1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * $FreeBSD: head/sys/net80211/ieee80211.c 206358 2010-04-07 15:29:13Z rpaulo $ 27 * $DragonFly$ 28 */ 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 39 #include <sys/socket.h> 40 41 #include <net/if.h> 42 #include <net/if_dl.h> 43 #include <net/if_media.h> 44 #include <net/if_types.h> 45 #include <net/ifq_var.h> 46 #include <net/ethernet.h> 47 #include <net/route.h> 48 49 #include <netproto/802_11/ieee80211_var.h> 50 #include <netproto/802_11/ieee80211_regdomain.h> 51 #ifdef IEEE80211_SUPPORT_SUPERG 52 #include <netproto/802_11/ieee80211_superg.h> 53 #endif 54 #include <netproto/802_11/ieee80211_ratectl.h> 55 56 #include <net/bpf.h> 57 58 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 59 [IEEE80211_MODE_AUTO] = "auto", 60 [IEEE80211_MODE_11A] = "11a", 61 [IEEE80211_MODE_11B] = "11b", 62 [IEEE80211_MODE_11G] = "11g", 63 [IEEE80211_MODE_FH] = "FH", 64 [IEEE80211_MODE_TURBO_A] = "turboA", 65 [IEEE80211_MODE_TURBO_G] = "turboG", 66 [IEEE80211_MODE_STURBO_A] = "sturboA", 67 [IEEE80211_MODE_HALF] = "half", 68 [IEEE80211_MODE_QUARTER] = "quarter", 69 [IEEE80211_MODE_11NA] = "11na", 70 [IEEE80211_MODE_11NG] = "11ng", 71 }; 72 /* map ieee80211_opmode to the corresponding capability bit */ 73 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 74 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 75 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 76 [IEEE80211_M_STA] = IEEE80211_C_STA, 77 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 78 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 79 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 80 #ifdef IEEE80211_SUPPORT_MESH 81 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 82 #endif 83 }; 84 85 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 86 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 87 88 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 89 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 90 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 91 static int ieee80211_media_setup(struct ieee80211com *ic, 92 struct ifmedia *media, int caps, int addsta, 93 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 94 static void ieee80211com_media_status(struct ifnet *, struct ifmediareq *); 95 static int ieee80211com_media_change(struct ifnet *); 96 static int media_status(enum ieee80211_opmode, 97 const struct ieee80211_channel *); 98 99 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 100 101 /* 102 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 103 */ 104 #define B(r) ((r) | IEEE80211_RATE_BASIC) 105 static const struct ieee80211_rateset ieee80211_rateset_11a = 106 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 107 static const struct ieee80211_rateset ieee80211_rateset_half = 108 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 109 static const struct ieee80211_rateset ieee80211_rateset_quarter = 110 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 111 static const struct ieee80211_rateset ieee80211_rateset_11b = 112 { 4, { B(2), B(4), B(11), B(22) } }; 113 /* NB: OFDM rates are handled specially based on mode */ 114 static const struct ieee80211_rateset ieee80211_rateset_11g = 115 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 116 #undef B 117 118 /* 119 * Fill in 802.11 available channel set, mark 120 * all available channels as active, and pick 121 * a default channel if not already specified. 122 */ 123 static void 124 ieee80211_chan_init(struct ieee80211com *ic) 125 { 126 #define DEFAULTRATES(m, def) do { \ 127 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 128 ic->ic_sup_rates[m] = def; \ 129 } while (0) 130 struct ieee80211_channel *c; 131 int i; 132 133 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 134 ("invalid number of channels specified: %u", ic->ic_nchans)); 135 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 136 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 137 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 138 for (i = 0; i < ic->ic_nchans; i++) { 139 c = &ic->ic_channels[i]; 140 KASSERT(c->ic_flags != 0, ("channel with no flags")); 141 /* 142 * Help drivers that work only with frequencies by filling 143 * in IEEE channel #'s if not already calculated. Note this 144 * mimics similar work done in ieee80211_setregdomain when 145 * changing regulatory state. 146 */ 147 if (c->ic_ieee == 0) 148 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 149 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 150 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 151 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 152 c->ic_flags); 153 /* default max tx power to max regulatory */ 154 if (c->ic_maxpower == 0) 155 c->ic_maxpower = 2*c->ic_maxregpower; 156 setbit(ic->ic_chan_avail, c->ic_ieee); 157 /* 158 * Identify mode capabilities. 159 */ 160 if (IEEE80211_IS_CHAN_A(c)) 161 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 162 if (IEEE80211_IS_CHAN_B(c)) 163 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 164 if (IEEE80211_IS_CHAN_ANYG(c)) 165 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 166 if (IEEE80211_IS_CHAN_FHSS(c)) 167 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 168 if (IEEE80211_IS_CHAN_108A(c)) 169 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 170 if (IEEE80211_IS_CHAN_108G(c)) 171 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 172 if (IEEE80211_IS_CHAN_ST(c)) 173 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 174 if (IEEE80211_IS_CHAN_HALF(c)) 175 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 176 if (IEEE80211_IS_CHAN_QUARTER(c)) 177 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 178 if (IEEE80211_IS_CHAN_HTA(c)) 179 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 180 if (IEEE80211_IS_CHAN_HTG(c)) 181 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 182 } 183 /* initialize candidate channels to all available */ 184 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 185 sizeof(ic->ic_chan_avail)); 186 187 /* sort channel table to allow lookup optimizations */ 188 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 189 190 /* invalidate any previous state */ 191 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 192 ic->ic_prevchan = NULL; 193 ic->ic_csa_newchan = NULL; 194 /* arbitrarily pick the first channel */ 195 ic->ic_curchan = &ic->ic_channels[0]; 196 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 197 198 /* fillin well-known rate sets if driver has not specified */ 199 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 200 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 201 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 202 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 203 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 204 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 205 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 206 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 207 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 208 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 209 210 /* 211 * Set auto mode to reset active channel state and any desired channel. 212 */ 213 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 214 #undef DEFAULTRATES 215 } 216 217 static void 218 null_update_mcast(struct ifnet *ifp) 219 { 220 if_printf(ifp, "need multicast update callback\n"); 221 } 222 223 static void 224 null_update_promisc(struct ifnet *ifp) 225 { 226 if_printf(ifp, "need promiscuous mode update callback\n"); 227 } 228 229 static int 230 null_transmit(struct ifnet *ifp, struct mbuf *m) 231 { 232 m_freem(m); 233 ifp->if_oerrors++; 234 return EACCES; /* XXX EIO/EPERM? */ 235 } 236 237 static int 238 null_output(struct ifnet *ifp, struct mbuf *m, 239 struct sockaddr *dst, struct rtentry *ro) 240 { 241 if_printf(ifp, "discard raw packet\n"); 242 return null_transmit(ifp, m); 243 } 244 245 static void 246 null_input(struct ifnet *ifp, struct mbuf *m) 247 { 248 if_printf(ifp, "if_input should not be called\n"); 249 m_freem(m); 250 } 251 252 /* 253 * Attach/setup the common net80211 state. Called by 254 * the driver on attach to prior to creating any vap's. 255 */ 256 void 257 ieee80211_ifattach(struct ieee80211com *ic, 258 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 259 { 260 struct ifnet *ifp = ic->ic_ifp; 261 struct sockaddr_dl *sdl; 262 struct ifaddr *ifa; 263 264 KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type)); 265 266 IEEE80211_LOCK_INIT(ic, ifp->if_xname); 267 TAILQ_INIT(&ic->ic_vaps); 268 269 /* Create a taskqueue for all state changes */ 270 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 271 taskqueue_thread_enqueue, &ic->ic_tq); 272 taskqueue_start_threads(&ic->ic_tq, 1, TDPRI_KERN_DAEMON, -1, 273 "%s taskq", ifp->if_xname); 274 /* 275 * Fill in 802.11 available channel set, mark all 276 * available channels as active, and pick a default 277 * channel if not already specified. 278 */ 279 ieee80211_media_init(ic); 280 281 ic->ic_update_mcast = null_update_mcast; 282 ic->ic_update_promisc = null_update_promisc; 283 284 ic->ic_hash_key = karc4random(); 285 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 286 ic->ic_lintval = ic->ic_bintval; 287 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 288 289 ieee80211_crypto_attach(ic); 290 ieee80211_node_attach(ic); 291 ieee80211_power_attach(ic); 292 ieee80211_proto_attach(ic); 293 #ifdef IEEE80211_SUPPORT_SUPERG 294 ieee80211_superg_attach(ic); 295 #endif 296 ieee80211_ht_attach(ic); 297 ieee80211_scan_attach(ic); 298 ieee80211_regdomain_attach(ic); 299 ieee80211_dfs_attach(ic); 300 301 ieee80211_sysctl_attach(ic); 302 303 ifp->if_addrlen = IEEE80211_ADDR_LEN; 304 ifp->if_hdrlen = 0; 305 if_attach(ifp, NULL); 306 ifp->if_mtu = IEEE80211_MTU_MAX; 307 ifp->if_broadcastaddr = ieee80211broadcastaddr; 308 ifp->if_output = null_output; 309 ifp->if_input = null_input; /* just in case */ 310 ifp->if_resolvemulti = NULL; /* NB: callers check */ 311 312 ifa = ifaddr_byindex(ifp->if_index); 313 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 314 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 315 sdl->sdl_type = IFT_ETHER; /* XXX IFT_IEEE80211? */ 316 sdl->sdl_alen = IEEE80211_ADDR_LEN; 317 IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr); 318 // IFAFREE(ifa); 319 } 320 321 /* 322 * Detach net80211 state on device detach. Tear down 323 * all vap's and reclaim all common state prior to the 324 * device state going away. Note we may call back into 325 * driver; it must be prepared for this. 326 */ 327 void 328 ieee80211_ifdetach(struct ieee80211com *ic) 329 { 330 struct ifnet *ifp = ic->ic_ifp; 331 struct ieee80211vap *vap; 332 333 if_detach(ifp); 334 335 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 336 ieee80211_vap_destroy(vap); 337 ieee80211_waitfor_parent(ic); 338 339 ieee80211_sysctl_detach(ic); 340 ieee80211_dfs_detach(ic); 341 ieee80211_regdomain_detach(ic); 342 ieee80211_scan_detach(ic); 343 #ifdef IEEE80211_SUPPORT_SUPERG 344 ieee80211_superg_detach(ic); 345 #endif 346 ieee80211_ht_detach(ic); 347 /* NB: must be called before ieee80211_node_detach */ 348 ieee80211_proto_detach(ic); 349 ieee80211_crypto_detach(ic); 350 ieee80211_power_detach(ic); 351 ieee80211_node_detach(ic); 352 353 ifmedia_removeall(&ic->ic_media); 354 taskqueue_free(ic->ic_tq); 355 IEEE80211_LOCK_DESTROY(ic); 356 } 357 358 /* 359 * Default reset method for use with the ioctl support. This 360 * method is invoked after any state change in the 802.11 361 * layer that should be propagated to the hardware but not 362 * require re-initialization of the 802.11 state machine (e.g 363 * rescanning for an ap). We always return ENETRESET which 364 * should cause the driver to re-initialize the device. Drivers 365 * can override this method to implement more optimized support. 366 */ 367 static int 368 default_reset(struct ieee80211vap *vap, u_long cmd) 369 { 370 return ENETRESET; 371 } 372 373 /* 374 * Prepare a vap for use. Drivers use this call to 375 * setup net80211 state in new vap's prior attaching 376 * them with ieee80211_vap_attach (below). 377 */ 378 int 379 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 380 const char name[IFNAMSIZ], int unit, int opmode, int flags, 381 const uint8_t bssid[IEEE80211_ADDR_LEN], 382 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 383 { 384 struct ifnet *ifp; 385 386 ifp = if_alloc(IFT_IEEE80211); 387 if (ifp == NULL) { 388 if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n", 389 __func__); 390 return ENOMEM; 391 } 392 if_initname(ifp, name, unit); 393 ifp->if_softc = vap; /* back pointer */ 394 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 395 ifp->if_start = ieee80211_start; 396 ifp->if_ioctl = ieee80211_ioctl; 397 ifp->if_init = ieee80211_init; 398 /* NB: input+output filled in by ether_ifattach */ 399 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN); 400 ifq_set_ready(&ifp->if_snd); 401 402 vap->iv_ifp = ifp; 403 vap->iv_ic = ic; 404 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 405 vap->iv_flags_ext = ic->ic_flags_ext; 406 vap->iv_flags_ven = ic->ic_flags_ven; 407 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 408 vap->iv_htcaps = ic->ic_htcaps; 409 vap->iv_opmode = opmode; 410 vap->iv_caps |= ieee80211_opcap[opmode]; 411 switch (opmode) { 412 case IEEE80211_M_WDS: 413 /* 414 * WDS links must specify the bssid of the far end. 415 * For legacy operation this is a static relationship. 416 * For non-legacy operation the station must associate 417 * and be authorized to pass traffic. Plumbing the 418 * vap to the proper node happens when the vap 419 * transitions to RUN state. 420 */ 421 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 422 vap->iv_flags |= IEEE80211_F_DESBSSID; 423 if (flags & IEEE80211_CLONE_WDSLEGACY) 424 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 425 break; 426 #ifdef IEEE80211_SUPPORT_TDMA 427 case IEEE80211_M_AHDEMO: 428 if (flags & IEEE80211_CLONE_TDMA) { 429 /* NB: checked before clone operation allowed */ 430 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 431 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 432 /* 433 * Propagate TDMA capability to mark vap; this 434 * cannot be removed and is used to distinguish 435 * regular ahdemo operation from ahdemo+tdma. 436 */ 437 vap->iv_caps |= IEEE80211_C_TDMA; 438 } 439 break; 440 #endif 441 } 442 /* auto-enable s/w beacon miss support */ 443 if (flags & IEEE80211_CLONE_NOBEACONS) 444 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 445 /* auto-generated or user supplied MAC address */ 446 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 447 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 448 /* 449 * Enable various functionality by default if we're 450 * capable; the driver can override us if it knows better. 451 */ 452 if (vap->iv_caps & IEEE80211_C_WME) 453 vap->iv_flags |= IEEE80211_F_WME; 454 if (vap->iv_caps & IEEE80211_C_BURST) 455 vap->iv_flags |= IEEE80211_F_BURST; 456 /* NB: bg scanning only makes sense for station mode right now */ 457 if (vap->iv_opmode == IEEE80211_M_STA && 458 (vap->iv_caps & IEEE80211_C_BGSCAN)) 459 vap->iv_flags |= IEEE80211_F_BGSCAN; 460 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 461 /* NB: DFS support only makes sense for ap mode right now */ 462 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 463 (vap->iv_caps & IEEE80211_C_DFS)) 464 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 465 466 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 467 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 468 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 469 /* 470 * Install a default reset method for the ioctl support; 471 * the driver can override this. 472 */ 473 vap->iv_reset = default_reset; 474 475 IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr); 476 477 ieee80211_sysctl_vattach(vap); 478 ieee80211_crypto_vattach(vap); 479 ieee80211_node_vattach(vap); 480 ieee80211_power_vattach(vap); 481 ieee80211_proto_vattach(vap); 482 #ifdef IEEE80211_SUPPORT_SUPERG 483 ieee80211_superg_vattach(vap); 484 #endif 485 ieee80211_ht_vattach(vap); 486 ieee80211_scan_vattach(vap); 487 ieee80211_regdomain_vattach(vap); 488 ieee80211_radiotap_vattach(vap); 489 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_AMRR); 490 491 return 0; 492 } 493 494 /* 495 * Activate a vap. State should have been prepared with a 496 * call to ieee80211_vap_setup and by the driver. On return 497 * from this call the vap is ready for use. 498 */ 499 int 500 ieee80211_vap_attach(struct ieee80211vap *vap, 501 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 502 { 503 struct ifnet *ifp = vap->iv_ifp; 504 struct ieee80211com *ic = vap->iv_ic; 505 struct ifmediareq imr; 506 int maxrate; 507 508 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 509 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 510 __func__, ieee80211_opmode_name[vap->iv_opmode], 511 ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext); 512 513 /* 514 * Do late attach work that cannot happen until after 515 * the driver has had a chance to override defaults. 516 */ 517 ieee80211_node_latevattach(vap); 518 ieee80211_power_latevattach(vap); 519 520 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 521 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 522 ieee80211_media_status(ifp, &imr); 523 /* NB: strip explicit mode; we're actually in autoselect */ 524 ifmedia_set(&vap->iv_media, 525 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 526 if (maxrate) 527 ifp->if_baudrate = IF_Mbps(maxrate); 528 529 ether_ifattach(ifp, vap->iv_myaddr, NULL); 530 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 531 /* NB: disallow transmit */ 532 #ifdef __FreeBSD__ 533 ifp->if_transmit = null_transmit; 534 #endif 535 ifp->if_output = null_output; 536 } else { 537 /* hook output method setup by ether_ifattach */ 538 vap->iv_output = ifp->if_output; 539 ifp->if_output = ieee80211_output; 540 } 541 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 542 543 IEEE80211_LOCK(ic); 544 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 545 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 546 #ifdef IEEE80211_SUPPORT_SUPERG 547 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 548 #endif 549 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 550 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 551 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 552 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 553 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 554 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 555 IEEE80211_UNLOCK(ic); 556 557 return 1; 558 } 559 560 /* 561 * Tear down vap state and reclaim the ifnet. 562 * The driver is assumed to have prepared for 563 * this; e.g. by turning off interrupts for the 564 * underlying device. 565 */ 566 void 567 ieee80211_vap_detach(struct ieee80211vap *vap) 568 { 569 struct ieee80211com *ic = vap->iv_ic; 570 struct ifnet *ifp = vap->iv_ifp; 571 572 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 573 __func__, ieee80211_opmode_name[vap->iv_opmode], 574 ic->ic_ifp->if_xname); 575 576 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 577 ether_ifdetach(ifp); 578 579 ieee80211_stop(vap); 580 581 /* 582 * Flush any deferred vap tasks. 583 */ 584 ieee80211_draintask(ic, &vap->iv_nstate_task); 585 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 586 587 #ifdef __FreeBSD__ 588 /* XXX band-aid until ifnet handles this for us */ 589 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 590 #endif 591 592 IEEE80211_LOCK(ic); 593 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 594 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 595 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 596 #ifdef IEEE80211_SUPPORT_SUPERG 597 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 598 #endif 599 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 600 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 601 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 602 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 603 /* NB: this handles the bpfdetach done below */ 604 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 605 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 606 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 607 IEEE80211_UNLOCK(ic); 608 609 ifmedia_removeall(&vap->iv_media); 610 611 ieee80211_radiotap_vdetach(vap); 612 ieee80211_regdomain_vdetach(vap); 613 ieee80211_scan_vdetach(vap); 614 #ifdef IEEE80211_SUPPORT_SUPERG 615 ieee80211_superg_vdetach(vap); 616 #endif 617 ieee80211_ht_vdetach(vap); 618 /* NB: must be before ieee80211_node_vdetach */ 619 ieee80211_proto_vdetach(vap); 620 ieee80211_crypto_vdetach(vap); 621 ieee80211_power_vdetach(vap); 622 ieee80211_node_vdetach(vap); 623 ieee80211_sysctl_vdetach(vap); 624 625 if_free(ifp); 626 } 627 628 /* 629 * Synchronize flag bit state in the parent ifnet structure 630 * according to the state of all vap ifnet's. This is used, 631 * for example, to handle IFF_PROMISC and IFF_ALLMULTI. 632 */ 633 void 634 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag) 635 { 636 struct ifnet *ifp = ic->ic_ifp; 637 struct ieee80211vap *vap; 638 int bit, oflags; 639 640 IEEE80211_LOCK_ASSERT(ic); 641 642 bit = 0; 643 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 644 if (vap->iv_ifp->if_flags & flag) { 645 /* 646 * XXX the bridge sets PROMISC but we don't want to 647 * enable it on the device, discard here so all the 648 * drivers don't need to special-case it 649 */ 650 if (flag == IFF_PROMISC && 651 !(vap->iv_opmode == IEEE80211_M_MONITOR || 652 (vap->iv_opmode == IEEE80211_M_AHDEMO && 653 (vap->iv_caps & IEEE80211_C_TDMA) == 0))) 654 continue; 655 bit = 1; 656 break; 657 } 658 oflags = ifp->if_flags; 659 if (bit) 660 ifp->if_flags |= flag; 661 else 662 ifp->if_flags &= ~flag; 663 if ((ifp->if_flags ^ oflags) & flag) { 664 /* XXX should we return 1/0 and let caller do this? */ 665 if (ifp->if_flags & IFF_RUNNING) { 666 if (flag == IFF_PROMISC) 667 ieee80211_runtask(ic, &ic->ic_promisc_task); 668 else if (flag == IFF_ALLMULTI) 669 ieee80211_runtask(ic, &ic->ic_mcast_task); 670 } 671 } 672 } 673 674 /* 675 * Synchronize flag bit state in the com structure 676 * according to the state of all vap's. This is used, 677 * for example, to handle state changes via ioctls. 678 */ 679 static void 680 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 681 { 682 struct ieee80211vap *vap; 683 int bit; 684 685 IEEE80211_LOCK_ASSERT(ic); 686 687 bit = 0; 688 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 689 if (vap->iv_flags & flag) { 690 bit = 1; 691 break; 692 } 693 if (bit) 694 ic->ic_flags |= flag; 695 else 696 ic->ic_flags &= ~flag; 697 } 698 699 void 700 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 701 { 702 struct ieee80211com *ic = vap->iv_ic; 703 704 IEEE80211_LOCK(ic); 705 if (flag < 0) { 706 flag = -flag; 707 vap->iv_flags &= ~flag; 708 } else 709 vap->iv_flags |= flag; 710 ieee80211_syncflag_locked(ic, flag); 711 IEEE80211_UNLOCK(ic); 712 } 713 714 /* 715 * Synchronize flags_ht bit state in the com structure 716 * according to the state of all vap's. This is used, 717 * for example, to handle state changes via ioctls. 718 */ 719 static void 720 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 721 { 722 struct ieee80211vap *vap; 723 int bit; 724 725 IEEE80211_LOCK_ASSERT(ic); 726 727 bit = 0; 728 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 729 if (vap->iv_flags_ht & flag) { 730 bit = 1; 731 break; 732 } 733 if (bit) 734 ic->ic_flags_ht |= flag; 735 else 736 ic->ic_flags_ht &= ~flag; 737 } 738 739 void 740 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 741 { 742 struct ieee80211com *ic = vap->iv_ic; 743 744 IEEE80211_LOCK(ic); 745 if (flag < 0) { 746 flag = -flag; 747 vap->iv_flags_ht &= ~flag; 748 } else 749 vap->iv_flags_ht |= flag; 750 ieee80211_syncflag_ht_locked(ic, flag); 751 IEEE80211_UNLOCK(ic); 752 } 753 754 /* 755 * Synchronize flags_ext bit state in the com structure 756 * according to the state of all vap's. This is used, 757 * for example, to handle state changes via ioctls. 758 */ 759 static void 760 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 761 { 762 struct ieee80211vap *vap; 763 int bit; 764 765 IEEE80211_LOCK_ASSERT(ic); 766 767 bit = 0; 768 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 769 if (vap->iv_flags_ext & flag) { 770 bit = 1; 771 break; 772 } 773 if (bit) 774 ic->ic_flags_ext |= flag; 775 else 776 ic->ic_flags_ext &= ~flag; 777 } 778 779 void 780 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 781 { 782 struct ieee80211com *ic = vap->iv_ic; 783 784 IEEE80211_LOCK(ic); 785 if (flag < 0) { 786 flag = -flag; 787 vap->iv_flags_ext &= ~flag; 788 } else 789 vap->iv_flags_ext |= flag; 790 ieee80211_syncflag_ext_locked(ic, flag); 791 IEEE80211_UNLOCK(ic); 792 } 793 794 static __inline int 795 mapgsm(u_int freq, u_int flags) 796 { 797 freq *= 10; 798 if (flags & IEEE80211_CHAN_QUARTER) 799 freq += 5; 800 else if (flags & IEEE80211_CHAN_HALF) 801 freq += 10; 802 else 803 freq += 20; 804 /* NB: there is no 907/20 wide but leave room */ 805 return (freq - 906*10) / 5; 806 } 807 808 static __inline int 809 mappsb(u_int freq, u_int flags) 810 { 811 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 812 } 813 814 /* 815 * Convert MHz frequency to IEEE channel number. 816 */ 817 int 818 ieee80211_mhz2ieee(u_int freq, u_int flags) 819 { 820 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 821 if (flags & IEEE80211_CHAN_GSM) 822 return mapgsm(freq, flags); 823 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 824 if (freq == 2484) 825 return 14; 826 if (freq < 2484) 827 return ((int) freq - 2407) / 5; 828 else 829 return 15 + ((freq - 2512) / 20); 830 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 831 if (freq <= 5000) { 832 /* XXX check regdomain? */ 833 if (IS_FREQ_IN_PSB(freq)) 834 return mappsb(freq, flags); 835 return (freq - 4000) / 5; 836 } else 837 return (freq - 5000) / 5; 838 } else { /* either, guess */ 839 if (freq == 2484) 840 return 14; 841 if (freq < 2484) { 842 if (907 <= freq && freq <= 922) 843 return mapgsm(freq, flags); 844 return ((int) freq - 2407) / 5; 845 } 846 if (freq < 5000) { 847 if (IS_FREQ_IN_PSB(freq)) 848 return mappsb(freq, flags); 849 else if (freq > 4900) 850 return (freq - 4000) / 5; 851 else 852 return 15 + ((freq - 2512) / 20); 853 } 854 return (freq - 5000) / 5; 855 } 856 #undef IS_FREQ_IN_PSB 857 } 858 859 /* 860 * Convert channel to IEEE channel number. 861 */ 862 int 863 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 864 { 865 if (c == NULL) { 866 if_printf(ic->ic_ifp, "invalid channel (NULL)\n"); 867 return 0; /* XXX */ 868 } 869 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 870 } 871 872 /* 873 * Convert IEEE channel number to MHz frequency. 874 */ 875 u_int 876 ieee80211_ieee2mhz(u_int chan, u_int flags) 877 { 878 if (flags & IEEE80211_CHAN_GSM) 879 return 907 + 5 * (chan / 10); 880 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 881 if (chan == 14) 882 return 2484; 883 if (chan < 14) 884 return 2407 + chan*5; 885 else 886 return 2512 + ((chan-15)*20); 887 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 888 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 889 chan -= 37; 890 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 891 } 892 return 5000 + (chan*5); 893 } else { /* either, guess */ 894 /* XXX can't distinguish PSB+GSM channels */ 895 if (chan == 14) 896 return 2484; 897 if (chan < 14) /* 0-13 */ 898 return 2407 + chan*5; 899 if (chan < 27) /* 15-26 */ 900 return 2512 + ((chan-15)*20); 901 return 5000 + (chan*5); 902 } 903 } 904 905 /* 906 * Locate a channel given a frequency+flags. We cache 907 * the previous lookup to optimize switching between two 908 * channels--as happens with dynamic turbo. 909 */ 910 struct ieee80211_channel * 911 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 912 { 913 struct ieee80211_channel *c; 914 int i; 915 916 flags &= IEEE80211_CHAN_ALLTURBO; 917 c = ic->ic_prevchan; 918 if (c != NULL && c->ic_freq == freq && 919 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 920 return c; 921 /* brute force search */ 922 for (i = 0; i < ic->ic_nchans; i++) { 923 c = &ic->ic_channels[i]; 924 if (c->ic_freq == freq && 925 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 926 return c; 927 } 928 return NULL; 929 } 930 931 /* 932 * Locate a channel given a channel number+flags. We cache 933 * the previous lookup to optimize switching between two 934 * channels--as happens with dynamic turbo. 935 */ 936 struct ieee80211_channel * 937 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 938 { 939 struct ieee80211_channel *c; 940 int i; 941 942 flags &= IEEE80211_CHAN_ALLTURBO; 943 c = ic->ic_prevchan; 944 if (c != NULL && c->ic_ieee == ieee && 945 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 946 return c; 947 /* brute force search */ 948 for (i = 0; i < ic->ic_nchans; i++) { 949 c = &ic->ic_channels[i]; 950 if (c->ic_ieee == ieee && 951 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 952 return c; 953 } 954 return NULL; 955 } 956 957 static void 958 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 959 { 960 #define ADD(_ic, _s, _o) \ 961 ifmedia_add(media, \ 962 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 963 static const u_int mopts[IEEE80211_MODE_MAX] = { 964 [IEEE80211_MODE_AUTO] = IFM_AUTO, 965 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 966 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 967 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 968 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 969 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 970 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 971 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 972 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 973 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 974 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 975 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 976 }; 977 u_int mopt; 978 979 mopt = mopts[mode]; 980 if (addsta) 981 ADD(ic, mword, mopt); /* STA mode has no cap */ 982 if (caps & IEEE80211_C_IBSS) 983 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 984 if (caps & IEEE80211_C_HOSTAP) 985 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 986 if (caps & IEEE80211_C_AHDEMO) 987 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 988 if (caps & IEEE80211_C_MONITOR) 989 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 990 if (caps & IEEE80211_C_WDS) 991 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 992 if (caps & IEEE80211_C_MBSS) 993 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 994 #undef ADD 995 } 996 997 /* 998 * Setup the media data structures according to the channel and 999 * rate tables. 1000 */ 1001 static int 1002 ieee80211_media_setup(struct ieee80211com *ic, 1003 struct ifmedia *media, int caps, int addsta, 1004 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1005 { 1006 int i, j, mode, rate, maxrate, mword, r; 1007 const struct ieee80211_rateset *rs; 1008 struct ieee80211_rateset allrates; 1009 1010 /* 1011 * Fill in media characteristics. 1012 */ 1013 ifmedia_init(media, 0, media_change, media_stat); 1014 maxrate = 0; 1015 /* 1016 * Add media for legacy operating modes. 1017 */ 1018 memset(&allrates, 0, sizeof(allrates)); 1019 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1020 if (isclr(ic->ic_modecaps, mode)) 1021 continue; 1022 addmedia(media, caps, addsta, mode, IFM_AUTO); 1023 if (mode == IEEE80211_MODE_AUTO) 1024 continue; 1025 rs = &ic->ic_sup_rates[mode]; 1026 for (i = 0; i < rs->rs_nrates; i++) { 1027 rate = rs->rs_rates[i]; 1028 mword = ieee80211_rate2media(ic, rate, mode); 1029 if (mword == 0) 1030 continue; 1031 addmedia(media, caps, addsta, mode, mword); 1032 /* 1033 * Add legacy rate to the collection of all rates. 1034 */ 1035 r = rate & IEEE80211_RATE_VAL; 1036 for (j = 0; j < allrates.rs_nrates; j++) 1037 if (allrates.rs_rates[j] == r) 1038 break; 1039 if (j == allrates.rs_nrates) { 1040 /* unique, add to the set */ 1041 allrates.rs_rates[j] = r; 1042 allrates.rs_nrates++; 1043 } 1044 rate = (rate & IEEE80211_RATE_VAL) / 2; 1045 if (rate > maxrate) 1046 maxrate = rate; 1047 } 1048 } 1049 for (i = 0; i < allrates.rs_nrates; i++) { 1050 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1051 IEEE80211_MODE_AUTO); 1052 if (mword == 0) 1053 continue; 1054 /* NB: remove media options from mword */ 1055 addmedia(media, caps, addsta, 1056 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1057 } 1058 /* 1059 * Add HT/11n media. Note that we do not have enough 1060 * bits in the media subtype to express the MCS so we 1061 * use a "placeholder" media subtype and any fixed MCS 1062 * must be specified with a different mechanism. 1063 */ 1064 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1065 if (isclr(ic->ic_modecaps, mode)) 1066 continue; 1067 addmedia(media, caps, addsta, mode, IFM_AUTO); 1068 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1069 } 1070 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1071 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1072 addmedia(media, caps, addsta, 1073 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1074 /* XXX could walk htrates */ 1075 /* XXX known array size */ 1076 if (ieee80211_htrates[15].ht40_rate_400ns > maxrate) 1077 maxrate = ieee80211_htrates[15].ht40_rate_400ns; 1078 } 1079 return maxrate; 1080 } 1081 1082 void 1083 ieee80211_media_init(struct ieee80211com *ic) 1084 { 1085 struct ifnet *ifp = ic->ic_ifp; 1086 int maxrate; 1087 1088 /* NB: this works because the structure is initialized to zero */ 1089 if (!LIST_EMPTY(&ic->ic_media.ifm_list)) { 1090 /* 1091 * We are re-initializing the channel list; clear 1092 * the existing media state as the media routines 1093 * don't suppress duplicates. 1094 */ 1095 ifmedia_removeall(&ic->ic_media); 1096 } 1097 ieee80211_chan_init(ic); 1098 1099 /* 1100 * Recalculate media settings in case new channel list changes 1101 * the set of available modes. 1102 */ 1103 maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1, 1104 ieee80211com_media_change, ieee80211com_media_status); 1105 /* NB: strip explicit mode; we're actually in autoselect */ 1106 ifmedia_set(&ic->ic_media, 1107 media_status(ic->ic_opmode, ic->ic_curchan) &~ 1108 (IFM_MMASK | IFM_IEEE80211_TURBO)); 1109 if (maxrate) 1110 ifp->if_baudrate = IF_Mbps(maxrate); 1111 1112 /* XXX need to propagate new media settings to vap's */ 1113 } 1114 1115 /* XXX inline or eliminate? */ 1116 const struct ieee80211_rateset * 1117 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1118 { 1119 /* XXX does this work for 11ng basic rates? */ 1120 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1121 } 1122 1123 void 1124 ieee80211_announce(struct ieee80211com *ic) 1125 { 1126 struct ifnet *ifp = ic->ic_ifp; 1127 int i, mode, rate, mword; 1128 const struct ieee80211_rateset *rs; 1129 1130 /* NB: skip AUTO since it has no rates */ 1131 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1132 if (isclr(ic->ic_modecaps, mode)) 1133 continue; 1134 if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]); 1135 rs = &ic->ic_sup_rates[mode]; 1136 for (i = 0; i < rs->rs_nrates; i++) { 1137 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1138 if (mword == 0) 1139 continue; 1140 rate = ieee80211_media2rate(mword); 1141 kprintf("%s%d%sMbps", (i != 0 ? " " : ""), 1142 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1143 } 1144 kprintf("\n"); 1145 } 1146 ieee80211_ht_announce(ic); 1147 } 1148 1149 void 1150 ieee80211_announce_channels(struct ieee80211com *ic) 1151 { 1152 const struct ieee80211_channel *c; 1153 char type; 1154 int i, cw; 1155 1156 kprintf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1157 for (i = 0; i < ic->ic_nchans; i++) { 1158 c = &ic->ic_channels[i]; 1159 if (IEEE80211_IS_CHAN_ST(c)) 1160 type = 'S'; 1161 else if (IEEE80211_IS_CHAN_108A(c)) 1162 type = 'T'; 1163 else if (IEEE80211_IS_CHAN_108G(c)) 1164 type = 'G'; 1165 else if (IEEE80211_IS_CHAN_HT(c)) 1166 type = 'n'; 1167 else if (IEEE80211_IS_CHAN_A(c)) 1168 type = 'a'; 1169 else if (IEEE80211_IS_CHAN_ANYG(c)) 1170 type = 'g'; 1171 else if (IEEE80211_IS_CHAN_B(c)) 1172 type = 'b'; 1173 else 1174 type = 'f'; 1175 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1176 cw = 40; 1177 else if (IEEE80211_IS_CHAN_HALF(c)) 1178 cw = 10; 1179 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1180 cw = 5; 1181 else 1182 cw = 20; 1183 kprintf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1184 , c->ic_ieee, c->ic_freq, type 1185 , cw 1186 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1187 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1188 , c->ic_maxregpower 1189 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1190 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1191 ); 1192 } 1193 } 1194 1195 static int 1196 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1197 { 1198 switch (IFM_MODE(ime->ifm_media)) { 1199 case IFM_IEEE80211_11A: 1200 *mode = IEEE80211_MODE_11A; 1201 break; 1202 case IFM_IEEE80211_11B: 1203 *mode = IEEE80211_MODE_11B; 1204 break; 1205 case IFM_IEEE80211_11G: 1206 *mode = IEEE80211_MODE_11G; 1207 break; 1208 case IFM_IEEE80211_FH: 1209 *mode = IEEE80211_MODE_FH; 1210 break; 1211 case IFM_IEEE80211_11NA: 1212 *mode = IEEE80211_MODE_11NA; 1213 break; 1214 case IFM_IEEE80211_11NG: 1215 *mode = IEEE80211_MODE_11NG; 1216 break; 1217 case IFM_AUTO: 1218 *mode = IEEE80211_MODE_AUTO; 1219 break; 1220 default: 1221 return 0; 1222 } 1223 /* 1224 * Turbo mode is an ``option''. 1225 * XXX does not apply to AUTO 1226 */ 1227 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1228 if (*mode == IEEE80211_MODE_11A) { 1229 if (flags & IEEE80211_F_TURBOP) 1230 *mode = IEEE80211_MODE_TURBO_A; 1231 else 1232 *mode = IEEE80211_MODE_STURBO_A; 1233 } else if (*mode == IEEE80211_MODE_11G) 1234 *mode = IEEE80211_MODE_TURBO_G; 1235 else 1236 return 0; 1237 } 1238 /* XXX HT40 +/- */ 1239 return 1; 1240 } 1241 1242 /* 1243 * Handle a media change request on the underlying interface. 1244 */ 1245 int 1246 ieee80211com_media_change(struct ifnet *ifp) 1247 { 1248 return EINVAL; 1249 } 1250 1251 /* 1252 * Handle a media change request on the vap interface. 1253 */ 1254 int 1255 ieee80211_media_change(struct ifnet *ifp) 1256 { 1257 struct ieee80211vap *vap = ifp->if_softc; 1258 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1259 uint16_t newmode; 1260 1261 if (!media2mode(ime, vap->iv_flags, &newmode)) 1262 return EINVAL; 1263 if (vap->iv_des_mode != newmode) { 1264 vap->iv_des_mode = newmode; 1265 /* XXX kick state machine if up+running */ 1266 } 1267 return 0; 1268 } 1269 1270 /* 1271 * Common code to calculate the media status word 1272 * from the operating mode and channel state. 1273 */ 1274 static int 1275 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1276 { 1277 int status; 1278 1279 status = IFM_IEEE80211; 1280 switch (opmode) { 1281 case IEEE80211_M_STA: 1282 break; 1283 case IEEE80211_M_IBSS: 1284 status |= IFM_IEEE80211_ADHOC; 1285 break; 1286 case IEEE80211_M_HOSTAP: 1287 status |= IFM_IEEE80211_HOSTAP; 1288 break; 1289 case IEEE80211_M_MONITOR: 1290 status |= IFM_IEEE80211_MONITOR; 1291 break; 1292 case IEEE80211_M_AHDEMO: 1293 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1294 break; 1295 case IEEE80211_M_WDS: 1296 status |= IFM_IEEE80211_WDS; 1297 break; 1298 case IEEE80211_M_MBSS: 1299 status |= IFM_IEEE80211_MBSS; 1300 break; 1301 } 1302 if (IEEE80211_IS_CHAN_HTA(chan)) { 1303 status |= IFM_IEEE80211_11NA; 1304 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1305 status |= IFM_IEEE80211_11NG; 1306 } else if (IEEE80211_IS_CHAN_A(chan)) { 1307 status |= IFM_IEEE80211_11A; 1308 } else if (IEEE80211_IS_CHAN_B(chan)) { 1309 status |= IFM_IEEE80211_11B; 1310 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1311 status |= IFM_IEEE80211_11G; 1312 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1313 status |= IFM_IEEE80211_FH; 1314 } 1315 /* XXX else complain? */ 1316 1317 if (IEEE80211_IS_CHAN_TURBO(chan)) 1318 status |= IFM_IEEE80211_TURBO; 1319 #if 0 1320 if (IEEE80211_IS_CHAN_HT20(chan)) 1321 status |= IFM_IEEE80211_HT20; 1322 if (IEEE80211_IS_CHAN_HT40(chan)) 1323 status |= IFM_IEEE80211_HT40; 1324 #endif 1325 return status; 1326 } 1327 1328 static void 1329 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1330 { 1331 struct ieee80211com *ic = ifp->if_l2com; 1332 struct ieee80211vap *vap; 1333 1334 imr->ifm_status = IFM_AVALID; 1335 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1336 if (vap->iv_ifp->if_flags & IFF_UP) { 1337 imr->ifm_status |= IFM_ACTIVE; 1338 break; 1339 } 1340 imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan); 1341 if (imr->ifm_status & IFM_ACTIVE) 1342 imr->ifm_current = imr->ifm_active; 1343 } 1344 1345 void 1346 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1347 { 1348 struct ieee80211vap *vap = ifp->if_softc; 1349 struct ieee80211com *ic = vap->iv_ic; 1350 enum ieee80211_phymode mode; 1351 1352 imr->ifm_status = IFM_AVALID; 1353 /* 1354 * NB: use the current channel's mode to lock down a xmit 1355 * rate only when running; otherwise we may have a mismatch 1356 * in which case the rate will not be convertible. 1357 */ 1358 if (vap->iv_state == IEEE80211_S_RUN) { 1359 imr->ifm_status |= IFM_ACTIVE; 1360 mode = ieee80211_chan2mode(ic->ic_curchan); 1361 } else 1362 mode = IEEE80211_MODE_AUTO; 1363 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1364 /* 1365 * Calculate a current rate if possible. 1366 */ 1367 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1368 /* 1369 * A fixed rate is set, report that. 1370 */ 1371 imr->ifm_active |= ieee80211_rate2media(ic, 1372 vap->iv_txparms[mode].ucastrate, mode); 1373 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1374 /* 1375 * In station mode report the current transmit rate. 1376 */ 1377 imr->ifm_active |= ieee80211_rate2media(ic, 1378 vap->iv_bss->ni_txrate, mode); 1379 } else 1380 imr->ifm_active |= IFM_AUTO; 1381 if (imr->ifm_status & IFM_ACTIVE) 1382 imr->ifm_current = imr->ifm_active; 1383 } 1384 1385 /* 1386 * Set the current phy mode and recalculate the active channel 1387 * set based on the available channels for this mode. Also 1388 * select a new default/current channel if the current one is 1389 * inappropriate for this mode. 1390 */ 1391 int 1392 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1393 { 1394 /* 1395 * Adjust basic rates in 11b/11g supported rate set. 1396 * Note that if operating on a hal/quarter rate channel 1397 * this is a noop as those rates sets are different 1398 * and used instead. 1399 */ 1400 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1401 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1402 1403 ic->ic_curmode = mode; 1404 ieee80211_reset_erp(ic); /* reset ERP state */ 1405 1406 return 0; 1407 } 1408 1409 /* 1410 * Return the phy mode for with the specified channel. 1411 */ 1412 enum ieee80211_phymode 1413 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1414 { 1415 1416 if (IEEE80211_IS_CHAN_HTA(chan)) 1417 return IEEE80211_MODE_11NA; 1418 else if (IEEE80211_IS_CHAN_HTG(chan)) 1419 return IEEE80211_MODE_11NG; 1420 else if (IEEE80211_IS_CHAN_108G(chan)) 1421 return IEEE80211_MODE_TURBO_G; 1422 else if (IEEE80211_IS_CHAN_ST(chan)) 1423 return IEEE80211_MODE_STURBO_A; 1424 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1425 return IEEE80211_MODE_TURBO_A; 1426 else if (IEEE80211_IS_CHAN_HALF(chan)) 1427 return IEEE80211_MODE_HALF; 1428 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1429 return IEEE80211_MODE_QUARTER; 1430 else if (IEEE80211_IS_CHAN_A(chan)) 1431 return IEEE80211_MODE_11A; 1432 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1433 return IEEE80211_MODE_11G; 1434 else if (IEEE80211_IS_CHAN_B(chan)) 1435 return IEEE80211_MODE_11B; 1436 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1437 return IEEE80211_MODE_FH; 1438 1439 /* NB: should not get here */ 1440 kprintf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1441 __func__, chan->ic_freq, chan->ic_flags); 1442 return IEEE80211_MODE_11B; 1443 } 1444 1445 struct ratemedia { 1446 u_int match; /* rate + mode */ 1447 u_int media; /* if_media rate */ 1448 }; 1449 1450 static int 1451 findmedia(const struct ratemedia rates[], int n, u_int match) 1452 { 1453 int i; 1454 1455 for (i = 0; i < n; i++) 1456 if (rates[i].match == match) 1457 return rates[i].media; 1458 return IFM_AUTO; 1459 } 1460 1461 /* 1462 * Convert IEEE80211 rate value to ifmedia subtype. 1463 * Rate is either a legacy rate in units of 0.5Mbps 1464 * or an MCS index. 1465 */ 1466 int 1467 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1468 { 1469 #define N(a) (sizeof(a) / sizeof(a[0])) 1470 static const struct ratemedia rates[] = { 1471 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1472 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1473 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1474 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1475 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1476 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1477 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1478 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1479 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1480 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1481 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1482 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1483 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1484 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1485 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1486 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1487 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1488 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1489 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1490 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1491 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1492 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1493 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1494 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1495 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1496 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1497 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1498 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1499 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1500 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1501 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1502 }; 1503 static const struct ratemedia htrates[] = { 1504 { 0, IFM_IEEE80211_MCS }, 1505 { 1, IFM_IEEE80211_MCS }, 1506 { 2, IFM_IEEE80211_MCS }, 1507 { 3, IFM_IEEE80211_MCS }, 1508 { 4, IFM_IEEE80211_MCS }, 1509 { 5, IFM_IEEE80211_MCS }, 1510 { 6, IFM_IEEE80211_MCS }, 1511 { 7, IFM_IEEE80211_MCS }, 1512 { 8, IFM_IEEE80211_MCS }, 1513 { 9, IFM_IEEE80211_MCS }, 1514 { 10, IFM_IEEE80211_MCS }, 1515 { 11, IFM_IEEE80211_MCS }, 1516 { 12, IFM_IEEE80211_MCS }, 1517 { 13, IFM_IEEE80211_MCS }, 1518 { 14, IFM_IEEE80211_MCS }, 1519 { 15, IFM_IEEE80211_MCS }, 1520 }; 1521 int m; 1522 1523 /* 1524 * Check 11n rates first for match as an MCS. 1525 */ 1526 if (mode == IEEE80211_MODE_11NA) { 1527 if (rate & IEEE80211_RATE_MCS) { 1528 rate &= ~IEEE80211_RATE_MCS; 1529 m = findmedia(htrates, N(htrates), rate); 1530 if (m != IFM_AUTO) 1531 return m | IFM_IEEE80211_11NA; 1532 } 1533 } else if (mode == IEEE80211_MODE_11NG) { 1534 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1535 if (rate & IEEE80211_RATE_MCS) { 1536 rate &= ~IEEE80211_RATE_MCS; 1537 m = findmedia(htrates, N(htrates), rate); 1538 if (m != IFM_AUTO) 1539 return m | IFM_IEEE80211_11NG; 1540 } 1541 } 1542 rate &= IEEE80211_RATE_VAL; 1543 switch (mode) { 1544 case IEEE80211_MODE_11A: 1545 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1546 case IEEE80211_MODE_QUARTER: 1547 case IEEE80211_MODE_11NA: 1548 case IEEE80211_MODE_TURBO_A: 1549 case IEEE80211_MODE_STURBO_A: 1550 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A); 1551 case IEEE80211_MODE_11B: 1552 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B); 1553 case IEEE80211_MODE_FH: 1554 return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH); 1555 case IEEE80211_MODE_AUTO: 1556 /* NB: ic may be NULL for some drivers */ 1557 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1558 return findmedia(rates, N(rates), 1559 rate | IFM_IEEE80211_FH); 1560 /* NB: hack, 11g matches both 11b+11a rates */ 1561 /* fall thru... */ 1562 case IEEE80211_MODE_11G: 1563 case IEEE80211_MODE_11NG: 1564 case IEEE80211_MODE_TURBO_G: 1565 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G); 1566 } 1567 return IFM_AUTO; 1568 #undef N 1569 } 1570 1571 int 1572 ieee80211_media2rate(int mword) 1573 { 1574 #define N(a) (sizeof(a) / sizeof(a[0])) 1575 static const int ieeerates[] = { 1576 -1, /* IFM_AUTO */ 1577 0, /* IFM_MANUAL */ 1578 0, /* IFM_NONE */ 1579 2, /* IFM_IEEE80211_FH1 */ 1580 4, /* IFM_IEEE80211_FH2 */ 1581 2, /* IFM_IEEE80211_DS1 */ 1582 4, /* IFM_IEEE80211_DS2 */ 1583 11, /* IFM_IEEE80211_DS5 */ 1584 22, /* IFM_IEEE80211_DS11 */ 1585 44, /* IFM_IEEE80211_DS22 */ 1586 12, /* IFM_IEEE80211_OFDM6 */ 1587 18, /* IFM_IEEE80211_OFDM9 */ 1588 24, /* IFM_IEEE80211_OFDM12 */ 1589 36, /* IFM_IEEE80211_OFDM18 */ 1590 48, /* IFM_IEEE80211_OFDM24 */ 1591 72, /* IFM_IEEE80211_OFDM36 */ 1592 96, /* IFM_IEEE80211_OFDM48 */ 1593 108, /* IFM_IEEE80211_OFDM54 */ 1594 144, /* IFM_IEEE80211_OFDM72 */ 1595 0, /* IFM_IEEE80211_DS354k */ 1596 0, /* IFM_IEEE80211_DS512k */ 1597 6, /* IFM_IEEE80211_OFDM3 */ 1598 9, /* IFM_IEEE80211_OFDM4 */ 1599 54, /* IFM_IEEE80211_OFDM27 */ 1600 -1, /* IFM_IEEE80211_MCS */ 1601 }; 1602 return IFM_SUBTYPE(mword) < N(ieeerates) ? 1603 ieeerates[IFM_SUBTYPE(mword)] : 0; 1604 #undef N 1605 } 1606 1607 /* 1608 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1609 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1610 */ 1611 #define mix(a, b, c) \ 1612 do { \ 1613 a -= b; a -= c; a ^= (c >> 13); \ 1614 b -= c; b -= a; b ^= (a << 8); \ 1615 c -= a; c -= b; c ^= (b >> 13); \ 1616 a -= b; a -= c; a ^= (c >> 12); \ 1617 b -= c; b -= a; b ^= (a << 16); \ 1618 c -= a; c -= b; c ^= (b >> 5); \ 1619 a -= b; a -= c; a ^= (c >> 3); \ 1620 b -= c; b -= a; b ^= (a << 10); \ 1621 c -= a; c -= b; c ^= (b >> 15); \ 1622 } while (/*CONSTCOND*/0) 1623 1624 uint32_t 1625 ieee80211_mac_hash(const struct ieee80211com *ic, 1626 const uint8_t addr[IEEE80211_ADDR_LEN]) 1627 { 1628 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 1629 1630 b += addr[5] << 8; 1631 b += addr[4]; 1632 a += addr[3] << 24; 1633 a += addr[2] << 16; 1634 a += addr[1] << 8; 1635 a += addr[0]; 1636 1637 mix(a, b, c); 1638 1639 return c; 1640 } 1641 #undef mix 1642