xref: /dflybsd-src/sys/netproto/802_11/wlan/ieee80211_dragonfly.c (revision 88abd8b5763f2e5d4b4db5c5dc1b5bb4c489698b)
1 /*-
2  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * $FreeBSD: head/sys/net80211/ieee80211_freebsd.c 202612 2010-01-19 05:00:57Z thompsa $
26  * $DragonFly$
27  */
28 
29 /*
30  * IEEE 802.11 support (DragonFlyBSD-specific code)
31  */
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/kernel.h>
36 #include <sys/systm.h>
37 #include <sys/linker.h>
38 #include <sys/mbuf.h>
39 #include <sys/module.h>
40 #include <sys/proc.h>
41 #include <sys/sysctl.h>
42 
43 #include <sys/socket.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_dl.h>
48 #include <net/if_clone.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/ethernet.h>
52 #include <net/route.h>
53 #include <net/ifq_var.h>
54 
55 #include <netproto/802_11/ieee80211_var.h>
56 #include <netproto/802_11/ieee80211_input.h>
57 
58 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
59 
60 #ifdef IEEE80211_DEBUG
61 int	ieee80211_debug = 0;
62 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
63 	    0, "debugging printfs");
64 #endif
65 
66 MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state");
67 
68 
69 static void	wlan_clone_destroy(struct ifnet *);
70 static int	wlan_clone_create(struct if_clone *, int, caddr_t);
71 
72 static struct if_clone wlan_cloner =
73 	IF_CLONE_INITIALIZER("wlan", wlan_clone_create, wlan_clone_destroy,
74 	    0, IF_MAXUNIT);
75 
76 struct lwkt_serialize wlan_global_serializer = LWKT_SERIALIZE_INITIALIZER;
77 
78 /*
79  * Allocate/free com structure in conjunction with ifnet;
80  * these routines are registered with if_register_com_alloc
81  * below and are called automatically by the ifnet code
82  * when the ifnet of the parent device is created.
83  */
84 static void *
85 wlan_alloc(u_char type, struct ifnet *ifp)
86 {
87 	struct ieee80211com *ic;
88 
89 	ic = kmalloc(sizeof(struct ieee80211com), M_80211_COM, M_WAITOK|M_ZERO);
90 	ic->ic_ifp = ifp;
91 
92 	return (ic);
93 }
94 
95 static void
96 wlan_free(void *ic, u_char type)
97 {
98 	kfree(ic, M_80211_COM);
99 }
100 
101 static int
102 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
103 {
104 	struct ieee80211_clone_params cp;
105 	struct ieee80211vap *vap;
106 	struct ieee80211com *ic;
107 	struct ifnet *ifp;
108 	int error;
109 
110 	error = copyin(params, &cp, sizeof(cp));
111 	if (error)
112 		return error;
113 	ifp = ifunit(cp.icp_parent);
114 	if (ifp == NULL)
115 		return ENXIO;
116 	/* XXX move printfs to DIAGNOSTIC before release */
117 	if (ifp->if_type != IFT_IEEE80211) {
118 		if_printf(ifp, "%s: reject, not an 802.11 device\n", __func__);
119 		return ENXIO;
120 	}
121 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
122 		if_printf(ifp, "%s: invalid opmode %d\n",
123 		    __func__, cp.icp_opmode);
124 		return EINVAL;
125 	}
126 	ic = ifp->if_l2com;
127 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
128 		if_printf(ifp, "%s mode not supported\n",
129 		    ieee80211_opmode_name[cp.icp_opmode]);
130 		return EOPNOTSUPP;
131 	}
132 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
133 #ifdef IEEE80211_SUPPORT_TDMA
134 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
135 #else
136 	    (1)
137 #endif
138 	) {
139 		if_printf(ifp, "TDMA not supported\n");
140 		return EOPNOTSUPP;
141 	}
142 	vap = ic->ic_vap_create(ic, ifc->ifc_name, unit,
143 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
144 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
145 			    cp.icp_macaddr : (const uint8_t *)IF_LLADDR(ifp));
146 	return (vap == NULL ? EIO : 0);
147 }
148 
149 static void
150 wlan_clone_destroy(struct ifnet *ifp)
151 {
152 	struct ieee80211vap *vap = ifp->if_softc;
153 	struct ieee80211com *ic = vap->iv_ic;
154 
155 	wlan_serialize_enter();	/* WARNING must be global serializer */
156 	ic->ic_vap_delete(vap);
157 	wlan_serialize_exit();
158 }
159 
160 const char *wlan_last_enter_func;
161 const char *wlan_last_exit_func;
162 /*
163  * These serializer functions are used by wlan and all drivers.
164  */
165 void
166 _wlan_serialize_enter(const char *funcname)
167 {
168 	lwkt_serialize_enter(&wlan_global_serializer);
169 	wlan_last_enter_func = funcname;
170 }
171 
172 void
173 _wlan_serialize_exit(const char *funcname)
174 {
175 	lwkt_serialize_exit(&wlan_global_serializer);
176 	wlan_last_exit_func = funcname;
177 }
178 
179 int
180 wlan_serialize_sleep(void *ident, int flags, const char *wmesg, int timo)
181 {
182 	return(zsleep(ident, &wlan_global_serializer, flags, wmesg, timo));
183 }
184 
185 /*
186  * condition-var functions which interlock the ic lock (which is now
187  * just wlan_global_serializer)
188  */
189 void
190 wlan_cv_init(struct cv *cv, const char *desc)
191 {
192 	cv->cv_desc = desc;
193 	cv->cv_waiters = 0;
194 }
195 
196 int
197 wlan_cv_timedwait(struct cv *cv, int ticks)
198 {
199 	int error;
200 
201 	++cv->cv_waiters;
202 	error = wlan_serialize_sleep(cv, 0, cv->cv_desc, ticks);
203 	return (error);
204 }
205 
206 void
207 wlan_cv_wait(struct cv *cv)
208 {
209 	++cv->cv_waiters;
210 	wlan_serialize_sleep(cv, 0, cv->cv_desc, 0);
211 }
212 
213 void
214 wlan_cv_signal(struct cv *cv, int broadcast)
215 {
216 	if (cv->cv_waiters) {
217 		if (broadcast) {
218 			cv->cv_waiters = 0;
219 			wakeup(cv);
220 		} else {
221 			--cv->cv_waiters;
222 			wakeup_one(cv);
223 		}
224 	}
225 }
226 
227 /*
228  * Misc
229  */
230 void
231 ieee80211_vap_destroy(struct ieee80211vap *vap)
232 {
233 	wlan_assert_serialized();
234 	wlan_serialize_exit();
235 	if_clone_destroy(vap->iv_ifp->if_xname);
236 	wlan_serialize_enter();
237 }
238 
239 /*
240  * NOTE: This handler is used generally to convert milliseconds
241  *	 to ticks for various simple sysctl variables and does not
242  *	 need to be serialized.
243  */
244 int
245 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
246 {
247 	int msecs = ticks_to_msecs(*(int *)arg1);
248 	int error, t;
249 
250 	error = sysctl_handle_int(oidp, &msecs, 0, req);
251 	if (error == 0 && req->newptr) {
252 		t = msecs_to_ticks(msecs);
253 		*(int *)arg1 = (t < 1) ? 1 : t;
254 	}
255 
256 	return error;
257 }
258 
259 static int
260 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
261 {
262 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
263 	int error;
264 
265 	error = sysctl_handle_int(oidp, &inact, 0, req);
266 	wlan_serialize_enter();
267 	if (error == 0 && req->newptr)
268 		*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
269 	wlan_serialize_exit();
270 
271 	return error;
272 }
273 
274 static int
275 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
276 {
277 	struct ieee80211com *ic = arg1;
278 	const char *name = ic->ic_ifp->if_xname;
279 
280 	return SYSCTL_OUT(req, name, strlen(name));
281 }
282 
283 static int
284 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
285 {
286 	struct ieee80211com *ic = arg1;
287 	int t = 0, error;
288 
289 	error = sysctl_handle_int(oidp, &t, 0, req);
290 	wlan_serialize_enter();
291 	if (error == 0 && req->newptr)
292 		ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
293 	wlan_serialize_exit();
294 
295 	return error;
296 }
297 
298 void
299 ieee80211_sysctl_attach(struct ieee80211com *ic)
300 {
301 }
302 
303 void
304 ieee80211_sysctl_detach(struct ieee80211com *ic)
305 {
306 }
307 
308 void
309 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
310 {
311 	struct ifnet *ifp = vap->iv_ifp;
312 	struct sysctl_ctx_list *ctx;
313 	struct sysctl_oid *oid;
314 	char num[14];			/* sufficient for 32 bits */
315 
316 	ctx = (struct sysctl_ctx_list *) kmalloc(sizeof(struct sysctl_ctx_list),
317 		M_DEVBUF, M_INTWAIT | M_ZERO);
318 	if (ctx == NULL) {
319 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
320 			__func__);
321 		return;
322 	}
323 	sysctl_ctx_init(ctx);
324 	ksnprintf(num, sizeof(num), "%u", ifp->if_dunit);
325 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
326 		OID_AUTO, num, CTLFLAG_RD, NULL, "");
327 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
328 		"%parent", CTLFLAG_RD, vap->iv_ic, 0,
329 		ieee80211_sysctl_parent, "A", "parent device");
330 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
331 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
332 		"driver capabilities");
333 #ifdef IEEE80211_DEBUG
334 	vap->iv_debug = ieee80211_debug;
335 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
336 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
337 		"control debugging printfs");
338 #endif
339 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
340 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
341 		"consecutive beacon misses before scanning");
342 	/* XXX inherit from tunables */
343 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
344 		"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
345 		ieee80211_sysctl_inact, "I",
346 		"station inactivity timeout (sec)");
347 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
348 		"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
349 		ieee80211_sysctl_inact, "I",
350 		"station inactivity probe timeout (sec)");
351 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
352 		"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
353 		ieee80211_sysctl_inact, "I",
354 		"station authentication timeout (sec)");
355 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
356 		"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
357 		ieee80211_sysctl_inact, "I",
358 		"station initial state timeout (sec)");
359 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
360 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
361 			"ampdu_mintraffic_bk", CTLFLAG_RW,
362 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
363 			"BK traffic tx aggr threshold (pps)");
364 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
365 			"ampdu_mintraffic_be", CTLFLAG_RW,
366 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
367 			"BE traffic tx aggr threshold (pps)");
368 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
369 			"ampdu_mintraffic_vo", CTLFLAG_RW,
370 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
371 			"VO traffic tx aggr threshold (pps)");
372 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
373 			"ampdu_mintraffic_vi", CTLFLAG_RW,
374 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
375 			"VI traffic tx aggr threshold (pps)");
376 	}
377 	if (vap->iv_caps & IEEE80211_C_DFS) {
378 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
379 			"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
380 			ieee80211_sysctl_radar, "I", "simulate radar event");
381 	}
382 	vap->iv_sysctl = ctx;
383 	vap->iv_oid = oid;
384 }
385 
386 void
387 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
388 {
389 
390 	if (vap->iv_sysctl != NULL) {
391 		sysctl_ctx_free(vap->iv_sysctl);
392 		kfree(vap->iv_sysctl, M_DEVBUF);
393 		vap->iv_sysctl = NULL;
394 	}
395 }
396 
397 int
398 ieee80211_node_dectestref(struct ieee80211_node *ni)
399 {
400 	/* XXX need equivalent of atomic_dec_and_test */
401 	atomic_subtract_int(&ni->ni_refcnt, 1);
402 	return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
403 }
404 
405 void
406 ieee80211_drain_ifq(struct ifqueue *ifq)
407 {
408 	struct ieee80211_node *ni;
409 	struct mbuf *m;
410 
411 	wlan_assert_serialized();
412 	for (;;) {
413 		IF_DEQUEUE(ifq, m);
414 		if (m == NULL)
415 			break;
416 
417 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
418 		KASSERT(ni != NULL, ("frame w/o node"));
419 		ieee80211_free_node(ni);
420 		m->m_pkthdr.rcvif = NULL;
421 
422 		m_freem(m);
423 	}
424 }
425 
426 void
427 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
428 {
429 	struct ieee80211_node *ni;
430 	struct mbuf *m, **mprev;
431 
432 	wlan_assert_serialized();
433 	mprev = &ifq->ifq_head;
434 	while ((m = *mprev) != NULL) {
435 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
436 		if (ni != NULL && ni->ni_vap == vap) {
437 			*mprev = m->m_nextpkt;		/* remove from list */
438 			ifq->ifq_len--;
439 
440 			m_freem(m);
441 			ieee80211_free_node(ni);	/* reclaim ref */
442 		} else
443 			mprev = &m->m_nextpkt;
444 	}
445 	/* recalculate tail ptr */
446 	m = ifq->ifq_head;
447 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
448 		;
449 	ifq->ifq_tail = m;
450 }
451 
452 /*
453  * As above, for mbufs allocated with m_gethdr/MGETHDR
454  * or initialized by M_COPY_PKTHDR.
455  */
456 #define	MC_ALIGN(m, len)						\
457 do {									\
458 	(m)->m_data += (MCLBYTES - (len)) &~ (sizeof(long) - 1);	\
459 } while (/* CONSTCOND */ 0)
460 
461 /*
462  * Allocate and setup a management frame of the specified
463  * size.  We return the mbuf and a pointer to the start
464  * of the contiguous data area that's been reserved based
465  * on the packet length.  The data area is forced to 32-bit
466  * alignment and the buffer length to a multiple of 4 bytes.
467  * This is done mainly so beacon frames (that require this)
468  * can use this interface too.
469  */
470 struct mbuf *
471 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
472 {
473 	struct mbuf *m;
474 	u_int len;
475 
476 	/*
477 	 * NB: we know the mbuf routines will align the data area
478 	 *     so we don't need to do anything special.
479 	 */
480 	len = roundup2(headroom + pktlen, 4);
481 	KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
482 	if (len < MINCLSIZE) {
483 		m = m_gethdr(MB_DONTWAIT, MT_DATA);
484 		/*
485 		 * Align the data in case additional headers are added.
486 		 * This should only happen when a WEP header is added
487 		 * which only happens for shared key authentication mgt
488 		 * frames which all fit in MHLEN.
489 		 */
490 		if (m != NULL)
491 			MH_ALIGN(m, len);
492 	} else {
493 		m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
494 		if (m != NULL)
495 			MC_ALIGN(m, len);
496 	}
497 	if (m != NULL) {
498 		m->m_data += headroom;
499 		*frm = m->m_data;
500 	}
501 	return m;
502 }
503 
504 /*
505  * Re-align the payload in the mbuf.  This is mainly used (right now)
506  * to handle IP header alignment requirements on certain architectures.
507  */
508 struct mbuf *
509 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
510 {
511 	int pktlen, space;
512 	struct mbuf *n = NULL;
513 
514 	pktlen = m->m_pkthdr.len;
515 	space = pktlen + align;
516 	if (space < MINCLSIZE)
517 		n = m_gethdr(MB_DONTWAIT, MT_DATA);
518 #ifdef notyet
519 	else {
520 		n = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR,
521 		    space <= MCLBYTES ?     MCLBYTES :
522 #if MJUMPAGESIZE != MCLBYTES
523 		    space <= MJUMPAGESIZE ? MJUMPAGESIZE :
524 #endif
525 		    space <= MJUM9BYTES ?   MJUM9BYTES : MJUM16BYTES);
526 	}
527 #endif
528 	if (__predict_true(n != NULL)) {
529 		m_move_pkthdr(n, m);
530 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
531 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
532 		n->m_len = pktlen;
533 	} else {
534 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
535 		    mtod(m, const struct ieee80211_frame *), NULL,
536 		    "%s", "no mbuf to realign");
537 		vap->iv_stats.is_rx_badalign++;
538 	}
539 	m_freem(m);
540 	return n;
541 }
542 
543 int
544 ieee80211_add_callback(struct mbuf *m,
545 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
546 {
547 	struct m_tag *mtag;
548 	struct ieee80211_cb *cb;
549 
550 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
551 			sizeof(struct ieee80211_cb), M_INTWAIT);
552 	if (mtag == NULL)
553 		return 0;
554 
555 	cb = (struct ieee80211_cb *)(mtag+1);
556 	cb->func = func;
557 	cb->arg = arg;
558 	m_tag_prepend(m, mtag);
559 	m->m_flags |= M_TXCB;
560 	return 1;
561 }
562 
563 void
564 ieee80211_process_callback(struct ieee80211_node *ni,
565 	struct mbuf *m, int status)
566 {
567 	struct m_tag *mtag;
568 
569 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
570 	if (mtag != NULL) {
571 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
572 		cb->func(ni, cb->arg, status);
573 	}
574 }
575 
576 #include <sys/libkern.h>
577 
578 void
579 get_random_bytes(void *p, size_t n)
580 {
581 	uint8_t *dp = p;
582 
583 	while (n > 0) {
584 		uint32_t v = karc4random();
585 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
586 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
587 		dp += sizeof(uint32_t), n -= nb;
588 	}
589 }
590 
591 /*
592  * Helper function for events that pass just a single mac address.
593  */
594 static void
595 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
596 {
597 	struct ieee80211_join_event iev;
598 
599 	memset(&iev, 0, sizeof(iev));
600 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
601 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
602 }
603 
604 void
605 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
606 {
607 	struct ieee80211vap *vap = ni->ni_vap;
608 	struct ifnet *ifp = vap->iv_ifp;
609 
610 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
611 	    (ni == vap->iv_bss) ? "bss " : "");
612 
613 	if (ni == vap->iv_bss) {
614 		notify_macaddr(ifp, newassoc ?
615 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
616 		if_link_state_change(ifp);
617 	} else {
618 		notify_macaddr(ifp, newassoc ?
619 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
620 	}
621 }
622 
623 void
624 ieee80211_notify_node_leave(struct ieee80211_node *ni)
625 {
626 	struct ieee80211vap *vap = ni->ni_vap;
627 	struct ifnet *ifp = vap->iv_ifp;
628 
629 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
630 	    (ni == vap->iv_bss) ? "bss " : "");
631 
632 	if (ni == vap->iv_bss) {
633 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
634 		if_link_state_change(ifp);
635 	} else {
636 		/* fire off wireless event station leaving */
637 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
638 	}
639 }
640 
641 void
642 ieee80211_notify_scan_done(struct ieee80211vap *vap)
643 {
644 	struct ifnet *ifp = vap->iv_ifp;
645 
646 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
647 
648 	/* dispatch wireless event indicating scan completed */
649 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
650 }
651 
652 void
653 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
654 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
655 	u_int64_t rsc, int tid)
656 {
657 	struct ifnet *ifp = vap->iv_ifp;
658 
659 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
660 	    "%s replay detected <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
661 	    k->wk_cipher->ic_name, (intmax_t) rsc,
662 	    (intmax_t) k->wk_keyrsc[tid],
663 	    k->wk_keyix, k->wk_rxkeyix);
664 
665 	if (ifp != NULL) {		/* NB: for cipher test modules */
666 		struct ieee80211_replay_event iev;
667 
668 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
669 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
670 		iev.iev_cipher = k->wk_cipher->ic_cipher;
671 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
672 			iev.iev_keyix = k->wk_rxkeyix;
673 		else
674 			iev.iev_keyix = k->wk_keyix;
675 		iev.iev_keyrsc = k->wk_keyrsc[tid];
676 		iev.iev_rsc = rsc;
677 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
678 	}
679 }
680 
681 void
682 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
683 	const struct ieee80211_frame *wh, u_int keyix)
684 {
685 	struct ifnet *ifp = vap->iv_ifp;
686 
687 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
688 	    "michael MIC verification failed <keyix %u>", keyix);
689 	vap->iv_stats.is_rx_tkipmic++;
690 
691 	if (ifp != NULL) {		/* NB: for cipher test modules */
692 		struct ieee80211_michael_event iev;
693 
694 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
695 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
696 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
697 		iev.iev_keyix = keyix;
698 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
699 	}
700 }
701 
702 void
703 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
704 {
705 	struct ieee80211vap *vap = ni->ni_vap;
706 	struct ifnet *ifp = vap->iv_ifp;
707 
708 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
709 }
710 
711 void
712 ieee80211_notify_csa(struct ieee80211com *ic,
713 	const struct ieee80211_channel *c, int mode, int count)
714 {
715 	struct ifnet *ifp = ic->ic_ifp;
716 	struct ieee80211_csa_event iev;
717 
718 	memset(&iev, 0, sizeof(iev));
719 	iev.iev_flags = c->ic_flags;
720 	iev.iev_freq = c->ic_freq;
721 	iev.iev_ieee = c->ic_ieee;
722 	iev.iev_mode = mode;
723 	iev.iev_count = count;
724 	rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
725 }
726 
727 void
728 ieee80211_notify_radar(struct ieee80211com *ic,
729 	const struct ieee80211_channel *c)
730 {
731 	struct ifnet *ifp = ic->ic_ifp;
732 	struct ieee80211_radar_event iev;
733 
734 	memset(&iev, 0, sizeof(iev));
735 	iev.iev_flags = c->ic_flags;
736 	iev.iev_freq = c->ic_freq;
737 	iev.iev_ieee = c->ic_ieee;
738 	rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
739 }
740 
741 void
742 ieee80211_notify_cac(struct ieee80211com *ic,
743 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
744 {
745 	struct ifnet *ifp = ic->ic_ifp;
746 	struct ieee80211_cac_event iev;
747 
748 	memset(&iev, 0, sizeof(iev));
749 	iev.iev_flags = c->ic_flags;
750 	iev.iev_freq = c->ic_freq;
751 	iev.iev_ieee = c->ic_ieee;
752 	iev.iev_type = type;
753 	rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
754 }
755 
756 void
757 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
758 {
759 	struct ieee80211vap *vap = ni->ni_vap;
760 	struct ifnet *ifp = vap->iv_ifp;
761 
762 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
763 
764 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
765 }
766 
767 void
768 ieee80211_notify_node_auth(struct ieee80211_node *ni)
769 {
770 	struct ieee80211vap *vap = ni->ni_vap;
771 	struct ifnet *ifp = vap->iv_ifp;
772 
773 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
774 
775 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
776 }
777 
778 void
779 ieee80211_notify_country(struct ieee80211vap *vap,
780 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
781 {
782 	struct ifnet *ifp = vap->iv_ifp;
783 	struct ieee80211_country_event iev;
784 
785 	memset(&iev, 0, sizeof(iev));
786 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
787 	iev.iev_cc[0] = cc[0];
788 	iev.iev_cc[1] = cc[1];
789 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
790 }
791 
792 void
793 ieee80211_notify_radio(struct ieee80211com *ic, int state)
794 {
795 	struct ifnet *ifp = ic->ic_ifp;
796 	struct ieee80211_radio_event iev;
797 
798 	memset(&iev, 0, sizeof(iev));
799 	iev.iev_state = state;
800 	rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
801 }
802 
803 int
804 ieee80211_handoff(struct ifnet *dst_ifp, struct mbuf *m)
805 {
806         struct mbuf *m0;
807 
808 	/* We may be sending a fragment so traverse the mbuf */
809 	wlan_assert_serialized();
810 	wlan_serialize_exit();
811 	for (; m; m = m0) {
812 		struct altq_pktattr pktattr;
813 
814 		m0 = m->m_nextpkt;
815 		m->m_nextpkt = NULL;
816 
817 		if (ifq_is_enabled(&dst_ifp->if_snd))
818 			altq_etherclassify(&dst_ifp->if_snd, m, &pktattr);
819 
820 		ifq_dispatch(dst_ifp, m, &pktattr);
821 	}
822 	wlan_serialize_enter();
823 
824 	return (0);
825 }
826 
827 /* IEEE Std 802.11a-1999, page 9, table 79 */
828 #define IEEE80211_OFDM_SYM_TIME                 4
829 #define IEEE80211_OFDM_PREAMBLE_TIME            16
830 #define IEEE80211_OFDM_SIGNAL_TIME              4
831 /* IEEE Std 802.11g-2003, page 44 */
832 #define IEEE80211_OFDM_SIGNAL_EXT_TIME          6
833 
834 /* IEEE Std 802.11a-1999, page 7, figure 107 */
835 #define IEEE80211_OFDM_PLCP_SERVICE_NBITS       16
836 #define IEEE80211_OFDM_TAIL_NBITS               6
837 
838 #define IEEE80211_OFDM_NBITS(frmlen) \
839 	(IEEE80211_OFDM_PLCP_SERVICE_NBITS + \
840 	((frmlen) * NBBY) + \
841 	IEEE80211_OFDM_TAIL_NBITS)
842 
843 #define IEEE80211_OFDM_NBITS_PER_SYM(kbps) \
844 	(((kbps) * IEEE80211_OFDM_SYM_TIME) / 1000)
845 
846 #define IEEE80211_OFDM_NSYMS(kbps, frmlen) \
847 	howmany(IEEE80211_OFDM_NBITS((frmlen)), \
848 	IEEE80211_OFDM_NBITS_PER_SYM((kbps)))
849 
850 #define IEEE80211_OFDM_TXTIME(kbps, frmlen) \
851 	(IEEE80211_OFDM_PREAMBLE_TIME + \
852 	IEEE80211_OFDM_SIGNAL_TIME + \
853 	(IEEE80211_OFDM_NSYMS((kbps), (frmlen)) * IEEE80211_OFDM_SYM_TIME))
854 
855 /* IEEE Std 802.11b-1999, page 28, subclause 18.3.4 */
856 #define IEEE80211_CCK_PREAMBLE_LEN      144
857 #define IEEE80211_CCK_PLCP_HDR_TIME     48
858 #define IEEE80211_CCK_SHPREAMBLE_LEN    72
859 #define IEEE80211_CCK_SHPLCP_HDR_TIME   24
860 
861 #define IEEE80211_CCK_NBITS(frmlen)     ((frmlen) * NBBY)
862 #define IEEE80211_CCK_TXTIME(kbps, frmlen) \
863 	(((IEEE80211_CCK_NBITS((frmlen)) * 1000) + (kbps) - 1) / (kbps))
864 
865 uint16_t
866 ieee80211_txtime(struct ieee80211_node *ni, u_int len, uint8_t rs_rate,
867 		uint32_t flags)
868 {
869 	struct ieee80211vap *vap = ni->ni_vap;
870 	uint16_t txtime;
871 	int rate;
872 
873 	rs_rate &= IEEE80211_RATE_VAL;
874 	rate = rs_rate * 500;   /* ieee80211 rate -> kbps */
875 
876 	if (vap->iv_ic->ic_phytype == IEEE80211_T_OFDM) {
877 		/*
878 		 * IEEE Std 802.11a-1999, page 37, equation (29)
879 		 * IEEE Std 802.11g-2003, page 44, equation (42)
880 		 */
881 		txtime = IEEE80211_OFDM_TXTIME(rate, len);
882 		if (vap->iv_ic->ic_curmode == IEEE80211_MODE_11G)
883 			txtime += IEEE80211_OFDM_SIGNAL_EXT_TIME;
884 	} else {
885 		/*
886 		 * IEEE Std 802.11b-1999, page 28, subclause 18.3.4
887 		 * IEEE Std 802.11g-2003, page 45, equation (43)
888 		 */
889 		if (vap->iv_ic->ic_phytype == IEEE80211_T_OFDM_QUARTER+1)
890 			++len;
891 		txtime = IEEE80211_CCK_TXTIME(rate, len);
892 
893 		/*
894 		 * Short preamble is not applicable for DS 1Mbits/s
895 		 */
896 		if (rs_rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) {
897 			txtime += IEEE80211_CCK_SHPREAMBLE_LEN +
898 				IEEE80211_CCK_SHPLCP_HDR_TIME;
899 		} else {
900 			txtime += IEEE80211_CCK_PREAMBLE_LEN +
901 			IEEE80211_CCK_PLCP_HDR_TIME;
902 		}
903 	}
904 	return txtime;
905 }
906 
907 void
908 ieee80211_load_module(const char *modname)
909 {
910 
911 #ifdef notyet
912 	(void)kern_kldload(curthread, modname, NULL);
913 #else
914 	kprintf("%s: load the %s module by hand for now.\n", __func__, modname);
915 #endif
916 }
917 
918 static eventhandler_tag wlan_bpfevent;
919 static eventhandler_tag wlan_ifllevent;
920 
921 static void
922 bpf_track_event(void *arg, struct ifnet *ifp, int dlt, int attach)
923 {
924 	/* NB: identify vap's by if_start */
925 
926 	wlan_serialize_enter();
927 	if (dlt == DLT_IEEE802_11_RADIO && ifp->if_start == ieee80211_start) {
928 		struct ieee80211vap *vap = ifp->if_softc;
929 		/*
930 		 * Track bpf radiotap listener state.  We mark the vap
931 		 * to indicate if any listener is present and the com
932 		 * to indicate if any listener exists on any associated
933 		 * vap.  This flag is used by drivers to prepare radiotap
934 		 * state only when needed.
935 		 */
936 		if (attach) {
937 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
938 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
939 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
940 		} else if (!vap->iv_rawbpf) {
941 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
942 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
943 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
944 		}
945 	}
946 	wlan_serialize_exit();
947 }
948 
949 static void
950 wlan_iflladdr_event(void *arg __unused, struct ifnet *ifp)
951 {
952 	struct ieee80211com *ic = ifp->if_l2com;
953 	struct ieee80211vap *vap, *next;
954 
955 	wlan_serialize_enter();
956 	if (ifp->if_type != IFT_IEEE80211 || ic == NULL) {
957 		wlan_serialize_exit();
958 		return;
959 	}
960 
961 	TAILQ_FOREACH_MUTABLE(vap, &ic->ic_vaps, iv_next, next) {
962 		/*
963 		 * If the MAC address has changed on the parent and it was
964 		 * copied to the vap on creation then re-sync.
965 		 */
966 		if (vap->iv_ic == ic &&
967 		    (vap->iv_flags_ext & IEEE80211_FEXT_UNIQMAC) == 0) {
968 			IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
969 			wlan_serialize_exit();
970 			if_setlladdr(vap->iv_ifp, IF_LLADDR(ifp),
971 				     IEEE80211_ADDR_LEN);
972 			wlan_serialize_enter();
973 		}
974 	}
975 	wlan_serialize_exit();
976 }
977 
978 /*
979  * Module glue.
980  *
981  * NB: the module name is "wlan" for compatibility with NetBSD.
982  */
983 static int
984 wlan_modevent(module_t mod, int type, void *unused)
985 {
986 	int error;
987 
988 	wlan_serialize_enter();
989 
990 	switch (type) {
991 	case MOD_LOAD:
992 		if (bootverbose)
993 			kprintf("wlan: <802.11 Link Layer>\n");
994 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
995 					bpf_track_event, 0,
996 					EVENTHANDLER_PRI_ANY);
997 		if (wlan_bpfevent == NULL) {
998 			error = ENOMEM;
999 			break;
1000 		}
1001 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
1002 					wlan_iflladdr_event, NULL,
1003 					EVENTHANDLER_PRI_ANY);
1004 		if (wlan_ifllevent == NULL) {
1005 			EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1006 			error = ENOMEM;
1007 			break;
1008 		}
1009 		if_clone_attach(&wlan_cloner);
1010 		if_register_com_alloc(IFT_IEEE80211, wlan_alloc, wlan_free);
1011 		error = 0;
1012 		break;
1013 	case MOD_UNLOAD:
1014 		if_deregister_com_alloc(IFT_IEEE80211);
1015 		if_clone_detach(&wlan_cloner);
1016 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1017 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
1018 		error = 0;
1019 		break;
1020 	default:
1021 		error = EINVAL;
1022 		break;
1023 	}
1024 	wlan_serialize_exit();
1025 
1026 	return error;
1027 }
1028 
1029 static moduledata_t wlan_mod = {
1030 	"wlan",
1031 	wlan_modevent,
1032 	0
1033 };
1034 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1035 MODULE_VERSION(wlan, 1);
1036 MODULE_DEPEND(wlan, ether, 1, 1, 1);
1037