1 /*- 2 * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 * 25 * $FreeBSD: head/sys/net80211/ieee80211_freebsd.c 202612 2010-01-19 05:00:57Z thompsa $ 26 * $DragonFly$ 27 */ 28 29 /* 30 * IEEE 802.11 support (DragonFlyBSD-specific code) 31 */ 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/kernel.h> 36 #include <sys/systm.h> 37 #include <sys/linker.h> 38 #include <sys/mbuf.h> 39 #include <sys/module.h> 40 #include <sys/proc.h> 41 #include <sys/sysctl.h> 42 43 #include <sys/socket.h> 44 45 #include <net/bpf.h> 46 #include <net/if.h> 47 #include <net/if_dl.h> 48 #include <net/if_clone.h> 49 #include <net/if_media.h> 50 #include <net/if_types.h> 51 #include <net/ethernet.h> 52 #include <net/route.h> 53 #include <net/ifq_var.h> 54 55 #include <netproto/802_11/ieee80211_var.h> 56 #include <netproto/802_11/ieee80211_input.h> 57 58 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters"); 59 60 #ifdef IEEE80211_DEBUG 61 int ieee80211_debug = 0; 62 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug, 63 0, "debugging printfs"); 64 #endif 65 66 MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state"); 67 68 69 static void wlan_clone_destroy(struct ifnet *); 70 static int wlan_clone_create(struct if_clone *, int, caddr_t); 71 72 static struct if_clone wlan_cloner = 73 IF_CLONE_INITIALIZER("wlan", wlan_clone_create, wlan_clone_destroy, 74 0, IF_MAXUNIT); 75 76 77 /* 78 * Allocate/free com structure in conjunction with ifnet; 79 * these routines are registered with if_register_com_alloc 80 * below and are called automatically by the ifnet code 81 * when the ifnet of the parent device is created. 82 */ 83 static void * 84 wlan_alloc(u_char type, struct ifnet *ifp) 85 { 86 struct ieee80211com *ic; 87 88 ic = kmalloc(sizeof(struct ieee80211com), M_80211_COM, M_WAITOK|M_ZERO); 89 ic->ic_ifp = ifp; 90 91 return (ic); 92 } 93 94 static void 95 wlan_free(void *ic, u_char type) 96 { 97 kfree(ic, M_80211_COM); 98 } 99 100 static int 101 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params) 102 { 103 struct ieee80211_clone_params cp; 104 struct ieee80211vap *vap; 105 struct ieee80211com *ic; 106 struct ifnet *ifp; 107 int error; 108 109 error = copyin(params, &cp, sizeof(cp)); 110 if (error) 111 return error; 112 ifp = ifunit(cp.icp_parent); 113 if (ifp == NULL) 114 return ENXIO; 115 /* XXX move printfs to DIAGNOSTIC before release */ 116 if (ifp->if_type != IFT_IEEE80211) { 117 if_printf(ifp, "%s: reject, not an 802.11 device\n", __func__); 118 return ENXIO; 119 } 120 if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) { 121 if_printf(ifp, "%s: invalid opmode %d\n", 122 __func__, cp.icp_opmode); 123 return EINVAL; 124 } 125 ic = ifp->if_l2com; 126 if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) { 127 if_printf(ifp, "%s mode not supported\n", 128 ieee80211_opmode_name[cp.icp_opmode]); 129 return EOPNOTSUPP; 130 } 131 if ((cp.icp_flags & IEEE80211_CLONE_TDMA) && 132 #ifdef IEEE80211_SUPPORT_TDMA 133 (ic->ic_caps & IEEE80211_C_TDMA) == 0 134 #else 135 (1) 136 #endif 137 ) { 138 if_printf(ifp, "TDMA not supported\n"); 139 return EOPNOTSUPP; 140 } 141 vap = ic->ic_vap_create(ic, ifc->ifc_name, unit, 142 cp.icp_opmode, cp.icp_flags, cp.icp_bssid, 143 cp.icp_flags & IEEE80211_CLONE_MACADDR ? 144 cp.icp_macaddr : (const uint8_t *)IF_LLADDR(ifp)); 145 return (vap == NULL ? EIO : 0); 146 } 147 148 static void 149 wlan_clone_destroy(struct ifnet *ifp) 150 { 151 struct ieee80211vap *vap = ifp->if_softc; 152 struct ieee80211com *ic = vap->iv_ic; 153 154 ic->ic_vap_delete(vap); 155 } 156 157 void 158 ieee80211_vap_destroy(struct ieee80211vap *vap) 159 { 160 if_clone_destroy(vap->iv_ifp->if_xname); 161 } 162 163 int 164 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS) 165 { 166 int msecs = ticks_to_msecs(*(int *)arg1); 167 int error, t; 168 169 error = sysctl_handle_int(oidp, &msecs, 0, req); 170 if (error || !req->newptr) 171 return error; 172 t = msecs_to_ticks(msecs); 173 *(int *)arg1 = (t < 1) ? 1 : t; 174 return 0; 175 } 176 177 static int 178 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS) 179 { 180 int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT; 181 int error; 182 183 error = sysctl_handle_int(oidp, &inact, 0, req); 184 if (error || !req->newptr) 185 return error; 186 *(int *)arg1 = inact / IEEE80211_INACT_WAIT; 187 return 0; 188 } 189 190 static int 191 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS) 192 { 193 struct ieee80211com *ic = arg1; 194 const char *name = ic->ic_ifp->if_xname; 195 196 return SYSCTL_OUT(req, name, strlen(name)); 197 } 198 199 static int 200 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS) 201 { 202 struct ieee80211com *ic = arg1; 203 int t = 0, error; 204 205 error = sysctl_handle_int(oidp, &t, 0, req); 206 if (error || !req->newptr) 207 return error; 208 IEEE80211_LOCK(ic); 209 ieee80211_dfs_notify_radar(ic, ic->ic_curchan); 210 IEEE80211_UNLOCK(ic); 211 return 0; 212 } 213 214 void 215 ieee80211_sysctl_attach(struct ieee80211com *ic) 216 { 217 } 218 219 void 220 ieee80211_sysctl_detach(struct ieee80211com *ic) 221 { 222 } 223 224 void 225 ieee80211_sysctl_vattach(struct ieee80211vap *vap) 226 { 227 struct ifnet *ifp = vap->iv_ifp; 228 struct sysctl_ctx_list *ctx; 229 struct sysctl_oid *oid; 230 char num[14]; /* sufficient for 32 bits */ 231 232 ctx = (struct sysctl_ctx_list *) kmalloc(sizeof(struct sysctl_ctx_list), 233 M_DEVBUF, M_INTWAIT | M_ZERO); 234 if (ctx == NULL) { 235 if_printf(ifp, "%s: cannot allocate sysctl context!\n", 236 __func__); 237 return; 238 } 239 sysctl_ctx_init(ctx); 240 ksnprintf(num, sizeof(num), "%u", ifp->if_dunit); 241 oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan), 242 OID_AUTO, num, CTLFLAG_RD, NULL, ""); 243 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 244 "%parent", CTLFLAG_RD, vap->iv_ic, 0, 245 ieee80211_sysctl_parent, "A", "parent device"); 246 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 247 "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0, 248 "driver capabilities"); 249 #ifdef IEEE80211_DEBUG 250 vap->iv_debug = ieee80211_debug; 251 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 252 "debug", CTLFLAG_RW, &vap->iv_debug, 0, 253 "control debugging printfs"); 254 #endif 255 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 256 "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0, 257 "consecutive beacon misses before scanning"); 258 /* XXX inherit from tunables */ 259 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 260 "inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0, 261 ieee80211_sysctl_inact, "I", 262 "station inactivity timeout (sec)"); 263 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 264 "inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0, 265 ieee80211_sysctl_inact, "I", 266 "station inactivity probe timeout (sec)"); 267 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 268 "inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0, 269 ieee80211_sysctl_inact, "I", 270 "station authentication timeout (sec)"); 271 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 272 "inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0, 273 ieee80211_sysctl_inact, "I", 274 "station initial state timeout (sec)"); 275 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 276 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 277 "ampdu_mintraffic_bk", CTLFLAG_RW, 278 &vap->iv_ampdu_mintraffic[WME_AC_BK], 0, 279 "BK traffic tx aggr threshold (pps)"); 280 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 281 "ampdu_mintraffic_be", CTLFLAG_RW, 282 &vap->iv_ampdu_mintraffic[WME_AC_BE], 0, 283 "BE traffic tx aggr threshold (pps)"); 284 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 285 "ampdu_mintraffic_vo", CTLFLAG_RW, 286 &vap->iv_ampdu_mintraffic[WME_AC_VO], 0, 287 "VO traffic tx aggr threshold (pps)"); 288 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 289 "ampdu_mintraffic_vi", CTLFLAG_RW, 290 &vap->iv_ampdu_mintraffic[WME_AC_VI], 0, 291 "VI traffic tx aggr threshold (pps)"); 292 } 293 if (vap->iv_caps & IEEE80211_C_DFS) { 294 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 295 "radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0, 296 ieee80211_sysctl_radar, "I", "simulate radar event"); 297 } 298 vap->iv_sysctl = ctx; 299 vap->iv_oid = oid; 300 } 301 302 void 303 ieee80211_sysctl_vdetach(struct ieee80211vap *vap) 304 { 305 306 if (vap->iv_sysctl != NULL) { 307 sysctl_ctx_free(vap->iv_sysctl); 308 kfree(vap->iv_sysctl, M_DEVBUF); 309 vap->iv_sysctl = NULL; 310 } 311 } 312 313 int 314 ieee80211_node_dectestref(struct ieee80211_node *ni) 315 { 316 /* XXX need equivalent of atomic_dec_and_test */ 317 atomic_subtract_int(&ni->ni_refcnt, 1); 318 return atomic_cmpset_int(&ni->ni_refcnt, 0, 1); 319 } 320 321 void 322 ieee80211_drain_ifq(struct ifqueue *ifq) 323 { 324 struct ieee80211_node *ni; 325 struct mbuf *m; 326 327 for (;;) { 328 IF_DEQUEUE(ifq, m); 329 if (m == NULL) 330 break; 331 332 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 333 KASSERT(ni != NULL, ("frame w/o node")); 334 ieee80211_free_node(ni); 335 m->m_pkthdr.rcvif = NULL; 336 337 m_freem(m); 338 } 339 } 340 341 void 342 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap) 343 { 344 struct ieee80211_node *ni; 345 struct mbuf *m, **mprev; 346 347 IF_LOCK(ifq); 348 mprev = &ifq->ifq_head; 349 while ((m = *mprev) != NULL) { 350 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 351 if (ni != NULL && ni->ni_vap == vap) { 352 *mprev = m->m_nextpkt; /* remove from list */ 353 ifq->ifq_len--; 354 355 m_freem(m); 356 ieee80211_free_node(ni); /* reclaim ref */ 357 } else 358 mprev = &m->m_nextpkt; 359 } 360 /* recalculate tail ptr */ 361 m = ifq->ifq_head; 362 for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt) 363 ; 364 ifq->ifq_tail = m; 365 IF_UNLOCK(ifq); 366 } 367 368 /* 369 * As above, for mbufs allocated with m_gethdr/MGETHDR 370 * or initialized by M_COPY_PKTHDR. 371 */ 372 #define MC_ALIGN(m, len) \ 373 do { \ 374 (m)->m_data += (MCLBYTES - (len)) &~ (sizeof(long) - 1); \ 375 } while (/* CONSTCOND */ 0) 376 377 /* 378 * Allocate and setup a management frame of the specified 379 * size. We return the mbuf and a pointer to the start 380 * of the contiguous data area that's been reserved based 381 * on the packet length. The data area is forced to 32-bit 382 * alignment and the buffer length to a multiple of 4 bytes. 383 * This is done mainly so beacon frames (that require this) 384 * can use this interface too. 385 */ 386 struct mbuf * 387 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen) 388 { 389 struct mbuf *m; 390 u_int len; 391 392 /* 393 * NB: we know the mbuf routines will align the data area 394 * so we don't need to do anything special. 395 */ 396 len = roundup2(headroom + pktlen, 4); 397 KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len)); 398 if (len < MINCLSIZE) { 399 m = m_gethdr(MB_DONTWAIT, MT_DATA); 400 /* 401 * Align the data in case additional headers are added. 402 * This should only happen when a WEP header is added 403 * which only happens for shared key authentication mgt 404 * frames which all fit in MHLEN. 405 */ 406 if (m != NULL) 407 MH_ALIGN(m, len); 408 } else { 409 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); 410 if (m != NULL) 411 MC_ALIGN(m, len); 412 } 413 if (m != NULL) { 414 m->m_data += headroom; 415 *frm = m->m_data; 416 } 417 return m; 418 } 419 420 /* 421 * Re-align the payload in the mbuf. This is mainly used (right now) 422 * to handle IP header alignment requirements on certain architectures. 423 */ 424 struct mbuf * 425 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align) 426 { 427 int pktlen, space; 428 struct mbuf *n = NULL; 429 430 pktlen = m->m_pkthdr.len; 431 space = pktlen + align; 432 if (space < MINCLSIZE) 433 n = m_gethdr(MB_DONTWAIT, MT_DATA); 434 #ifdef notyet 435 else { 436 n = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, 437 space <= MCLBYTES ? MCLBYTES : 438 #if MJUMPAGESIZE != MCLBYTES 439 space <= MJUMPAGESIZE ? MJUMPAGESIZE : 440 #endif 441 space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES); 442 } 443 #endif 444 if (__predict_true(n != NULL)) { 445 m_move_pkthdr(n, m); 446 n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align); 447 m_copydata(m, 0, pktlen, mtod(n, caddr_t)); 448 n->m_len = pktlen; 449 } else { 450 IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, 451 mtod(m, const struct ieee80211_frame *), NULL, 452 "%s", "no mbuf to realign"); 453 vap->iv_stats.is_rx_badalign++; 454 } 455 m_freem(m); 456 return n; 457 } 458 459 int 460 ieee80211_add_callback(struct mbuf *m, 461 void (*func)(struct ieee80211_node *, void *, int), void *arg) 462 { 463 struct m_tag *mtag; 464 struct ieee80211_cb *cb; 465 466 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, 467 sizeof(struct ieee80211_cb), M_INTWAIT); 468 if (mtag == NULL) 469 return 0; 470 471 cb = (struct ieee80211_cb *)(mtag+1); 472 cb->func = func; 473 cb->arg = arg; 474 m_tag_prepend(m, mtag); 475 m->m_flags |= M_TXCB; 476 return 1; 477 } 478 479 void 480 ieee80211_process_callback(struct ieee80211_node *ni, 481 struct mbuf *m, int status) 482 { 483 struct m_tag *mtag; 484 485 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL); 486 if (mtag != NULL) { 487 struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1); 488 cb->func(ni, cb->arg, status); 489 } 490 } 491 492 #include <sys/libkern.h> 493 494 void 495 get_random_bytes(void *p, size_t n) 496 { 497 uint8_t *dp = p; 498 499 while (n > 0) { 500 uint32_t v = karc4random(); 501 size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n; 502 bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n); 503 dp += sizeof(uint32_t), n -= nb; 504 } 505 } 506 507 /* 508 * Helper function for events that pass just a single mac address. 509 */ 510 static void 511 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN]) 512 { 513 struct ieee80211_join_event iev; 514 515 memset(&iev, 0, sizeof(iev)); 516 IEEE80211_ADDR_COPY(iev.iev_addr, mac); 517 rt_ieee80211msg(ifp, op, &iev, sizeof(iev)); 518 } 519 520 void 521 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc) 522 { 523 struct ieee80211vap *vap = ni->ni_vap; 524 struct ifnet *ifp = vap->iv_ifp; 525 526 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join", 527 (ni == vap->iv_bss) ? "bss " : ""); 528 529 if (ni == vap->iv_bss) { 530 notify_macaddr(ifp, newassoc ? 531 RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid); 532 if_link_state_change(ifp); 533 } else { 534 notify_macaddr(ifp, newassoc ? 535 RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr); 536 } 537 } 538 539 void 540 ieee80211_notify_node_leave(struct ieee80211_node *ni) 541 { 542 struct ieee80211vap *vap = ni->ni_vap; 543 struct ifnet *ifp = vap->iv_ifp; 544 545 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave", 546 (ni == vap->iv_bss) ? "bss " : ""); 547 548 if (ni == vap->iv_bss) { 549 rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0); 550 if_link_state_change(ifp); 551 } else { 552 /* fire off wireless event station leaving */ 553 notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr); 554 } 555 } 556 557 void 558 ieee80211_notify_scan_done(struct ieee80211vap *vap) 559 { 560 struct ifnet *ifp = vap->iv_ifp; 561 562 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done"); 563 564 /* dispatch wireless event indicating scan completed */ 565 rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0); 566 } 567 568 void 569 ieee80211_notify_replay_failure(struct ieee80211vap *vap, 570 const struct ieee80211_frame *wh, const struct ieee80211_key *k, 571 u_int64_t rsc, int tid) 572 { 573 struct ifnet *ifp = vap->iv_ifp; 574 575 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 576 "%s replay detected <rsc %ju, csc %ju, keyix %u rxkeyix %u>", 577 k->wk_cipher->ic_name, (intmax_t) rsc, 578 (intmax_t) k->wk_keyrsc[tid], 579 k->wk_keyix, k->wk_rxkeyix); 580 581 if (ifp != NULL) { /* NB: for cipher test modules */ 582 struct ieee80211_replay_event iev; 583 584 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 585 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 586 iev.iev_cipher = k->wk_cipher->ic_cipher; 587 if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE) 588 iev.iev_keyix = k->wk_rxkeyix; 589 else 590 iev.iev_keyix = k->wk_keyix; 591 iev.iev_keyrsc = k->wk_keyrsc[tid]; 592 iev.iev_rsc = rsc; 593 rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev)); 594 } 595 } 596 597 void 598 ieee80211_notify_michael_failure(struct ieee80211vap *vap, 599 const struct ieee80211_frame *wh, u_int keyix) 600 { 601 struct ifnet *ifp = vap->iv_ifp; 602 603 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 604 "michael MIC verification failed <keyix %u>", keyix); 605 vap->iv_stats.is_rx_tkipmic++; 606 607 if (ifp != NULL) { /* NB: for cipher test modules */ 608 struct ieee80211_michael_event iev; 609 610 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 611 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 612 iev.iev_cipher = IEEE80211_CIPHER_TKIP; 613 iev.iev_keyix = keyix; 614 rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev)); 615 } 616 } 617 618 void 619 ieee80211_notify_wds_discover(struct ieee80211_node *ni) 620 { 621 struct ieee80211vap *vap = ni->ni_vap; 622 struct ifnet *ifp = vap->iv_ifp; 623 624 notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr); 625 } 626 627 void 628 ieee80211_notify_csa(struct ieee80211com *ic, 629 const struct ieee80211_channel *c, int mode, int count) 630 { 631 struct ifnet *ifp = ic->ic_ifp; 632 struct ieee80211_csa_event iev; 633 634 memset(&iev, 0, sizeof(iev)); 635 iev.iev_flags = c->ic_flags; 636 iev.iev_freq = c->ic_freq; 637 iev.iev_ieee = c->ic_ieee; 638 iev.iev_mode = mode; 639 iev.iev_count = count; 640 rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev)); 641 } 642 643 void 644 ieee80211_notify_radar(struct ieee80211com *ic, 645 const struct ieee80211_channel *c) 646 { 647 struct ifnet *ifp = ic->ic_ifp; 648 struct ieee80211_radar_event iev; 649 650 memset(&iev, 0, sizeof(iev)); 651 iev.iev_flags = c->ic_flags; 652 iev.iev_freq = c->ic_freq; 653 iev.iev_ieee = c->ic_ieee; 654 rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev)); 655 } 656 657 void 658 ieee80211_notify_cac(struct ieee80211com *ic, 659 const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type) 660 { 661 struct ifnet *ifp = ic->ic_ifp; 662 struct ieee80211_cac_event iev; 663 664 memset(&iev, 0, sizeof(iev)); 665 iev.iev_flags = c->ic_flags; 666 iev.iev_freq = c->ic_freq; 667 iev.iev_ieee = c->ic_ieee; 668 iev.iev_type = type; 669 rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev)); 670 } 671 672 void 673 ieee80211_notify_node_deauth(struct ieee80211_node *ni) 674 { 675 struct ieee80211vap *vap = ni->ni_vap; 676 struct ifnet *ifp = vap->iv_ifp; 677 678 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth"); 679 680 notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr); 681 } 682 683 void 684 ieee80211_notify_node_auth(struct ieee80211_node *ni) 685 { 686 struct ieee80211vap *vap = ni->ni_vap; 687 struct ifnet *ifp = vap->iv_ifp; 688 689 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth"); 690 691 notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr); 692 } 693 694 void 695 ieee80211_notify_country(struct ieee80211vap *vap, 696 const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2]) 697 { 698 struct ifnet *ifp = vap->iv_ifp; 699 struct ieee80211_country_event iev; 700 701 memset(&iev, 0, sizeof(iev)); 702 IEEE80211_ADDR_COPY(iev.iev_addr, bssid); 703 iev.iev_cc[0] = cc[0]; 704 iev.iev_cc[1] = cc[1]; 705 rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev)); 706 } 707 708 void 709 ieee80211_notify_radio(struct ieee80211com *ic, int state) 710 { 711 struct ifnet *ifp = ic->ic_ifp; 712 struct ieee80211_radio_event iev; 713 714 memset(&iev, 0, sizeof(iev)); 715 iev.iev_state = state; 716 rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev)); 717 } 718 719 int 720 ieee80211_handoff(struct ifnet *dst_ifp, struct mbuf *m) 721 { 722 struct mbuf *m0; 723 724 /* We may be sending a fragment so traverse the mbuf */ 725 for (; m; m = m0) { 726 struct altq_pktattr pktattr; 727 728 m0 = m->m_nextpkt; 729 m->m_nextpkt = NULL; 730 731 if (ifq_is_enabled(&dst_ifp->if_snd)) 732 altq_etherclassify(&dst_ifp->if_snd, m, &pktattr); 733 734 ifq_dispatch(dst_ifp, m, &pktattr); 735 } 736 737 return (0); 738 } 739 740 /* IEEE Std 802.11a-1999, page 9, table 79 */ 741 #define IEEE80211_OFDM_SYM_TIME 4 742 #define IEEE80211_OFDM_PREAMBLE_TIME 16 743 #define IEEE80211_OFDM_SIGNAL_TIME 4 744 /* IEEE Std 802.11g-2003, page 44 */ 745 #define IEEE80211_OFDM_SIGNAL_EXT_TIME 6 746 747 /* IEEE Std 802.11a-1999, page 7, figure 107 */ 748 #define IEEE80211_OFDM_PLCP_SERVICE_NBITS 16 749 #define IEEE80211_OFDM_TAIL_NBITS 6 750 751 #define IEEE80211_OFDM_NBITS(frmlen) \ 752 (IEEE80211_OFDM_PLCP_SERVICE_NBITS + \ 753 ((frmlen) * NBBY) + \ 754 IEEE80211_OFDM_TAIL_NBITS) 755 756 #define IEEE80211_OFDM_NBITS_PER_SYM(kbps) \ 757 (((kbps) * IEEE80211_OFDM_SYM_TIME) / 1000) 758 759 #define IEEE80211_OFDM_NSYMS(kbps, frmlen) \ 760 howmany(IEEE80211_OFDM_NBITS((frmlen)), \ 761 IEEE80211_OFDM_NBITS_PER_SYM((kbps))) 762 763 #define IEEE80211_OFDM_TXTIME(kbps, frmlen) \ 764 (IEEE80211_OFDM_PREAMBLE_TIME + \ 765 IEEE80211_OFDM_SIGNAL_TIME + \ 766 (IEEE80211_OFDM_NSYMS((kbps), (frmlen)) * IEEE80211_OFDM_SYM_TIME)) 767 768 /* IEEE Std 802.11b-1999, page 28, subclause 18.3.4 */ 769 #define IEEE80211_CCK_PREAMBLE_LEN 144 770 #define IEEE80211_CCK_PLCP_HDR_TIME 48 771 #define IEEE80211_CCK_SHPREAMBLE_LEN 72 772 #define IEEE80211_CCK_SHPLCP_HDR_TIME 24 773 774 #define IEEE80211_CCK_NBITS(frmlen) ((frmlen) * NBBY) 775 #define IEEE80211_CCK_TXTIME(kbps, frmlen) \ 776 (((IEEE80211_CCK_NBITS((frmlen)) * 1000) + (kbps) - 1) / (kbps)) 777 778 uint16_t 779 ieee80211_txtime(struct ieee80211_node *ni, u_int len, uint8_t rs_rate, 780 uint32_t flags) 781 { 782 struct ieee80211vap *vap = ni->ni_vap; 783 uint16_t txtime; 784 int rate; 785 786 rs_rate &= IEEE80211_RATE_VAL; 787 rate = rs_rate * 500; /* ieee80211 rate -> kbps */ 788 789 if (vap->iv_ic->ic_phytype == IEEE80211_T_OFDM) { 790 /* 791 * IEEE Std 802.11a-1999, page 37, equation (29) 792 * IEEE Std 802.11g-2003, page 44, equation (42) 793 */ 794 txtime = IEEE80211_OFDM_TXTIME(rate, len); 795 if (vap->iv_ic->ic_curmode == IEEE80211_MODE_11G) 796 txtime += IEEE80211_OFDM_SIGNAL_EXT_TIME; 797 } else { 798 /* 799 * IEEE Std 802.11b-1999, page 28, subclause 18.3.4 800 * IEEE Std 802.11g-2003, page 45, equation (43) 801 */ 802 if (vap->iv_ic->ic_phytype == IEEE80211_T_OFDM_QUARTER+1) 803 ++len; 804 txtime = IEEE80211_CCK_TXTIME(rate, len); 805 806 /* 807 * Short preamble is not applicable for DS 1Mbits/s 808 */ 809 if (rs_rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) { 810 txtime += IEEE80211_CCK_SHPREAMBLE_LEN + 811 IEEE80211_CCK_SHPLCP_HDR_TIME; 812 } else { 813 txtime += IEEE80211_CCK_PREAMBLE_LEN + 814 IEEE80211_CCK_PLCP_HDR_TIME; 815 } 816 } 817 return txtime; 818 } 819 820 void 821 ieee80211_load_module(const char *modname) 822 { 823 824 #ifdef notyet 825 (void)kern_kldload(curthread, modname, NULL); 826 #else 827 kprintf("%s: load the %s module by hand for now.\n", __func__, modname); 828 #endif 829 } 830 831 static eventhandler_tag wlan_bpfevent; 832 static eventhandler_tag wlan_ifllevent; 833 834 static void 835 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach) 836 { 837 /* NB: identify vap's by if_start */ 838 if (dlt == DLT_IEEE802_11_RADIO && ifp->if_start == ieee80211_start) { 839 struct ieee80211vap *vap = ifp->if_softc; 840 /* 841 * Track bpf radiotap listener state. We mark the vap 842 * to indicate if any listener is present and the com 843 * to indicate if any listener exists on any associated 844 * vap. This flag is used by drivers to prepare radiotap 845 * state only when needed. 846 */ 847 if (attach) { 848 ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF); 849 if (vap->iv_opmode == IEEE80211_M_MONITOR) 850 atomic_add_int(&vap->iv_ic->ic_montaps, 1); 851 } else if (!vap->iv_rawbpf) { 852 ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF); 853 if (vap->iv_opmode == IEEE80211_M_MONITOR) 854 atomic_subtract_int(&vap->iv_ic->ic_montaps, 1); 855 } 856 } 857 } 858 859 static void 860 wlan_iflladdr(void *arg __unused, struct ifnet *ifp) 861 { 862 struct ieee80211com *ic = ifp->if_l2com; 863 struct ieee80211vap *vap, *next; 864 865 if (ifp->if_type != IFT_IEEE80211 || ic == NULL) 866 return; 867 868 IEEE80211_LOCK(ic); 869 TAILQ_FOREACH_MUTABLE(vap, &ic->ic_vaps, iv_next, next) { 870 /* 871 * If the MAC address has changed on the parent and it was 872 * copied to the vap on creation then re-sync. 873 */ 874 if (vap->iv_ic == ic && 875 (vap->iv_flags_ext & IEEE80211_FEXT_UNIQMAC) == 0) { 876 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 877 IEEE80211_UNLOCK(ic); 878 if_setlladdr(vap->iv_ifp, IF_LLADDR(ifp), 879 IEEE80211_ADDR_LEN); 880 IEEE80211_LOCK(ic); 881 } 882 } 883 IEEE80211_UNLOCK(ic); 884 } 885 886 /* 887 * Module glue. 888 * 889 * NB: the module name is "wlan" for compatibility with NetBSD. 890 */ 891 static int 892 wlan_modevent(module_t mod, int type, void *unused) 893 { 894 switch (type) { 895 case MOD_LOAD: 896 if (bootverbose) 897 kprintf("wlan: <802.11 Link Layer>\n"); 898 wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track, 899 bpf_track, 0, EVENTHANDLER_PRI_ANY); 900 if (wlan_bpfevent == NULL) 901 return ENOMEM; 902 wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event, 903 wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 904 if (wlan_ifllevent == NULL) { 905 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent); 906 return ENOMEM; 907 } 908 if_clone_attach(&wlan_cloner); 909 if_register_com_alloc(IFT_IEEE80211, wlan_alloc, wlan_free); 910 return 0; 911 case MOD_UNLOAD: 912 if_deregister_com_alloc(IFT_IEEE80211); 913 if_clone_detach(&wlan_cloner); 914 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent); 915 EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent); 916 return 0; 917 } 918 return EINVAL; 919 } 920 921 static moduledata_t wlan_mod = { 922 "wlan", 923 wlan_modevent, 924 0 925 }; 926 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 927 MODULE_VERSION(wlan, 1); 928 MODULE_DEPEND(wlan, ether, 1, 1, 1); 929