 * [tlv] extended rate phy (ERP) 1518 * [tlv] extended supported rates 1519 * [tlv] WME parameters 1520 * [tlv] WPA/RSN parameters 1521 * XXX Vendor-specific OIDs (e.g. Atheros) 1522 * NB: we allocate the max space required for the TIM bitmap. 1523 */ 1524 KKASSERT(ic->ic_curmode != IEEE80211_MODE_AUTO); 1525 rs = &ic->ic_sup_rates[ic->ic_curmode]; 1526 pktlen = 8 /* time stamp */ 1527 + sizeof(uint16_t) /* beacon interval */ 1528 + sizeof(uint16_t) /* capabilities */ 1529 + 2 + ni->ni_esslen /* ssid */ 1530 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 1531 + 2 + 1 /* DS parameters */ 1532 + 2 + 4 + ic->ic_tim_len /* DTIM/IBSSPARMS */ 1533 + 2 + 1 /* ERP */ 1534 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1535 + (ic->ic_caps & IEEE80211_C_WME ? /* WME */ 1536 sizeof(struct ieee80211_wme_param) : 0) 1537 + (ic->ic_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 1538 2*sizeof(struct ieee80211_ie_wpa) : 0) 1539 ; 1540 m = ieee80211_getmgtframe(&frm, pktlen); 1541 if (m == NULL) { 1542 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1543 "%s: cannot get buf; size %u\n", __func__, pktlen); 1544 ic->ic_stats.is_tx_nobuf++; 1545 return NULL; 1546 } 1547 1548 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 1549 frm += 8; 1550 *(uint16_t *)frm = htole16(ni->ni_intval); 1551 frm += 2; 1552 capinfo = getcapinfo(ic, ni->ni_chan); 1553 bo->bo_caps = (uint16_t *)frm; 1554 *(uint16_t *)frm = htole16(capinfo); 1555 frm += 2; 1556 *frm++ = IEEE80211_ELEMID_SSID; 1557 if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) { 1558 *frm++ = ni->ni_esslen; 1559 memcpy(frm, ni->ni_essid, ni->ni_esslen); 1560 frm += ni->ni_esslen; 1561 } else 1562 *frm++ = 0; 1563 frm = ieee80211_add_rates(frm, rs); 1564 if (ic->ic_curmode != IEEE80211_MODE_FH) { 1565 *frm++ = IEEE80211_ELEMID_DSPARMS; 1566 *frm++ = 1; 1567 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 1568 } 1569 bo->bo_tim = frm; 1570 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1571 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1572 *frm++ = 2; 1573 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1574 bo->bo_tim_len = 0; 1575 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1576 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 1577 1578 tie->tim_ie = IEEE80211_ELEMID_TIM; 1579 tie->tim_len = 4; /* length */ 1580 tie->tim_count = 0; /* DTIM count */ 1581 tie->tim_period = ic->ic_dtim_period; /* DTIM period */ 1582 tie->tim_bitctl = 0; /* bitmap control */ 1583 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 1584 frm += sizeof(struct ieee80211_tim_ie); 1585 bo->bo_tim_len = 1; 1586 } 1587 bo->bo_trailer = frm; 1588 if (ic->ic_flags & IEEE80211_F_WME) { 1589 bo->bo_wme = frm; 1590 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1591 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 1592 } 1593 if (ic->ic_flags & IEEE80211_F_WPA) 1594 frm = ieee80211_add_wpa(frm, ic); 1595 if (ic->ic_curmode == IEEE80211_MODE_11G) { 1596 bo->bo_erp = frm; 1597 frm = ieee80211_add_erp(frm, ic); 1598 } 1599 efrm = ieee80211_add_xrates(frm, rs); 1600 bo->bo_trailer_len = efrm - bo->bo_trailer; 1601 m->m_pkthdr.len = m->m_len = efrm - mtod(m, uint8_t *); 1602 KKASSERT(m->m_len <= pktlen); 1603 1604 M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT); 1605 KASSERT(m != NULL, ("no space for 802.11 header?")); 1606 wh = mtod(m, struct ieee80211_frame *); 1607 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 1608 IEEE80211_FC0_SUBTYPE_BEACON; 1609 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1610 *(uint16_t *)wh->i_dur = 0; 1611 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 1612 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 1613 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 1614 *(uint16_t *)wh->i_seq = 0; 1615 1616 return m; 1617 } 1618 1619 /* 1620 * Update the dynamic parts of a beacon frame based on the current state. 1621 */ 1622 int 1623 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni, 1624 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 1625 { 1626 int len_changed = 0; 1627 uint16_t capinfo; 1628 1629 ASSERT_SERIALIZED(ic->ic_ifp->if_serializer); 1630 1631 /* XXX faster to recalculate entirely or just changes? */ 1632 capinfo = getcapinfo(ic, ni->ni_chan); 1633 *bo->bo_caps = htole16(capinfo); 1634 1635 if (ic->ic_flags & IEEE80211_F_WME) { 1636 struct ieee80211_wme_state *wme = &ic->ic_wme; 1637 1638 /* 1639 * Check for agressive mode change. When there is 1640 * significant high priority traffic in the BSS 1641 * throttle back BE traffic by using conservative 1642 * parameters. Otherwise BE uses agressive params 1643 * to optimize performance of legacy/non-QoS traffic. 1644 */ 1645 if (wme->wme_flags & WME_F_AGGRMODE) { 1646 if (wme->wme_hipri_traffic > 1647 wme->wme_hipri_switch_thresh) { 1648 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 1649 "%s: traffic %u, disable aggressive mode\n", 1650 __func__, wme->wme_hipri_traffic); 1651 wme->wme_flags &= ~WME_F_AGGRMODE; 1652 ieee80211_wme_updateparams(ic); 1653 wme->wme_hipri_traffic = 1654 wme->wme_hipri_switch_hysteresis; 1655 } else 1656 wme->wme_hipri_traffic = 0; 1657 } else { 1658 if (wme->wme_hipri_traffic <= 1659 wme->wme_hipri_switch_thresh) { 1660 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 1661 "%s: traffic %u, enable aggressive mode\n", 1662 __func__, wme->wme_hipri_traffic); 1663 wme->wme_flags |= WME_F_AGGRMODE; 1664 ieee80211_wme_updateparams(ic); 1665 wme->wme_hipri_traffic = 0; 1666 } else 1667 wme->wme_hipri_traffic = 1668 wme->wme_hipri_switch_hysteresis; 1669 } 1670 if (ic->ic_flags & IEEE80211_F_WMEUPDATE) { 1671 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 1672 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 1673 } 1674 } 1675 1676 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/ 1677 struct ieee80211_tim_ie *tie = 1678 (struct ieee80211_tim_ie *) bo->bo_tim; 1679 if (ic->ic_flags & IEEE80211_F_TIMUPDATE) { 1680 u_int timlen, timoff, i; 1681 /* 1682 * ATIM/DTIM needs updating. If it fits in the 1683 * current space allocated then just copy in the 1684 * new bits. Otherwise we need to move any trailing 1685 * data to make room. Note that we know there is 1686 * contiguous space because ieee80211_beacon_allocate 1687 * insures there is space in the mbuf to write a 1688 * maximal-size virtual bitmap (based on ic_max_aid). 1689 */ 1690 /* 1691 * Calculate the bitmap size and offset, copy any 1692 * trailer out of the way, and then copy in the 1693 * new bitmap and update the information element. 1694 * Note that the tim bitmap must contain at least 1695 * one byte and any offset must be even. 1696 */ 1697 if (ic->ic_ps_pending != 0) { 1698 timoff = 128; /* impossibly large */ 1699 for (i = 0; i < ic->ic_tim_len; i++) 1700 if (ic->ic_tim_bitmap[i]) { 1701 timoff = i &~ 1; 1702 break; 1703 } 1704 KASSERT(timoff != 128, ("tim bitmap empty!")); 1705 for (i = ic->ic_tim_len-1; i >= timoff; i--) 1706 if (ic->ic_tim_bitmap[i]) 1707 break; 1708 timlen = 1 + (i - timoff); 1709 } else { 1710 timoff = 0; 1711 timlen = 1; 1712 } 1713 if (timlen != bo->bo_tim_len) { 1714 /* copy up/down trailer */ 1715 int adjust = tie->tim_bitmap+timlen 1716 - bo->bo_trailer; 1717 ovbcopy(bo->bo_trailer, bo->bo_trailer+adjust, 1718 bo->bo_trailer_len); 1719 bo->bo_trailer += adjust; 1720 bo->bo_wme += adjust; 1721 bo->bo_erp += adjust; 1722 bo->bo_tim_len = timlen; 1723 1724 /* update information element */ 1725 tie->tim_len = 3 + timlen; 1726 tie->tim_bitctl = timoff; 1727 len_changed = 1; 1728 } 1729 memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff, 1730 bo->bo_tim_len); 1731 1732 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE; 1733 1734 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 1735 "%s: TIM updated, pending %u, off %u, len %u\n", 1736 __func__, ic->ic_ps_pending, timoff, timlen); 1737 } 1738 /* count down DTIM period */ 1739 if (tie->tim_count == 0) 1740 tie->tim_count = tie->tim_period - 1; 1741 else 1742 tie->tim_count--; 1743 /* update state for buffered multicast frames on DTIM */ 1744 if (mcast && tie->tim_count == 0) 1745 tie->tim_bitctl |= 1; 1746 else 1747 tie->tim_bitctl &= ~1; 1748 if (ic->ic_flags_ext & IEEE80211_FEXT_ERPUPDATE) { 1749 /* 1750 * ERP element needs updating. 1751 */ 1752 (void) ieee80211_add_erp(bo->bo_erp, ic); 1753 ic->ic_flags_ext &= ~IEEE80211_FEXT_ERPUPDATE; 1754 } 1755 } 1756 1757 return len_changed; 1758 } 1759 1760 /* 1761 * Save an outbound packet for a node in power-save sleep state. 1762 * The new packet is placed on the node's saved queue, and the TIM 1763 * is changed, if necessary. 1764 */ 1765 void 1766 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni, 1767 struct mbuf *m) 1768 { 1769 int qlen, age; 1770 1771 ASSERT_SERIALIZED(ic->ic_ifp->if_serializer); 1772 1773 if (IF_QFULL(&ni->ni_savedq)) { 1774 IF_DROP(&ni->ni_savedq); 1775 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1776 "[%6D] pwr save q overflow, drops %d (size %d)\n", 1777 ni->ni_macaddr, ":", 1778 ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE); 1779 #ifdef IEEE80211_DEBUG 1780 if (ieee80211_msg_dumppkts(ic)) 1781 ieee80211_dump_pkt(mtod(m, caddr_t), m->m_len, -1, -1); 1782 #endif 1783 m_freem(m); 1784 return; 1785 } 1786 /* 1787 * Tag the frame with it's expiry time and insert 1788 * it in the queue. The aging interval is 4 times 1789 * the listen interval specified by the station. 1790 * Frames that sit around too long are reclaimed 1791 * using this information. 1792 */ 1793 /* TU -> secs. XXX handle overflow? */ 1794 age = IEEE80211_TU_TO_MS((ni->ni_intval * ic->ic_bintval) << 2) / 1000; 1795 _IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age); 1796 1797 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 1798 "[%6D] save frame with age %d, %u now queued\n", 1799 ni->ni_macaddr, ":", age, qlen); 1800 1801 if (qlen == 1) 1802 ic->ic_set_tim(ni, 1); 1803 } 1804 1805 uint8_t 1806 ieee80211_ack_rate(struct ieee80211_node *ni, uint8_t rate) 1807 { 1808 const struct ieee80211_rateset *rs = &ni->ni_rates; 1809 uint8_t ack_rate = 0; 1810 enum ieee80211_modtype modtype; 1811 int i; 1812 1813 rate &= IEEE80211_RATE_VAL; 1814 1815 modtype = ieee80211_rate2modtype(rate); 1816 1817 for (i = 0; i < rs->rs_nrates; ++i) { 1818 uint8_t rate1 = IEEE80211_RS_RATE(rs, i); 1819 1820 if (rate1 > rate) { 1821 if (ack_rate != 0) 1822 return ack_rate; 1823 else 1824 break; 1825 } 1826 1827 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 1828 ieee80211_rate2modtype(rate1) == modtype) 1829 ack_rate = rate1; 1830 } 1831 1832 switch (rate) { 1833 /* CCK */ 1834 case 2: 1835 case 4: 1836 case 11: 1837 case 22: 1838 ack_rate = rate; 1839 break; 1840 1841 /* PBCC */ 1842 case 44: 1843 ack_rate = 22; 1844 break; 1845 1846 /* OFDM */ 1847 case 12: 1848 case 18: 1849 ack_rate = 12; 1850 break; 1851 case 24: 1852 case 36: 1853 ack_rate = 24; 1854 break; 1855 case 48: 1856 case 72: 1857 case 96: 1858 case 108: 1859 ack_rate = 48; 1860 break; 1861 default: 1862 panic("unsupported rate %d\n", rate); 1863 } 1864 return ack_rate; 1865 } 1866 1867 /* IEEE Std 802.11a-1999, page 9, table 79 */ 1868 #define IEEE80211_OFDM_SYM_TIME 4 1869 #define IEEE80211_OFDM_PREAMBLE_TIME 16 1870 #define IEEE80211_OFDM_SIGNAL_TIME 4 1871 /* IEEE Std 802.11g-2003, page 44 */ 1872 #define IEEE80211_OFDM_SIGNAL_EXT_TIME 6 1873 1874 /* IEEE Std 802.11a-1999, page 7, figure 107 */ 1875 #define IEEE80211_OFDM_PLCP_SERVICE_NBITS 16 1876 #define IEEE80211_OFDM_TAIL_NBITS 6 1877 1878 #define IEEE80211_OFDM_NBITS(frmlen) \ 1879 (IEEE80211_OFDM_PLCP_SERVICE_NBITS + \ 1880 ((frmlen) * NBBY) + \ 1881 IEEE80211_OFDM_TAIL_NBITS) 1882 1883 #define IEEE80211_OFDM_NBITS_PER_SYM(kbps) \ 1884 (((kbps) * IEEE80211_OFDM_SYM_TIME) / 1000) 1885 1886 #define IEEE80211_OFDM_NSYMS(kbps, frmlen) \ 1887 howmany(IEEE80211_OFDM_NBITS((frmlen)), \ 1888 IEEE80211_OFDM_NBITS_PER_SYM((kbps))) 1889 1890 #define IEEE80211_OFDM_TXTIME(kbps, frmlen) \ 1891 (IEEE80211_OFDM_PREAMBLE_TIME + \ 1892 IEEE80211_OFDM_SIGNAL_TIME + \ 1893 (IEEE80211_OFDM_NSYMS((kbps), (frmlen)) * IEEE80211_OFDM_SYM_TIME)) 1894 1895 /* IEEE Std 802.11b-1999, page 28, subclause 18.3.4 */ 1896 #define IEEE80211_CCK_PREAMBLE_LEN 144 1897 #define IEEE80211_CCK_PLCP_HDR_TIME 48 1898 #define IEEE80211_CCK_SHPREAMBLE_LEN 72 1899 #define IEEE80211_CCK_SHPLCP_HDR_TIME 24 1900 1901 #define IEEE80211_CCK_NBITS(frmlen) ((frmlen) * NBBY) 1902 #define IEEE80211_CCK_TXTIME(kbps, frmlen) \ 1903 (((IEEE80211_CCK_NBITS((frmlen)) * 1000) + (kbps) - 1) / (kbps)) 1904 1905 uint16_t 1906 ieee80211_txtime(struct ieee80211_node *ni, u_int len, uint8_t rs_rate, 1907 uint32_t flags) 1908 { 1909 struct ieee80211com *ic = ni->ni_ic; 1910 enum ieee80211_modtype modtype; 1911 uint16_t txtime; 1912 int rate; 1913 1914 rs_rate &= IEEE80211_RATE_VAL; 1915 1916 rate = rs_rate * 500; /* ieee80211 rate -> kbps */ 1917 1918 modtype = ieee80211_rate2modtype(rs_rate); 1919 if (modtype == IEEE80211_MODTYPE_OFDM) { 1920 /* 1921 * IEEE Std 802.11a-1999, page 37, equation (29) 1922 * IEEE Std 802.11g-2003, page 44, equation (42) 1923 */ 1924 txtime = IEEE80211_OFDM_TXTIME(rate, len); 1925 if (ic->ic_curmode == IEEE80211_MODE_11G) 1926 txtime += IEEE80211_OFDM_SIGNAL_EXT_TIME; 1927 } else { 1928 /* 1929 * IEEE Std 802.11b-1999, page 28, subclause 18.3.4 1930 * IEEE Std 802.11g-2003, page 45, equation (43) 1931 */ 1932 if (modtype == IEEE80211_MODTYPE_PBCC) 1933 ++len; 1934 txtime = IEEE80211_CCK_TXTIME(rate, len); 1935 1936 /* 1937 * Short preamble is not applicable for DS 1Mbits/s 1938 */ 1939 if (rs_rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) { 1940 txtime += IEEE80211_CCK_SHPREAMBLE_LEN + 1941 IEEE80211_CCK_SHPLCP_HDR_TIME; 1942 } else { 1943 txtime += IEEE80211_CCK_PREAMBLE_LEN + 1944 IEEE80211_CCK_PLCP_HDR_TIME; 1945 } 1946 } 1947 return txtime; 1948 } 1949