1 /* $FreeBSD: src/sys/netinet6/nd6.c,v 1.2.2.15 2003/05/06 06:46:58 suz Exp $ */ 2 /* $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * XXX 35 * KAME 970409 note: 36 * BSD/OS version heavily modifies this code, related to llinfo. 37 * Since we don't have BSD/OS version of net/route.c in our hand, 38 * I left the code mostly as it was in 970310. -- itojun 39 */ 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/callout.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/socket.h> 50 #include <sys/sockio.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/protosw.h> 54 #include <sys/errno.h> 55 #include <sys/syslog.h> 56 #include <sys/queue.h> 57 #include <sys/sysctl.h> 58 #include <sys/mutex.h> 59 60 #include <sys/thread2.h> 61 #include <sys/mutex2.h> 62 63 #include <net/if.h> 64 #include <net/if_dl.h> 65 #include <net/if_types.h> 66 #include <net/route.h> 67 68 #include <netinet/in.h> 69 #include <netinet/if_ether.h> 70 #include <netinet6/in6_var.h> 71 #include <netinet/ip6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/nd6.h> 74 #include <netinet/icmp6.h> 75 76 #include <net/net_osdep.h> 77 78 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 79 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 80 81 #define SIN6(s) ((struct sockaddr_in6 *)s) 82 #define SDL(s) ((struct sockaddr_dl *)s) 83 84 /* timer values */ 85 int nd6_prune = 1; /* walk list every 1 seconds */ 86 int nd6_delay = 5; /* delay first probe time 5 second */ 87 int nd6_umaxtries = 3; /* maximum unicast query */ 88 int nd6_mmaxtries = 3; /* maximum multicast query */ 89 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 90 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 91 92 /* preventing too many loops in ND option parsing */ 93 int nd6_maxndopt = 10; /* max # of ND options allowed */ 94 95 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 96 97 #ifdef ND6_DEBUG 98 int nd6_debug = 1; 99 #else 100 int nd6_debug = 0; 101 #endif 102 103 /* for debugging? */ 104 static int nd6_inuse, nd6_allocated; 105 106 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6}; 107 struct nd_drhead nd_defrouter; 108 struct nd_prhead nd_prefix = { 0 }; 109 struct mtx nd6_mtx = MTX_INITIALIZER; 110 111 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 112 static struct sockaddr_in6 all1_sa; 113 114 static void nd6_setmtu0 (struct ifnet *, struct nd_ifinfo *); 115 static void nd6_slowtimo (void *); 116 static int regen_tmpaddr (struct in6_ifaddr *); 117 118 struct callout nd6_slowtimo_ch; 119 struct callout nd6_timer_ch; 120 extern struct callout in6_tmpaddrtimer_ch; 121 122 void 123 nd6_init(void) 124 { 125 static int nd6_init_done = 0; 126 int i; 127 128 if (nd6_init_done) { 129 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); 130 return; 131 } 132 133 all1_sa.sin6_family = AF_INET6; 134 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 135 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 136 all1_sa.sin6_addr.s6_addr[i] = 0xff; 137 138 /* initialization of the default router list */ 139 TAILQ_INIT(&nd_defrouter); 140 141 nd6_init_done = 1; 142 143 /* start timer */ 144 callout_init(&nd6_slowtimo_ch); 145 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 146 nd6_slowtimo, NULL); 147 } 148 149 struct nd_ifinfo * 150 nd6_ifattach(struct ifnet *ifp) 151 { 152 struct nd_ifinfo *nd; 153 154 nd = (struct nd_ifinfo *)kmalloc(sizeof(*nd), M_IP6NDP, 155 M_WAITOK | M_ZERO); 156 157 nd->initialized = 1; 158 159 nd->linkmtu = ifp->if_mtu; 160 nd->chlim = IPV6_DEFHLIM; 161 nd->basereachable = REACHABLE_TIME; 162 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 163 nd->retrans = RETRANS_TIMER; 164 nd->receivedra = 0; 165 166 /* 167 * Note that the default value of ip6_accept_rtadv is 0, which means 168 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV 169 * here. 170 */ 171 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV); 172 173 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 174 nd6_setmtu0(ifp, nd); 175 return nd; 176 } 177 178 void 179 nd6_ifdetach(struct nd_ifinfo *nd) 180 { 181 kfree(nd, M_IP6NDP); 182 } 183 184 /* 185 * Reset ND level link MTU. This function is called when the physical MTU 186 * changes, which means we might have to adjust the ND level MTU. 187 */ 188 void 189 nd6_setmtu(struct ifnet *ifp) 190 { 191 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 192 } 193 194 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 195 void 196 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 197 { 198 u_long oldmaxmtu; 199 u_long oldlinkmtu; 200 201 oldmaxmtu = ndi->maxmtu; 202 oldlinkmtu = ndi->linkmtu; 203 204 switch (ifp->if_type) { 205 case IFT_ETHER: 206 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 207 break; 208 case IFT_IEEE1394: /* XXX should be IEEE1394MTU(1500) */ 209 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 210 break; 211 #ifdef IFT_IEEE80211 212 case IFT_IEEE80211: /* XXX should be IEEE80211MTU(1500) */ 213 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 214 break; 215 #endif 216 default: 217 ndi->maxmtu = ifp->if_mtu; 218 break; 219 } 220 221 if (oldmaxmtu != ndi->maxmtu) { 222 /* 223 * If the ND level MTU is not set yet, or if the maxmtu 224 * is reset to a smaller value than the ND level MTU, 225 * also reset the ND level MTU. 226 */ 227 if (ndi->linkmtu == 0 || 228 ndi->maxmtu < ndi->linkmtu) { 229 ndi->linkmtu = ndi->maxmtu; 230 /* also adjust in6_maxmtu if necessary. */ 231 if (oldlinkmtu == 0) { 232 /* 233 * XXX: the case analysis is grotty, but 234 * it is not efficient to call in6_setmaxmtu() 235 * here when we are during the initialization 236 * procedure. 237 */ 238 if (in6_maxmtu < ndi->linkmtu) 239 in6_maxmtu = ndi->linkmtu; 240 } else 241 in6_setmaxmtu(); 242 } 243 } 244 #undef MIN 245 } 246 247 void 248 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 249 { 250 bzero(ndopts, sizeof(*ndopts)); 251 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 252 ndopts->nd_opts_last 253 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 254 255 if (icmp6len == 0) { 256 ndopts->nd_opts_done = 1; 257 ndopts->nd_opts_search = NULL; 258 } 259 } 260 261 /* 262 * Take one ND option. 263 */ 264 struct nd_opt_hdr * 265 nd6_option(union nd_opts *ndopts) 266 { 267 struct nd_opt_hdr *nd_opt; 268 int olen; 269 270 if (!ndopts) 271 panic("ndopts == NULL in nd6_option"); 272 if (!ndopts->nd_opts_last) 273 panic("uninitialized ndopts in nd6_option"); 274 if (!ndopts->nd_opts_search) 275 return NULL; 276 if (ndopts->nd_opts_done) 277 return NULL; 278 279 nd_opt = ndopts->nd_opts_search; 280 281 /* make sure nd_opt_len is inside the buffer */ 282 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 283 bzero(ndopts, sizeof(*ndopts)); 284 return NULL; 285 } 286 287 olen = nd_opt->nd_opt_len << 3; 288 if (olen == 0) { 289 /* 290 * Message validation requires that all included 291 * options have a length that is greater than zero. 292 */ 293 bzero(ndopts, sizeof(*ndopts)); 294 return NULL; 295 } 296 297 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 298 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 299 /* option overruns the end of buffer, invalid */ 300 bzero(ndopts, sizeof(*ndopts)); 301 return NULL; 302 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 303 /* reached the end of options chain */ 304 ndopts->nd_opts_done = 1; 305 ndopts->nd_opts_search = NULL; 306 } 307 return nd_opt; 308 } 309 310 /* 311 * Parse multiple ND options. 312 * This function is much easier to use, for ND routines that do not need 313 * multiple options of the same type. 314 */ 315 int 316 nd6_options(union nd_opts *ndopts) 317 { 318 struct nd_opt_hdr *nd_opt; 319 int i = 0; 320 321 if (!ndopts) 322 panic("ndopts == NULL in nd6_options"); 323 if (!ndopts->nd_opts_last) 324 panic("uninitialized ndopts in nd6_options"); 325 if (!ndopts->nd_opts_search) 326 return 0; 327 328 while (1) { 329 nd_opt = nd6_option(ndopts); 330 if (!nd_opt && !ndopts->nd_opts_last) { 331 /* 332 * Message validation requires that all included 333 * options have a length that is greater than zero. 334 */ 335 icmp6stat.icp6s_nd_badopt++; 336 bzero(ndopts, sizeof(*ndopts)); 337 return -1; 338 } 339 340 if (!nd_opt) 341 goto skip1; 342 343 switch (nd_opt->nd_opt_type) { 344 case ND_OPT_SOURCE_LINKADDR: 345 case ND_OPT_TARGET_LINKADDR: 346 case ND_OPT_MTU: 347 case ND_OPT_REDIRECTED_HEADER: 348 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 349 nd6log((LOG_INFO, 350 "duplicated ND6 option found (type=%d)\n", 351 nd_opt->nd_opt_type)); 352 /* XXX bark? */ 353 } else { 354 ndopts->nd_opt_array[nd_opt->nd_opt_type] 355 = nd_opt; 356 } 357 break; 358 case ND_OPT_PREFIX_INFORMATION: 359 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 360 ndopts->nd_opt_array[nd_opt->nd_opt_type] 361 = nd_opt; 362 } 363 ndopts->nd_opts_pi_end = 364 (struct nd_opt_prefix_info *)nd_opt; 365 break; 366 default: 367 /* 368 * Unknown options must be silently ignored, 369 * to accomodate future extension to the protocol. 370 */ 371 nd6log((LOG_DEBUG, 372 "nd6_options: unsupported option %d - " 373 "option ignored\n", nd_opt->nd_opt_type)); 374 } 375 376 skip1: 377 i++; 378 if (i > nd6_maxndopt) { 379 icmp6stat.icp6s_nd_toomanyopt++; 380 nd6log((LOG_INFO, "too many loop in nd opt\n")); 381 break; 382 } 383 384 if (ndopts->nd_opts_done) 385 break; 386 } 387 388 return 0; 389 } 390 391 /* 392 * ND6 timer routine to expire default route list and prefix list 393 */ 394 void 395 nd6_timer(void *ignored_arg) 396 { 397 struct llinfo_nd6 *ln; 398 struct nd_defrouter *dr; 399 struct nd_prefix *pr; 400 struct ifnet *ifp; 401 struct in6_ifaddr *ia6, *nia6; 402 403 mtx_lock(&nd6_mtx); 404 callout_reset(&nd6_timer_ch, nd6_prune * hz, 405 nd6_timer, NULL); 406 407 ln = llinfo_nd6.ln_next; 408 while (ln && ln != &llinfo_nd6) { 409 struct rtentry *rt; 410 struct sockaddr_in6 *dst; 411 struct llinfo_nd6 *next = ln->ln_next; 412 /* XXX: used for the DELAY case only: */ 413 struct nd_ifinfo *ndi = NULL; 414 415 if ((rt = ln->ln_rt) == NULL) { 416 ln = next; 417 continue; 418 } 419 if ((ifp = rt->rt_ifp) == NULL) { 420 ln = next; 421 continue; 422 } 423 ndi = ND_IFINFO(ifp); 424 dst = (struct sockaddr_in6 *)rt_key(rt); 425 426 if (ln->ln_expire > time_uptime) { 427 ln = next; 428 continue; 429 } 430 431 /* sanity check */ 432 if (!rt) 433 panic("rt=0 in nd6_timer(ln=%p)", ln); 434 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) 435 panic("rt_llinfo(%p) is not equal to ln(%p)", 436 rt->rt_llinfo, ln); 437 if (!dst) 438 panic("dst=0 in nd6_timer(ln=%p)", ln); 439 440 switch (ln->ln_state) { 441 case ND6_LLINFO_INCOMPLETE: 442 if (ln->ln_asked < nd6_mmaxtries) { 443 ln->ln_asked++; 444 ln->ln_expire = time_uptime + 445 ND_IFINFO(ifp)->retrans / 1000; 446 nd6_ns_output(ifp, NULL, &dst->sin6_addr, 447 ln, 0); 448 } else { 449 struct mbuf *m = ln->ln_hold; 450 if (m) { 451 if (rt->rt_ifp) { 452 /* 453 * Fake rcvif to make ICMP error 454 * more helpful in diagnosing 455 * for the receiver. 456 * XXX: should we consider 457 * older rcvif? 458 */ 459 m->m_pkthdr.rcvif = rt->rt_ifp; 460 } 461 icmp6_error(m, ICMP6_DST_UNREACH, 462 ICMP6_DST_UNREACH_ADDR, 0); 463 ln->ln_hold = NULL; 464 } 465 next = nd6_free(rt); 466 } 467 break; 468 case ND6_LLINFO_REACHABLE: 469 if (ln->ln_expire) { 470 ln->ln_state = ND6_LLINFO_STALE; 471 ln->ln_expire = time_uptime + nd6_gctimer; 472 } 473 break; 474 475 case ND6_LLINFO_STALE: 476 /* Garbage Collection(RFC 2461 5.3) */ 477 if (ln->ln_expire) 478 next = nd6_free(rt); 479 break; 480 481 case ND6_LLINFO_DELAY: 482 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD)) { 483 /* We need NUD */ 484 ln->ln_asked = 1; 485 ln->ln_state = ND6_LLINFO_PROBE; 486 ln->ln_expire = time_uptime + 487 ndi->retrans / 1000; 488 nd6_ns_output(ifp, &dst->sin6_addr, 489 &dst->sin6_addr, 490 ln, 0); 491 } else { 492 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 493 ln->ln_expire = time_uptime + nd6_gctimer; 494 } 495 break; 496 case ND6_LLINFO_PROBE: 497 if (ln->ln_asked < nd6_umaxtries) { 498 ln->ln_asked++; 499 ln->ln_expire = time_uptime + 500 ND_IFINFO(ifp)->retrans / 1000; 501 nd6_ns_output(ifp, &dst->sin6_addr, 502 &dst->sin6_addr, ln, 0); 503 } else { 504 next = nd6_free(rt); 505 } 506 break; 507 } 508 ln = next; 509 } 510 511 /* expire default router list */ 512 dr = TAILQ_FIRST(&nd_defrouter); 513 while (dr) { 514 if (dr->expire && dr->expire < time_uptime) { 515 struct nd_defrouter *t; 516 t = TAILQ_NEXT(dr, dr_entry); 517 defrtrlist_del(dr); 518 dr = t; 519 } else { 520 dr = TAILQ_NEXT(dr, dr_entry); 521 } 522 } 523 524 /* 525 * expire interface addresses. 526 * in the past the loop was inside prefix expiry processing. 527 * However, from a stricter speci-confrmance standpoint, we should 528 * rather separate address lifetimes and prefix lifetimes. 529 */ 530 addrloop: 531 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) { 532 nia6 = ia6->ia_next; 533 /* check address lifetime */ 534 if (IFA6_IS_INVALID(ia6)) { 535 int regen = 0; 536 537 /* 538 * If the expiring address is temporary, try 539 * regenerating a new one. This would be useful when 540 * we suspended a laptop PC, then turned it on after a 541 * period that could invalidate all temporary 542 * addresses. Although we may have to restart the 543 * loop (see below), it must be after purging the 544 * address. Otherwise, we'd see an infinite loop of 545 * regeneration. 546 */ 547 if (ip6_use_tempaddr && 548 (ia6->ia6_flags & IN6_IFF_TEMPORARY)) { 549 if (regen_tmpaddr(ia6) == 0) 550 regen = 1; 551 } 552 553 in6_purgeaddr(&ia6->ia_ifa); 554 555 if (regen) 556 goto addrloop; /* XXX: see below */ 557 } 558 if (IFA6_IS_DEPRECATED(ia6)) { 559 int oldflags = ia6->ia6_flags; 560 561 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 562 563 /* 564 * If a temporary address has just become deprecated, 565 * regenerate a new one if possible. 566 */ 567 if (ip6_use_tempaddr && 568 (ia6->ia6_flags & IN6_IFF_TEMPORARY) && 569 !(oldflags & IN6_IFF_DEPRECATED)) { 570 571 if (regen_tmpaddr(ia6) == 0) { 572 /* 573 * A new temporary address is 574 * generated. 575 * XXX: this means the address chain 576 * has changed while we are still in 577 * the loop. Although the change 578 * would not cause disaster (because 579 * it's not a deletion, but an 580 * addition,) we'd rather restart the 581 * loop just for safety. Or does this 582 * significantly reduce performance?? 583 */ 584 goto addrloop; 585 } 586 } 587 } else { 588 /* 589 * A new RA might have made a deprecated address 590 * preferred. 591 */ 592 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 593 } 594 } 595 596 /* expire prefix list */ 597 pr = nd_prefix.lh_first; 598 while (pr) { 599 /* 600 * check prefix lifetime. 601 * since pltime is just for autoconf, pltime processing for 602 * prefix is not necessary. 603 */ 604 if (pr->ndpr_expire && pr->ndpr_expire < time_uptime) { 605 struct nd_prefix *t; 606 t = pr->ndpr_next; 607 608 /* 609 * address expiration and prefix expiration are 610 * separate. NEVER perform in6_purgeaddr here. 611 */ 612 613 prelist_remove(pr); 614 pr = t; 615 } else 616 pr = pr->ndpr_next; 617 } 618 mtx_unlock(&nd6_mtx); 619 } 620 621 static int 622 regen_tmpaddr(struct in6_ifaddr *ia6) /* deprecated/invalidated temporary 623 address */ 624 { 625 struct ifaddr_container *ifac; 626 struct ifnet *ifp; 627 struct in6_ifaddr *public_ifa6 = NULL; 628 629 ifp = ia6->ia_ifa.ifa_ifp; 630 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 631 struct ifaddr *ifa = ifac->ifa; 632 struct in6_ifaddr *it6; 633 634 if (ifa->ifa_addr->sa_family != AF_INET6) 635 continue; 636 637 it6 = (struct in6_ifaddr *)ifa; 638 639 /* ignore no autoconf addresses. */ 640 if (!(it6->ia6_flags & IN6_IFF_AUTOCONF)) 641 continue; 642 643 /* ignore autoconf addresses with different prefixes. */ 644 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 645 continue; 646 647 /* 648 * Now we are looking at an autoconf address with the same 649 * prefix as ours. If the address is temporary and is still 650 * preferred, do not create another one. It would be rare, but 651 * could happen, for example, when we resume a laptop PC after 652 * a long period. 653 */ 654 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) && 655 !IFA6_IS_DEPRECATED(it6)) { 656 public_ifa6 = NULL; 657 break; 658 } 659 660 /* 661 * This is a public autoconf address that has the same prefix 662 * as ours. If it is preferred, keep it. We can't break the 663 * loop here, because there may be a still-preferred temporary 664 * address with the prefix. 665 */ 666 if (!IFA6_IS_DEPRECATED(it6)) 667 public_ifa6 = it6; 668 } 669 670 if (public_ifa6 != NULL) { 671 int e; 672 673 if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) { 674 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 675 " tmp addr,errno=%d\n", e); 676 return (-1); 677 } 678 return (0); 679 } 680 681 return (-1); 682 } 683 684 /* 685 * Nuke neighbor cache/prefix/default router management table, right before 686 * ifp goes away. 687 */ 688 void 689 nd6_purge(struct ifnet *ifp) 690 { 691 struct llinfo_nd6 *ln, *nln; 692 struct nd_defrouter *dr, *ndr, drany; 693 struct nd_prefix *pr, *npr; 694 695 /* Nuke default router list entries toward ifp */ 696 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { 697 /* 698 * The first entry of the list may be stored in 699 * the routing table, so we'll delete it later. 700 */ 701 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) { 702 ndr = TAILQ_NEXT(dr, dr_entry); 703 if (dr->ifp == ifp) 704 defrtrlist_del(dr); 705 } 706 dr = TAILQ_FIRST(&nd_defrouter); 707 if (dr->ifp == ifp) 708 defrtrlist_del(dr); 709 } 710 711 /* Nuke prefix list entries toward ifp */ 712 for (pr = nd_prefix.lh_first; pr; pr = npr) { 713 npr = pr->ndpr_next; 714 if (pr->ndpr_ifp == ifp) { 715 /* 716 * Previously, pr->ndpr_addr is removed as well, 717 * but I strongly believe we don't have to do it. 718 * nd6_purge() is only called from in6_ifdetach(), 719 * which removes all the associated interface addresses 720 * by itself. 721 * (jinmei@kame.net 20010129) 722 */ 723 prelist_remove(pr); 724 } 725 } 726 727 /* cancel default outgoing interface setting */ 728 if (nd6_defifindex == ifp->if_index) 729 nd6_setdefaultiface(0); 730 731 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 732 /* refresh default router list */ 733 bzero(&drany, sizeof(drany)); 734 defrouter_delreq(&drany, 0); 735 defrouter_select(); 736 } 737 738 /* 739 * Nuke neighbor cache entries for the ifp. 740 * Note that rt->rt_ifp may not be the same as ifp, 741 * due to KAME goto ours hack. See RTM_RESOLVE case in 742 * nd6_rtrequest(), and ip6_input(). 743 */ 744 ln = llinfo_nd6.ln_next; 745 while (ln && ln != &llinfo_nd6) { 746 struct rtentry *rt; 747 struct sockaddr_dl *sdl; 748 749 nln = ln->ln_next; 750 rt = ln->ln_rt; 751 if (rt && rt->rt_gateway && 752 rt->rt_gateway->sa_family == AF_LINK) { 753 sdl = (struct sockaddr_dl *)rt->rt_gateway; 754 if (sdl->sdl_index == ifp->if_index) 755 nln = nd6_free(rt); 756 } 757 ln = nln; 758 } 759 } 760 761 struct rtentry * 762 nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp) 763 { 764 struct rtentry *rt; 765 struct sockaddr_in6 sin6; 766 767 bzero(&sin6, sizeof(sin6)); 768 sin6.sin6_len = sizeof(struct sockaddr_in6); 769 sin6.sin6_family = AF_INET6; 770 sin6.sin6_addr = *addr6; 771 772 if (create) 773 rt = rtlookup((struct sockaddr *)&sin6); 774 else 775 rt = rtpurelookup((struct sockaddr *)&sin6); 776 if (rt && !(rt->rt_flags & RTF_LLINFO)) { 777 /* 778 * This is the case for the default route. 779 * If we want to create a neighbor cache for the address, we 780 * should free the route for the destination and allocate an 781 * interface route. 782 */ 783 if (create) { 784 --rt->rt_refcnt; 785 rt = NULL; 786 } 787 } 788 if (!rt) { 789 if (create && ifp) { 790 int e; 791 792 /* 793 * If no route is available and create is set, 794 * we allocate a host route for the destination 795 * and treat it like an interface route. 796 * This hack is necessary for a neighbor which can't 797 * be covered by our own prefix. 798 */ 799 struct ifaddr *ifa = 800 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); 801 if (ifa == NULL) 802 return (NULL); 803 804 /* 805 * Create a new route. RTF_LLINFO is necessary 806 * to create a Neighbor Cache entry for the 807 * destination in nd6_rtrequest which will be 808 * called in rtrequest via ifa->ifa_rtrequest. 809 */ 810 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6, 811 ifa->ifa_addr, 812 (struct sockaddr *)&all1_sa, 813 (ifa->ifa_flags | 814 RTF_HOST | RTF_LLINFO) & 815 ~RTF_CLONING, 816 &rt)) != 0) 817 log(LOG_ERR, 818 "nd6_lookup: failed to add route for a " 819 "neighbor(%s), errno=%d\n", 820 ip6_sprintf(addr6), e); 821 if (rt == NULL) 822 return (NULL); 823 if (rt->rt_llinfo) { 824 struct llinfo_nd6 *ln = 825 (struct llinfo_nd6 *)rt->rt_llinfo; 826 ln->ln_state = ND6_LLINFO_NOSTATE; 827 } 828 } else 829 return (NULL); 830 } 831 rt->rt_refcnt--; 832 /* 833 * Validation for the entry. 834 * Note that the check for rt_llinfo is necessary because a cloned 835 * route from a parent route that has the L flag (e.g. the default 836 * route to a p2p interface) may have the flag, too, while the 837 * destination is not actually a neighbor. 838 * XXX: we can't use rt->rt_ifp to check for the interface, since 839 * it might be the loopback interface if the entry is for our 840 * own address on a non-loopback interface. Instead, we should 841 * use rt->rt_ifa->ifa_ifp, which would specify the REAL 842 * interface. 843 */ 844 if ((rt->rt_flags & RTF_GATEWAY) || !(rt->rt_flags & RTF_LLINFO) || 845 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || 846 (ifp && rt->rt_ifa->ifa_ifp != ifp)) { 847 if (create) { 848 log(LOG_DEBUG, "nd6_lookup: failed to lookup %s (if = %s)\n", 849 ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec"); 850 /* xxx more logs... kazu */ 851 } 852 return (NULL); 853 } 854 return (rt); 855 } 856 857 /* 858 * Detect if a given IPv6 address identifies a neighbor on a given link. 859 * XXX: should take care of the destination of a p2p link? 860 */ 861 int 862 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 863 { 864 struct ifaddr_container *ifac; 865 int i; 866 867 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr) 868 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr) 869 870 /* 871 * A link-local address is always a neighbor. 872 * XXX: we should use the sin6_scope_id field rather than the embedded 873 * interface index. 874 */ 875 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) && 876 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index) 877 return (1); 878 879 /* 880 * If the address matches one of our addresses, 881 * it should be a neighbor. 882 */ 883 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 884 struct ifaddr *ifa = ifac->ifa; 885 886 if (ifa->ifa_addr->sa_family != AF_INET6) 887 next: continue; 888 889 for (i = 0; i < 4; i++) { 890 if ((IFADDR6(ifa).s6_addr32[i] ^ 891 addr->sin6_addr.s6_addr32[i]) & 892 IFMASK6(ifa).s6_addr32[i]) 893 goto next; 894 } 895 return (1); 896 } 897 898 /* 899 * Even if the address matches none of our addresses, it might be 900 * in the neighbor cache. 901 */ 902 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL) 903 return (1); 904 905 return (0); 906 #undef IFADDR6 907 #undef IFMASK6 908 } 909 910 /* 911 * Free an nd6 llinfo entry. 912 */ 913 struct llinfo_nd6 * 914 nd6_free(struct rtentry *rt) 915 { 916 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; 917 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 918 struct nd_defrouter *dr; 919 920 /* 921 * we used to have kpfctlinput(PRC_HOSTDEAD) here. 922 * even though it is not harmful, it was not really necessary. 923 */ 924 925 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 926 mtx_lock(&nd6_mtx); 927 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 928 rt->rt_ifp); 929 930 if (ln->ln_router || dr) { 931 /* 932 * rt6_flush must be called whether or not the neighbor 933 * is in the Default Router List. 934 * See a corresponding comment in nd6_na_input(). 935 */ 936 rt6_flush(&in6, rt->rt_ifp); 937 } 938 939 if (dr) { 940 /* 941 * Unreachablity of a router might affect the default 942 * router selection and on-link detection of advertised 943 * prefixes. 944 */ 945 946 /* 947 * Temporarily fake the state to choose a new default 948 * router and to perform on-link determination of 949 * prefixes correctly. 950 * Below the state will be set correctly, 951 * or the entry itself will be deleted. 952 */ 953 ln->ln_state = ND6_LLINFO_INCOMPLETE; 954 955 /* 956 * Since defrouter_select() does not affect the 957 * on-link determination and MIP6 needs the check 958 * before the default router selection, we perform 959 * the check now. 960 */ 961 pfxlist_onlink_check(); 962 963 if (dr == TAILQ_FIRST(&nd_defrouter)) { 964 /* 965 * It is used as the current default router, 966 * so we have to move it to the end of the 967 * list and choose a new one. 968 * XXX: it is not very efficient if this is 969 * the only router. 970 */ 971 TAILQ_REMOVE(&nd_defrouter, dr, dr_entry); 972 TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry); 973 974 defrouter_select(); 975 } 976 } 977 mtx_unlock(&nd6_mtx); 978 } 979 980 /* 981 * Before deleting the entry, remember the next entry as the 982 * return value. We need this because pfxlist_onlink_check() above 983 * might have freed other entries (particularly the old next entry) as 984 * a side effect (XXX). 985 */ 986 next = ln->ln_next; 987 988 /* 989 * Detach the route from the routing tree and the list of neighbor 990 * caches, and disable the route entry not to be used in already 991 * cached routes. 992 */ 993 rtrequest(RTM_DELETE, rt_key(rt), NULL, rt_mask(rt), 0, NULL); 994 995 return (next); 996 } 997 998 /* 999 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1000 * 1001 * XXX cost-effective metods? 1002 */ 1003 void 1004 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force) 1005 { 1006 struct llinfo_nd6 *ln; 1007 1008 /* 1009 * If the caller specified "rt", use that. Otherwise, resolve the 1010 * routing table by supplied "dst6". 1011 */ 1012 if (!rt) { 1013 if (!dst6) 1014 return; 1015 if (!(rt = nd6_lookup(dst6, 0, NULL))) 1016 return; 1017 } 1018 1019 if ((rt->rt_flags & RTF_GATEWAY) || 1020 !(rt->rt_flags & RTF_LLINFO) || 1021 rt->rt_llinfo == NULL || rt->rt_gateway == NULL || 1022 rt->rt_gateway->sa_family != AF_LINK) { 1023 /* This is not a host route. */ 1024 return; 1025 } 1026 1027 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1028 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1029 return; 1030 1031 /* 1032 * if we get upper-layer reachability confirmation many times, 1033 * it is possible we have false information. 1034 */ 1035 if (!force) { 1036 ln->ln_byhint++; 1037 if (ln->ln_byhint > nd6_maxnudhint) 1038 return; 1039 } 1040 1041 ln->ln_state = ND6_LLINFO_REACHABLE; 1042 if (ln->ln_expire) 1043 ln->ln_expire = time_uptime + 1044 ND_IFINFO(rt->rt_ifp)->reachable; 1045 } 1046 1047 void 1048 nd6_rtrequest(int req, struct rtentry *rt) 1049 { 1050 struct sockaddr *gate = rt->rt_gateway; 1051 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1052 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1053 struct ifnet *ifp = rt->rt_ifp; 1054 struct ifaddr *ifa; 1055 1056 if ((rt->rt_flags & RTF_GATEWAY)) 1057 return; 1058 1059 if (nd6_need_cache(ifp) == 0 && !(rt->rt_flags & RTF_HOST)) { 1060 /* 1061 * This is probably an interface direct route for a link 1062 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1063 * We do not need special treatment below for such a route. 1064 * Moreover, the RTF_LLINFO flag which would be set below 1065 * would annoy the ndp(8) command. 1066 */ 1067 return; 1068 } 1069 1070 if (req == RTM_RESOLVE && 1071 (nd6_need_cache(ifp) == 0 || /* stf case */ 1072 !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) { 1073 /* 1074 * FreeBSD and BSD/OS often make a cloned host route based 1075 * on a less-specific route (e.g. the default route). 1076 * If the less specific route does not have a "gateway" 1077 * (this is the case when the route just goes to a p2p or an 1078 * stf interface), we'll mistakenly make a neighbor cache for 1079 * the host route, and will see strange neighbor solicitation 1080 * for the corresponding destination. In order to avoid the 1081 * confusion, we check if the destination of the route is 1082 * a neighbor in terms of neighbor discovery, and stop the 1083 * process if not. Additionally, we remove the LLINFO flag 1084 * so that ndp(8) will not try to get the neighbor information 1085 * of the destination. 1086 */ 1087 rt->rt_flags &= ~RTF_LLINFO; 1088 return; 1089 } 1090 1091 switch (req) { 1092 case RTM_ADD: 1093 /* 1094 * There is no backward compatibility :) 1095 * 1096 * if (!(rt->rt_flags & RTF_HOST) && 1097 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1098 * rt->rt_flags |= RTF_CLONING; 1099 */ 1100 if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) { 1101 /* 1102 * Case 1: This route should come from 1103 * a route to interface. RTF_LLINFO flag is set 1104 * for a host route whose destination should be 1105 * treated as on-link. 1106 */ 1107 rt_setgate(rt, rt_key(rt), 1108 (struct sockaddr *)&null_sdl, 1109 RTL_DONTREPORT); 1110 gate = rt->rt_gateway; 1111 SDL(gate)->sdl_type = ifp->if_type; 1112 SDL(gate)->sdl_index = ifp->if_index; 1113 if (ln) 1114 ln->ln_expire = time_uptime; 1115 #if 1 1116 if (ln && ln->ln_expire == 0) { 1117 /* kludge for desktops */ 1118 #if 0 1119 kprintf("nd6_rtequest: time.tv_sec is zero; " 1120 "treat it as 1\n"); 1121 #endif 1122 ln->ln_expire = 1; 1123 } 1124 #endif 1125 if ((rt->rt_flags & RTF_CLONING)) 1126 break; 1127 } 1128 /* 1129 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1130 * We don't do that here since llinfo is not ready yet. 1131 * 1132 * There are also couple of other things to be discussed: 1133 * - unsolicited NA code needs improvement beforehand 1134 * - RFC2461 says we MAY send multicast unsolicited NA 1135 * (7.2.6 paragraph 4), however, it also says that we 1136 * SHOULD provide a mechanism to prevent multicast NA storm. 1137 * we don't have anything like it right now. 1138 * note that the mechanism needs a mutual agreement 1139 * between proxies, which means that we need to implement 1140 * a new protocol, or a new kludge. 1141 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1142 * we need to check ip6forwarding before sending it. 1143 * (or should we allow proxy ND configuration only for 1144 * routers? there's no mention about proxy ND from hosts) 1145 */ 1146 #if 0 1147 /* XXX it does not work */ 1148 if (rt->rt_flags & RTF_ANNOUNCE) 1149 nd6_na_output(ifp, 1150 &SIN6(rt_key(rt))->sin6_addr, 1151 &SIN6(rt_key(rt))->sin6_addr, 1152 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1153 1, NULL); 1154 #endif 1155 /* FALLTHROUGH */ 1156 case RTM_RESOLVE: 1157 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1158 /* 1159 * Address resolution isn't necessary for a point to 1160 * point link, so we can skip this test for a p2p link. 1161 */ 1162 if (gate->sa_family != AF_LINK || 1163 gate->sa_len < sizeof(null_sdl)) { 1164 log(LOG_DEBUG, 1165 "nd6_rtrequest: bad gateway value: %s\n", 1166 if_name(ifp)); 1167 break; 1168 } 1169 SDL(gate)->sdl_type = ifp->if_type; 1170 SDL(gate)->sdl_index = ifp->if_index; 1171 } 1172 if (ln != NULL) 1173 break; /* This happens on a route change */ 1174 /* 1175 * Case 2: This route may come from cloning, or a manual route 1176 * add with a LL address. 1177 */ 1178 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); 1179 rt->rt_llinfo = (caddr_t)ln; 1180 if (!ln) { 1181 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); 1182 break; 1183 } 1184 nd6_inuse++; 1185 nd6_allocated++; 1186 bzero(ln, sizeof(*ln)); 1187 ln->ln_rt = rt; 1188 /* this is required for "ndp" command. - shin */ 1189 if (req == RTM_ADD) { 1190 /* 1191 * gate should have some valid AF_LINK entry, 1192 * and ln->ln_expire should have some lifetime 1193 * which is specified by ndp command. 1194 */ 1195 ln->ln_state = ND6_LLINFO_REACHABLE; 1196 ln->ln_byhint = 0; 1197 } else { 1198 /* 1199 * When req == RTM_RESOLVE, rt is created and 1200 * initialized in rtrequest(), so rt_expire is 0. 1201 */ 1202 ln->ln_state = ND6_LLINFO_NOSTATE; 1203 ln->ln_expire = time_uptime; 1204 } 1205 rt->rt_flags |= RTF_LLINFO; 1206 ln->ln_next = llinfo_nd6.ln_next; 1207 llinfo_nd6.ln_next = ln; 1208 ln->ln_prev = &llinfo_nd6; 1209 ln->ln_next->ln_prev = ln; 1210 1211 /* 1212 * check if rt_key(rt) is one of my address assigned 1213 * to the interface. 1214 */ 1215 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, 1216 &SIN6(rt_key(rt))->sin6_addr); 1217 if (ifa) { 1218 caddr_t macp = nd6_ifptomac(ifp); 1219 ln->ln_expire = 0; 1220 ln->ln_state = ND6_LLINFO_REACHABLE; 1221 ln->ln_byhint = 0; 1222 if (macp) { 1223 bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); 1224 SDL(gate)->sdl_alen = ifp->if_addrlen; 1225 } 1226 if (nd6_useloopback) { 1227 rt->rt_ifp = &loif[0]; /* XXX */ 1228 /* 1229 * Make sure rt_ifa be equal to the ifaddr 1230 * corresponding to the address. 1231 * We need this because when we refer 1232 * rt_ifa->ia6_flags in ip6_input, we assume 1233 * that the rt_ifa points to the address instead 1234 * of the loopback address. 1235 */ 1236 if (ifa != rt->rt_ifa) { 1237 IFAFREE(rt->rt_ifa); 1238 IFAREF(ifa); 1239 rt->rt_ifa = ifa; 1240 } 1241 } 1242 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1243 ln->ln_expire = 0; 1244 ln->ln_state = ND6_LLINFO_REACHABLE; 1245 ln->ln_byhint = 0; 1246 1247 /* join solicited node multicast for proxy ND */ 1248 if (ifp->if_flags & IFF_MULTICAST) { 1249 struct in6_addr llsol; 1250 int error; 1251 1252 llsol = SIN6(rt_key(rt))->sin6_addr; 1253 llsol.s6_addr16[0] = htons(0xff02); 1254 llsol.s6_addr16[1] = htons(ifp->if_index); 1255 llsol.s6_addr32[1] = 0; 1256 llsol.s6_addr32[2] = htonl(1); 1257 llsol.s6_addr8[12] = 0xff; 1258 1259 if (!in6_addmulti(&llsol, ifp, &error)) { 1260 nd6log((LOG_ERR, "%s: failed to join " 1261 "%s (errno=%d)\n", if_name(ifp), 1262 ip6_sprintf(&llsol), error)); 1263 } 1264 } 1265 } 1266 break; 1267 1268 case RTM_DELETE: 1269 if (!ln) 1270 break; 1271 /* leave from solicited node multicast for proxy ND */ 1272 if ((rt->rt_flags & RTF_ANNOUNCE) && 1273 (ifp->if_flags & IFF_MULTICAST)) { 1274 struct in6_addr llsol; 1275 struct in6_multi *in6m; 1276 1277 llsol = SIN6(rt_key(rt))->sin6_addr; 1278 llsol.s6_addr16[0] = htons(0xff02); 1279 llsol.s6_addr16[1] = htons(ifp->if_index); 1280 llsol.s6_addr32[1] = 0; 1281 llsol.s6_addr32[2] = htonl(1); 1282 llsol.s6_addr8[12] = 0xff; 1283 1284 in6m = IN6_LOOKUP_MULTI(&llsol, ifp); 1285 if (in6m) 1286 in6_delmulti(in6m); 1287 } 1288 nd6_inuse--; 1289 ln->ln_next->ln_prev = ln->ln_prev; 1290 ln->ln_prev->ln_next = ln->ln_next; 1291 ln->ln_prev = NULL; 1292 rt->rt_llinfo = 0; 1293 rt->rt_flags &= ~RTF_LLINFO; 1294 if (ln->ln_hold) 1295 m_freem(ln->ln_hold); 1296 Free((caddr_t)ln); 1297 } 1298 } 1299 1300 int 1301 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1302 { 1303 struct in6_drlist *drl = (struct in6_drlist *)data; 1304 struct in6_prlist *prl = (struct in6_prlist *)data; 1305 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1306 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1307 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1308 struct nd_defrouter *dr, any; 1309 struct nd_prefix *pr; 1310 struct rtentry *rt; 1311 int i = 0, error = 0; 1312 1313 switch (cmd) { 1314 case SIOCGDRLST_IN6: 1315 /* 1316 * obsolete API, use sysctl under net.inet6.icmp6 1317 */ 1318 bzero(drl, sizeof(*drl)); 1319 mtx_lock(&nd6_mtx); 1320 dr = TAILQ_FIRST(&nd_defrouter); 1321 while (dr && i < DRLSTSIZ) { 1322 drl->defrouter[i].rtaddr = dr->rtaddr; 1323 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) { 1324 /* XXX: need to this hack for KAME stack */ 1325 drl->defrouter[i].rtaddr.s6_addr16[1] = 0; 1326 } else 1327 log(LOG_ERR, 1328 "default router list contains a " 1329 "non-linklocal address(%s)\n", 1330 ip6_sprintf(&drl->defrouter[i].rtaddr)); 1331 1332 drl->defrouter[i].flags = dr->flags; 1333 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1334 drl->defrouter[i].expire = dr->expire; 1335 drl->defrouter[i].if_index = dr->ifp->if_index; 1336 i++; 1337 dr = TAILQ_NEXT(dr, dr_entry); 1338 } 1339 mtx_unlock(&nd6_mtx); 1340 break; 1341 case SIOCGPRLST_IN6: 1342 /* 1343 * obsolete API, use sysctl under net.inet6.icmp6 1344 */ 1345 /* 1346 * XXX meaning of fields, especialy "raflags", is very 1347 * differnet between RA prefix list and RR/static prefix list. 1348 * how about separating ioctls into two? 1349 */ 1350 bzero(prl, sizeof(*prl)); 1351 mtx_lock(&nd6_mtx); 1352 pr = nd_prefix.lh_first; 1353 while (pr && i < PRLSTSIZ) { 1354 struct nd_pfxrouter *pfr; 1355 int j; 1356 1357 in6_embedscope(&prl->prefix[i].prefix, 1358 &pr->ndpr_prefix, NULL, NULL); 1359 prl->prefix[i].raflags = pr->ndpr_raf; 1360 prl->prefix[i].prefixlen = pr->ndpr_plen; 1361 prl->prefix[i].vltime = pr->ndpr_vltime; 1362 prl->prefix[i].pltime = pr->ndpr_pltime; 1363 prl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1364 prl->prefix[i].expire = pr->ndpr_expire; 1365 1366 pfr = pr->ndpr_advrtrs.lh_first; 1367 j = 0; 1368 while (pfr) { 1369 if (j < DRLSTSIZ) { 1370 #define RTRADDR prl->prefix[i].advrtr[j] 1371 RTRADDR = pfr->router->rtaddr; 1372 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { 1373 /* XXX: hack for KAME */ 1374 RTRADDR.s6_addr16[1] = 0; 1375 } else 1376 log(LOG_ERR, 1377 "a router(%s) advertises " 1378 "a prefix with " 1379 "non-link local address\n", 1380 ip6_sprintf(&RTRADDR)); 1381 #undef RTRADDR 1382 } 1383 j++; 1384 pfr = pfr->pfr_next; 1385 } 1386 prl->prefix[i].advrtrs = j; 1387 prl->prefix[i].origin = PR_ORIG_RA; 1388 1389 i++; 1390 pr = pr->ndpr_next; 1391 } 1392 mtx_unlock(&nd6_mtx); 1393 1394 break; 1395 case OSIOCGIFINFO_IN6: 1396 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1397 bzero(&ndi->ndi, sizeof(ndi->ndi)); 1398 ndi->ndi.linkmtu = ND_IFINFO(ifp)->linkmtu; 1399 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu; 1400 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable; 1401 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable; 1402 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans; 1403 ndi->ndi.flags = ND_IFINFO(ifp)->flags; 1404 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm; 1405 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim; 1406 ndi->ndi.receivedra = ND_IFINFO(ifp)->receivedra; 1407 break; 1408 case SIOCGIFINFO_IN6: 1409 ndi->ndi = *ND_IFINFO(ifp); 1410 break; 1411 case SIOCSIFINFO_FLAGS: 1412 ND_IFINFO(ifp)->flags = ndi->ndi.flags; 1413 break; 1414 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1415 /* flush default router list */ 1416 /* 1417 * xxx sumikawa: should not delete route if default 1418 * route equals to the top of default router list 1419 */ 1420 bzero(&any, sizeof(any)); 1421 defrouter_delreq(&any, 0); 1422 defrouter_select(); 1423 /* xxx sumikawa: flush prefix list */ 1424 break; 1425 case SIOCSPFXFLUSH_IN6: 1426 { 1427 /* flush all the prefix advertised by routers */ 1428 struct nd_prefix *pr, *next; 1429 1430 mtx_lock(&nd6_mtx); 1431 for (pr = nd_prefix.lh_first; pr; pr = next) { 1432 struct in6_ifaddr *ia, *ia_next; 1433 1434 next = pr->ndpr_next; 1435 1436 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1437 continue; /* XXX */ 1438 1439 /* do we really have to remove addresses as well? */ 1440 for (ia = in6_ifaddr; ia; ia = ia_next) { 1441 /* ia might be removed. keep the next ptr. */ 1442 ia_next = ia->ia_next; 1443 1444 if (!(ia->ia6_flags & IN6_IFF_AUTOCONF)) 1445 continue; 1446 1447 if (ia->ia6_ndpr == pr) 1448 in6_purgeaddr(&ia->ia_ifa); 1449 } 1450 prelist_remove(pr); 1451 } 1452 mtx_unlock(&nd6_mtx); 1453 break; 1454 } 1455 case SIOCSRTRFLUSH_IN6: 1456 { 1457 /* flush all the default routers */ 1458 struct nd_defrouter *dr, *next; 1459 1460 mtx_lock(&nd6_mtx); 1461 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { 1462 /* 1463 * The first entry of the list may be stored in 1464 * the routing table, so we'll delete it later. 1465 */ 1466 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) { 1467 next = TAILQ_NEXT(dr, dr_entry); 1468 defrtrlist_del(dr); 1469 } 1470 defrtrlist_del(TAILQ_FIRST(&nd_defrouter)); 1471 } 1472 mtx_unlock(&nd6_mtx); 1473 break; 1474 } 1475 case SIOCGNBRINFO_IN6: 1476 { 1477 struct llinfo_nd6 *ln; 1478 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1479 1480 /* 1481 * XXX: KAME specific hack for scoped addresses 1482 * XXXX: for other scopes than link-local? 1483 */ 1484 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) || 1485 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) { 1486 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2]; 1487 1488 if (*idp == 0) 1489 *idp = htons(ifp->if_index); 1490 } 1491 1492 mtx_lock(&nd6_mtx); 1493 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) { 1494 error = EINVAL; 1495 mtx_unlock(&nd6_mtx); 1496 break; 1497 } 1498 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1499 nbi->state = ln->ln_state; 1500 nbi->asked = ln->ln_asked; 1501 nbi->isrouter = ln->ln_router; 1502 nbi->expire = ln->ln_expire; 1503 mtx_unlock(&nd6_mtx); 1504 1505 break; 1506 } 1507 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1508 ndif->ifindex = nd6_defifindex; 1509 break; 1510 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1511 return (nd6_setdefaultiface(ndif->ifindex)); 1512 break; 1513 } 1514 return (error); 1515 } 1516 1517 /* 1518 * Create neighbor cache entry and cache link-layer address, 1519 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1520 */ 1521 struct rtentry * 1522 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1523 int lladdrlen, 1524 int type, /* ICMP6 type */ 1525 int code /* type dependent information */) 1526 { 1527 struct rtentry *rt = NULL; 1528 struct llinfo_nd6 *ln = NULL; 1529 int is_newentry; 1530 struct sockaddr_dl *sdl = NULL; 1531 int do_update; 1532 int olladdr; 1533 int llchange; 1534 int newstate = 0; 1535 1536 if (!ifp) 1537 panic("ifp == NULL in nd6_cache_lladdr"); 1538 if (!from) 1539 panic("from == NULL in nd6_cache_lladdr"); 1540 1541 /* nothing must be updated for unspecified address */ 1542 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1543 return NULL; 1544 1545 /* 1546 * Validation about ifp->if_addrlen and lladdrlen must be done in 1547 * the caller. 1548 * 1549 * XXX If the link does not have link-layer adderss, what should 1550 * we do? (ifp->if_addrlen == 0) 1551 * Spec says nothing in sections for RA, RS and NA. There's small 1552 * description on it in NS section (RFC 2461 7.2.3). 1553 */ 1554 1555 rt = nd6_lookup(from, 0, ifp); 1556 if (!rt) { 1557 #if 0 1558 /* nothing must be done if there's no lladdr */ 1559 if (!lladdr || !lladdrlen) 1560 return NULL; 1561 #endif 1562 1563 rt = nd6_lookup(from, 1, ifp); 1564 is_newentry = 1; 1565 } else { 1566 /* do nothing if static ndp is set */ 1567 if (rt->rt_flags & RTF_STATIC) 1568 return NULL; 1569 is_newentry = 0; 1570 } 1571 1572 if (!rt) 1573 return NULL; 1574 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { 1575 fail: 1576 nd6_free(rt); 1577 return NULL; 1578 } 1579 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1580 if (!ln) 1581 goto fail; 1582 if (!rt->rt_gateway) 1583 goto fail; 1584 if (rt->rt_gateway->sa_family != AF_LINK) 1585 goto fail; 1586 sdl = SDL(rt->rt_gateway); 1587 1588 olladdr = (sdl->sdl_alen) ? 1 : 0; 1589 if (olladdr && lladdr) { 1590 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) 1591 llchange = 1; 1592 else 1593 llchange = 0; 1594 } else 1595 llchange = 0; 1596 1597 /* 1598 * newentry olladdr lladdr llchange (*=record) 1599 * 0 n n -- (1) 1600 * 0 y n -- (2) 1601 * 0 n y -- (3) * STALE 1602 * 0 y y n (4) * 1603 * 0 y y y (5) * STALE 1604 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1605 * 1 -- y -- (7) * STALE 1606 */ 1607 1608 if (lladdr) { /* (3-5) and (7) */ 1609 /* 1610 * Record source link-layer address 1611 * XXX is it dependent to ifp->if_type? 1612 */ 1613 sdl->sdl_alen = ifp->if_addrlen; 1614 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); 1615 } 1616 1617 if (!is_newentry) { 1618 if ((!olladdr && lladdr) /* (3) */ 1619 || (olladdr && lladdr && llchange)) { /* (5) */ 1620 do_update = 1; 1621 newstate = ND6_LLINFO_STALE; 1622 } else /* (1-2,4) */ 1623 do_update = 0; 1624 } else { 1625 do_update = 1; 1626 if (!lladdr) /* (6) */ 1627 newstate = ND6_LLINFO_NOSTATE; 1628 else /* (7) */ 1629 newstate = ND6_LLINFO_STALE; 1630 } 1631 1632 if (do_update) { 1633 /* 1634 * Update the state of the neighbor cache. 1635 */ 1636 ln->ln_state = newstate; 1637 1638 if (ln->ln_state == ND6_LLINFO_STALE) { 1639 /* 1640 * XXX: since nd6_output() below will cause 1641 * state tansition to DELAY and reset the timer, 1642 * we must set the timer now, although it is actually 1643 * meaningless. 1644 */ 1645 ln->ln_expire = time_uptime + nd6_gctimer; 1646 1647 if (ln->ln_hold) { 1648 /* 1649 * we assume ifp is not a p2p here, so just 1650 * set the 2nd argument as the 1st one. 1651 */ 1652 nd6_output(ifp, ifp, ln->ln_hold, 1653 (struct sockaddr_in6 *)rt_key(rt), 1654 rt); 1655 ln->ln_hold = NULL; 1656 } 1657 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1658 /* probe right away */ 1659 ln->ln_expire = time_uptime; 1660 } 1661 } 1662 1663 /* 1664 * ICMP6 type dependent behavior. 1665 * 1666 * NS: clear IsRouter if new entry 1667 * RS: clear IsRouter 1668 * RA: set IsRouter if there's lladdr 1669 * redir: clear IsRouter if new entry 1670 * 1671 * RA case, (1): 1672 * The spec says that we must set IsRouter in the following cases: 1673 * - If lladdr exist, set IsRouter. This means (1-5). 1674 * - If it is old entry (!newentry), set IsRouter. This means (7). 1675 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1676 * A quetion arises for (1) case. (1) case has no lladdr in the 1677 * neighbor cache, this is similar to (6). 1678 * This case is rare but we figured that we MUST NOT set IsRouter. 1679 * 1680 * newentry olladdr lladdr llchange NS RS RA redir 1681 * D R 1682 * 0 n n -- (1) c ? s 1683 * 0 y n -- (2) c s s 1684 * 0 n y -- (3) c s s 1685 * 0 y y n (4) c s s 1686 * 0 y y y (5) c s s 1687 * 1 -- n -- (6) c c c s 1688 * 1 -- y -- (7) c c s c s 1689 * 1690 * (c=clear s=set) 1691 */ 1692 switch (type & 0xff) { 1693 case ND_NEIGHBOR_SOLICIT: 1694 /* 1695 * New entry must have is_router flag cleared. 1696 */ 1697 if (is_newentry) /* (6-7) */ 1698 ln->ln_router = 0; 1699 break; 1700 case ND_REDIRECT: 1701 /* 1702 * If the icmp is a redirect to a better router, always set the 1703 * is_router flag. Otherwise, if the entry is newly created, 1704 * clear the flag. [RFC 2461, sec 8.3] 1705 */ 1706 if (code == ND_REDIRECT_ROUTER) 1707 ln->ln_router = 1; 1708 else if (is_newentry) /* (6-7) */ 1709 ln->ln_router = 0; 1710 break; 1711 case ND_ROUTER_SOLICIT: 1712 /* 1713 * is_router flag must always be cleared. 1714 */ 1715 ln->ln_router = 0; 1716 break; 1717 case ND_ROUTER_ADVERT: 1718 /* 1719 * Mark an entry with lladdr as a router. 1720 */ 1721 if ((!is_newentry && (olladdr || lladdr)) /* (2-5) */ 1722 || (is_newentry && lladdr)) { /* (7) */ 1723 ln->ln_router = 1; 1724 } 1725 break; 1726 } 1727 1728 /* 1729 * When the link-layer address of a router changes, select the 1730 * best router again. In particular, when the neighbor entry is newly 1731 * created, it might affect the selection policy. 1732 * Question: can we restrict the first condition to the "is_newentry" 1733 * case? 1734 * XXX: when we hear an RA from a new router with the link-layer 1735 * address option, defrouter_select() is called twice, since 1736 * defrtrlist_update called the function as well. However, I believe 1737 * we can compromise the overhead, since it only happens the first 1738 * time. 1739 * XXX: although defrouter_select() should not have a bad effect 1740 * for those are not autoconfigured hosts, we explicitly avoid such 1741 * cases for safety. 1742 */ 1743 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv) 1744 defrouter_select(); 1745 1746 return rt; 1747 } 1748 1749 static void 1750 nd6_slowtimo(void *ignored_arg) 1751 { 1752 struct nd_ifinfo *nd6if; 1753 struct ifnet *ifp; 1754 1755 mtx_lock(&nd6_mtx); 1756 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1757 nd6_slowtimo, NULL); 1758 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) { 1759 if (ifp->if_afdata[AF_INET6] == NULL) 1760 continue; 1761 nd6if = ND_IFINFO(ifp); 1762 if (nd6if->basereachable && /* already initialized */ 1763 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1764 /* 1765 * Since reachable time rarely changes by router 1766 * advertisements, we SHOULD insure that a new random 1767 * value gets recomputed at least once every few hours. 1768 * (RFC 2461, 6.3.4) 1769 */ 1770 nd6if->recalctm = nd6_recalc_reachtm_interval; 1771 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1772 } 1773 } 1774 mtx_unlock(&nd6_mtx); 1775 } 1776 1777 #define gotoerr(e) { error = (e); goto bad;} 1778 1779 int 1780 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 1781 struct sockaddr_in6 *dst, struct rtentry *rt) 1782 { 1783 struct llinfo_nd6 *ln = NULL; 1784 int error = 0; 1785 1786 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1787 goto sendpkt; 1788 1789 if (nd6_need_cache(ifp) == 0) 1790 goto sendpkt; 1791 1792 /* 1793 * next hop determination. This routine is derived from ether_outpout. 1794 */ 1795 if (rt != NULL) { 1796 if (!(rt->rt_flags & RTF_UP)) { 1797 rt = rtlookup((struct sockaddr *)dst); 1798 if (rt == NULL) 1799 gotoerr(EHOSTUNREACH); 1800 rt->rt_refcnt--; 1801 if (rt->rt_ifp != ifp) { 1802 /* XXX: loop care? */ 1803 return nd6_output(ifp, origifp, m, dst, rt); 1804 } 1805 } 1806 if (rt->rt_flags & RTF_GATEWAY) { 1807 struct sockaddr_in6 *gw6; 1808 1809 /* 1810 * We skip link-layer address resolution and NUD 1811 * if the gateway is not a neighbor from ND point 1812 * of view, regardless of the value of nd_ifinfo.flags. 1813 * The second condition is a bit tricky; we skip 1814 * if the gateway is our own address, which is 1815 * sometimes used to install a route to a p2p link. 1816 */ 1817 gw6 = (struct sockaddr_in6 *)rt->rt_gateway; 1818 if (!nd6_is_addr_neighbor(gw6, ifp) || 1819 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { 1820 /* 1821 * We allow this kind of tricky route only 1822 * when the outgoing interface is p2p. 1823 * XXX: we may need a more generic rule here. 1824 */ 1825 if (!(ifp->if_flags & IFF_POINTOPOINT)) 1826 gotoerr(EHOSTUNREACH); 1827 1828 goto sendpkt; 1829 } 1830 1831 if (rt->rt_gwroute == NULL) { 1832 rt->rt_gwroute = rtlookup(rt->rt_gateway); 1833 if (rt->rt_gwroute == NULL) 1834 gotoerr(EHOSTUNREACH); 1835 } else if (!(rt->rt_gwroute->rt_flags & RTF_UP)) { 1836 rtfree(rt->rt_gwroute); 1837 rt->rt_gwroute = rtlookup(rt->rt_gateway); 1838 if (rt->rt_gwroute == NULL) 1839 gotoerr(EHOSTUNREACH); 1840 } 1841 } 1842 } 1843 1844 /* 1845 * Address resolution or Neighbor Unreachability Detection 1846 * for the next hop. 1847 * At this point, the destination of the packet must be a unicast 1848 * or an anycast address(i.e. not a multicast). 1849 */ 1850 1851 /* Look up the neighbor cache for the nexthop */ 1852 if (rt && (rt->rt_flags & RTF_LLINFO)) 1853 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1854 else { 1855 /* 1856 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1857 * the condition below is not very efficient. But we believe 1858 * it is tolerable, because this should be a rare case. 1859 */ 1860 if (nd6_is_addr_neighbor(dst, ifp) && 1861 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL) 1862 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1863 } 1864 if (!ln || !rt) { 1865 if (!(ifp->if_flags & IFF_POINTOPOINT) && 1866 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 1867 log(LOG_DEBUG, 1868 "nd6_output: can't allocate llinfo for %s " 1869 "(ln=%p, rt=%p)\n", 1870 ip6_sprintf(&dst->sin6_addr), ln, rt); 1871 gotoerr(EIO); /* XXX: good error? */ 1872 } 1873 1874 goto sendpkt; /* send anyway */ 1875 } 1876 1877 /* We don't have to do link-layer address resolution on a p2p link. */ 1878 if ((ifp->if_flags & IFF_POINTOPOINT) && 1879 ln->ln_state < ND6_LLINFO_REACHABLE) { 1880 ln->ln_state = ND6_LLINFO_STALE; 1881 ln->ln_expire = time_uptime + nd6_gctimer; 1882 } 1883 1884 /* 1885 * The first time we send a packet to a neighbor whose entry is 1886 * STALE, we have to change the state to DELAY and a sets a timer to 1887 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 1888 * neighbor unreachability detection on expiration. 1889 * (RFC 2461 7.3.3) 1890 */ 1891 if (ln->ln_state == ND6_LLINFO_STALE) { 1892 ln->ln_asked = 0; 1893 ln->ln_state = ND6_LLINFO_DELAY; 1894 ln->ln_expire = time_uptime + nd6_delay; 1895 } 1896 1897 /* 1898 * If the neighbor cache entry has a state other than INCOMPLETE 1899 * (i.e. its link-layer address is already resolved), just 1900 * send the packet. 1901 */ 1902 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1903 goto sendpkt; 1904 1905 /* 1906 * There is a neighbor cache entry, but no ethernet address 1907 * response yet. Replace the held mbuf (if any) with this 1908 * latest one. 1909 * 1910 * This code conforms to the rate-limiting rule described in Section 1911 * 7.2.2 of RFC 2461, because the timer is set correctly after sending 1912 * an NS below. 1913 */ 1914 if (ln->ln_state == ND6_LLINFO_NOSTATE) 1915 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1916 if (ln->ln_hold) 1917 m_freem(ln->ln_hold); 1918 ln->ln_hold = m; 1919 if (ln->ln_expire) { 1920 if (ln->ln_asked < nd6_mmaxtries && 1921 ln->ln_expire < time_uptime) { 1922 ln->ln_asked++; 1923 ln->ln_expire = time_uptime + 1924 ND_IFINFO(ifp)->retrans / 1000; 1925 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 1926 } 1927 } 1928 return (0); 1929 1930 sendpkt: 1931 if (ifp->if_flags & IFF_LOOPBACK) 1932 error = ifp->if_output(origifp, m, (struct sockaddr *)dst, rt); 1933 else 1934 error = ifp->if_output(ifp, m, (struct sockaddr *)dst, rt); 1935 return (error); 1936 1937 bad: 1938 m_freem(m); 1939 return (error); 1940 } 1941 #undef gotoerr 1942 1943 int 1944 nd6_need_cache(struct ifnet *ifp) 1945 { 1946 /* 1947 * XXX: we currently do not make neighbor cache on any interface 1948 * other than Ethernet and GIF. 1949 * 1950 * RFC2893 says: 1951 * - unidirectional tunnels needs no ND 1952 */ 1953 switch (ifp->if_type) { 1954 case IFT_ETHER: 1955 case IFT_IEEE1394: 1956 #ifdef IFT_L2VLAN 1957 case IFT_L2VLAN: 1958 #endif 1959 #ifdef IFT_IEEE80211 1960 case IFT_IEEE80211: 1961 #endif 1962 #ifdef IFT_CARP 1963 case IFT_CARP: 1964 #endif 1965 case IFT_GIF: /* XXX need more cases? */ 1966 return (1); 1967 default: 1968 return (0); 1969 } 1970 } 1971 1972 int 1973 nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m, 1974 struct sockaddr *dst, u_char *desten) 1975 { 1976 struct sockaddr_dl *sdl; 1977 struct rtentry *rt; 1978 1979 1980 if (m->m_flags & M_MCAST) { 1981 switch (ifp->if_type) { 1982 case IFT_ETHER: 1983 #ifdef IFT_L2VLAN 1984 case IFT_L2VLAN: 1985 #endif 1986 #ifdef IFT_IEEE80211 1987 case IFT_IEEE80211: 1988 #endif 1989 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 1990 desten); 1991 return (1); 1992 case IFT_IEEE1394: 1993 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen); 1994 return (1); 1995 default: 1996 m_freem(m); 1997 return (0); 1998 } 1999 } 2000 if (rt0 == NULL) { 2001 /* this could happen, if we could not allocate memory */ 2002 m_freem(m); 2003 return (0); 2004 } 2005 if (rt_llroute(dst, rt0, &rt) != 0) { 2006 m_freem(m); 2007 return (0); 2008 } 2009 if (rt->rt_gateway->sa_family != AF_LINK) { 2010 kprintf("nd6_storelladdr: something odd happens\n"); 2011 m_freem(m); 2012 return (0); 2013 } 2014 sdl = SDL(rt->rt_gateway); 2015 if (sdl->sdl_alen == 0) { 2016 /* this should be impossible, but we bark here for debugging */ 2017 kprintf("nd6_storelladdr: sdl_alen == 0\n"); 2018 m_freem(m); 2019 return (0); 2020 } 2021 2022 bcopy(LLADDR(sdl), desten, sdl->sdl_alen); 2023 return (1); 2024 } 2025 2026 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2027 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2028 #ifdef SYSCTL_DECL 2029 SYSCTL_DECL(_net_inet6_icmp6); 2030 #endif 2031 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2032 CTLFLAG_RD, nd6_sysctl_drlist, "List default routers"); 2033 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2034 CTLFLAG_RD, nd6_sysctl_prlist, "List prefixes"); 2035 2036 static int 2037 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2038 { 2039 int error; 2040 char buf[1024]; 2041 struct in6_defrouter *d, *de; 2042 struct nd_defrouter *dr; 2043 2044 if (req->newptr) 2045 return EPERM; 2046 error = 0; 2047 2048 for (dr = TAILQ_FIRST(&nd_defrouter); 2049 dr; 2050 dr = TAILQ_NEXT(dr, dr_entry)) { 2051 d = (struct in6_defrouter *)buf; 2052 de = (struct in6_defrouter *)(buf + sizeof(buf)); 2053 2054 if (d + 1 <= de) { 2055 bzero(d, sizeof(*d)); 2056 d->rtaddr.sin6_family = AF_INET6; 2057 d->rtaddr.sin6_len = sizeof(d->rtaddr); 2058 if (in6_recoverscope(&d->rtaddr, &dr->rtaddr, 2059 dr->ifp) != 0) 2060 log(LOG_ERR, 2061 "scope error in " 2062 "default router list (%s)\n", 2063 ip6_sprintf(&dr->rtaddr)); 2064 d->flags = dr->flags; 2065 d->rtlifetime = dr->rtlifetime; 2066 d->expire = dr->expire; 2067 d->if_index = dr->ifp->if_index; 2068 } else 2069 panic("buffer too short"); 2070 2071 error = SYSCTL_OUT(req, buf, sizeof(*d)); 2072 if (error) 2073 break; 2074 } 2075 return error; 2076 } 2077 2078 static int 2079 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2080 { 2081 int error; 2082 char buf[1024]; 2083 struct in6_prefix *p, *pe; 2084 struct nd_prefix *pr; 2085 2086 if (req->newptr) 2087 return EPERM; 2088 error = 0; 2089 2090 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 2091 u_short advrtrs; 2092 size_t advance; 2093 struct sockaddr_in6 *sin6, *s6; 2094 struct nd_pfxrouter *pfr; 2095 2096 p = (struct in6_prefix *)buf; 2097 pe = (struct in6_prefix *)(buf + sizeof(buf)); 2098 2099 if (p + 1 <= pe) { 2100 bzero(p, sizeof(*p)); 2101 sin6 = (struct sockaddr_in6 *)(p + 1); 2102 2103 p->prefix = pr->ndpr_prefix; 2104 if (in6_recoverscope(&p->prefix, 2105 &p->prefix.sin6_addr, pr->ndpr_ifp) != 0) 2106 log(LOG_ERR, 2107 "scope error in prefix list (%s)\n", 2108 ip6_sprintf(&p->prefix.sin6_addr)); 2109 p->raflags = pr->ndpr_raf; 2110 p->prefixlen = pr->ndpr_plen; 2111 p->vltime = pr->ndpr_vltime; 2112 p->pltime = pr->ndpr_pltime; 2113 p->if_index = pr->ndpr_ifp->if_index; 2114 p->expire = pr->ndpr_expire; 2115 p->refcnt = pr->ndpr_refcnt; 2116 p->flags = pr->ndpr_stateflags; 2117 p->origin = PR_ORIG_RA; 2118 advrtrs = 0; 2119 for (pfr = pr->ndpr_advrtrs.lh_first; 2120 pfr; 2121 pfr = pfr->pfr_next) { 2122 if ((void *)&sin6[advrtrs + 1] > 2123 (void *)pe) { 2124 advrtrs++; 2125 continue; 2126 } 2127 s6 = &sin6[advrtrs]; 2128 bzero(s6, sizeof(*s6)); 2129 s6->sin6_family = AF_INET6; 2130 s6->sin6_len = sizeof(*sin6); 2131 if (in6_recoverscope(s6, &pfr->router->rtaddr, 2132 pfr->router->ifp) != 0) 2133 log(LOG_ERR, 2134 "scope error in " 2135 "prefix list (%s)\n", 2136 ip6_sprintf(&pfr->router->rtaddr)); 2137 advrtrs++; 2138 } 2139 p->advrtrs = advrtrs; 2140 } else 2141 panic("buffer too short"); 2142 2143 advance = sizeof(*p) + sizeof(*sin6) * advrtrs; 2144 error = SYSCTL_OUT(req, buf, advance); 2145 if (error) 2146 break; 2147 } 2148 return error; 2149 } 2150