1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * $FreeBSD: head/sys/net80211/ieee80211.c 206358 2010-04-07 15:29:13Z rpaulo $ 27 * $DragonFly$ 28 */ 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 39 #include <sys/socket.h> 40 #include <sys/thread.h> 41 42 #include <net/if.h> 43 #include <net/if_dl.h> 44 #include <net/if_media.h> 45 #include <net/if_types.h> 46 #include <net/ifq_var.h> 47 #include <net/ethernet.h> 48 #include <net/route.h> 49 50 #include <netproto/802_11/ieee80211_var.h> 51 #include <netproto/802_11/ieee80211_regdomain.h> 52 #ifdef IEEE80211_SUPPORT_SUPERG 53 #include <netproto/802_11/ieee80211_superg.h> 54 #endif 55 #include <netproto/802_11/ieee80211_ratectl.h> 56 57 #include <net/bpf.h> 58 59 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 60 [IEEE80211_MODE_AUTO] = "auto", 61 [IEEE80211_MODE_11A] = "11a", 62 [IEEE80211_MODE_11B] = "11b", 63 [IEEE80211_MODE_11G] = "11g", 64 [IEEE80211_MODE_FH] = "FH", 65 [IEEE80211_MODE_TURBO_A] = "turboA", 66 [IEEE80211_MODE_TURBO_G] = "turboG", 67 [IEEE80211_MODE_STURBO_A] = "sturboA", 68 [IEEE80211_MODE_HALF] = "half", 69 [IEEE80211_MODE_QUARTER] = "quarter", 70 [IEEE80211_MODE_11NA] = "11na", 71 [IEEE80211_MODE_11NG] = "11ng", 72 }; 73 /* map ieee80211_opmode to the corresponding capability bit */ 74 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 75 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 76 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 77 [IEEE80211_M_STA] = IEEE80211_C_STA, 78 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 79 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 80 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 81 #ifdef IEEE80211_SUPPORT_MESH 82 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 83 #endif 84 }; 85 86 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 87 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 88 89 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 90 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 91 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 92 static int ieee80211_media_setup(struct ieee80211com *ic, 93 struct ifmedia *media, int caps, int addsta, 94 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 95 static void ieee80211com_media_status(struct ifnet *, struct ifmediareq *); 96 static int ieee80211com_media_change(struct ifnet *); 97 static int media_status(enum ieee80211_opmode, 98 const struct ieee80211_channel *); 99 100 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 101 102 /* 103 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 104 */ 105 #define B(r) ((r) | IEEE80211_RATE_BASIC) 106 static const struct ieee80211_rateset ieee80211_rateset_11a = 107 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 108 static const struct ieee80211_rateset ieee80211_rateset_half = 109 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 110 static const struct ieee80211_rateset ieee80211_rateset_quarter = 111 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 112 static const struct ieee80211_rateset ieee80211_rateset_11b = 113 { 4, { B(2), B(4), B(11), B(22) } }; 114 /* NB: OFDM rates are handled specially based on mode */ 115 static const struct ieee80211_rateset ieee80211_rateset_11g = 116 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 117 #undef B 118 119 /* Global token used for wlan layer and wireless NIC driver layer */ 120 lwkt_token wlan_token; 121 122 /* 123 * Fill in 802.11 available channel set, mark 124 * all available channels as active, and pick 125 * a default channel if not already specified. 126 */ 127 static void 128 ieee80211_chan_init(struct ieee80211com *ic) 129 { 130 #define DEFAULTRATES(m, def) do { \ 131 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 132 ic->ic_sup_rates[m] = def; \ 133 } while (0) 134 struct ieee80211_channel *c; 135 int i; 136 137 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 138 ("invalid number of channels specified: %u", ic->ic_nchans)); 139 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 140 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 141 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 142 for (i = 0; i < ic->ic_nchans; i++) { 143 c = &ic->ic_channels[i]; 144 KASSERT(c->ic_flags != 0, ("channel with no flags")); 145 /* 146 * Help drivers that work only with frequencies by filling 147 * in IEEE channel #'s if not already calculated. Note this 148 * mimics similar work done in ieee80211_setregdomain when 149 * changing regulatory state. 150 */ 151 if (c->ic_ieee == 0) 152 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 153 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 154 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 155 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 156 c->ic_flags); 157 /* default max tx power to max regulatory */ 158 if (c->ic_maxpower == 0) 159 c->ic_maxpower = 2*c->ic_maxregpower; 160 setbit(ic->ic_chan_avail, c->ic_ieee); 161 /* 162 * Identify mode capabilities. 163 */ 164 if (IEEE80211_IS_CHAN_A(c)) 165 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 166 if (IEEE80211_IS_CHAN_B(c)) 167 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 168 if (IEEE80211_IS_CHAN_ANYG(c)) 169 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 170 if (IEEE80211_IS_CHAN_FHSS(c)) 171 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 172 if (IEEE80211_IS_CHAN_108A(c)) 173 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 174 if (IEEE80211_IS_CHAN_108G(c)) 175 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 176 if (IEEE80211_IS_CHAN_ST(c)) 177 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 178 if (IEEE80211_IS_CHAN_HALF(c)) 179 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 180 if (IEEE80211_IS_CHAN_QUARTER(c)) 181 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 182 if (IEEE80211_IS_CHAN_HTA(c)) 183 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 184 if (IEEE80211_IS_CHAN_HTG(c)) 185 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 186 } 187 /* initialize candidate channels to all available */ 188 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 189 sizeof(ic->ic_chan_avail)); 190 191 /* sort channel table to allow lookup optimizations */ 192 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 193 194 /* invalidate any previous state */ 195 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 196 ic->ic_prevchan = NULL; 197 ic->ic_csa_newchan = NULL; 198 /* arbitrarily pick the first channel */ 199 ic->ic_curchan = &ic->ic_channels[0]; 200 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 201 202 /* fillin well-known rate sets if driver has not specified */ 203 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 204 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 205 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 206 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 207 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 208 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 209 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 210 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 211 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 212 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 213 214 /* 215 * Set auto mode to reset active channel state and any desired channel. 216 */ 217 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 218 #undef DEFAULTRATES 219 } 220 221 static void 222 null_update_mcast(struct ifnet *ifp) 223 { 224 if_printf(ifp, "need multicast update callback\n"); 225 } 226 227 static void 228 null_update_promisc(struct ifnet *ifp) 229 { 230 if_printf(ifp, "need promiscuous mode update callback\n"); 231 } 232 233 static int 234 null_transmit(struct ifnet *ifp, struct mbuf *m) 235 { 236 m_freem(m); 237 ifp->if_oerrors++; 238 return EACCES; /* XXX EIO/EPERM? */ 239 } 240 241 static int 242 null_output(struct ifnet *ifp, struct mbuf *m, 243 struct sockaddr *dst, struct rtentry *ro) 244 { 245 if_printf(ifp, "discard raw packet\n"); 246 return null_transmit(ifp, m); 247 } 248 249 static void 250 null_input(struct ifnet *ifp, struct mbuf *m) 251 { 252 if_printf(ifp, "if_input should not be called\n"); 253 m_freem(m); 254 } 255 256 /* 257 * Attach/setup the common net80211 state. Called by 258 * the driver on attach to prior to creating any vap's. 259 */ 260 void 261 ieee80211_ifattach(struct ieee80211com *ic, 262 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 263 { 264 struct ifnet *ifp = ic->ic_ifp; 265 struct sockaddr_dl *sdl; 266 struct ifaddr *ifa; 267 268 KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type)); 269 270 IEEE80211_LOCK_INIT(ic, ifp->if_xname); 271 TAILQ_INIT(&ic->ic_vaps); 272 273 /* Create a taskqueue for all state changes */ 274 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 275 taskqueue_thread_enqueue, &ic->ic_tq); 276 taskqueue_start_threads(&ic->ic_tq, 1, TDPRI_KERN_DAEMON, -1, 277 "%s taskq", ifp->if_xname); 278 /* 279 * Fill in 802.11 available channel set, mark all 280 * available channels as active, and pick a default 281 * channel if not already specified. 282 */ 283 ieee80211_media_init(ic); 284 285 ic->ic_update_mcast = null_update_mcast; 286 ic->ic_update_promisc = null_update_promisc; 287 288 ic->ic_hash_key = karc4random(); 289 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 290 ic->ic_lintval = ic->ic_bintval; 291 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 292 293 ieee80211_crypto_attach(ic); 294 ieee80211_node_attach(ic); 295 ieee80211_power_attach(ic); 296 ieee80211_proto_attach(ic); 297 #ifdef IEEE80211_SUPPORT_SUPERG 298 ieee80211_superg_attach(ic); 299 #endif 300 ieee80211_ht_attach(ic); 301 ieee80211_scan_attach(ic); 302 ieee80211_regdomain_attach(ic); 303 ieee80211_dfs_attach(ic); 304 305 ieee80211_sysctl_attach(ic); 306 307 ifp->if_addrlen = IEEE80211_ADDR_LEN; 308 ifp->if_hdrlen = 0; 309 if_attach(ifp, NULL); 310 ifp->if_mtu = IEEE80211_MTU_MAX; 311 ifp->if_broadcastaddr = ieee80211broadcastaddr; 312 ifp->if_output = null_output; 313 ifp->if_input = null_input; /* just in case */ 314 ifp->if_resolvemulti = NULL; /* NB: callers check */ 315 316 ifa = ifaddr_byindex(ifp->if_index); 317 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 318 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 319 sdl->sdl_type = IFT_ETHER; /* XXX IFT_IEEE80211? */ 320 sdl->sdl_alen = IEEE80211_ADDR_LEN; 321 IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr); 322 // IFAFREE(ifa); 323 } 324 325 /* 326 * Detach net80211 state on device detach. Tear down 327 * all vap's and reclaim all common state prior to the 328 * device state going away. Note we may call back into 329 * driver; it must be prepared for this. 330 */ 331 void 332 ieee80211_ifdetach(struct ieee80211com *ic) 333 { 334 struct ifnet *ifp = ic->ic_ifp; 335 struct ieee80211vap *vap; 336 337 if_detach(ifp); 338 339 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 340 ieee80211_vap_destroy(vap); 341 ieee80211_waitfor_parent(ic); 342 343 ieee80211_sysctl_detach(ic); 344 ieee80211_dfs_detach(ic); 345 ieee80211_regdomain_detach(ic); 346 ieee80211_scan_detach(ic); 347 #ifdef IEEE80211_SUPPORT_SUPERG 348 ieee80211_superg_detach(ic); 349 #endif 350 ieee80211_ht_detach(ic); 351 /* NB: must be called before ieee80211_node_detach */ 352 ieee80211_proto_detach(ic); 353 ieee80211_crypto_detach(ic); 354 ieee80211_power_detach(ic); 355 ieee80211_node_detach(ic); 356 357 ifmedia_removeall(&ic->ic_media); 358 taskqueue_free(ic->ic_tq); 359 IEEE80211_LOCK_DESTROY(ic); 360 } 361 362 /* 363 * Default reset method for use with the ioctl support. This 364 * method is invoked after any state change in the 802.11 365 * layer that should be propagated to the hardware but not 366 * require re-initialization of the 802.11 state machine (e.g 367 * rescanning for an ap). We always return ENETRESET which 368 * should cause the driver to re-initialize the device. Drivers 369 * can override this method to implement more optimized support. 370 */ 371 static int 372 default_reset(struct ieee80211vap *vap, u_long cmd) 373 { 374 return ENETRESET; 375 } 376 377 /* 378 * Prepare a vap for use. Drivers use this call to 379 * setup net80211 state in new vap's prior attaching 380 * them with ieee80211_vap_attach (below). 381 */ 382 int 383 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 384 const char name[IFNAMSIZ], int unit, int opmode, int flags, 385 const uint8_t bssid[IEEE80211_ADDR_LEN], 386 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 387 { 388 struct ifnet *ifp; 389 390 ifp = if_alloc(IFT_ETHER); 391 if (ifp == NULL) { 392 if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n", 393 __func__); 394 return ENOMEM; 395 } 396 if_initname(ifp, name, unit); 397 ifp->if_softc = vap; /* back pointer */ 398 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 399 ifp->if_start = ieee80211_start; 400 ifp->if_ioctl = ieee80211_ioctl; 401 ifp->if_init = ieee80211_init; 402 /* NB: input+output filled in by ether_ifattach */ 403 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN); 404 ifq_set_ready(&ifp->if_snd); 405 406 vap->iv_ifp = ifp; 407 vap->iv_ic = ic; 408 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 409 vap->iv_flags_ext = ic->ic_flags_ext; 410 vap->iv_flags_ven = ic->ic_flags_ven; 411 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 412 vap->iv_htcaps = ic->ic_htcaps; 413 vap->iv_opmode = opmode; 414 vap->iv_caps |= ieee80211_opcap[opmode]; 415 switch (opmode) { 416 case IEEE80211_M_WDS: 417 /* 418 * WDS links must specify the bssid of the far end. 419 * For legacy operation this is a static relationship. 420 * For non-legacy operation the station must associate 421 * and be authorized to pass traffic. Plumbing the 422 * vap to the proper node happens when the vap 423 * transitions to RUN state. 424 */ 425 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 426 vap->iv_flags |= IEEE80211_F_DESBSSID; 427 if (flags & IEEE80211_CLONE_WDSLEGACY) 428 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 429 break; 430 #ifdef IEEE80211_SUPPORT_TDMA 431 case IEEE80211_M_AHDEMO: 432 if (flags & IEEE80211_CLONE_TDMA) { 433 /* NB: checked before clone operation allowed */ 434 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 435 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 436 /* 437 * Propagate TDMA capability to mark vap; this 438 * cannot be removed and is used to distinguish 439 * regular ahdemo operation from ahdemo+tdma. 440 */ 441 vap->iv_caps |= IEEE80211_C_TDMA; 442 } 443 break; 444 #endif 445 } 446 /* auto-enable s/w beacon miss support */ 447 if (flags & IEEE80211_CLONE_NOBEACONS) 448 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 449 /* auto-generated or user supplied MAC address */ 450 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 451 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 452 /* 453 * Enable various functionality by default if we're 454 * capable; the driver can override us if it knows better. 455 */ 456 if (vap->iv_caps & IEEE80211_C_WME) 457 vap->iv_flags |= IEEE80211_F_WME; 458 if (vap->iv_caps & IEEE80211_C_BURST) 459 vap->iv_flags |= IEEE80211_F_BURST; 460 /* NB: bg scanning only makes sense for station mode right now */ 461 if (vap->iv_opmode == IEEE80211_M_STA && 462 (vap->iv_caps & IEEE80211_C_BGSCAN)) 463 vap->iv_flags |= IEEE80211_F_BGSCAN; 464 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 465 /* NB: DFS support only makes sense for ap mode right now */ 466 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 467 (vap->iv_caps & IEEE80211_C_DFS)) 468 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 469 470 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 471 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 472 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 473 /* 474 * Install a default reset method for the ioctl support; 475 * the driver can override this. 476 */ 477 vap->iv_reset = default_reset; 478 479 IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr); 480 481 ieee80211_sysctl_vattach(vap); 482 ieee80211_crypto_vattach(vap); 483 ieee80211_node_vattach(vap); 484 ieee80211_power_vattach(vap); 485 ieee80211_proto_vattach(vap); 486 #ifdef IEEE80211_SUPPORT_SUPERG 487 ieee80211_superg_vattach(vap); 488 #endif 489 ieee80211_ht_vattach(vap); 490 ieee80211_scan_vattach(vap); 491 ieee80211_regdomain_vattach(vap); 492 ieee80211_radiotap_vattach(vap); 493 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_AMRR); 494 495 return 0; 496 } 497 498 /* 499 * Activate a vap. State should have been prepared with a 500 * call to ieee80211_vap_setup and by the driver. On return 501 * from this call the vap is ready for use. 502 */ 503 int 504 ieee80211_vap_attach(struct ieee80211vap *vap, 505 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 506 { 507 struct ifnet *ifp = vap->iv_ifp; 508 struct ieee80211com *ic = vap->iv_ic; 509 struct ifmediareq imr; 510 int maxrate; 511 512 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 513 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 514 __func__, ieee80211_opmode_name[vap->iv_opmode], 515 ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext); 516 517 /* 518 * Do late attach work that cannot happen until after 519 * the driver has had a chance to override defaults. 520 */ 521 ieee80211_node_latevattach(vap); 522 ieee80211_power_latevattach(vap); 523 524 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 525 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 526 ieee80211_media_status(ifp, &imr); 527 /* NB: strip explicit mode; we're actually in autoselect */ 528 ifmedia_set(&vap->iv_media, 529 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 530 if (maxrate) 531 ifp->if_baudrate = IF_Mbps(maxrate); 532 533 ether_ifattach(ifp, vap->iv_myaddr, NULL); 534 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 535 /* NB: disallow transmit */ 536 #ifdef __FreeBSD__ 537 ifp->if_transmit = null_transmit; 538 #endif 539 ifp->if_output = null_output; 540 } else { 541 /* hook output method setup by ether_ifattach */ 542 vap->iv_output = ifp->if_output; 543 ifp->if_output = ieee80211_output; 544 } 545 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 546 547 IEEE80211_LOCK(ic); 548 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 549 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 550 #ifdef IEEE80211_SUPPORT_SUPERG 551 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 552 #endif 553 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 554 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 555 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 556 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 557 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 558 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 559 IEEE80211_UNLOCK(ic); 560 561 return 1; 562 } 563 564 /* 565 * Tear down vap state and reclaim the ifnet. 566 * The driver is assumed to have prepared for 567 * this; e.g. by turning off interrupts for the 568 * underlying device. 569 */ 570 void 571 ieee80211_vap_detach(struct ieee80211vap *vap) 572 { 573 struct ieee80211com *ic = vap->iv_ic; 574 struct ifnet *ifp = vap->iv_ifp; 575 576 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 577 __func__, ieee80211_opmode_name[vap->iv_opmode], 578 ic->ic_ifp->if_xname); 579 580 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 581 ether_ifdetach(ifp); 582 583 ieee80211_stop(vap); 584 585 /* 586 * Flush any deferred vap tasks. 587 */ 588 ieee80211_draintask(ic, &vap->iv_nstate_task); 589 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 590 591 #ifdef __FreeBSD__ 592 /* XXX band-aid until ifnet handles this for us */ 593 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 594 #endif 595 596 IEEE80211_LOCK(ic); 597 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 598 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 599 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 600 #ifdef IEEE80211_SUPPORT_SUPERG 601 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 602 #endif 603 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 604 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 605 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 606 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 607 /* NB: this handles the bpfdetach done below */ 608 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 609 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 610 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 611 IEEE80211_UNLOCK(ic); 612 613 ifmedia_removeall(&vap->iv_media); 614 615 ieee80211_radiotap_vdetach(vap); 616 ieee80211_regdomain_vdetach(vap); 617 ieee80211_scan_vdetach(vap); 618 #ifdef IEEE80211_SUPPORT_SUPERG 619 ieee80211_superg_vdetach(vap); 620 #endif 621 ieee80211_ht_vdetach(vap); 622 /* NB: must be before ieee80211_node_vdetach */ 623 ieee80211_proto_vdetach(vap); 624 ieee80211_crypto_vdetach(vap); 625 ieee80211_power_vdetach(vap); 626 ieee80211_node_vdetach(vap); 627 ieee80211_sysctl_vdetach(vap); 628 629 if_free(ifp); 630 } 631 632 /* 633 * Synchronize flag bit state in the parent ifnet structure 634 * according to the state of all vap ifnet's. This is used, 635 * for example, to handle IFF_PROMISC and IFF_ALLMULTI. 636 */ 637 void 638 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag) 639 { 640 struct ifnet *ifp = ic->ic_ifp; 641 struct ieee80211vap *vap; 642 int bit, oflags; 643 644 IEEE80211_LOCK_ASSERT(ic); 645 646 bit = 0; 647 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 648 if (vap->iv_ifp->if_flags & flag) { 649 /* 650 * XXX the bridge sets PROMISC but we don't want to 651 * enable it on the device, discard here so all the 652 * drivers don't need to special-case it 653 */ 654 if (flag == IFF_PROMISC && 655 !(vap->iv_opmode == IEEE80211_M_MONITOR || 656 (vap->iv_opmode == IEEE80211_M_AHDEMO && 657 (vap->iv_caps & IEEE80211_C_TDMA) == 0))) 658 continue; 659 bit = 1; 660 break; 661 } 662 oflags = ifp->if_flags; 663 if (bit) 664 ifp->if_flags |= flag; 665 else 666 ifp->if_flags &= ~flag; 667 if ((ifp->if_flags ^ oflags) & flag) { 668 /* XXX should we return 1/0 and let caller do this? */ 669 if (ifp->if_flags & IFF_RUNNING) { 670 if (flag == IFF_PROMISC) 671 ieee80211_runtask(ic, &ic->ic_promisc_task); 672 else if (flag == IFF_ALLMULTI) 673 ieee80211_runtask(ic, &ic->ic_mcast_task); 674 } 675 } 676 } 677 678 /* 679 * Synchronize flag bit state in the com structure 680 * according to the state of all vap's. This is used, 681 * for example, to handle state changes via ioctls. 682 */ 683 static void 684 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 685 { 686 struct ieee80211vap *vap; 687 int bit; 688 689 IEEE80211_LOCK_ASSERT(ic); 690 691 bit = 0; 692 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 693 if (vap->iv_flags & flag) { 694 bit = 1; 695 break; 696 } 697 if (bit) 698 ic->ic_flags |= flag; 699 else 700 ic->ic_flags &= ~flag; 701 } 702 703 void 704 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 705 { 706 struct ieee80211com *ic = vap->iv_ic; 707 708 IEEE80211_LOCK(ic); 709 if (flag < 0) { 710 flag = -flag; 711 vap->iv_flags &= ~flag; 712 } else 713 vap->iv_flags |= flag; 714 ieee80211_syncflag_locked(ic, flag); 715 IEEE80211_UNLOCK(ic); 716 } 717 718 /* 719 * Synchronize flags_ht bit state in the com structure 720 * according to the state of all vap's. This is used, 721 * for example, to handle state changes via ioctls. 722 */ 723 static void 724 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 725 { 726 struct ieee80211vap *vap; 727 int bit; 728 729 IEEE80211_LOCK_ASSERT(ic); 730 731 bit = 0; 732 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 733 if (vap->iv_flags_ht & flag) { 734 bit = 1; 735 break; 736 } 737 if (bit) 738 ic->ic_flags_ht |= flag; 739 else 740 ic->ic_flags_ht &= ~flag; 741 } 742 743 void 744 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 745 { 746 struct ieee80211com *ic = vap->iv_ic; 747 748 IEEE80211_LOCK(ic); 749 if (flag < 0) { 750 flag = -flag; 751 vap->iv_flags_ht &= ~flag; 752 } else 753 vap->iv_flags_ht |= flag; 754 ieee80211_syncflag_ht_locked(ic, flag); 755 IEEE80211_UNLOCK(ic); 756 } 757 758 /* 759 * Synchronize flags_ext bit state in the com structure 760 * according to the state of all vap's. This is used, 761 * for example, to handle state changes via ioctls. 762 */ 763 static void 764 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 765 { 766 struct ieee80211vap *vap; 767 int bit; 768 769 IEEE80211_LOCK_ASSERT(ic); 770 771 bit = 0; 772 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 773 if (vap->iv_flags_ext & flag) { 774 bit = 1; 775 break; 776 } 777 if (bit) 778 ic->ic_flags_ext |= flag; 779 else 780 ic->ic_flags_ext &= ~flag; 781 } 782 783 void 784 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 785 { 786 struct ieee80211com *ic = vap->iv_ic; 787 788 IEEE80211_LOCK(ic); 789 if (flag < 0) { 790 flag = -flag; 791 vap->iv_flags_ext &= ~flag; 792 } else 793 vap->iv_flags_ext |= flag; 794 ieee80211_syncflag_ext_locked(ic, flag); 795 IEEE80211_UNLOCK(ic); 796 } 797 798 static __inline int 799 mapgsm(u_int freq, u_int flags) 800 { 801 freq *= 10; 802 if (flags & IEEE80211_CHAN_QUARTER) 803 freq += 5; 804 else if (flags & IEEE80211_CHAN_HALF) 805 freq += 10; 806 else 807 freq += 20; 808 /* NB: there is no 907/20 wide but leave room */ 809 return (freq - 906*10) / 5; 810 } 811 812 static __inline int 813 mappsb(u_int freq, u_int flags) 814 { 815 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 816 } 817 818 /* 819 * Convert MHz frequency to IEEE channel number. 820 */ 821 int 822 ieee80211_mhz2ieee(u_int freq, u_int flags) 823 { 824 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 825 if (flags & IEEE80211_CHAN_GSM) 826 return mapgsm(freq, flags); 827 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 828 if (freq == 2484) 829 return 14; 830 if (freq < 2484) 831 return ((int) freq - 2407) / 5; 832 else 833 return 15 + ((freq - 2512) / 20); 834 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 835 if (freq <= 5000) { 836 /* XXX check regdomain? */ 837 if (IS_FREQ_IN_PSB(freq)) 838 return mappsb(freq, flags); 839 return (freq - 4000) / 5; 840 } else 841 return (freq - 5000) / 5; 842 } else { /* either, guess */ 843 if (freq == 2484) 844 return 14; 845 if (freq < 2484) { 846 if (907 <= freq && freq <= 922) 847 return mapgsm(freq, flags); 848 return ((int) freq - 2407) / 5; 849 } 850 if (freq < 5000) { 851 if (IS_FREQ_IN_PSB(freq)) 852 return mappsb(freq, flags); 853 else if (freq > 4900) 854 return (freq - 4000) / 5; 855 else 856 return 15 + ((freq - 2512) / 20); 857 } 858 return (freq - 5000) / 5; 859 } 860 #undef IS_FREQ_IN_PSB 861 } 862 863 /* 864 * Convert channel to IEEE channel number. 865 */ 866 int 867 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 868 { 869 if (c == NULL) { 870 if_printf(ic->ic_ifp, "invalid channel (NULL)\n"); 871 return 0; /* XXX */ 872 } 873 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 874 } 875 876 /* 877 * Convert IEEE channel number to MHz frequency. 878 */ 879 u_int 880 ieee80211_ieee2mhz(u_int chan, u_int flags) 881 { 882 if (flags & IEEE80211_CHAN_GSM) 883 return 907 + 5 * (chan / 10); 884 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 885 if (chan == 14) 886 return 2484; 887 if (chan < 14) 888 return 2407 + chan*5; 889 else 890 return 2512 + ((chan-15)*20); 891 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 892 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 893 chan -= 37; 894 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 895 } 896 return 5000 + (chan*5); 897 } else { /* either, guess */ 898 /* XXX can't distinguish PSB+GSM channels */ 899 if (chan == 14) 900 return 2484; 901 if (chan < 14) /* 0-13 */ 902 return 2407 + chan*5; 903 if (chan < 27) /* 15-26 */ 904 return 2512 + ((chan-15)*20); 905 return 5000 + (chan*5); 906 } 907 } 908 909 /* 910 * Locate a channel given a frequency+flags. We cache 911 * the previous lookup to optimize switching between two 912 * channels--as happens with dynamic turbo. 913 */ 914 struct ieee80211_channel * 915 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 916 { 917 struct ieee80211_channel *c; 918 int i; 919 920 flags &= IEEE80211_CHAN_ALLTURBO; 921 c = ic->ic_prevchan; 922 if (c != NULL && c->ic_freq == freq && 923 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 924 return c; 925 /* brute force search */ 926 for (i = 0; i < ic->ic_nchans; i++) { 927 c = &ic->ic_channels[i]; 928 if (c->ic_freq == freq && 929 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 930 return c; 931 } 932 return NULL; 933 } 934 935 /* 936 * Locate a channel given a channel number+flags. We cache 937 * the previous lookup to optimize switching between two 938 * channels--as happens with dynamic turbo. 939 */ 940 struct ieee80211_channel * 941 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 942 { 943 struct ieee80211_channel *c; 944 int i; 945 946 flags &= IEEE80211_CHAN_ALLTURBO; 947 c = ic->ic_prevchan; 948 if (c != NULL && c->ic_ieee == ieee && 949 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 950 return c; 951 /* brute force search */ 952 for (i = 0; i < ic->ic_nchans; i++) { 953 c = &ic->ic_channels[i]; 954 if (c->ic_ieee == ieee && 955 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 956 return c; 957 } 958 return NULL; 959 } 960 961 static void 962 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 963 { 964 #define ADD(_ic, _s, _o) \ 965 ifmedia_add(media, \ 966 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 967 static const u_int mopts[IEEE80211_MODE_MAX] = { 968 [IEEE80211_MODE_AUTO] = IFM_AUTO, 969 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 970 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 971 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 972 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 973 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 974 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 975 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 976 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 977 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 978 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 979 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 980 }; 981 u_int mopt; 982 983 mopt = mopts[mode]; 984 if (addsta) 985 ADD(ic, mword, mopt); /* STA mode has no cap */ 986 if (caps & IEEE80211_C_IBSS) 987 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 988 if (caps & IEEE80211_C_HOSTAP) 989 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 990 if (caps & IEEE80211_C_AHDEMO) 991 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 992 if (caps & IEEE80211_C_MONITOR) 993 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 994 if (caps & IEEE80211_C_WDS) 995 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 996 if (caps & IEEE80211_C_MBSS) 997 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 998 #undef ADD 999 } 1000 1001 /* 1002 * Setup the media data structures according to the channel and 1003 * rate tables. 1004 */ 1005 static int 1006 ieee80211_media_setup(struct ieee80211com *ic, 1007 struct ifmedia *media, int caps, int addsta, 1008 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1009 { 1010 int i, j, mode, rate, maxrate, mword, r; 1011 const struct ieee80211_rateset *rs; 1012 struct ieee80211_rateset allrates; 1013 1014 /* 1015 * Fill in media characteristics. 1016 */ 1017 ifmedia_init(media, 0, media_change, media_stat); 1018 maxrate = 0; 1019 /* 1020 * Add media for legacy operating modes. 1021 */ 1022 memset(&allrates, 0, sizeof(allrates)); 1023 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1024 if (isclr(ic->ic_modecaps, mode)) 1025 continue; 1026 addmedia(media, caps, addsta, mode, IFM_AUTO); 1027 if (mode == IEEE80211_MODE_AUTO) 1028 continue; 1029 rs = &ic->ic_sup_rates[mode]; 1030 for (i = 0; i < rs->rs_nrates; i++) { 1031 rate = rs->rs_rates[i]; 1032 mword = ieee80211_rate2media(ic, rate, mode); 1033 if (mword == 0) 1034 continue; 1035 addmedia(media, caps, addsta, mode, mword); 1036 /* 1037 * Add legacy rate to the collection of all rates. 1038 */ 1039 r = rate & IEEE80211_RATE_VAL; 1040 for (j = 0; j < allrates.rs_nrates; j++) 1041 if (allrates.rs_rates[j] == r) 1042 break; 1043 if (j == allrates.rs_nrates) { 1044 /* unique, add to the set */ 1045 allrates.rs_rates[j] = r; 1046 allrates.rs_nrates++; 1047 } 1048 rate = (rate & IEEE80211_RATE_VAL) / 2; 1049 if (rate > maxrate) 1050 maxrate = rate; 1051 } 1052 } 1053 for (i = 0; i < allrates.rs_nrates; i++) { 1054 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1055 IEEE80211_MODE_AUTO); 1056 if (mword == 0) 1057 continue; 1058 /* NB: remove media options from mword */ 1059 addmedia(media, caps, addsta, 1060 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1061 } 1062 /* 1063 * Add HT/11n media. Note that we do not have enough 1064 * bits in the media subtype to express the MCS so we 1065 * use a "placeholder" media subtype and any fixed MCS 1066 * must be specified with a different mechanism. 1067 */ 1068 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1069 if (isclr(ic->ic_modecaps, mode)) 1070 continue; 1071 addmedia(media, caps, addsta, mode, IFM_AUTO); 1072 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1073 } 1074 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1075 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1076 addmedia(media, caps, addsta, 1077 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1078 /* XXX could walk htrates */ 1079 /* XXX known array size */ 1080 if (ieee80211_htrates[15].ht40_rate_400ns > maxrate) 1081 maxrate = ieee80211_htrates[15].ht40_rate_400ns; 1082 } 1083 return maxrate; 1084 } 1085 1086 void 1087 ieee80211_media_init(struct ieee80211com *ic) 1088 { 1089 struct ifnet *ifp = ic->ic_ifp; 1090 int maxrate; 1091 1092 /* NB: this works because the structure is initialized to zero */ 1093 if (!LIST_EMPTY(&ic->ic_media.ifm_list)) { 1094 /* 1095 * We are re-initializing the channel list; clear 1096 * the existing media state as the media routines 1097 * don't suppress duplicates. 1098 */ 1099 ifmedia_removeall(&ic->ic_media); 1100 } 1101 ieee80211_chan_init(ic); 1102 1103 /* 1104 * Recalculate media settings in case new channel list changes 1105 * the set of available modes. 1106 */ 1107 maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1, 1108 ieee80211com_media_change, ieee80211com_media_status); 1109 /* NB: strip explicit mode; we're actually in autoselect */ 1110 ifmedia_set(&ic->ic_media, 1111 media_status(ic->ic_opmode, ic->ic_curchan) &~ 1112 (IFM_MMASK | IFM_IEEE80211_TURBO)); 1113 if (maxrate) 1114 ifp->if_baudrate = IF_Mbps(maxrate); 1115 1116 /* XXX need to propagate new media settings to vap's */ 1117 } 1118 1119 /* XXX inline or eliminate? */ 1120 const struct ieee80211_rateset * 1121 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1122 { 1123 /* XXX does this work for 11ng basic rates? */ 1124 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1125 } 1126 1127 void 1128 ieee80211_announce(struct ieee80211com *ic) 1129 { 1130 struct ifnet *ifp = ic->ic_ifp; 1131 int i, mode, rate, mword; 1132 const struct ieee80211_rateset *rs; 1133 1134 /* NB: skip AUTO since it has no rates */ 1135 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1136 if (isclr(ic->ic_modecaps, mode)) 1137 continue; 1138 if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]); 1139 rs = &ic->ic_sup_rates[mode]; 1140 for (i = 0; i < rs->rs_nrates; i++) { 1141 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1142 if (mword == 0) 1143 continue; 1144 rate = ieee80211_media2rate(mword); 1145 kprintf("%s%d%sMbps", (i != 0 ? " " : ""), 1146 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1147 } 1148 kprintf("\n"); 1149 } 1150 ieee80211_ht_announce(ic); 1151 } 1152 1153 void 1154 ieee80211_announce_channels(struct ieee80211com *ic) 1155 { 1156 const struct ieee80211_channel *c; 1157 char type; 1158 int i, cw; 1159 1160 kprintf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1161 for (i = 0; i < ic->ic_nchans; i++) { 1162 c = &ic->ic_channels[i]; 1163 if (IEEE80211_IS_CHAN_ST(c)) 1164 type = 'S'; 1165 else if (IEEE80211_IS_CHAN_108A(c)) 1166 type = 'T'; 1167 else if (IEEE80211_IS_CHAN_108G(c)) 1168 type = 'G'; 1169 else if (IEEE80211_IS_CHAN_HT(c)) 1170 type = 'n'; 1171 else if (IEEE80211_IS_CHAN_A(c)) 1172 type = 'a'; 1173 else if (IEEE80211_IS_CHAN_ANYG(c)) 1174 type = 'g'; 1175 else if (IEEE80211_IS_CHAN_B(c)) 1176 type = 'b'; 1177 else 1178 type = 'f'; 1179 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1180 cw = 40; 1181 else if (IEEE80211_IS_CHAN_HALF(c)) 1182 cw = 10; 1183 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1184 cw = 5; 1185 else 1186 cw = 20; 1187 kprintf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1188 , c->ic_ieee, c->ic_freq, type 1189 , cw 1190 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1191 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1192 , c->ic_maxregpower 1193 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1194 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1195 ); 1196 } 1197 } 1198 1199 static int 1200 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1201 { 1202 switch (IFM_MODE(ime->ifm_media)) { 1203 case IFM_IEEE80211_11A: 1204 *mode = IEEE80211_MODE_11A; 1205 break; 1206 case IFM_IEEE80211_11B: 1207 *mode = IEEE80211_MODE_11B; 1208 break; 1209 case IFM_IEEE80211_11G: 1210 *mode = IEEE80211_MODE_11G; 1211 break; 1212 case IFM_IEEE80211_FH: 1213 *mode = IEEE80211_MODE_FH; 1214 break; 1215 case IFM_IEEE80211_11NA: 1216 *mode = IEEE80211_MODE_11NA; 1217 break; 1218 case IFM_IEEE80211_11NG: 1219 *mode = IEEE80211_MODE_11NG; 1220 break; 1221 case IFM_AUTO: 1222 *mode = IEEE80211_MODE_AUTO; 1223 break; 1224 default: 1225 return 0; 1226 } 1227 /* 1228 * Turbo mode is an ``option''. 1229 * XXX does not apply to AUTO 1230 */ 1231 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1232 if (*mode == IEEE80211_MODE_11A) { 1233 if (flags & IEEE80211_F_TURBOP) 1234 *mode = IEEE80211_MODE_TURBO_A; 1235 else 1236 *mode = IEEE80211_MODE_STURBO_A; 1237 } else if (*mode == IEEE80211_MODE_11G) 1238 *mode = IEEE80211_MODE_TURBO_G; 1239 else 1240 return 0; 1241 } 1242 /* XXX HT40 +/- */ 1243 return 1; 1244 } 1245 1246 /* 1247 * Handle a media change request on the underlying interface. 1248 */ 1249 int 1250 ieee80211com_media_change(struct ifnet *ifp) 1251 { 1252 return EINVAL; 1253 } 1254 1255 /* 1256 * Handle a media change request on the vap interface. 1257 */ 1258 int 1259 ieee80211_media_change(struct ifnet *ifp) 1260 { 1261 struct ieee80211vap *vap = ifp->if_softc; 1262 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1263 uint16_t newmode; 1264 1265 if (!media2mode(ime, vap->iv_flags, &newmode)) 1266 return EINVAL; 1267 if (vap->iv_des_mode != newmode) { 1268 vap->iv_des_mode = newmode; 1269 /* XXX kick state machine if up+running */ 1270 } 1271 return 0; 1272 } 1273 1274 /* 1275 * Common code to calculate the media status word 1276 * from the operating mode and channel state. 1277 */ 1278 static int 1279 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1280 { 1281 int status; 1282 1283 status = IFM_IEEE80211; 1284 switch (opmode) { 1285 case IEEE80211_M_STA: 1286 break; 1287 case IEEE80211_M_IBSS: 1288 status |= IFM_IEEE80211_ADHOC; 1289 break; 1290 case IEEE80211_M_HOSTAP: 1291 status |= IFM_IEEE80211_HOSTAP; 1292 break; 1293 case IEEE80211_M_MONITOR: 1294 status |= IFM_IEEE80211_MONITOR; 1295 break; 1296 case IEEE80211_M_AHDEMO: 1297 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1298 break; 1299 case IEEE80211_M_WDS: 1300 status |= IFM_IEEE80211_WDS; 1301 break; 1302 case IEEE80211_M_MBSS: 1303 status |= IFM_IEEE80211_MBSS; 1304 break; 1305 } 1306 if (IEEE80211_IS_CHAN_HTA(chan)) { 1307 status |= IFM_IEEE80211_11NA; 1308 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1309 status |= IFM_IEEE80211_11NG; 1310 } else if (IEEE80211_IS_CHAN_A(chan)) { 1311 status |= IFM_IEEE80211_11A; 1312 } else if (IEEE80211_IS_CHAN_B(chan)) { 1313 status |= IFM_IEEE80211_11B; 1314 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1315 status |= IFM_IEEE80211_11G; 1316 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1317 status |= IFM_IEEE80211_FH; 1318 } 1319 /* XXX else complain? */ 1320 1321 if (IEEE80211_IS_CHAN_TURBO(chan)) 1322 status |= IFM_IEEE80211_TURBO; 1323 #if 0 1324 if (IEEE80211_IS_CHAN_HT20(chan)) 1325 status |= IFM_IEEE80211_HT20; 1326 if (IEEE80211_IS_CHAN_HT40(chan)) 1327 status |= IFM_IEEE80211_HT40; 1328 #endif 1329 return status; 1330 } 1331 1332 static void 1333 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1334 { 1335 struct ieee80211com *ic = ifp->if_l2com; 1336 struct ieee80211vap *vap; 1337 1338 imr->ifm_status = IFM_AVALID; 1339 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1340 if (vap->iv_ifp->if_flags & IFF_UP) { 1341 imr->ifm_status |= IFM_ACTIVE; 1342 break; 1343 } 1344 imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan); 1345 if (imr->ifm_status & IFM_ACTIVE) 1346 imr->ifm_current = imr->ifm_active; 1347 } 1348 1349 void 1350 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1351 { 1352 struct ieee80211vap *vap = ifp->if_softc; 1353 struct ieee80211com *ic = vap->iv_ic; 1354 enum ieee80211_phymode mode; 1355 1356 imr->ifm_status = IFM_AVALID; 1357 /* 1358 * NB: use the current channel's mode to lock down a xmit 1359 * rate only when running; otherwise we may have a mismatch 1360 * in which case the rate will not be convertible. 1361 */ 1362 if (vap->iv_state == IEEE80211_S_RUN) { 1363 imr->ifm_status |= IFM_ACTIVE; 1364 mode = ieee80211_chan2mode(ic->ic_curchan); 1365 } else 1366 mode = IEEE80211_MODE_AUTO; 1367 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1368 /* 1369 * Calculate a current rate if possible. 1370 */ 1371 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1372 /* 1373 * A fixed rate is set, report that. 1374 */ 1375 imr->ifm_active |= ieee80211_rate2media(ic, 1376 vap->iv_txparms[mode].ucastrate, mode); 1377 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1378 /* 1379 * In station mode report the current transmit rate. 1380 */ 1381 imr->ifm_active |= ieee80211_rate2media(ic, 1382 vap->iv_bss->ni_txrate, mode); 1383 } else 1384 imr->ifm_active |= IFM_AUTO; 1385 if (imr->ifm_status & IFM_ACTIVE) 1386 imr->ifm_current = imr->ifm_active; 1387 } 1388 1389 /* 1390 * Set the current phy mode and recalculate the active channel 1391 * set based on the available channels for this mode. Also 1392 * select a new default/current channel if the current one is 1393 * inappropriate for this mode. 1394 */ 1395 int 1396 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1397 { 1398 /* 1399 * Adjust basic rates in 11b/11g supported rate set. 1400 * Note that if operating on a hal/quarter rate channel 1401 * this is a noop as those rates sets are different 1402 * and used instead. 1403 */ 1404 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1405 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1406 1407 ic->ic_curmode = mode; 1408 ieee80211_reset_erp(ic); /* reset ERP state */ 1409 1410 return 0; 1411 } 1412 1413 /* 1414 * Return the phy mode for with the specified channel. 1415 */ 1416 enum ieee80211_phymode 1417 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1418 { 1419 1420 if (IEEE80211_IS_CHAN_HTA(chan)) 1421 return IEEE80211_MODE_11NA; 1422 else if (IEEE80211_IS_CHAN_HTG(chan)) 1423 return IEEE80211_MODE_11NG; 1424 else if (IEEE80211_IS_CHAN_108G(chan)) 1425 return IEEE80211_MODE_TURBO_G; 1426 else if (IEEE80211_IS_CHAN_ST(chan)) 1427 return IEEE80211_MODE_STURBO_A; 1428 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1429 return IEEE80211_MODE_TURBO_A; 1430 else if (IEEE80211_IS_CHAN_HALF(chan)) 1431 return IEEE80211_MODE_HALF; 1432 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1433 return IEEE80211_MODE_QUARTER; 1434 else if (IEEE80211_IS_CHAN_A(chan)) 1435 return IEEE80211_MODE_11A; 1436 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1437 return IEEE80211_MODE_11G; 1438 else if (IEEE80211_IS_CHAN_B(chan)) 1439 return IEEE80211_MODE_11B; 1440 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1441 return IEEE80211_MODE_FH; 1442 1443 /* NB: should not get here */ 1444 kprintf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1445 __func__, chan->ic_freq, chan->ic_flags); 1446 return IEEE80211_MODE_11B; 1447 } 1448 1449 struct ratemedia { 1450 u_int match; /* rate + mode */ 1451 u_int media; /* if_media rate */ 1452 }; 1453 1454 static int 1455 findmedia(const struct ratemedia rates[], int n, u_int match) 1456 { 1457 int i; 1458 1459 for (i = 0; i < n; i++) 1460 if (rates[i].match == match) 1461 return rates[i].media; 1462 return IFM_AUTO; 1463 } 1464 1465 /* 1466 * Convert IEEE80211 rate value to ifmedia subtype. 1467 * Rate is either a legacy rate in units of 0.5Mbps 1468 * or an MCS index. 1469 */ 1470 int 1471 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1472 { 1473 #define N(a) (sizeof(a) / sizeof(a[0])) 1474 static const struct ratemedia rates[] = { 1475 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1476 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1477 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1478 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1479 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1480 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1481 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1482 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1483 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1484 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1485 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1486 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1487 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1488 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1489 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1490 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1491 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1492 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1493 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1494 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1495 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1496 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1497 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1498 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1499 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1500 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1501 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1502 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1503 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1504 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1505 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1506 }; 1507 static const struct ratemedia htrates[] = { 1508 { 0, IFM_IEEE80211_MCS }, 1509 { 1, IFM_IEEE80211_MCS }, 1510 { 2, IFM_IEEE80211_MCS }, 1511 { 3, IFM_IEEE80211_MCS }, 1512 { 4, IFM_IEEE80211_MCS }, 1513 { 5, IFM_IEEE80211_MCS }, 1514 { 6, IFM_IEEE80211_MCS }, 1515 { 7, IFM_IEEE80211_MCS }, 1516 { 8, IFM_IEEE80211_MCS }, 1517 { 9, IFM_IEEE80211_MCS }, 1518 { 10, IFM_IEEE80211_MCS }, 1519 { 11, IFM_IEEE80211_MCS }, 1520 { 12, IFM_IEEE80211_MCS }, 1521 { 13, IFM_IEEE80211_MCS }, 1522 { 14, IFM_IEEE80211_MCS }, 1523 { 15, IFM_IEEE80211_MCS }, 1524 }; 1525 int m; 1526 1527 /* 1528 * Check 11n rates first for match as an MCS. 1529 */ 1530 if (mode == IEEE80211_MODE_11NA) { 1531 if (rate & IEEE80211_RATE_MCS) { 1532 rate &= ~IEEE80211_RATE_MCS; 1533 m = findmedia(htrates, N(htrates), rate); 1534 if (m != IFM_AUTO) 1535 return m | IFM_IEEE80211_11NA; 1536 } 1537 } else if (mode == IEEE80211_MODE_11NG) { 1538 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1539 if (rate & IEEE80211_RATE_MCS) { 1540 rate &= ~IEEE80211_RATE_MCS; 1541 m = findmedia(htrates, N(htrates), rate); 1542 if (m != IFM_AUTO) 1543 return m | IFM_IEEE80211_11NG; 1544 } 1545 } 1546 rate &= IEEE80211_RATE_VAL; 1547 switch (mode) { 1548 case IEEE80211_MODE_11A: 1549 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1550 case IEEE80211_MODE_QUARTER: 1551 case IEEE80211_MODE_11NA: 1552 case IEEE80211_MODE_TURBO_A: 1553 case IEEE80211_MODE_STURBO_A: 1554 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A); 1555 case IEEE80211_MODE_11B: 1556 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B); 1557 case IEEE80211_MODE_FH: 1558 return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH); 1559 case IEEE80211_MODE_AUTO: 1560 /* NB: ic may be NULL for some drivers */ 1561 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1562 return findmedia(rates, N(rates), 1563 rate | IFM_IEEE80211_FH); 1564 /* NB: hack, 11g matches both 11b+11a rates */ 1565 /* fall thru... */ 1566 case IEEE80211_MODE_11G: 1567 case IEEE80211_MODE_11NG: 1568 case IEEE80211_MODE_TURBO_G: 1569 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G); 1570 } 1571 return IFM_AUTO; 1572 #undef N 1573 } 1574 1575 int 1576 ieee80211_media2rate(int mword) 1577 { 1578 #define N(a) (sizeof(a) / sizeof(a[0])) 1579 static const int ieeerates[] = { 1580 -1, /* IFM_AUTO */ 1581 0, /* IFM_MANUAL */ 1582 0, /* IFM_NONE */ 1583 2, /* IFM_IEEE80211_FH1 */ 1584 4, /* IFM_IEEE80211_FH2 */ 1585 2, /* IFM_IEEE80211_DS1 */ 1586 4, /* IFM_IEEE80211_DS2 */ 1587 11, /* IFM_IEEE80211_DS5 */ 1588 22, /* IFM_IEEE80211_DS11 */ 1589 44, /* IFM_IEEE80211_DS22 */ 1590 12, /* IFM_IEEE80211_OFDM6 */ 1591 18, /* IFM_IEEE80211_OFDM9 */ 1592 24, /* IFM_IEEE80211_OFDM12 */ 1593 36, /* IFM_IEEE80211_OFDM18 */ 1594 48, /* IFM_IEEE80211_OFDM24 */ 1595 72, /* IFM_IEEE80211_OFDM36 */ 1596 96, /* IFM_IEEE80211_OFDM48 */ 1597 108, /* IFM_IEEE80211_OFDM54 */ 1598 144, /* IFM_IEEE80211_OFDM72 */ 1599 0, /* IFM_IEEE80211_DS354k */ 1600 0, /* IFM_IEEE80211_DS512k */ 1601 6, /* IFM_IEEE80211_OFDM3 */ 1602 9, /* IFM_IEEE80211_OFDM4 */ 1603 54, /* IFM_IEEE80211_OFDM27 */ 1604 -1, /* IFM_IEEE80211_MCS */ 1605 }; 1606 return IFM_SUBTYPE(mword) < N(ieeerates) ? 1607 ieeerates[IFM_SUBTYPE(mword)] : 0; 1608 #undef N 1609 } 1610 1611 /* 1612 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1613 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1614 */ 1615 #define mix(a, b, c) \ 1616 do { \ 1617 a -= b; a -= c; a ^= (c >> 13); \ 1618 b -= c; b -= a; b ^= (a << 8); \ 1619 c -= a; c -= b; c ^= (b >> 13); \ 1620 a -= b; a -= c; a ^= (c >> 12); \ 1621 b -= c; b -= a; b ^= (a << 16); \ 1622 c -= a; c -= b; c ^= (b >> 5); \ 1623 a -= b; a -= c; a ^= (c >> 3); \ 1624 b -= c; b -= a; b ^= (a << 10); \ 1625 c -= a; c -= b; c ^= (b >> 15); \ 1626 } while (/*CONSTCOND*/0) 1627 1628 uint32_t 1629 ieee80211_mac_hash(const struct ieee80211com *ic, 1630 const uint8_t addr[IEEE80211_ADDR_LEN]) 1631 { 1632 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 1633 1634 b += addr[5] << 8; 1635 b += addr[4]; 1636 a += addr[3] << 24; 1637 a += addr[2] << 16; 1638 a += addr[1] << 8; 1639 a += addr[0]; 1640 1641 mix(a, b, c); 1642 1643 return c; 1644 } 1645 #undef mix 1646