1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * $FreeBSD: head/sys/net80211/ieee80211.c 206358 2010-04-07 15:29:13Z rpaulo $ 27 */ 28 29 /* 30 * IEEE 802.11 generic handler 31 */ 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 38 #include <sys/socket.h> 39 #include <sys/thread.h> 40 41 #include <net/if.h> 42 #include <net/if_dl.h> 43 #include <net/if_media.h> 44 #include <net/if_types.h> 45 #include <net/ifq_var.h> 46 #include <net/ethernet.h> 47 #include <net/route.h> 48 49 #include <netproto/802_11/ieee80211_var.h> 50 #include <netproto/802_11/ieee80211_regdomain.h> 51 #ifdef IEEE80211_SUPPORT_SUPERG 52 #include <netproto/802_11/ieee80211_superg.h> 53 #endif 54 #include <netproto/802_11/ieee80211_ratectl.h> 55 56 #include <net/bpf.h> 57 58 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 59 [IEEE80211_MODE_AUTO] = "auto", 60 [IEEE80211_MODE_11A] = "11a", 61 [IEEE80211_MODE_11B] = "11b", 62 [IEEE80211_MODE_11G] = "11g", 63 [IEEE80211_MODE_FH] = "FH", 64 [IEEE80211_MODE_TURBO_A] = "turboA", 65 [IEEE80211_MODE_TURBO_G] = "turboG", 66 [IEEE80211_MODE_STURBO_A] = "sturboA", 67 [IEEE80211_MODE_HALF] = "half", 68 [IEEE80211_MODE_QUARTER] = "quarter", 69 [IEEE80211_MODE_11NA] = "11na", 70 [IEEE80211_MODE_11NG] = "11ng", 71 }; 72 /* map ieee80211_opmode to the corresponding capability bit */ 73 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 74 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 75 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 76 [IEEE80211_M_STA] = IEEE80211_C_STA, 77 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 78 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 79 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 80 #ifdef IEEE80211_SUPPORT_MESH 81 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 82 #endif 83 }; 84 85 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 86 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 87 88 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 89 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 90 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 91 static int ieee80211_media_setup(struct ieee80211com *ic, 92 struct ifmedia *media, int caps, int addsta, 93 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 94 static void ieee80211com_media_status(struct ifnet *, struct ifmediareq *); 95 static int ieee80211com_media_change(struct ifnet *); 96 static int media_status(enum ieee80211_opmode, 97 const struct ieee80211_channel *); 98 99 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 100 101 /* 102 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 103 */ 104 #define B(r) ((r) | IEEE80211_RATE_BASIC) 105 static const struct ieee80211_rateset ieee80211_rateset_11a = 106 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 107 static const struct ieee80211_rateset ieee80211_rateset_half = 108 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 109 static const struct ieee80211_rateset ieee80211_rateset_quarter = 110 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 111 static const struct ieee80211_rateset ieee80211_rateset_11b = 112 { 4, { B(2), B(4), B(11), B(22) } }; 113 /* NB: OFDM rates are handled specially based on mode */ 114 static const struct ieee80211_rateset ieee80211_rateset_11g = 115 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 116 #undef B 117 118 /* Global token used for wlan layer and wireless NIC driver layer */ 119 lwkt_token wlan_token; 120 121 /* 122 * Fill in 802.11 available channel set, mark 123 * all available channels as active, and pick 124 * a default channel if not already specified. 125 */ 126 static void 127 ieee80211_chan_init(struct ieee80211com *ic) 128 { 129 #define DEFAULTRATES(m, def) do { \ 130 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 131 ic->ic_sup_rates[m] = def; \ 132 } while (0) 133 struct ieee80211_channel *c; 134 int i; 135 136 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 137 ("invalid number of channels specified: %u", ic->ic_nchans)); 138 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 139 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 140 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 141 for (i = 0; i < ic->ic_nchans; i++) { 142 c = &ic->ic_channels[i]; 143 KASSERT(c->ic_flags != 0, ("channel with no flags")); 144 /* 145 * Help drivers that work only with frequencies by filling 146 * in IEEE channel #'s if not already calculated. Note this 147 * mimics similar work done in ieee80211_setregdomain when 148 * changing regulatory state. 149 */ 150 if (c->ic_ieee == 0) 151 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 152 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 153 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 154 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 155 c->ic_flags); 156 /* default max tx power to max regulatory */ 157 if (c->ic_maxpower == 0) 158 c->ic_maxpower = 2*c->ic_maxregpower; 159 setbit(ic->ic_chan_avail, c->ic_ieee); 160 /* 161 * Identify mode capabilities. 162 */ 163 if (IEEE80211_IS_CHAN_A(c)) 164 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 165 if (IEEE80211_IS_CHAN_B(c)) 166 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 167 if (IEEE80211_IS_CHAN_ANYG(c)) 168 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 169 if (IEEE80211_IS_CHAN_FHSS(c)) 170 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 171 if (IEEE80211_IS_CHAN_108A(c)) 172 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 173 if (IEEE80211_IS_CHAN_108G(c)) 174 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 175 if (IEEE80211_IS_CHAN_ST(c)) 176 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 177 if (IEEE80211_IS_CHAN_HALF(c)) 178 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 179 if (IEEE80211_IS_CHAN_QUARTER(c)) 180 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 181 if (IEEE80211_IS_CHAN_HTA(c)) 182 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 183 if (IEEE80211_IS_CHAN_HTG(c)) 184 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 185 } 186 /* initialize candidate channels to all available */ 187 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 188 sizeof(ic->ic_chan_avail)); 189 190 /* sort channel table to allow lookup optimizations */ 191 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 192 193 /* invalidate any previous state */ 194 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 195 ic->ic_prevchan = NULL; 196 ic->ic_csa_newchan = NULL; 197 /* arbitrarily pick the first channel */ 198 ic->ic_curchan = &ic->ic_channels[0]; 199 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 200 201 /* fillin well-known rate sets if driver has not specified */ 202 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 203 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 204 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 205 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 206 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 207 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 208 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 209 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 210 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 211 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 212 213 /* 214 * Set auto mode to reset active channel state and any desired channel. 215 */ 216 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 217 #undef DEFAULTRATES 218 } 219 220 static void 221 null_update_mcast(struct ifnet *ifp) 222 { 223 if_printf(ifp, "need multicast update callback\n"); 224 } 225 226 static void 227 null_update_promisc(struct ifnet *ifp) 228 { 229 if_printf(ifp, "need promiscuous mode update callback\n"); 230 } 231 232 static int 233 null_transmit(struct ifnet *ifp, struct mbuf *m) 234 { 235 m_freem(m); 236 IFNET_STAT_INC(ifp, oerrors, 1); 237 return EACCES; /* XXX EIO/EPERM? */ 238 } 239 240 static int 241 null_output(struct ifnet *ifp, struct mbuf *m, 242 struct sockaddr *dst, struct rtentry *ro) 243 { 244 if_printf(ifp, "discard raw packet\n"); 245 return null_transmit(ifp, m); 246 } 247 248 static void 249 null_input(struct ifnet *ifp, struct mbuf *m, 250 const struct pktinfo *pi, int cpuid) 251 { 252 if_printf(ifp, "if_input should not be called\n"); 253 m_freem(m); 254 } 255 256 /* 257 * Attach/setup the common net80211 state. Called by 258 * the driver on attach to prior to creating any vap's. 259 */ 260 void 261 ieee80211_ifattach(struct ieee80211com *ic, 262 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 263 { 264 struct ifnet *ifp = ic->ic_ifp; 265 struct sockaddr_dl *sdl; 266 struct ifaddr *ifa; 267 268 KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type)); 269 270 TAILQ_INIT(&ic->ic_vaps); 271 272 /* Create a taskqueue for all state changes */ 273 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 274 taskqueue_thread_enqueue, &ic->ic_tq); 275 taskqueue_start_threads(&ic->ic_tq, 1, TDPRI_KERN_DAEMON, -1, 276 "%s taskq", ifp->if_xname); 277 /* 278 * Fill in 802.11 available channel set, mark all 279 * available channels as active, and pick a default 280 * channel if not already specified. 281 */ 282 ieee80211_media_init(ic); 283 284 ic->ic_update_mcast = null_update_mcast; 285 ic->ic_update_promisc = null_update_promisc; 286 287 ic->ic_hash_key = karc4random(); 288 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 289 ic->ic_lintval = ic->ic_bintval; 290 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 291 292 ieee80211_crypto_attach(ic); 293 ieee80211_node_attach(ic); 294 ieee80211_power_attach(ic); 295 ieee80211_proto_attach(ic); 296 #ifdef IEEE80211_SUPPORT_SUPERG 297 ieee80211_superg_attach(ic); 298 #endif 299 ieee80211_ht_attach(ic); 300 ieee80211_scan_attach(ic); 301 ieee80211_regdomain_attach(ic); 302 ieee80211_dfs_attach(ic); 303 304 ieee80211_sysctl_attach(ic); 305 306 ifp->if_addrlen = IEEE80211_ADDR_LEN; 307 ifp->if_hdrlen = 0; 308 if_attach(ifp, &wlan_global_serializer); 309 ifp->if_mtu = IEEE80211_MTU_MAX; 310 ifp->if_broadcastaddr = ieee80211broadcastaddr; 311 ifp->if_output = null_output; 312 ifp->if_input = null_input; /* just in case */ 313 ifp->if_resolvemulti = NULL; /* NB: callers check */ 314 315 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 316 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 317 sdl->sdl_type = IFT_ETHER; /* XXX IFT_IEEE80211? */ 318 sdl->sdl_alen = IEEE80211_ADDR_LEN; 319 IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr); 320 } 321 322 /* 323 * Detach net80211 state on device detach. Tear down 324 * all vap's and reclaim all common state prior to the 325 * device state going away. Note we may call back into 326 * driver; it must be prepared for this. 327 */ 328 void 329 ieee80211_ifdetach(struct ieee80211com *ic) 330 { 331 struct ifnet *ifp = ic->ic_ifp; 332 struct ieee80211vap *vap; 333 334 wlan_serialize_exit(); 335 if_detach(ifp); 336 wlan_serialize_enter(); 337 338 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 339 ieee80211_vap_destroy(vap); 340 ieee80211_waitfor_parent(ic); 341 342 ieee80211_sysctl_detach(ic); 343 ieee80211_dfs_detach(ic); 344 ieee80211_regdomain_detach(ic); 345 ieee80211_scan_detach(ic); 346 #ifdef IEEE80211_SUPPORT_SUPERG 347 ieee80211_superg_detach(ic); 348 #endif 349 ieee80211_ht_detach(ic); 350 /* NB: must be called before ieee80211_node_detach */ 351 ieee80211_proto_detach(ic); 352 ieee80211_crypto_detach(ic); 353 ieee80211_power_detach(ic); 354 ieee80211_node_detach(ic); 355 356 ifmedia_removeall(&ic->ic_media); 357 taskqueue_free(ic->ic_tq); 358 } 359 360 /* 361 * Default reset method for use with the ioctl support. This 362 * method is invoked after any state change in the 802.11 363 * layer that should be propagated to the hardware but not 364 * require re-initialization of the 802.11 state machine (e.g 365 * rescanning for an ap). We always return ENETRESET which 366 * should cause the driver to re-initialize the device. Drivers 367 * can override this method to implement more optimized support. 368 */ 369 static int 370 default_reset(struct ieee80211vap *vap, u_long cmd) 371 { 372 return ENETRESET; 373 } 374 375 /* 376 * Prepare a vap for use. Drivers use this call to 377 * setup net80211 state in new vap's prior attaching 378 * them with ieee80211_vap_attach (below). 379 */ 380 int 381 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 382 const char name[IFNAMSIZ], int unit, int opmode, int flags, 383 const uint8_t bssid[IEEE80211_ADDR_LEN], 384 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 385 { 386 struct ifnet *ifp; 387 388 ifp = if_alloc(IFT_ETHER); 389 if (ifp == NULL) { 390 if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n", 391 __func__); 392 return ENOMEM; 393 } 394 if_initname(ifp, name, unit); 395 ifp->if_softc = vap; /* back pointer */ 396 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 397 ifp->if_start = ieee80211_start; 398 ifp->if_ioctl = ieee80211_ioctl; 399 ifp->if_init = ieee80211_init; 400 /* NB: input+output filled in by ether_ifattach */ 401 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN); 402 #ifdef notyet 403 ifq_set_ready(&ifp->if_snd); 404 #endif 405 406 vap->iv_ifp = ifp; 407 vap->iv_ic = ic; 408 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 409 vap->iv_flags_ext = ic->ic_flags_ext; 410 vap->iv_flags_ven = ic->ic_flags_ven; 411 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 412 vap->iv_htcaps = ic->ic_htcaps; 413 vap->iv_opmode = opmode; 414 vap->iv_caps |= ieee80211_opcap[opmode]; 415 switch (opmode) { 416 case IEEE80211_M_WDS: 417 /* 418 * WDS links must specify the bssid of the far end. 419 * For legacy operation this is a static relationship. 420 * For non-legacy operation the station must associate 421 * and be authorized to pass traffic. Plumbing the 422 * vap to the proper node happens when the vap 423 * transitions to RUN state. 424 */ 425 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 426 vap->iv_flags |= IEEE80211_F_DESBSSID; 427 if (flags & IEEE80211_CLONE_WDSLEGACY) 428 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 429 break; 430 #ifdef IEEE80211_SUPPORT_TDMA 431 case IEEE80211_M_AHDEMO: 432 if (flags & IEEE80211_CLONE_TDMA) { 433 /* NB: checked before clone operation allowed */ 434 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 435 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 436 /* 437 * Propagate TDMA capability to mark vap; this 438 * cannot be removed and is used to distinguish 439 * regular ahdemo operation from ahdemo+tdma. 440 */ 441 vap->iv_caps |= IEEE80211_C_TDMA; 442 } 443 break; 444 #endif 445 } 446 /* auto-enable s/w beacon miss support */ 447 if (flags & IEEE80211_CLONE_NOBEACONS) 448 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 449 /* auto-generated or user supplied MAC address */ 450 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 451 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 452 /* 453 * Enable various functionality by default if we're 454 * capable; the driver can override us if it knows better. 455 */ 456 if (vap->iv_caps & IEEE80211_C_WME) 457 vap->iv_flags |= IEEE80211_F_WME; 458 if (vap->iv_caps & IEEE80211_C_BURST) 459 vap->iv_flags |= IEEE80211_F_BURST; 460 #if 0 461 /* 462 * NB: bg scanning only makes sense for station mode right now 463 * 464 * XXX: bgscan is not necessarily stable, so do not enable it by 465 * default. It messes up atheros drivers for sure. 466 * (tested w/ AR9280). 467 */ 468 if (vap->iv_opmode == IEEE80211_M_STA && 469 (vap->iv_caps & IEEE80211_C_BGSCAN)) 470 vap->iv_flags |= IEEE80211_F_BGSCAN; 471 #endif 472 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 473 /* NB: DFS support only makes sense for ap mode right now */ 474 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 475 (vap->iv_caps & IEEE80211_C_DFS)) 476 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 477 478 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 479 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 480 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 481 /* 482 * Install a default reset method for the ioctl support; 483 * the driver can override this. 484 */ 485 vap->iv_reset = default_reset; 486 487 IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr); 488 489 ieee80211_sysctl_vattach(vap); 490 ieee80211_crypto_vattach(vap); 491 ieee80211_node_vattach(vap); 492 ieee80211_power_vattach(vap); 493 ieee80211_proto_vattach(vap); 494 #ifdef IEEE80211_SUPPORT_SUPERG 495 ieee80211_superg_vattach(vap); 496 #endif 497 ieee80211_ht_vattach(vap); 498 ieee80211_scan_vattach(vap); 499 ieee80211_regdomain_vattach(vap); 500 ieee80211_radiotap_vattach(vap); 501 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 502 503 return 0; 504 } 505 506 /* 507 * Activate a vap. State should have been prepared with a 508 * call to ieee80211_vap_setup and by the driver. On return 509 * from this call the vap is ready for use. 510 */ 511 int 512 ieee80211_vap_attach(struct ieee80211vap *vap, 513 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 514 { 515 struct ifnet *ifp = vap->iv_ifp; 516 struct ieee80211com *ic = vap->iv_ic; 517 struct ifmediareq imr; 518 int maxrate; 519 520 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 521 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 522 __func__, ieee80211_opmode_name[vap->iv_opmode], 523 ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext); 524 525 /* 526 * Do late attach work that cannot happen until after 527 * the driver has had a chance to override defaults. 528 */ 529 ieee80211_node_latevattach(vap); 530 ieee80211_power_latevattach(vap); 531 532 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 533 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 534 ieee80211_media_status(ifp, &imr); 535 /* NB: strip explicit mode; we're actually in autoselect */ 536 ifmedia_set(&vap->iv_media, 537 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 538 if (maxrate) 539 ifp->if_baudrate = IF_Mbps(maxrate); 540 541 ether_ifattach(ifp, vap->iv_myaddr, &wlan_global_serializer); 542 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 543 /* NB: disallow transmit */ 544 #ifdef __FreeBSD__ 545 ifp->if_transmit = null_transmit; 546 #endif 547 ifp->if_output = null_output; 548 } else { 549 /* hook output method setup by ether_ifattach */ 550 vap->iv_output = ifp->if_output; 551 ifp->if_output = ieee80211_output; 552 } 553 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 554 555 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 556 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 557 #ifdef IEEE80211_SUPPORT_SUPERG 558 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 559 #endif 560 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 561 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 562 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 563 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 564 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 565 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 566 567 return 1; 568 } 569 570 /* 571 * Tear down vap state and reclaim the ifnet. 572 * The driver is assumed to have prepared for 573 * this; e.g. by turning off interrupts for the 574 * underlying device. 575 */ 576 void 577 ieee80211_vap_detach(struct ieee80211vap *vap) 578 { 579 struct ieee80211com *ic = vap->iv_ic; 580 struct ifnet *ifp = vap->iv_ifp; 581 582 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 583 __func__, ieee80211_opmode_name[vap->iv_opmode], 584 ic->ic_ifp->if_xname); 585 586 /* 587 * NB: bpfdetach is called by ether_ifdetach and claims all taps 588 * 589 * ether_ifdetach() must be called without the serializer held. 590 */ 591 wlan_assert_serialized(); 592 wlan_serialize_exit(); /* exit to block */ 593 ether_ifdetach(ifp); 594 595 wlan_serialize_enter(); /* then reenter */ 596 ieee80211_stop(vap); 597 598 /* 599 * Flush any deferred vap tasks. 600 */ 601 wlan_serialize_exit(); /* exit to block */ 602 ieee80211_draintask(ic, &vap->iv_nstate_task); 603 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 604 wlan_serialize_enter(); /* then reenter */ 605 606 #ifdef __FreeBSD__ 607 /* XXX band-aid until ifnet handles this for us */ 608 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 609 #endif 610 611 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 612 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 613 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 614 #ifdef IEEE80211_SUPPORT_SUPERG 615 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 616 #endif 617 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 618 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 619 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 620 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 621 /* NB: this handles the bpfdetach done below */ 622 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 623 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 624 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 625 626 ifmedia_removeall(&vap->iv_media); 627 628 ieee80211_radiotap_vdetach(vap); 629 ieee80211_regdomain_vdetach(vap); 630 ieee80211_scan_vdetach(vap); 631 #ifdef IEEE80211_SUPPORT_SUPERG 632 ieee80211_superg_vdetach(vap); 633 #endif 634 ieee80211_ht_vdetach(vap); 635 /* NB: must be before ieee80211_node_vdetach */ 636 ieee80211_proto_vdetach(vap); 637 ieee80211_crypto_vdetach(vap); 638 ieee80211_power_vdetach(vap); 639 ieee80211_node_vdetach(vap); 640 ieee80211_sysctl_vdetach(vap); 641 642 if_free(ifp); 643 } 644 645 /* 646 * Synchronize flag bit state in the parent ifnet structure 647 * according to the state of all vap ifnet's. This is used, 648 * for example, to handle IFF_PROMISC and IFF_ALLMULTI. 649 */ 650 void 651 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag) 652 { 653 struct ifnet *ifp = ic->ic_ifp; 654 struct ieee80211vap *vap; 655 int bit, oflags; 656 657 bit = 0; 658 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 659 if (vap->iv_ifp->if_flags & flag) { 660 /* 661 * XXX the bridge sets PROMISC but we don't want to 662 * enable it on the device, discard here so all the 663 * drivers don't need to special-case it 664 */ 665 if (flag == IFF_PROMISC && 666 !(vap->iv_opmode == IEEE80211_M_MONITOR || 667 (vap->iv_opmode == IEEE80211_M_AHDEMO && 668 (vap->iv_caps & IEEE80211_C_TDMA) == 0))) 669 continue; 670 bit = 1; 671 break; 672 } 673 oflags = ifp->if_flags; 674 if (bit) 675 ifp->if_flags |= flag; 676 else 677 ifp->if_flags &= ~flag; 678 if ((ifp->if_flags ^ oflags) & flag) { 679 /* XXX should we return 1/0 and let caller do this? */ 680 if (ifp->if_flags & IFF_RUNNING) { 681 if (flag == IFF_PROMISC) 682 ieee80211_runtask(ic, &ic->ic_promisc_task); 683 else if (flag == IFF_ALLMULTI) 684 ieee80211_runtask(ic, &ic->ic_mcast_task); 685 } 686 } 687 } 688 689 /* 690 * Synchronize flag bit state in the com structure 691 * according to the state of all vap's. This is used, 692 * for example, to handle state changes via ioctls. 693 */ 694 static void 695 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 696 { 697 struct ieee80211vap *vap; 698 int bit; 699 700 bit = 0; 701 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 702 if (vap->iv_flags & flag) { 703 bit = 1; 704 break; 705 } 706 if (bit) 707 ic->ic_flags |= flag; 708 else 709 ic->ic_flags &= ~flag; 710 } 711 712 void 713 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 714 { 715 struct ieee80211com *ic = vap->iv_ic; 716 717 if (flag < 0) { 718 flag = -flag; 719 vap->iv_flags &= ~flag; 720 } else 721 vap->iv_flags |= flag; 722 ieee80211_syncflag_locked(ic, flag); 723 } 724 725 /* 726 * Synchronize flags_ht bit state in the com structure 727 * according to the state of all vap's. This is used, 728 * for example, to handle state changes via ioctls. 729 */ 730 static void 731 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 732 { 733 struct ieee80211vap *vap; 734 int bit; 735 736 bit = 0; 737 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 738 if (vap->iv_flags_ht & flag) { 739 bit = 1; 740 break; 741 } 742 if (bit) 743 ic->ic_flags_ht |= flag; 744 else 745 ic->ic_flags_ht &= ~flag; 746 } 747 748 void 749 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 750 { 751 struct ieee80211com *ic = vap->iv_ic; 752 753 if (flag < 0) { 754 flag = -flag; 755 vap->iv_flags_ht &= ~flag; 756 } else 757 vap->iv_flags_ht |= flag; 758 ieee80211_syncflag_ht_locked(ic, flag); 759 } 760 761 /* 762 * Synchronize flags_ext bit state in the com structure 763 * according to the state of all vap's. This is used, 764 * for example, to handle state changes via ioctls. 765 */ 766 static void 767 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 768 { 769 struct ieee80211vap *vap; 770 int bit; 771 772 bit = 0; 773 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 774 if (vap->iv_flags_ext & flag) { 775 bit = 1; 776 break; 777 } 778 if (bit) 779 ic->ic_flags_ext |= flag; 780 else 781 ic->ic_flags_ext &= ~flag; 782 } 783 784 void 785 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 786 { 787 struct ieee80211com *ic = vap->iv_ic; 788 789 if (flag < 0) { 790 flag = -flag; 791 vap->iv_flags_ext &= ~flag; 792 } else 793 vap->iv_flags_ext |= flag; 794 ieee80211_syncflag_ext_locked(ic, flag); 795 } 796 797 static __inline int 798 mapgsm(u_int freq, u_int flags) 799 { 800 freq *= 10; 801 if (flags & IEEE80211_CHAN_QUARTER) 802 freq += 5; 803 else if (flags & IEEE80211_CHAN_HALF) 804 freq += 10; 805 else 806 freq += 20; 807 /* NB: there is no 907/20 wide but leave room */ 808 return (freq - 906*10) / 5; 809 } 810 811 static __inline int 812 mappsb(u_int freq, u_int flags) 813 { 814 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 815 } 816 817 /* 818 * Convert MHz frequency to IEEE channel number. 819 */ 820 int 821 ieee80211_mhz2ieee(u_int freq, u_int flags) 822 { 823 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 824 if (flags & IEEE80211_CHAN_GSM) 825 return mapgsm(freq, flags); 826 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 827 if (freq == 2484) 828 return 14; 829 if (freq < 2484) 830 return ((int) freq - 2407) / 5; 831 else 832 return 15 + ((freq - 2512) / 20); 833 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 834 if (freq <= 5000) { 835 /* XXX check regdomain? */ 836 if (IS_FREQ_IN_PSB(freq)) 837 return mappsb(freq, flags); 838 return (freq - 4000) / 5; 839 } else 840 return (freq - 5000) / 5; 841 } else { /* either, guess */ 842 if (freq == 2484) 843 return 14; 844 if (freq < 2484) { 845 if (907 <= freq && freq <= 922) 846 return mapgsm(freq, flags); 847 return ((int) freq - 2407) / 5; 848 } 849 if (freq < 5000) { 850 if (IS_FREQ_IN_PSB(freq)) 851 return mappsb(freq, flags); 852 else if (freq > 4900) 853 return (freq - 4000) / 5; 854 else 855 return 15 + ((freq - 2512) / 20); 856 } 857 return (freq - 5000) / 5; 858 } 859 #undef IS_FREQ_IN_PSB 860 } 861 862 /* 863 * Convert channel to IEEE channel number. 864 */ 865 int 866 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 867 { 868 if (c == NULL) { 869 if_printf(ic->ic_ifp, "invalid channel (NULL)\n"); 870 return 0; /* XXX */ 871 } 872 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 873 } 874 875 /* 876 * Convert IEEE channel number to MHz frequency. 877 */ 878 u_int 879 ieee80211_ieee2mhz(u_int chan, u_int flags) 880 { 881 if (flags & IEEE80211_CHAN_GSM) 882 return 907 + 5 * (chan / 10); 883 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 884 if (chan == 14) 885 return 2484; 886 if (chan < 14) 887 return 2407 + chan*5; 888 else 889 return 2512 + ((chan-15)*20); 890 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 891 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 892 chan -= 37; 893 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 894 } 895 return 5000 + (chan*5); 896 } else { /* either, guess */ 897 /* XXX can't distinguish PSB+GSM channels */ 898 if (chan == 14) 899 return 2484; 900 if (chan < 14) /* 0-13 */ 901 return 2407 + chan*5; 902 if (chan < 27) /* 15-26 */ 903 return 2512 + ((chan-15)*20); 904 return 5000 + (chan*5); 905 } 906 } 907 908 /* 909 * Locate a channel given a frequency+flags. We cache 910 * the previous lookup to optimize switching between two 911 * channels--as happens with dynamic turbo. 912 */ 913 struct ieee80211_channel * 914 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 915 { 916 struct ieee80211_channel *c; 917 int i; 918 919 flags &= IEEE80211_CHAN_ALLTURBO; 920 c = ic->ic_prevchan; 921 if (c != NULL && c->ic_freq == freq && 922 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 923 return c; 924 /* brute force search */ 925 for (i = 0; i < ic->ic_nchans; i++) { 926 c = &ic->ic_channels[i]; 927 if (c->ic_freq == freq && 928 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 929 return c; 930 } 931 return NULL; 932 } 933 934 /* 935 * Locate a channel given a channel number+flags. We cache 936 * the previous lookup to optimize switching between two 937 * channels--as happens with dynamic turbo. 938 */ 939 struct ieee80211_channel * 940 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 941 { 942 struct ieee80211_channel *c; 943 int i; 944 945 flags &= IEEE80211_CHAN_ALLTURBO; 946 c = ic->ic_prevchan; 947 if (c != NULL && c->ic_ieee == ieee && 948 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 949 return c; 950 /* brute force search */ 951 for (i = 0; i < ic->ic_nchans; i++) { 952 c = &ic->ic_channels[i]; 953 if (c->ic_ieee == ieee && 954 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 955 return c; 956 } 957 return NULL; 958 } 959 960 static void 961 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 962 { 963 #define ADD(_ic, _s, _o) \ 964 ifmedia_add(media, \ 965 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 966 static const u_int mopts[IEEE80211_MODE_MAX] = { 967 [IEEE80211_MODE_AUTO] = IFM_AUTO, 968 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 969 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 970 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 971 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 972 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 973 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 974 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 975 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 976 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 977 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 978 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 979 }; 980 u_int mopt; 981 982 mopt = mopts[mode]; 983 if (addsta) 984 ADD(ic, mword, mopt); /* STA mode has no cap */ 985 if (caps & IEEE80211_C_IBSS) 986 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 987 if (caps & IEEE80211_C_HOSTAP) 988 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 989 if (caps & IEEE80211_C_AHDEMO) 990 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 991 if (caps & IEEE80211_C_MONITOR) 992 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 993 if (caps & IEEE80211_C_WDS) 994 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 995 if (caps & IEEE80211_C_MBSS) 996 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 997 #undef ADD 998 } 999 1000 /* 1001 * Setup the media data structures according to the channel and 1002 * rate tables. 1003 */ 1004 static int 1005 ieee80211_media_setup(struct ieee80211com *ic, 1006 struct ifmedia *media, int caps, int addsta, 1007 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1008 { 1009 int i, j, mode, rate, maxrate, mword, r; 1010 const struct ieee80211_rateset *rs; 1011 struct ieee80211_rateset allrates; 1012 1013 /* 1014 * Fill in media characteristics. 1015 */ 1016 ifmedia_init(media, 0, media_change, media_stat); 1017 maxrate = 0; 1018 /* 1019 * Add media for legacy operating modes. 1020 */ 1021 memset(&allrates, 0, sizeof(allrates)); 1022 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1023 if (isclr(ic->ic_modecaps, mode)) 1024 continue; 1025 addmedia(media, caps, addsta, mode, IFM_AUTO); 1026 if (mode == IEEE80211_MODE_AUTO) 1027 continue; 1028 rs = &ic->ic_sup_rates[mode]; 1029 for (i = 0; i < rs->rs_nrates; i++) { 1030 rate = rs->rs_rates[i]; 1031 mword = ieee80211_rate2media(ic, rate, mode); 1032 if (mword == 0) 1033 continue; 1034 addmedia(media, caps, addsta, mode, mword); 1035 /* 1036 * Add legacy rate to the collection of all rates. 1037 */ 1038 r = rate & IEEE80211_RATE_VAL; 1039 for (j = 0; j < allrates.rs_nrates; j++) 1040 if (allrates.rs_rates[j] == r) 1041 break; 1042 if (j == allrates.rs_nrates) { 1043 /* unique, add to the set */ 1044 allrates.rs_rates[j] = r; 1045 allrates.rs_nrates++; 1046 } 1047 rate = (rate & IEEE80211_RATE_VAL) / 2; 1048 if (rate > maxrate) 1049 maxrate = rate; 1050 } 1051 } 1052 for (i = 0; i < allrates.rs_nrates; i++) { 1053 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1054 IEEE80211_MODE_AUTO); 1055 if (mword == 0) 1056 continue; 1057 /* NB: remove media options from mword */ 1058 addmedia(media, caps, addsta, 1059 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1060 } 1061 /* 1062 * Add HT/11n media. Note that we do not have enough 1063 * bits in the media subtype to express the MCS so we 1064 * use a "placeholder" media subtype and any fixed MCS 1065 * must be specified with a different mechanism. 1066 */ 1067 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1068 if (isclr(ic->ic_modecaps, mode)) 1069 continue; 1070 addmedia(media, caps, addsta, mode, IFM_AUTO); 1071 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1072 } 1073 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1074 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1075 addmedia(media, caps, addsta, 1076 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1077 /* XXX could walk htrates */ 1078 /* XXX known array size */ 1079 if (ieee80211_htrates[15].ht40_rate_400ns > maxrate) 1080 maxrate = ieee80211_htrates[15].ht40_rate_400ns; 1081 } 1082 return maxrate; 1083 } 1084 1085 void 1086 ieee80211_media_init(struct ieee80211com *ic) 1087 { 1088 struct ifnet *ifp = ic->ic_ifp; 1089 int maxrate; 1090 1091 /* NB: this works because the structure is initialized to zero */ 1092 if (!LIST_EMPTY(&ic->ic_media.ifm_list)) { 1093 /* 1094 * We are re-initializing the channel list; clear 1095 * the existing media state as the media routines 1096 * don't suppress duplicates. 1097 */ 1098 ifmedia_removeall(&ic->ic_media); 1099 } 1100 ieee80211_chan_init(ic); 1101 1102 /* 1103 * Recalculate media settings in case new channel list changes 1104 * the set of available modes. 1105 */ 1106 maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1, 1107 ieee80211com_media_change, ieee80211com_media_status); 1108 /* NB: strip explicit mode; we're actually in autoselect */ 1109 ifmedia_set(&ic->ic_media, 1110 media_status(ic->ic_opmode, ic->ic_curchan) &~ 1111 (IFM_MMASK | IFM_IEEE80211_TURBO)); 1112 if (maxrate) 1113 ifp->if_baudrate = IF_Mbps(maxrate); 1114 1115 /* XXX need to propagate new media settings to vap's */ 1116 } 1117 1118 /* XXX inline or eliminate? */ 1119 const struct ieee80211_rateset * 1120 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1121 { 1122 /* XXX does this work for 11ng basic rates? */ 1123 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1124 } 1125 1126 void 1127 ieee80211_announce(struct ieee80211com *ic) 1128 { 1129 struct ifnet *ifp = ic->ic_ifp; 1130 int i, mode, rate, mword; 1131 const struct ieee80211_rateset *rs; 1132 1133 /* NB: skip AUTO since it has no rates */ 1134 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1135 if (isclr(ic->ic_modecaps, mode)) 1136 continue; 1137 if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]); 1138 rs = &ic->ic_sup_rates[mode]; 1139 for (i = 0; i < rs->rs_nrates; i++) { 1140 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1141 if (mword == 0) 1142 continue; 1143 rate = ieee80211_media2rate(mword); 1144 kprintf("%s%d%sMbps", (i != 0 ? " " : ""), 1145 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1146 } 1147 kprintf("\n"); 1148 } 1149 ieee80211_ht_announce(ic); 1150 } 1151 1152 void 1153 ieee80211_announce_channels(struct ieee80211com *ic) 1154 { 1155 const struct ieee80211_channel *c; 1156 char type; 1157 int i, cw; 1158 1159 kprintf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1160 for (i = 0; i < ic->ic_nchans; i++) { 1161 c = &ic->ic_channels[i]; 1162 if (IEEE80211_IS_CHAN_ST(c)) 1163 type = 'S'; 1164 else if (IEEE80211_IS_CHAN_108A(c)) 1165 type = 'T'; 1166 else if (IEEE80211_IS_CHAN_108G(c)) 1167 type = 'G'; 1168 else if (IEEE80211_IS_CHAN_HT(c)) 1169 type = 'n'; 1170 else if (IEEE80211_IS_CHAN_A(c)) 1171 type = 'a'; 1172 else if (IEEE80211_IS_CHAN_ANYG(c)) 1173 type = 'g'; 1174 else if (IEEE80211_IS_CHAN_B(c)) 1175 type = 'b'; 1176 else 1177 type = 'f'; 1178 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1179 cw = 40; 1180 else if (IEEE80211_IS_CHAN_HALF(c)) 1181 cw = 10; 1182 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1183 cw = 5; 1184 else 1185 cw = 20; 1186 kprintf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1187 , c->ic_ieee, c->ic_freq, type 1188 , cw 1189 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1190 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1191 , c->ic_maxregpower 1192 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1193 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1194 ); 1195 } 1196 } 1197 1198 static int 1199 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1200 { 1201 switch (IFM_MODE(ime->ifm_media)) { 1202 case IFM_IEEE80211_11A: 1203 *mode = IEEE80211_MODE_11A; 1204 break; 1205 case IFM_IEEE80211_11B: 1206 *mode = IEEE80211_MODE_11B; 1207 break; 1208 case IFM_IEEE80211_11G: 1209 *mode = IEEE80211_MODE_11G; 1210 break; 1211 case IFM_IEEE80211_FH: 1212 *mode = IEEE80211_MODE_FH; 1213 break; 1214 case IFM_IEEE80211_11NA: 1215 *mode = IEEE80211_MODE_11NA; 1216 break; 1217 case IFM_IEEE80211_11NG: 1218 *mode = IEEE80211_MODE_11NG; 1219 break; 1220 case IFM_AUTO: 1221 *mode = IEEE80211_MODE_AUTO; 1222 break; 1223 default: 1224 return 0; 1225 } 1226 /* 1227 * Turbo mode is an ``option''. 1228 * XXX does not apply to AUTO 1229 */ 1230 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1231 if (*mode == IEEE80211_MODE_11A) { 1232 if (flags & IEEE80211_F_TURBOP) 1233 *mode = IEEE80211_MODE_TURBO_A; 1234 else 1235 *mode = IEEE80211_MODE_STURBO_A; 1236 } else if (*mode == IEEE80211_MODE_11G) 1237 *mode = IEEE80211_MODE_TURBO_G; 1238 else 1239 return 0; 1240 } 1241 /* XXX HT40 +/- */ 1242 return 1; 1243 } 1244 1245 /* 1246 * Handle a media change request on the underlying interface. 1247 */ 1248 int 1249 ieee80211com_media_change(struct ifnet *ifp) 1250 { 1251 return EINVAL; 1252 } 1253 1254 /* 1255 * Handle a media change request on the vap interface. 1256 */ 1257 int 1258 ieee80211_media_change(struct ifnet *ifp) 1259 { 1260 struct ieee80211vap *vap = ifp->if_softc; 1261 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1262 uint16_t newmode; 1263 1264 if (!media2mode(ime, vap->iv_flags, &newmode)) 1265 return EINVAL; 1266 if (vap->iv_des_mode != newmode) { 1267 vap->iv_des_mode = newmode; 1268 /* XXX kick state machine if up+running */ 1269 } 1270 return 0; 1271 } 1272 1273 /* 1274 * Common code to calculate the media status word 1275 * from the operating mode and channel state. 1276 */ 1277 static int 1278 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1279 { 1280 int status; 1281 1282 status = IFM_IEEE80211; 1283 switch (opmode) { 1284 case IEEE80211_M_STA: 1285 break; 1286 case IEEE80211_M_IBSS: 1287 status |= IFM_IEEE80211_ADHOC; 1288 break; 1289 case IEEE80211_M_HOSTAP: 1290 status |= IFM_IEEE80211_HOSTAP; 1291 break; 1292 case IEEE80211_M_MONITOR: 1293 status |= IFM_IEEE80211_MONITOR; 1294 break; 1295 case IEEE80211_M_AHDEMO: 1296 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1297 break; 1298 case IEEE80211_M_WDS: 1299 status |= IFM_IEEE80211_WDS; 1300 break; 1301 case IEEE80211_M_MBSS: 1302 status |= IFM_IEEE80211_MBSS; 1303 break; 1304 } 1305 if (IEEE80211_IS_CHAN_HTA(chan)) { 1306 status |= IFM_IEEE80211_11NA; 1307 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1308 status |= IFM_IEEE80211_11NG; 1309 } else if (IEEE80211_IS_CHAN_A(chan)) { 1310 status |= IFM_IEEE80211_11A; 1311 } else if (IEEE80211_IS_CHAN_B(chan)) { 1312 status |= IFM_IEEE80211_11B; 1313 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1314 status |= IFM_IEEE80211_11G; 1315 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1316 status |= IFM_IEEE80211_FH; 1317 } 1318 /* XXX else complain? */ 1319 1320 if (IEEE80211_IS_CHAN_TURBO(chan)) 1321 status |= IFM_IEEE80211_TURBO; 1322 #if 0 1323 if (IEEE80211_IS_CHAN_HT20(chan)) 1324 status |= IFM_IEEE80211_HT20; 1325 if (IEEE80211_IS_CHAN_HT40(chan)) 1326 status |= IFM_IEEE80211_HT40; 1327 #endif 1328 return status; 1329 } 1330 1331 static void 1332 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1333 { 1334 struct ieee80211com *ic = ifp->if_l2com; 1335 struct ieee80211vap *vap; 1336 1337 imr->ifm_status = IFM_AVALID; 1338 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1339 if (vap->iv_ifp->if_flags & IFF_UP) { 1340 imr->ifm_status |= IFM_ACTIVE; 1341 break; 1342 } 1343 imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan); 1344 if (imr->ifm_status & IFM_ACTIVE) 1345 imr->ifm_current = imr->ifm_active; 1346 } 1347 1348 void 1349 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1350 { 1351 struct ieee80211vap *vap = ifp->if_softc; 1352 struct ieee80211com *ic = vap->iv_ic; 1353 enum ieee80211_phymode mode; 1354 1355 imr->ifm_status = IFM_AVALID; 1356 /* 1357 * NB: use the current channel's mode to lock down a xmit 1358 * rate only when running; otherwise we may have a mismatch 1359 * in which case the rate will not be convertible. 1360 */ 1361 if (vap->iv_state == IEEE80211_S_RUN || 1362 vap->iv_state == IEEE80211_S_SLEEP) { 1363 imr->ifm_status |= IFM_ACTIVE; 1364 mode = ieee80211_chan2mode(ic->ic_curchan); 1365 } else 1366 mode = IEEE80211_MODE_AUTO; 1367 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1368 /* 1369 * Calculate a current rate if possible. 1370 */ 1371 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1372 /* 1373 * A fixed rate is set, report that. 1374 */ 1375 imr->ifm_active |= ieee80211_rate2media(ic, 1376 vap->iv_txparms[mode].ucastrate, mode); 1377 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1378 /* 1379 * In station mode report the current transmit rate. 1380 */ 1381 imr->ifm_active |= ieee80211_rate2media(ic, 1382 vap->iv_bss->ni_txrate, mode); 1383 } else 1384 imr->ifm_active |= IFM_AUTO; 1385 if (imr->ifm_status & IFM_ACTIVE) 1386 imr->ifm_current = imr->ifm_active; 1387 } 1388 1389 /* 1390 * Set the current phy mode and recalculate the active channel 1391 * set based on the available channels for this mode. Also 1392 * select a new default/current channel if the current one is 1393 * inappropriate for this mode. 1394 */ 1395 int 1396 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1397 { 1398 /* 1399 * Adjust basic rates in 11b/11g supported rate set. 1400 * Note that if operating on a hal/quarter rate channel 1401 * this is a noop as those rates sets are different 1402 * and used instead. 1403 */ 1404 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1405 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1406 1407 ic->ic_curmode = mode; 1408 ieee80211_reset_erp(ic); /* reset ERP state */ 1409 1410 return 0; 1411 } 1412 1413 /* 1414 * Return the phy mode for with the specified channel. 1415 */ 1416 enum ieee80211_phymode 1417 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1418 { 1419 1420 if (IEEE80211_IS_CHAN_HTA(chan)) 1421 return IEEE80211_MODE_11NA; 1422 else if (IEEE80211_IS_CHAN_HTG(chan)) 1423 return IEEE80211_MODE_11NG; 1424 else if (IEEE80211_IS_CHAN_108G(chan)) 1425 return IEEE80211_MODE_TURBO_G; 1426 else if (IEEE80211_IS_CHAN_ST(chan)) 1427 return IEEE80211_MODE_STURBO_A; 1428 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1429 return IEEE80211_MODE_TURBO_A; 1430 else if (IEEE80211_IS_CHAN_HALF(chan)) 1431 return IEEE80211_MODE_HALF; 1432 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1433 return IEEE80211_MODE_QUARTER; 1434 else if (IEEE80211_IS_CHAN_A(chan)) 1435 return IEEE80211_MODE_11A; 1436 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1437 return IEEE80211_MODE_11G; 1438 else if (IEEE80211_IS_CHAN_B(chan)) 1439 return IEEE80211_MODE_11B; 1440 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1441 return IEEE80211_MODE_FH; 1442 1443 /* NB: should not get here */ 1444 kprintf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1445 __func__, chan->ic_freq, chan->ic_flags); 1446 return IEEE80211_MODE_11B; 1447 } 1448 1449 struct ratemedia { 1450 u_int match; /* rate + mode */ 1451 u_int media; /* if_media rate */ 1452 }; 1453 1454 static int 1455 findmedia(const struct ratemedia rates[], int n, u_int match) 1456 { 1457 int i; 1458 1459 for (i = 0; i < n; i++) 1460 if (rates[i].match == match) 1461 return rates[i].media; 1462 return IFM_AUTO; 1463 } 1464 1465 /* 1466 * Convert IEEE80211 rate value to ifmedia subtype. 1467 * Rate is either a legacy rate in units of 0.5Mbps 1468 * or an MCS index. 1469 */ 1470 int 1471 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1472 { 1473 static const struct ratemedia rates[] = { 1474 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1475 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1476 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1477 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1478 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1479 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1480 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1481 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1482 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1483 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1484 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1485 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1486 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1487 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1488 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1489 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1490 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1491 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1492 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1493 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1494 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1495 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1496 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1497 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1498 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1499 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1500 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1501 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1502 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1503 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1504 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1505 }; 1506 static const struct ratemedia htrates[] = { 1507 { 0, IFM_IEEE80211_MCS }, 1508 { 1, IFM_IEEE80211_MCS }, 1509 { 2, IFM_IEEE80211_MCS }, 1510 { 3, IFM_IEEE80211_MCS }, 1511 { 4, IFM_IEEE80211_MCS }, 1512 { 5, IFM_IEEE80211_MCS }, 1513 { 6, IFM_IEEE80211_MCS }, 1514 { 7, IFM_IEEE80211_MCS }, 1515 { 8, IFM_IEEE80211_MCS }, 1516 { 9, IFM_IEEE80211_MCS }, 1517 { 10, IFM_IEEE80211_MCS }, 1518 { 11, IFM_IEEE80211_MCS }, 1519 { 12, IFM_IEEE80211_MCS }, 1520 { 13, IFM_IEEE80211_MCS }, 1521 { 14, IFM_IEEE80211_MCS }, 1522 { 15, IFM_IEEE80211_MCS }, 1523 }; 1524 int m; 1525 1526 /* 1527 * Check 11n rates first for match as an MCS. 1528 */ 1529 if (mode == IEEE80211_MODE_11NA) { 1530 if (rate & IEEE80211_RATE_MCS) { 1531 rate &= ~IEEE80211_RATE_MCS; 1532 m = findmedia(htrates, NELEM(htrates), rate); 1533 if (m != IFM_AUTO) 1534 return m | IFM_IEEE80211_11NA; 1535 } 1536 } else if (mode == IEEE80211_MODE_11NG) { 1537 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1538 if (rate & IEEE80211_RATE_MCS) { 1539 rate &= ~IEEE80211_RATE_MCS; 1540 m = findmedia(htrates, NELEM(htrates), rate); 1541 if (m != IFM_AUTO) 1542 return m | IFM_IEEE80211_11NG; 1543 } 1544 } 1545 rate &= IEEE80211_RATE_VAL; 1546 switch (mode) { 1547 case IEEE80211_MODE_11A: 1548 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1549 case IEEE80211_MODE_QUARTER: 1550 case IEEE80211_MODE_11NA: 1551 case IEEE80211_MODE_TURBO_A: 1552 case IEEE80211_MODE_STURBO_A: 1553 return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_11A); 1554 case IEEE80211_MODE_11B: 1555 return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_11B); 1556 case IEEE80211_MODE_FH: 1557 return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_FH); 1558 case IEEE80211_MODE_AUTO: 1559 /* NB: ic may be NULL for some drivers */ 1560 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1561 return findmedia(rates, NELEM(rates), 1562 rate | IFM_IEEE80211_FH); 1563 /* NB: hack, 11g matches both 11b+11a rates */ 1564 /* fall thru... */ 1565 case IEEE80211_MODE_11G: 1566 case IEEE80211_MODE_11NG: 1567 case IEEE80211_MODE_TURBO_G: 1568 return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_11G); 1569 } 1570 return IFM_AUTO; 1571 } 1572 1573 int 1574 ieee80211_media2rate(int mword) 1575 { 1576 static const int ieeerates[] = { 1577 -1, /* IFM_AUTO */ 1578 0, /* IFM_MANUAL */ 1579 0, /* IFM_NONE */ 1580 2, /* IFM_IEEE80211_FH1 */ 1581 4, /* IFM_IEEE80211_FH2 */ 1582 2, /* IFM_IEEE80211_DS1 */ 1583 4, /* IFM_IEEE80211_DS2 */ 1584 11, /* IFM_IEEE80211_DS5 */ 1585 22, /* IFM_IEEE80211_DS11 */ 1586 44, /* IFM_IEEE80211_DS22 */ 1587 12, /* IFM_IEEE80211_OFDM6 */ 1588 18, /* IFM_IEEE80211_OFDM9 */ 1589 24, /* IFM_IEEE80211_OFDM12 */ 1590 36, /* IFM_IEEE80211_OFDM18 */ 1591 48, /* IFM_IEEE80211_OFDM24 */ 1592 72, /* IFM_IEEE80211_OFDM36 */ 1593 96, /* IFM_IEEE80211_OFDM48 */ 1594 108, /* IFM_IEEE80211_OFDM54 */ 1595 144, /* IFM_IEEE80211_OFDM72 */ 1596 0, /* IFM_IEEE80211_DS354k */ 1597 0, /* IFM_IEEE80211_DS512k */ 1598 6, /* IFM_IEEE80211_OFDM3 */ 1599 9, /* IFM_IEEE80211_OFDM4 */ 1600 54, /* IFM_IEEE80211_OFDM27 */ 1601 -1, /* IFM_IEEE80211_MCS */ 1602 }; 1603 return IFM_SUBTYPE(mword) < NELEM(ieeerates) ? 1604 ieeerates[IFM_SUBTYPE(mword)] : 0; 1605 } 1606 1607 /* 1608 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1609 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1610 */ 1611 #define mix(a, b, c) \ 1612 do { \ 1613 a -= b; a -= c; a ^= (c >> 13); \ 1614 b -= c; b -= a; b ^= (a << 8); \ 1615 c -= a; c -= b; c ^= (b >> 13); \ 1616 a -= b; a -= c; a ^= (c >> 12); \ 1617 b -= c; b -= a; b ^= (a << 16); \ 1618 c -= a; c -= b; c ^= (b >> 5); \ 1619 a -= b; a -= c; a ^= (c >> 3); \ 1620 b -= c; b -= a; b ^= (a << 10); \ 1621 c -= a; c -= b; c ^= (b >> 15); \ 1622 } while (/*CONSTCOND*/0) 1623 1624 uint32_t 1625 ieee80211_mac_hash(const struct ieee80211com *ic, 1626 const uint8_t addr[IEEE80211_ADDR_LEN]) 1627 { 1628 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 1629 1630 b += addr[5] << 8; 1631 b += addr[4]; 1632 a += addr[3] << 24; 1633 a += addr[2] << 16; 1634 a += addr[1] << 8; 1635 a += addr[0]; 1636 1637 mix(a, b, c); 1638 1639 return c; 1640 } 1641 #undef mix 1642