1 /* $FreeBSD: src/sys/netinet6/ip6_output.c,v 1.13.2.18 2003/01/24 05:11:35 sam Exp $ */ 2 /* $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include "opt_ip6fw.h" 65 #include "opt_inet.h" 66 #include "opt_inet6.h" 67 #include "opt_ipsec.h" 68 69 #include <sys/param.h> 70 #include <sys/malloc.h> 71 #include <sys/mbuf.h> 72 #include <sys/errno.h> 73 #include <sys/protosw.h> 74 #include <sys/socket.h> 75 #include <sys/socketvar.h> 76 #include <sys/systm.h> 77 #include <sys/kernel.h> 78 #include <sys/proc.h> 79 #include <sys/priv.h> 80 81 #include <sys/thread2.h> 82 #include <sys/msgport2.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #include <net/pfil.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet6/in6_var.h> 91 #include <netinet/ip6.h> 92 #include <netinet/icmp6.h> 93 #include <netinet6/ip6_var.h> 94 #include <netinet/in_pcb.h> 95 #include <netinet6/nd6.h> 96 #include <netinet6/ip6protosw.h> 97 98 #ifdef IPSEC 99 #include <netinet6/ipsec.h> 100 #ifdef INET6 101 #include <netinet6/ipsec6.h> 102 #endif 103 #include <netproto/key/key.h> 104 #endif /* IPSEC */ 105 106 #ifdef FAST_IPSEC 107 #include <netproto/ipsec/ipsec.h> 108 #include <netproto/ipsec/ipsec6.h> 109 #include <netproto/ipsec/key.h> 110 #endif 111 112 #include <net/ip6fw/ip6_fw.h> 113 114 #include <net/net_osdep.h> 115 116 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options"); 117 118 struct ip6_exthdrs { 119 struct mbuf *ip6e_ip6; 120 struct mbuf *ip6e_hbh; 121 struct mbuf *ip6e_dest1; 122 struct mbuf *ip6e_rthdr; 123 struct mbuf *ip6e_dest2; 124 }; 125 126 static int ip6_pcbopt (int, u_char *, int, struct ip6_pktopts **, int); 127 static int ip6_setpktoption (int, u_char *, int, struct ip6_pktopts *, 128 int, int, int, int); 129 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, struct socket *, 130 struct sockopt *); 131 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 132 static int ip6_setmoptions (int, struct ip6_moptions **, struct mbuf *); 133 static int ip6_getmoptions (int, struct ip6_moptions *, struct mbuf **); 134 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *, 135 struct ifnet *, struct in6_addr *, u_long *, int *); 136 static int copyexthdr (void *, struct mbuf **); 137 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 138 struct ip6_frag **); 139 static int ip6_insert_jumboopt (struct ip6_exthdrs *, u_int32_t); 140 static struct mbuf *ip6_splithdr (struct mbuf *); 141 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 142 143 /* 144 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 145 * header (with pri, len, nxt, hlim, src, dst). 146 * This function may modify ver and hlim only. 147 * The mbuf chain containing the packet will be freed. 148 * The mbuf opt, if present, will not be freed. 149 * 150 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 151 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 152 * which is rt_rmx.rmx_mtu. 153 */ 154 int 155 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro, 156 int flags, struct ip6_moptions *im6o, 157 struct ifnet **ifpp, /* XXX: just for statistics */ 158 struct inpcb *inp) 159 { 160 struct ip6_hdr *ip6, *mhip6; 161 struct ifnet *ifp, *origifp; 162 struct mbuf *m = m0; 163 struct mbuf *mprev; 164 u_char *nexthdrp; 165 int hlen, tlen, len, off; 166 struct route_in6 ip6route; 167 struct sockaddr_in6 *dst; 168 int error = 0; 169 struct in6_ifaddr *ia = NULL; 170 u_long mtu; 171 int alwaysfrag, dontfrag; 172 u_int32_t optlen, plen = 0, unfragpartlen; 173 struct ip6_exthdrs exthdrs; 174 struct in6_addr finaldst; 175 struct route_in6 *ro_pmtu = NULL; 176 boolean_t hdrsplit = FALSE; 177 boolean_t needipsec = FALSE; 178 #ifdef IPSEC 179 boolean_t needipsectun = FALSE; 180 struct secpolicy *sp = NULL; 181 struct socket *so = inp ? inp->inp_socket : NULL; 182 183 ip6 = mtod(m, struct ip6_hdr *); 184 #endif 185 #ifdef FAST_IPSEC 186 boolean_t needipsectun = FALSE; 187 struct secpolicy *sp = NULL; 188 189 ip6 = mtod(m, struct ip6_hdr *); 190 #endif 191 192 bzero(&exthdrs, sizeof exthdrs); 193 194 if (opt) { 195 if ((error = copyexthdr(opt->ip6po_hbh, &exthdrs.ip6e_hbh))) 196 goto freehdrs; 197 if ((error = copyexthdr(opt->ip6po_dest1, &exthdrs.ip6e_dest1))) 198 goto freehdrs; 199 if ((error = copyexthdr(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr))) 200 goto freehdrs; 201 if ((error = copyexthdr(opt->ip6po_dest2, &exthdrs.ip6e_dest2))) 202 goto freehdrs; 203 } 204 205 #ifdef IPSEC 206 /* get a security policy for this packet */ 207 if (so == NULL) 208 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 209 else 210 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 211 212 if (sp == NULL) { 213 ipsec6stat.out_inval++; 214 goto freehdrs; 215 } 216 217 error = 0; 218 219 /* check policy */ 220 switch (sp->policy) { 221 case IPSEC_POLICY_DISCARD: 222 /* 223 * This packet is just discarded. 224 */ 225 ipsec6stat.out_polvio++; 226 goto freehdrs; 227 228 case IPSEC_POLICY_BYPASS: 229 case IPSEC_POLICY_NONE: 230 /* no need to do IPsec. */ 231 needipsec = FALSE; 232 break; 233 234 case IPSEC_POLICY_IPSEC: 235 if (sp->req == NULL) { 236 error = key_spdacquire(sp); /* acquire a policy */ 237 goto freehdrs; 238 } 239 needipsec = TRUE; 240 break; 241 242 case IPSEC_POLICY_ENTRUST: 243 default: 244 kprintf("ip6_output: Invalid policy found. %d\n", sp->policy); 245 } 246 #endif /* IPSEC */ 247 #ifdef FAST_IPSEC 248 /* get a security policy for this packet */ 249 if (inp == NULL) 250 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 251 else 252 sp = ipsec_getpolicybysock(m, IPSEC_DIR_OUTBOUND, inp, &error); 253 254 if (sp == NULL) { 255 newipsecstat.ips_out_inval++; 256 goto freehdrs; 257 } 258 259 error = 0; 260 261 /* check policy */ 262 switch (sp->policy) { 263 case IPSEC_POLICY_DISCARD: 264 /* 265 * This packet is just discarded. 266 */ 267 newipsecstat.ips_out_polvio++; 268 goto freehdrs; 269 270 case IPSEC_POLICY_BYPASS: 271 case IPSEC_POLICY_NONE: 272 /* no need to do IPsec. */ 273 needipsec = FALSE; 274 break; 275 276 case IPSEC_POLICY_IPSEC: 277 if (sp->req == NULL) { 278 error = key_spdacquire(sp); /* acquire a policy */ 279 goto freehdrs; 280 } 281 needipsec = TRUE; 282 break; 283 284 case IPSEC_POLICY_ENTRUST: 285 default: 286 kprintf("ip6_output: Invalid policy found. %d\n", sp->policy); 287 } 288 #endif /* FAST_IPSEC */ 289 290 /* 291 * Calculate the total length of the extension header chain. 292 * Keep the length of the unfragmentable part for fragmentation. 293 */ 294 optlen = m_lengthm(exthdrs.ip6e_hbh, NULL) + 295 m_lengthm(exthdrs.ip6e_dest1, NULL) + 296 m_lengthm(exthdrs.ip6e_rthdr, NULL); 297 298 unfragpartlen = optlen + sizeof(struct ip6_hdr); 299 300 /* NOTE: we don't add AH/ESP length here. do that later. */ 301 optlen += m_lengthm(exthdrs.ip6e_dest2, NULL); 302 303 /* 304 * If we need IPsec, or there is at least one extension header, 305 * separate IP6 header from the payload. 306 */ 307 if ((needipsec || optlen) && !hdrsplit) { 308 exthdrs.ip6e_ip6 = ip6_splithdr(m); 309 if (exthdrs.ip6e_ip6 == NULL) { 310 error = ENOBUFS; 311 goto freehdrs; 312 } 313 m = exthdrs.ip6e_ip6; 314 hdrsplit = TRUE; 315 } 316 317 /* adjust pointer */ 318 ip6 = mtod(m, struct ip6_hdr *); 319 320 /* adjust mbuf packet header length */ 321 m->m_pkthdr.len += optlen; 322 plen = m->m_pkthdr.len - sizeof(*ip6); 323 324 /* If this is a jumbo payload, insert a jumbo payload option. */ 325 if (plen > IPV6_MAXPACKET) { 326 if (!hdrsplit) { 327 exthdrs.ip6e_ip6 = ip6_splithdr(m); 328 if (exthdrs.ip6e_ip6 == NULL) { 329 error = ENOBUFS; 330 goto freehdrs; 331 } 332 m = exthdrs.ip6e_ip6; 333 hdrsplit = TRUE; 334 } 335 /* adjust pointer */ 336 ip6 = mtod(m, struct ip6_hdr *); 337 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 338 goto freehdrs; 339 ip6->ip6_plen = 0; 340 } else 341 ip6->ip6_plen = htons(plen); 342 343 /* 344 * Concatenate headers and fill in next header fields. 345 * Here we have, on "m" 346 * IPv6 payload 347 * and we insert headers accordingly. Finally, we should be getting: 348 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 349 * 350 * during the header composing process, "m" points to IPv6 header. 351 * "mprev" points to an extension header prior to esp. 352 */ 353 354 nexthdrp = &ip6->ip6_nxt; 355 mprev = m; 356 357 /* 358 * we treat dest2 specially. this makes IPsec processing 359 * much easier. the goal here is to make mprev point the 360 * mbuf prior to dest2. 361 * 362 * result: IPv6 dest2 payload 363 * m and mprev will point to IPv6 header. 364 */ 365 if (exthdrs.ip6e_dest2) { 366 if (!hdrsplit) 367 panic("assumption failed: hdr not split"); 368 exthdrs.ip6e_dest2->m_next = m->m_next; 369 m->m_next = exthdrs.ip6e_dest2; 370 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 371 ip6->ip6_nxt = IPPROTO_DSTOPTS; 372 } 373 374 /* 375 * Place m1 after mprev. 376 */ 377 #define MAKE_CHAIN(m1, mprev, nexthdrp, i)\ 378 do {\ 379 if (m1) {\ 380 if (!hdrsplit)\ 381 panic("assumption failed: hdr not split");\ 382 *mtod(m1, u_char *) = *nexthdrp;\ 383 *nexthdrp = (i);\ 384 nexthdrp = mtod(m1, u_char *);\ 385 m1->m_next = mprev->m_next;\ 386 mprev->m_next = m1;\ 387 mprev = m1;\ 388 }\ 389 } while (0) 390 391 /* 392 * result: IPv6 hbh dest1 rthdr dest2 payload 393 * m will point to IPv6 header. mprev will point to the 394 * extension header prior to dest2 (rthdr in the above case). 395 */ 396 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 397 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, IPPROTO_DSTOPTS); 398 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, IPPROTO_ROUTING); 399 400 #if defined(IPSEC) || defined(FAST_IPSEC) 401 if (needipsec) { 402 struct ipsec_output_state state; 403 int segleft_org = 0; 404 struct ip6_rthdr *rh = NULL; 405 406 /* 407 * pointers after IPsec headers are not valid any more. 408 * other pointers need a great care too. 409 * (IPsec routines should not mangle mbufs prior to AH/ESP) 410 */ 411 exthdrs.ip6e_dest2 = NULL; 412 413 if (exthdrs.ip6e_rthdr) { 414 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 415 segleft_org = rh->ip6r_segleft; 416 rh->ip6r_segleft = 0; 417 } 418 419 bzero(&state, sizeof state); 420 state.m = m; 421 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 422 &needipsectun); 423 m = state.m; 424 if (error) { 425 /* mbuf is already reclaimed in ipsec6_output_trans. */ 426 m = NULL; 427 switch (error) { 428 case EHOSTUNREACH: 429 case ENETUNREACH: 430 case EMSGSIZE: 431 case ENOBUFS: 432 case ENOMEM: 433 break; 434 default: 435 kprintf("ip6_output (ipsec): error code %d\n", 436 error); 437 /* FALLTHROUGH */ 438 case ENOENT: 439 /* don't show these error codes to the user */ 440 error = 0; 441 break; 442 } 443 goto bad; 444 } 445 if (exthdrs.ip6e_rthdr) { 446 /* ah6_output doesn't modify mbuf chain */ 447 rh->ip6r_segleft = segleft_org; 448 } 449 } 450 #endif 451 452 /* 453 * If there is a routing header, replace the destination address field 454 * with the first hop of the routing header. 455 */ 456 if (exthdrs.ip6e_rthdr) { 457 struct ip6_rthdr *rh; 458 459 finaldst = ip6->ip6_dst; 460 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 461 switch (rh->ip6r_type) { 462 default: /* is it possible? */ 463 error = EINVAL; 464 goto bad; 465 } 466 } 467 468 /* Source address validation */ 469 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 470 !(flags & IPV6_DADOUTPUT)) { 471 error = EOPNOTSUPP; 472 ip6stat.ip6s_badscope++; 473 goto bad; 474 } 475 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 476 error = EOPNOTSUPP; 477 ip6stat.ip6s_badscope++; 478 goto bad; 479 } 480 481 ip6stat.ip6s_localout++; 482 483 /* 484 * Route packet. 485 */ 486 if (ro == NULL) { 487 ro = &ip6route; 488 bzero(ro, sizeof(*ro)); 489 } 490 ro_pmtu = ro; 491 if (opt && opt->ip6po_rthdr) 492 ro = &opt->ip6po_route; 493 dst = (struct sockaddr_in6 *)&ro->ro_dst; 494 495 /* 496 * If there is a cached route, 497 * check that it is to the same destination 498 * and is still up. If not, free it and try again. 499 */ 500 if (ro->ro_rt != NULL && 501 (!(ro->ro_rt->rt_flags & RTF_UP) || dst->sin6_family != AF_INET6 || 502 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 503 RTFREE(ro->ro_rt); 504 ro->ro_rt = NULL; 505 } 506 if (ro->ro_rt == NULL) { 507 bzero(dst, sizeof(*dst)); 508 dst->sin6_family = AF_INET6; 509 dst->sin6_len = sizeof(struct sockaddr_in6); 510 dst->sin6_addr = ip6->ip6_dst; 511 } 512 #if defined(IPSEC) || defined(FAST_IPSEC) 513 if (needipsec && needipsectun) { 514 struct ipsec_output_state state; 515 516 /* 517 * All the extension headers will become inaccessible 518 * (since they can be encrypted). 519 * Don't panic, we need no more updates to extension headers 520 * on inner IPv6 packet (since they are now encapsulated). 521 * 522 * IPv6 [ESP|AH] IPv6 [extension headers] payload 523 */ 524 bzero(&exthdrs, sizeof(exthdrs)); 525 exthdrs.ip6e_ip6 = m; 526 527 bzero(&state, sizeof(state)); 528 state.m = m; 529 state.ro = (struct route *)ro; 530 state.dst = (struct sockaddr *)dst; 531 532 error = ipsec6_output_tunnel(&state, sp, flags); 533 534 m = state.m; 535 ro = (struct route_in6 *)state.ro; 536 dst = (struct sockaddr_in6 *)state.dst; 537 if (error) { 538 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 539 m0 = m = NULL; 540 m = NULL; 541 switch (error) { 542 case EHOSTUNREACH: 543 case ENETUNREACH: 544 case EMSGSIZE: 545 case ENOBUFS: 546 case ENOMEM: 547 break; 548 default: 549 kprintf("ip6_output (ipsec): error code %d\n", error); 550 /* FALLTHROUGH */ 551 case ENOENT: 552 /* don't show these error codes to the user */ 553 error = 0; 554 break; 555 } 556 goto bad; 557 } 558 559 exthdrs.ip6e_ip6 = m; 560 } 561 #endif 562 563 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 564 /* Unicast */ 565 566 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 567 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 568 /* xxx 569 * interface selection comes here 570 * if an interface is specified from an upper layer, 571 * ifp must point it. 572 */ 573 if (ro->ro_rt == NULL) { 574 /* 575 * non-bsdi always clone routes, if parent is 576 * PRF_CLONING. 577 */ 578 rtalloc((struct route *)ro); 579 } 580 if (ro->ro_rt == NULL) { 581 ip6stat.ip6s_noroute++; 582 error = EHOSTUNREACH; 583 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 584 goto bad; 585 } 586 ia = ifatoia6(ro->ro_rt->rt_ifa); 587 ifp = ro->ro_rt->rt_ifp; 588 ro->ro_rt->rt_use++; 589 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 590 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 591 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 592 593 in6_ifstat_inc(ifp, ifs6_out_request); 594 595 /* 596 * Check if the outgoing interface conflicts with 597 * the interface specified by ifi6_ifindex (if specified). 598 * Note that loopback interface is always okay. 599 * (this may happen when we are sending a packet to one of 600 * our own addresses.) 601 */ 602 if (opt && opt->ip6po_pktinfo 603 && opt->ip6po_pktinfo->ipi6_ifindex) { 604 if (!(ifp->if_flags & IFF_LOOPBACK) 605 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 606 ip6stat.ip6s_noroute++; 607 in6_ifstat_inc(ifp, ifs6_out_discard); 608 error = EHOSTUNREACH; 609 goto bad; 610 } 611 } 612 613 if (opt && opt->ip6po_hlim != -1) 614 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 615 } else { 616 /* Multicast */ 617 struct in6_multi *in6m; 618 619 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 620 621 /* 622 * See if the caller provided any multicast options 623 */ 624 ifp = NULL; 625 if (im6o != NULL) { 626 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 627 if (im6o->im6o_multicast_ifp != NULL) 628 ifp = im6o->im6o_multicast_ifp; 629 } else 630 ip6->ip6_hlim = ip6_defmcasthlim; 631 632 /* 633 * See if the caller provided the outgoing interface 634 * as an ancillary data. 635 * Boundary check for ifindex is assumed to be already done. 636 */ 637 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 638 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 639 640 /* 641 * If the destination is a node-local scope multicast, 642 * the packet should be loop-backed only. 643 */ 644 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 645 /* 646 * If the outgoing interface is already specified, 647 * it should be a loopback interface. 648 */ 649 if (ifp && !(ifp->if_flags & IFF_LOOPBACK)) { 650 ip6stat.ip6s_badscope++; 651 error = ENETUNREACH; /* XXX: better error? */ 652 /* XXX correct ifp? */ 653 in6_ifstat_inc(ifp, ifs6_out_discard); 654 goto bad; 655 } else { 656 ifp = &loif[0]; 657 } 658 } 659 660 if (opt && opt->ip6po_hlim != -1) 661 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 662 663 /* 664 * If caller did not provide an interface lookup a 665 * default in the routing table. This is either a 666 * default for the speicfied group (i.e. a host 667 * route), or a multicast default (a route for the 668 * ``net'' ff00::/8). 669 */ 670 if (ifp == NULL) { 671 if (ro->ro_rt == NULL) { 672 ro->ro_rt = 673 rtpurelookup((struct sockaddr *)&ro->ro_dst); 674 } 675 if (ro->ro_rt == NULL) { 676 ip6stat.ip6s_noroute++; 677 error = EHOSTUNREACH; 678 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 679 goto bad; 680 } 681 ia = ifatoia6(ro->ro_rt->rt_ifa); 682 ifp = ro->ro_rt->rt_ifp; 683 ro->ro_rt->rt_use++; 684 } 685 686 if (!(flags & IPV6_FORWARDING)) 687 in6_ifstat_inc(ifp, ifs6_out_request); 688 in6_ifstat_inc(ifp, ifs6_out_mcast); 689 690 /* 691 * Confirm that the outgoing interface supports multicast. 692 */ 693 if (!(ifp->if_flags & IFF_MULTICAST)) { 694 ip6stat.ip6s_noroute++; 695 in6_ifstat_inc(ifp, ifs6_out_discard); 696 error = ENETUNREACH; 697 goto bad; 698 } 699 in6m = IN6_LOOKUP_MULTI(&ip6->ip6_dst, ifp); 700 if (in6m != NULL && 701 (im6o == NULL || im6o->im6o_multicast_loop)) { 702 /* 703 * If we belong to the destination multicast group 704 * on the outgoing interface, and the caller did not 705 * forbid loopback, loop back a copy. 706 */ 707 ip6_mloopback(ifp, m, dst); 708 } else { 709 /* 710 * If we are acting as a multicast router, perform 711 * multicast forwarding as if the packet had just 712 * arrived on the interface to which we are about 713 * to send. The multicast forwarding function 714 * recursively calls this function, using the 715 * IPV6_FORWARDING flag to prevent infinite recursion. 716 * 717 * Multicasts that are looped back by ip6_mloopback(), 718 * above, will be forwarded by the ip6_input() routine, 719 * if necessary. 720 */ 721 if (ip6_mrouter && !(flags & IPV6_FORWARDING)) { 722 if (ip6_mforward(ip6, ifp, m) != 0) { 723 m_freem(m); 724 goto done; 725 } 726 } 727 } 728 /* 729 * Multicasts with a hoplimit of zero may be looped back, 730 * above, but must not be transmitted on a network. 731 * Also, multicasts addressed to the loopback interface 732 * are not sent -- the above call to ip6_mloopback() will 733 * loop back a copy if this host actually belongs to the 734 * destination group on the loopback interface. 735 */ 736 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 737 m_freem(m); 738 goto done; 739 } 740 } 741 742 /* 743 * Fill the outgoing inteface to tell the upper layer 744 * to increment per-interface statistics. 745 */ 746 if (ifpp) 747 *ifpp = ifp; 748 749 /* Determine path MTU. */ 750 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 751 &alwaysfrag)) != 0) 752 goto bad; 753 754 /* 755 * The caller of this function may specify to use the minimum MTU 756 * in some cases. 757 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 758 * setting. The logic is a bit complicated; by default, unicast 759 * packets will follow path MTU while multicast packets will be sent at 760 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 761 * including unicast ones will be sent at the minimum MTU. Multicast 762 * packets will always be sent at the minimum MTU unless 763 * IP6PO_MINMTU_DISABLE is explicitly specified. 764 * See RFC 3542 for more details. 765 */ 766 if (mtu > IPV6_MMTU) { 767 if ((flags & IPV6_MINMTU)) 768 mtu = IPV6_MMTU; 769 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 770 mtu = IPV6_MMTU; 771 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 772 (opt == NULL || 773 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 774 mtu = IPV6_MMTU; 775 } 776 } 777 778 /* Fake scoped addresses */ 779 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 780 /* 781 * If source or destination address is a scoped address, and 782 * the packet is going to be sent to a loopback interface, 783 * we should keep the original interface. 784 */ 785 786 /* 787 * XXX: this is a very experimental and temporary solution. 788 * We eventually have sockaddr_in6 and use the sin6_scope_id 789 * field of the structure here. 790 * We rely on the consistency between two scope zone ids 791 * of source and destination, which should already be assured. 792 * Larger scopes than link will be supported in the future. 793 */ 794 origifp = NULL; 795 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 796 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])]; 797 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 798 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])]; 799 /* 800 * XXX: origifp can be NULL even in those two cases above. 801 * For example, if we remove the (only) link-local address 802 * from the loopback interface, and try to send a link-local 803 * address without link-id information. Then the source 804 * address is ::1, and the destination address is the 805 * link-local address with its s6_addr16[1] being zero. 806 * What is worse, if the packet goes to the loopback interface 807 * by a default rejected route, the null pointer would be 808 * passed to looutput, and the kernel would hang. 809 * The following last resort would prevent such disaster. 810 */ 811 if (origifp == NULL) 812 origifp = ifp; 813 } 814 else 815 origifp = ifp; 816 /* 817 * clear embedded scope identifiers if necessary. 818 * in6_clearscope will touch the addresses only when necessary. 819 */ 820 in6_clearscope(&ip6->ip6_src); 821 in6_clearscope(&ip6->ip6_dst); 822 823 /* 824 * Check with the firewall... 825 */ 826 if (ip6_fw_enable && ip6_fw_chk_ptr) { 827 u_short port = 0; 828 829 m->m_pkthdr.rcvif = NULL; /* XXX */ 830 /* If ipfw says divert, we have to just drop packet */ 831 if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) { 832 m_freem(m); 833 goto done; 834 } 835 if (!m) { 836 error = EACCES; 837 goto done; 838 } 839 } 840 841 /* 842 * If the outgoing packet contains a hop-by-hop options header, 843 * it must be examined and processed even by the source node. 844 * (RFC 2460, section 4.) 845 */ 846 if (exthdrs.ip6e_hbh) { 847 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 848 u_int32_t dummy1; /* XXX unused */ 849 u_int32_t dummy2; /* XXX unused */ 850 851 #ifdef DIAGNOSTIC 852 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 853 panic("ip6e_hbh is not continuous"); 854 #endif 855 /* 856 * XXX: if we have to send an ICMPv6 error to the sender, 857 * we need the M_LOOP flag since icmp6_error() expects 858 * the IPv6 and the hop-by-hop options header are 859 * continuous unless the flag is set. 860 */ 861 m->m_flags |= M_LOOP; 862 m->m_pkthdr.rcvif = ifp; 863 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 864 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 865 &dummy1, &dummy2) < 0) { 866 /* m was already freed at this point */ 867 error = EINVAL;/* better error? */ 868 goto done; 869 } 870 m->m_flags &= ~M_LOOP; /* XXX */ 871 m->m_pkthdr.rcvif = NULL; 872 } 873 874 /* 875 * Run through list of hooks for output packets. 876 */ 877 if (pfil_has_hooks(&inet6_pfil_hook)) { 878 error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT); 879 if (error != 0 || m == NULL) 880 goto done; 881 ip6 = mtod(m, struct ip6_hdr *); 882 } 883 884 /* 885 * Send the packet to the outgoing interface. 886 * If necessary, do IPv6 fragmentation before sending. 887 * 888 * the logic here is rather complex: 889 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 890 * 1-a: send as is if tlen <= path mtu 891 * 1-b: fragment if tlen > path mtu 892 * 893 * 2: if user asks us not to fragment (dontfrag == 1) 894 * 2-a: send as is if tlen <= interface mtu 895 * 2-b: error if tlen > interface mtu 896 * 897 * 3: if we always need to attach fragment header (alwaysfrag == 1) 898 * always fragment 899 * 900 * 4: if dontfrag == 1 && alwaysfrag == 1 901 * error, as we cannot handle this conflicting request 902 */ 903 tlen = m->m_pkthdr.len; 904 905 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 906 dontfrag = 1; 907 else 908 dontfrag = 0; 909 if (dontfrag && alwaysfrag) { /* case 4 */ 910 /* conflicting request - can't transmit */ 911 error = EMSGSIZE; 912 goto bad; 913 } 914 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */ 915 /* 916 * Even if the DONTFRAG option is specified, we cannot send the 917 * packet when the data length is larger than the MTU of the 918 * outgoing interface. 919 * Notify the error by sending IPV6_PATHMTU ancillary data as 920 * well as returning an error code (the latter is not described 921 * in the API spec.) 922 */ 923 u_int32_t mtu32; 924 struct ip6ctlparam ip6cp; 925 926 mtu32 = (u_int32_t)mtu; 927 bzero(&ip6cp, sizeof(ip6cp)); 928 ip6cp.ip6c_cmdarg = (void *)&mtu32; 929 kpfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 930 (void *)&ip6cp); 931 932 error = EMSGSIZE; 933 goto bad; 934 } 935 936 /* 937 * transmit packet without fragmentation 938 */ 939 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 940 struct in6_ifaddr *ia6; 941 942 ip6 = mtod(m, struct ip6_hdr *); 943 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 944 if (ia6) { 945 /* Record statistics for this interface address. */ 946 IFA_STAT_INC(&ia6->ia_ifa, opackets, 1); 947 IFA_STAT_INC(&ia6->ia_ifa, obytes, m->m_pkthdr.len); 948 } 949 #ifdef IPSEC 950 /* clean ipsec history once it goes out of the node */ 951 ipsec_delaux(m); 952 #endif 953 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 954 goto done; 955 } 956 957 /* 958 * try to fragment the packet. case 1-b and 3 959 */ 960 if (mtu < IPV6_MMTU) { 961 /* 962 * note that path MTU is never less than IPV6_MMTU 963 * (see icmp6_input). 964 */ 965 error = EMSGSIZE; 966 in6_ifstat_inc(ifp, ifs6_out_fragfail); 967 goto bad; 968 } else if (ip6->ip6_plen == 0) { 969 /* jumbo payload cannot be fragmented */ 970 error = EMSGSIZE; 971 in6_ifstat_inc(ifp, ifs6_out_fragfail); 972 goto bad; 973 } else { 974 struct mbuf **mnext, *m_frgpart; 975 struct ip6_frag *ip6f; 976 u_int32_t id = htonl(ip6_id++); 977 u_char nextproto; 978 979 /* 980 * Too large for the destination or interface; 981 * fragment if possible. 982 * Must be able to put at least 8 bytes per fragment. 983 */ 984 hlen = unfragpartlen; 985 if (mtu > IPV6_MAXPACKET) 986 mtu = IPV6_MAXPACKET; 987 988 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 989 if (len < 8) { 990 error = EMSGSIZE; 991 in6_ifstat_inc(ifp, ifs6_out_fragfail); 992 goto bad; 993 } 994 995 mnext = &m->m_nextpkt; 996 997 /* 998 * Change the next header field of the last header in the 999 * unfragmentable part. 1000 */ 1001 if (exthdrs.ip6e_rthdr) { 1002 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1003 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1004 } else if (exthdrs.ip6e_dest1) { 1005 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1006 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1007 } else if (exthdrs.ip6e_hbh) { 1008 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1009 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1010 } else { 1011 nextproto = ip6->ip6_nxt; 1012 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1013 } 1014 1015 /* 1016 * Loop through length of segment after first fragment, 1017 * make new header and copy data of each part and link onto 1018 * chain. 1019 */ 1020 m0 = m; 1021 for (off = hlen; off < tlen; off += len) { 1022 MGETHDR(m, M_NOWAIT, MT_HEADER); 1023 if (!m) { 1024 error = ENOBUFS; 1025 ip6stat.ip6s_odropped++; 1026 goto sendorfree; 1027 } 1028 m->m_pkthdr.rcvif = NULL; 1029 m->m_flags = m0->m_flags & M_COPYFLAGS; 1030 *mnext = m; 1031 mnext = &m->m_nextpkt; 1032 m->m_data += max_linkhdr; 1033 mhip6 = mtod(m, struct ip6_hdr *); 1034 *mhip6 = *ip6; 1035 m->m_len = sizeof(*mhip6); 1036 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1037 if (error) { 1038 ip6stat.ip6s_odropped++; 1039 goto sendorfree; 1040 } 1041 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1042 if (off + len >= tlen) 1043 len = tlen - off; 1044 else 1045 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1046 mhip6->ip6_plen = htons((u_short)(len + hlen + 1047 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1048 if ((m_frgpart = m_copy(m0, off, len)) == NULL) { 1049 error = ENOBUFS; 1050 ip6stat.ip6s_odropped++; 1051 goto sendorfree; 1052 } 1053 m_cat(m, m_frgpart); 1054 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1055 m->m_pkthdr.rcvif = NULL; 1056 ip6f->ip6f_reserved = 0; 1057 ip6f->ip6f_ident = id; 1058 ip6f->ip6f_nxt = nextproto; 1059 ip6stat.ip6s_ofragments++; 1060 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1061 } 1062 1063 in6_ifstat_inc(ifp, ifs6_out_fragok); 1064 } 1065 1066 /* 1067 * Remove leading garbages. 1068 */ 1069 sendorfree: 1070 m = m0->m_nextpkt; 1071 m0->m_nextpkt = NULL; 1072 m_freem(m0); 1073 for (m0 = m; m; m = m0) { 1074 m0 = m->m_nextpkt; 1075 m->m_nextpkt = NULL; 1076 if (error == 0) { 1077 /* Record statistics for this interface address. */ 1078 if (ia) { 1079 IFA_STAT_INC(&ia->ia_ifa, opackets, 1); 1080 IFA_STAT_INC(&ia->ia_ifa, obytes, 1081 m->m_pkthdr.len); 1082 } 1083 #ifdef IPSEC 1084 /* clean ipsec history once it goes out of the node */ 1085 ipsec_delaux(m); 1086 #endif 1087 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1088 } else 1089 m_freem(m); 1090 } 1091 1092 if (error == 0) 1093 ip6stat.ip6s_fragmented++; 1094 1095 done: 1096 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1097 RTFREE(ro->ro_rt); 1098 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1099 RTFREE(ro_pmtu->ro_rt); 1100 } 1101 1102 #ifdef IPSEC 1103 if (sp != NULL) 1104 key_freesp(sp); 1105 #endif 1106 #ifdef FAST_IPSEC 1107 if (sp != NULL) 1108 KEY_FREESP(&sp); 1109 #endif 1110 1111 return (error); 1112 1113 freehdrs: 1114 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1115 m_freem(exthdrs.ip6e_dest1); 1116 m_freem(exthdrs.ip6e_rthdr); 1117 m_freem(exthdrs.ip6e_dest2); 1118 /* FALLTHROUGH */ 1119 bad: 1120 m_freem(m); 1121 goto done; 1122 } 1123 1124 static int 1125 copyexthdr(void *h, struct mbuf **mp) 1126 { 1127 struct ip6_ext *hdr = h; 1128 int hlen; 1129 struct mbuf *m; 1130 1131 if (hdr == NULL) 1132 return 0; 1133 1134 hlen = (hdr->ip6e_len + 1) * 8; 1135 if (hlen > MCLBYTES) 1136 return ENOBUFS; /* XXX */ 1137 1138 m = m_getb(hlen, M_NOWAIT, MT_DATA, 0); 1139 if (!m) 1140 return ENOBUFS; 1141 m->m_len = hlen; 1142 1143 bcopy(hdr, mtod(m, caddr_t), hlen); 1144 1145 *mp = m; 1146 return 0; 1147 } 1148 1149 /* 1150 * Insert jumbo payload option. 1151 */ 1152 static int 1153 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1154 { 1155 struct mbuf *mopt; 1156 u_char *optbuf; 1157 u_int32_t v; 1158 1159 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1160 1161 /* 1162 * If there is no hop-by-hop options header, allocate new one. 1163 * If there is one but it doesn't have enough space to store the 1164 * jumbo payload option, allocate a cluster to store the whole options. 1165 * Otherwise, use it to store the options. 1166 */ 1167 if (exthdrs->ip6e_hbh == NULL) { 1168 MGET(mopt, M_NOWAIT, MT_DATA); 1169 if (mopt == NULL) 1170 return (ENOBUFS); 1171 mopt->m_len = JUMBOOPTLEN; 1172 optbuf = mtod(mopt, u_char *); 1173 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1174 exthdrs->ip6e_hbh = mopt; 1175 } else { 1176 struct ip6_hbh *hbh; 1177 1178 mopt = exthdrs->ip6e_hbh; 1179 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1180 /* 1181 * XXX assumption: 1182 * - exthdrs->ip6e_hbh is not referenced from places 1183 * other than exthdrs. 1184 * - exthdrs->ip6e_hbh is not an mbuf chain. 1185 */ 1186 int oldoptlen = mopt->m_len; 1187 struct mbuf *n; 1188 1189 /* 1190 * XXX: give up if the whole (new) hbh header does 1191 * not fit even in an mbuf cluster. 1192 */ 1193 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1194 return (ENOBUFS); 1195 1196 /* 1197 * As a consequence, we must always prepare a cluster 1198 * at this point. 1199 */ 1200 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1201 if (!n) 1202 return (ENOBUFS); 1203 n->m_len = oldoptlen + JUMBOOPTLEN; 1204 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), oldoptlen); 1205 optbuf = mtod(n, caddr_t) + oldoptlen; 1206 m_freem(mopt); 1207 mopt = exthdrs->ip6e_hbh = n; 1208 } else { 1209 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1210 mopt->m_len += JUMBOOPTLEN; 1211 } 1212 optbuf[0] = IP6OPT_PADN; 1213 optbuf[1] = 1; 1214 1215 /* 1216 * Adjust the header length according to the pad and 1217 * the jumbo payload option. 1218 */ 1219 hbh = mtod(mopt, struct ip6_hbh *); 1220 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1221 } 1222 1223 /* fill in the option. */ 1224 optbuf[2] = IP6OPT_JUMBO; 1225 optbuf[3] = 4; 1226 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1227 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1228 1229 /* finally, adjust the packet header length */ 1230 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1231 1232 return (0); 1233 #undef JUMBOOPTLEN 1234 } 1235 1236 /* 1237 * Insert fragment header and copy unfragmentable header portions. 1238 */ 1239 static int 1240 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1241 struct ip6_frag **frghdrp) 1242 { 1243 struct mbuf *n, *mlast; 1244 1245 if (hlen > sizeof(struct ip6_hdr)) { 1246 n = m_copym(m0, sizeof(struct ip6_hdr), 1247 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1248 if (n == NULL) 1249 return (ENOBUFS); 1250 m->m_next = n; 1251 } else 1252 n = m; 1253 1254 /* Search for the last mbuf of unfragmentable part. */ 1255 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1256 ; 1257 1258 if (!(mlast->m_flags & M_EXT) && 1259 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1260 /* use the trailing space of the last mbuf for the fragment hdr */ 1261 *frghdrp = (struct ip6_frag *) 1262 (mtod(mlast, caddr_t) + mlast->m_len); 1263 mlast->m_len += sizeof(struct ip6_frag); 1264 m->m_pkthdr.len += sizeof(struct ip6_frag); 1265 } else { 1266 /* allocate a new mbuf for the fragment header */ 1267 struct mbuf *mfrg; 1268 1269 MGET(mfrg, M_NOWAIT, MT_DATA); 1270 if (mfrg == NULL) 1271 return (ENOBUFS); 1272 mfrg->m_len = sizeof(struct ip6_frag); 1273 *frghdrp = mtod(mfrg, struct ip6_frag *); 1274 mlast->m_next = mfrg; 1275 } 1276 1277 return (0); 1278 } 1279 1280 static int 1281 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1282 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1283 int *alwaysfragp) 1284 { 1285 u_int32_t mtu = 0; 1286 int alwaysfrag = 0; 1287 int error = 0; 1288 1289 if (ro_pmtu != ro) { 1290 /* The first hop and the final destination may differ. */ 1291 struct sockaddr_in6 *sa6_dst = 1292 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1293 if (ro_pmtu->ro_rt && 1294 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1295 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1296 RTFREE(ro_pmtu->ro_rt); 1297 ro_pmtu->ro_rt = NULL; 1298 } 1299 if (ro_pmtu->ro_rt == NULL) { 1300 bzero(sa6_dst, sizeof(*sa6_dst)); 1301 sa6_dst->sin6_family = AF_INET6; 1302 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1303 sa6_dst->sin6_addr = *dst; 1304 1305 rtalloc((struct route *)ro_pmtu); 1306 } 1307 } 1308 if (ro_pmtu->ro_rt) { 1309 u_int32_t ifmtu; 1310 struct in_conninfo inc; 1311 1312 bzero(&inc, sizeof(inc)); 1313 inc.inc_flags = 1; /* IPv6 */ 1314 inc.inc6_faddr = *dst; 1315 1316 if (ifp == NULL) 1317 ifp = ro_pmtu->ro_rt->rt_ifp; 1318 ifmtu = IN6_LINKMTU(ifp); 1319 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1320 if (mtu == 0) 1321 mtu = ifmtu; 1322 else if (mtu < IPV6_MMTU) { 1323 /* 1324 * RFC2460 section 5, last paragraph: 1325 * if we record ICMPv6 too big message with 1326 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1327 * or smaller, with framgent header attached. 1328 * (fragment header is needed regardless from the 1329 * packet size, for translators to identify packets) 1330 */ 1331 alwaysfrag = 1; 1332 mtu = IPV6_MMTU; 1333 } else if (mtu > ifmtu) { 1334 /* 1335 * The MTU on the route is larger than the MTU on 1336 * the interface! This shouldn't happen, unless the 1337 * MTU of the interface has been changed after the 1338 * interface was brought up. Change the MTU in the 1339 * route to match the interface MTU (as long as the 1340 * field isn't locked). 1341 */ 1342 mtu = ifmtu; 1343 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1344 } 1345 } else if (ifp) { 1346 mtu = IN6_LINKMTU(ifp); 1347 } else 1348 error = EHOSTUNREACH; /* XXX */ 1349 1350 *mtup = mtu; 1351 if (alwaysfragp) 1352 *alwaysfragp = alwaysfrag; 1353 return (error); 1354 } 1355 1356 /* 1357 * IP6 socket option processing. 1358 */ 1359 void 1360 ip6_ctloutput_dispatch(netmsg_t msg) 1361 { 1362 int error; 1363 1364 error = ip6_ctloutput(msg->ctloutput.base.nm_so, 1365 msg->ctloutput.nm_sopt); 1366 lwkt_replymsg(&msg->ctloutput.base.lmsg, error); 1367 } 1368 1369 int 1370 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1371 { 1372 int optdatalen,uproto; 1373 int privileged; 1374 struct inpcb *in6p = so->so_pcb; 1375 void *optdata; 1376 int error, optval; 1377 int level, op, optname; 1378 int optlen; 1379 struct thread *td; 1380 1381 if (sopt) { 1382 level = sopt->sopt_level; 1383 op = sopt->sopt_dir; 1384 optname = sopt->sopt_name; 1385 optlen = sopt->sopt_valsize; 1386 td = sopt->sopt_td; 1387 } else { 1388 panic("ip6_ctloutput: arg soopt is NULL"); 1389 /* NOT REACHED */ 1390 td = NULL; 1391 } 1392 error = optval = 0; 1393 1394 uproto = (int)so->so_proto->pr_protocol; 1395 privileged = (td == NULL || priv_check(td, PRIV_ROOT)) ? 0 : 1; 1396 1397 if (level == IPPROTO_IPV6) { 1398 switch (op) { 1399 1400 case SOPT_SET: 1401 switch (optname) { 1402 case IPV6_2292PKTOPTIONS: 1403 #ifdef IPV6_PKTOPTIONS 1404 case IPV6_PKTOPTIONS: 1405 #endif 1406 { 1407 struct mbuf *m; 1408 1409 error = soopt_getm(sopt, &m); /* XXX */ 1410 if (error != 0) 1411 break; 1412 soopt_to_mbuf(sopt, m); /* XXX */ 1413 error = ip6_pcbopts(&in6p->in6p_outputopts, 1414 m, so, sopt); 1415 m_freem(m); /* XXX */ 1416 break; 1417 } 1418 1419 /* 1420 * Use of some Hop-by-Hop options or some 1421 * Destination options, might require special 1422 * privilege. That is, normal applications 1423 * (without special privilege) might be forbidden 1424 * from setting certain options in outgoing packets, 1425 * and might never see certain options in received 1426 * packets. [RFC 2292 Section 6] 1427 * KAME specific note: 1428 * KAME prevents non-privileged users from sending or 1429 * receiving ANY hbh/dst options in order to avoid 1430 * overhead of parsing options in the kernel. 1431 */ 1432 case IPV6_RECVHOPOPTS: 1433 case IPV6_RECVDSTOPTS: 1434 case IPV6_RECVRTHDRDSTOPTS: 1435 if (!privileged) 1436 return (EPERM); 1437 case IPV6_RECVPKTINFO: 1438 case IPV6_RECVHOPLIMIT: 1439 case IPV6_RECVRTHDR: 1440 case IPV6_RECVPATHMTU: 1441 case IPV6_RECVTCLASS: 1442 case IPV6_AUTOFLOWLABEL: 1443 case IPV6_HOPLIMIT: 1444 /* FALLTHROUGH */ 1445 case IPV6_UNICAST_HOPS: 1446 case IPV6_FAITH: 1447 1448 case IPV6_V6ONLY: 1449 if (optlen != sizeof(int)) { 1450 error = EINVAL; 1451 break; 1452 } 1453 error = soopt_to_kbuf(sopt, &optval, 1454 sizeof optval, sizeof optval); 1455 if (error) 1456 break; 1457 switch (optname) { 1458 1459 case IPV6_UNICAST_HOPS: 1460 if (optval < -1 || optval >= 256) 1461 error = EINVAL; 1462 else { 1463 /* -1 = kernel default */ 1464 in6p->in6p_hops = optval; 1465 } 1466 break; 1467 #define OPTSET(bit) \ 1468 do { \ 1469 if (optval) \ 1470 in6p->in6p_flags |= (bit); \ 1471 else \ 1472 in6p->in6p_flags &= ~(bit); \ 1473 } while (0) 1474 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1475 /* 1476 * Although changed to RFC3542, It's better to also support RFC2292 API 1477 */ 1478 #define OPTSET2292(bit) \ 1479 do { \ 1480 in6p->in6p_flags |= IN6P_RFC2292; \ 1481 if (optval) \ 1482 in6p->in6p_flags |= (bit); \ 1483 else \ 1484 in6p->in6p_flags &= ~(bit); \ 1485 } while (/*CONSTCOND*/ 0) 1486 1487 case IPV6_RECVPKTINFO: 1488 /* cannot mix with RFC2292 */ 1489 if (OPTBIT(IN6P_RFC2292)) { 1490 error = EINVAL; 1491 break; 1492 } 1493 OPTSET(IN6P_PKTINFO); 1494 break; 1495 1496 case IPV6_HOPLIMIT: 1497 { 1498 struct ip6_pktopts **optp; 1499 1500 /* cannot mix with RFC2292 */ 1501 if (OPTBIT(IN6P_RFC2292)) { 1502 error = EINVAL; 1503 break; 1504 } 1505 optp = &in6p->in6p_outputopts; 1506 error = ip6_pcbopt(IPV6_HOPLIMIT, 1507 (u_char *)&optval, sizeof(optval), 1508 optp, uproto); 1509 break; 1510 } 1511 1512 case IPV6_RECVHOPLIMIT: 1513 /* cannot mix with RFC2292 */ 1514 if (OPTBIT(IN6P_RFC2292)) { 1515 error = EINVAL; 1516 break; 1517 } 1518 OPTSET(IN6P_HOPLIMIT); 1519 break; 1520 1521 case IPV6_RECVHOPOPTS: 1522 /* cannot mix with RFC2292 */ 1523 if (OPTBIT(IN6P_RFC2292)) { 1524 error = EINVAL; 1525 break; 1526 } 1527 OPTSET(IN6P_HOPOPTS); 1528 break; 1529 1530 case IPV6_RECVDSTOPTS: 1531 /* cannot mix with RFC2292 */ 1532 if (OPTBIT(IN6P_RFC2292)) { 1533 error = EINVAL; 1534 break; 1535 } 1536 OPTSET(IN6P_DSTOPTS); 1537 break; 1538 1539 case IPV6_RECVRTHDRDSTOPTS: 1540 /* cannot mix with RFC2292 */ 1541 if (OPTBIT(IN6P_RFC2292)) { 1542 error = EINVAL; 1543 break; 1544 } 1545 OPTSET(IN6P_RTHDRDSTOPTS); 1546 break; 1547 1548 case IPV6_RECVRTHDR: 1549 /* cannot mix with RFC2292 */ 1550 if (OPTBIT(IN6P_RFC2292)) { 1551 error = EINVAL; 1552 break; 1553 } 1554 OPTSET(IN6P_RTHDR); 1555 break; 1556 1557 case IPV6_RECVPATHMTU: 1558 /* 1559 * We ignore this option for TCP 1560 * sockets. 1561 * (RFC3542 leaves this case 1562 * unspecified.) 1563 */ 1564 if (uproto != IPPROTO_TCP) 1565 OPTSET(IN6P_MTU); 1566 break; 1567 1568 case IPV6_RECVTCLASS: 1569 /* cannot mix with RFC2292 XXX */ 1570 if (OPTBIT(IN6P_RFC2292)) { 1571 error = EINVAL; 1572 break; 1573 } 1574 OPTSET(IN6P_TCLASS); 1575 break; 1576 1577 case IPV6_AUTOFLOWLABEL: 1578 OPTSET(IN6P_AUTOFLOWLABEL); 1579 break; 1580 1581 case IPV6_FAITH: 1582 OPTSET(IN6P_FAITH); 1583 break; 1584 1585 case IPV6_V6ONLY: 1586 /* 1587 * make setsockopt(IPV6_V6ONLY) 1588 * available only prior to bind(2). 1589 */ 1590 if (in6p->in6p_lport || 1591 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) 1592 { 1593 error = EINVAL; 1594 break; 1595 } 1596 if (!optval) { 1597 /* Don't allow v4-mapped */ 1598 error = EOPNOTSUPP; 1599 } 1600 break; 1601 } 1602 break; 1603 1604 case IPV6_TCLASS: 1605 case IPV6_DONTFRAG: 1606 case IPV6_USE_MIN_MTU: 1607 case IPV6_PREFER_TEMPADDR: 1608 if (optlen != sizeof(optval)) { 1609 error = EINVAL; 1610 break; 1611 } 1612 error = soopt_to_kbuf(sopt, &optval, 1613 sizeof optval, sizeof optval); 1614 if (error) 1615 break; 1616 { 1617 struct ip6_pktopts **optp; 1618 optp = &in6p->in6p_outputopts; 1619 error = ip6_pcbopt(optname, 1620 (u_char *)&optval, sizeof(optval), 1621 optp, uproto); 1622 break; 1623 } 1624 1625 case IPV6_2292PKTINFO: 1626 case IPV6_2292HOPLIMIT: 1627 case IPV6_2292HOPOPTS: 1628 case IPV6_2292DSTOPTS: 1629 case IPV6_2292RTHDR: 1630 /* RFC 2292 */ 1631 if (optlen != sizeof(int)) { 1632 error = EINVAL; 1633 break; 1634 } 1635 error = soopt_to_kbuf(sopt, &optval, 1636 sizeof optval, sizeof optval); 1637 if (error) 1638 break; 1639 switch (optname) { 1640 case IPV6_2292PKTINFO: 1641 OPTSET2292(IN6P_PKTINFO); 1642 break; 1643 case IPV6_2292HOPLIMIT: 1644 OPTSET2292(IN6P_HOPLIMIT); 1645 break; 1646 case IPV6_2292HOPOPTS: 1647 /* 1648 * Check super-user privilege. 1649 * See comments for IPV6_RECVHOPOPTS. 1650 */ 1651 if (!privileged) 1652 return (EPERM); 1653 OPTSET2292(IN6P_HOPOPTS); 1654 break; 1655 case IPV6_2292DSTOPTS: 1656 if (!privileged) 1657 return (EPERM); 1658 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1659 break; 1660 case IPV6_2292RTHDR: 1661 OPTSET2292(IN6P_RTHDR); 1662 break; 1663 } 1664 break; 1665 1666 case IPV6_PKTINFO: 1667 case IPV6_HOPOPTS: 1668 case IPV6_RTHDR: 1669 case IPV6_DSTOPTS: 1670 case IPV6_RTHDRDSTOPTS: 1671 case IPV6_NEXTHOP: 1672 { 1673 /* 1674 * New advanced API (RFC3542) 1675 */ 1676 u_char *optbuf; 1677 u_char optbuf_storage[MCLBYTES]; 1678 int optlen; 1679 struct ip6_pktopts **optp; 1680 1681 /* cannot mix with RFC2292 */ 1682 if (OPTBIT(IN6P_RFC2292)) { 1683 error = EINVAL; 1684 break; 1685 } 1686 1687 /* 1688 * We only ensure valsize is not too large 1689 * here. Further validation will be done 1690 * later. 1691 */ 1692 error = soopt_to_kbuf(sopt, optbuf_storage, 1693 sizeof(optbuf_storage), 0); 1694 if (error) 1695 break; 1696 optlen = sopt->sopt_valsize; 1697 optbuf = optbuf_storage; 1698 optp = &in6p->in6p_outputopts; 1699 error = ip6_pcbopt(optname, optbuf, optlen, 1700 optp, uproto); 1701 break; 1702 } 1703 #undef OPTSET 1704 1705 case IPV6_MULTICAST_IF: 1706 case IPV6_MULTICAST_HOPS: 1707 case IPV6_MULTICAST_LOOP: 1708 case IPV6_JOIN_GROUP: 1709 case IPV6_LEAVE_GROUP: 1710 { 1711 struct mbuf *m; 1712 1713 if (sopt->sopt_valsize > MLEN) { 1714 error = EMSGSIZE; 1715 break; 1716 } 1717 /* XXX */ 1718 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_HEADER); 1719 if (m == NULL) { 1720 error = ENOBUFS; 1721 break; 1722 } 1723 m->m_len = sopt->sopt_valsize; 1724 error = soopt_to_kbuf(sopt, mtod(m, char *), 1725 m->m_len, m->m_len); 1726 error = ip6_setmoptions(sopt->sopt_name, 1727 &in6p->in6p_moptions, 1728 m); 1729 m_free(m); 1730 } 1731 break; 1732 1733 case IPV6_PORTRANGE: 1734 error = soopt_to_kbuf(sopt, &optval, 1735 sizeof optval, sizeof optval); 1736 if (error) 1737 break; 1738 1739 switch (optval) { 1740 case IPV6_PORTRANGE_DEFAULT: 1741 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1742 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1743 break; 1744 1745 case IPV6_PORTRANGE_HIGH: 1746 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1747 in6p->in6p_flags |= IN6P_HIGHPORT; 1748 break; 1749 1750 case IPV6_PORTRANGE_LOW: 1751 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1752 in6p->in6p_flags |= IN6P_LOWPORT; 1753 break; 1754 1755 default: 1756 error = EINVAL; 1757 break; 1758 } 1759 break; 1760 1761 #if defined(IPSEC) || defined(FAST_IPSEC) 1762 case IPV6_IPSEC_POLICY: 1763 { 1764 caddr_t req = NULL; 1765 size_t len = 0; 1766 struct mbuf *m; 1767 1768 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1769 break; 1770 soopt_to_mbuf(sopt, m); /* XXX */ 1771 if (m) { 1772 req = mtod(m, caddr_t); 1773 len = m->m_len; 1774 } 1775 error = ipsec6_set_policy(in6p, optname, req, 1776 len, privileged); 1777 m_freem(m); 1778 } 1779 break; 1780 #endif /* KAME IPSEC */ 1781 1782 case IPV6_FW_ADD: 1783 case IPV6_FW_DEL: 1784 case IPV6_FW_FLUSH: 1785 case IPV6_FW_ZERO: 1786 { 1787 struct mbuf *m; 1788 struct mbuf **mp = &m; 1789 1790 if (ip6_fw_ctl_ptr == NULL) 1791 return EINVAL; 1792 /* XXX */ 1793 if ((error = soopt_getm(sopt, &m)) != 0) 1794 break; 1795 /* XXX */ 1796 soopt_to_mbuf(sopt, m); 1797 error = (*ip6_fw_ctl_ptr)(optname, mp); 1798 m = *mp; 1799 } 1800 break; 1801 1802 default: 1803 error = ENOPROTOOPT; 1804 break; 1805 } 1806 break; 1807 1808 case SOPT_GET: 1809 switch (optname) { 1810 case IPV6_2292PKTOPTIONS: 1811 #ifdef IPV6_PKTOPTIONS 1812 case IPV6_PKTOPTIONS: 1813 #endif 1814 /* 1815 * RFC3542 (effectively) deprecated the 1816 * semantics of the 2292-style pktoptions. 1817 * Since it was not reliable in nature (i.e., 1818 * applications had to expect the lack of some 1819 * information after all), it would make sense 1820 * to simplify this part by always returning 1821 * empty data. 1822 */ 1823 if (in6p->in6p_options) { 1824 struct mbuf *m; 1825 m = m_copym(in6p->in6p_options, 1826 0, M_COPYALL, M_WAITOK); 1827 error = soopt_from_mbuf(sopt, m); 1828 if (error == 0) 1829 m_freem(m); 1830 } else 1831 sopt->sopt_valsize = 0; 1832 break; 1833 1834 case IPV6_RECVHOPOPTS: 1835 case IPV6_RECVDSTOPTS: 1836 case IPV6_RECVRTHDRDSTOPTS: 1837 case IPV6_UNICAST_HOPS: 1838 case IPV6_RECVPKTINFO: 1839 case IPV6_RECVHOPLIMIT: 1840 case IPV6_RECVRTHDR: 1841 case IPV6_RECVPATHMTU: 1842 case IPV6_RECVTCLASS: 1843 case IPV6_AUTOFLOWLABEL: 1844 case IPV6_FAITH: 1845 case IPV6_V6ONLY: 1846 case IPV6_PORTRANGE: 1847 switch (optname) { 1848 1849 case IPV6_RECVHOPOPTS: 1850 optval = OPTBIT(IN6P_HOPOPTS); 1851 break; 1852 1853 case IPV6_RECVDSTOPTS: 1854 optval = OPTBIT(IN6P_DSTOPTS); 1855 break; 1856 1857 case IPV6_RECVRTHDRDSTOPTS: 1858 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1859 break; 1860 1861 case IPV6_RECVPKTINFO: 1862 optval = OPTBIT(IN6P_PKTINFO); 1863 break; 1864 1865 case IPV6_RECVHOPLIMIT: 1866 optval = OPTBIT(IN6P_HOPLIMIT); 1867 break; 1868 1869 case IPV6_RECVRTHDR: 1870 optval = OPTBIT(IN6P_RTHDR); 1871 break; 1872 1873 case IPV6_RECVPATHMTU: 1874 optval = OPTBIT(IN6P_MTU); 1875 break; 1876 1877 case IPV6_RECVTCLASS: 1878 optval = OPTBIT(IN6P_TCLASS); 1879 break; 1880 1881 case IPV6_AUTOFLOWLABEL: 1882 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1883 break; 1884 1885 1886 case IPV6_UNICAST_HOPS: 1887 optval = in6p->in6p_hops; 1888 break; 1889 1890 case IPV6_FAITH: 1891 optval = OPTBIT(IN6P_FAITH); 1892 break; 1893 1894 case IPV6_V6ONLY: 1895 optval = 1; 1896 break; 1897 1898 case IPV6_PORTRANGE: 1899 { 1900 int flags; 1901 flags = in6p->in6p_flags; 1902 if (flags & IN6P_HIGHPORT) 1903 optval = IPV6_PORTRANGE_HIGH; 1904 else if (flags & IN6P_LOWPORT) 1905 optval = IPV6_PORTRANGE_LOW; 1906 else 1907 optval = 0; 1908 break; 1909 } 1910 } 1911 soopt_from_kbuf(sopt, &optval, 1912 sizeof optval); 1913 break; 1914 1915 case IPV6_PATHMTU: 1916 { 1917 u_long pmtu = 0; 1918 struct ip6_mtuinfo mtuinfo; 1919 struct route_in6 sro; 1920 1921 bzero(&sro, sizeof(sro)); 1922 1923 if (!(so->so_state & SS_ISCONNECTED)) 1924 return (ENOTCONN); 1925 /* 1926 * XXX: we dot not consider the case of source 1927 * routing, or optional information to specify 1928 * the outgoing interface. 1929 */ 1930 error = ip6_getpmtu(&sro, NULL, NULL, 1931 &in6p->in6p_faddr, &pmtu, NULL); 1932 if (sro.ro_rt) 1933 RTFREE(sro.ro_rt); 1934 if (error) 1935 break; 1936 if (pmtu > IPV6_MAXPACKET) 1937 pmtu = IPV6_MAXPACKET; 1938 1939 bzero(&mtuinfo, sizeof(mtuinfo)); 1940 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1941 optdata = (void *)&mtuinfo; 1942 optdatalen = sizeof(mtuinfo); 1943 soopt_from_kbuf(sopt, optdata, 1944 optdatalen); 1945 break; 1946 } 1947 1948 case IPV6_2292PKTINFO: 1949 case IPV6_2292HOPLIMIT: 1950 case IPV6_2292HOPOPTS: 1951 case IPV6_2292RTHDR: 1952 case IPV6_2292DSTOPTS: 1953 if (optname == IPV6_2292HOPOPTS || 1954 optname == IPV6_2292DSTOPTS || 1955 !privileged) 1956 return (EPERM); 1957 switch (optname) { 1958 case IPV6_2292PKTINFO: 1959 optval = OPTBIT(IN6P_PKTINFO); 1960 break; 1961 case IPV6_2292HOPLIMIT: 1962 optval = OPTBIT(IN6P_HOPLIMIT); 1963 break; 1964 case IPV6_2292HOPOPTS: 1965 if (!privileged) 1966 return (EPERM); 1967 optval = OPTBIT(IN6P_HOPOPTS); 1968 break; 1969 case IPV6_2292RTHDR: 1970 optval = OPTBIT(IN6P_RTHDR); 1971 break; 1972 case IPV6_2292DSTOPTS: 1973 if (!privileged) 1974 return (EPERM); 1975 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1976 break; 1977 } 1978 soopt_from_kbuf(sopt, &optval, 1979 sizeof optval); 1980 break; 1981 1982 case IPV6_PKTINFO: 1983 case IPV6_HOPOPTS: 1984 case IPV6_RTHDR: 1985 case IPV6_DSTOPTS: 1986 case IPV6_RTHDRDSTOPTS: 1987 case IPV6_NEXTHOP: 1988 case IPV6_TCLASS: 1989 case IPV6_DONTFRAG: 1990 case IPV6_USE_MIN_MTU: 1991 case IPV6_PREFER_TEMPADDR: 1992 error = ip6_getpcbopt(in6p->in6p_outputopts, 1993 optname, sopt); 1994 break; 1995 1996 case IPV6_MULTICAST_IF: 1997 case IPV6_MULTICAST_HOPS: 1998 case IPV6_MULTICAST_LOOP: 1999 case IPV6_JOIN_GROUP: 2000 case IPV6_LEAVE_GROUP: 2001 { 2002 struct mbuf *m; 2003 error = ip6_getmoptions(sopt->sopt_name, 2004 in6p->in6p_moptions, &m); 2005 if (error == 0) { 2006 soopt_from_kbuf(sopt, 2007 mtod(m, char *), m->m_len); 2008 } 2009 m_freem(m); 2010 } 2011 break; 2012 2013 #if defined(IPSEC) || defined(FAST_IPSEC) 2014 case IPV6_IPSEC_POLICY: 2015 { 2016 caddr_t req = NULL; 2017 size_t len = 0; 2018 struct mbuf *m = NULL; 2019 struct mbuf **mp = &m; 2020 2021 error = soopt_getm(sopt, &m); /* XXX */ 2022 if (error != 0) 2023 break; 2024 soopt_to_mbuf(sopt, m); /* XXX */ 2025 if (m) { 2026 req = mtod(m, caddr_t); 2027 len = m->m_len; 2028 } 2029 error = ipsec6_get_policy(in6p, req, len, mp); 2030 if (error == 0) 2031 error = soopt_from_mbuf(sopt, m);/*XXX*/ 2032 if (error == 0 && m != NULL) 2033 m_freem(m); 2034 break; 2035 } 2036 #endif /* KAME IPSEC */ 2037 2038 case IPV6_FW_GET: 2039 { 2040 struct mbuf *m; 2041 struct mbuf **mp = &m; 2042 2043 if (ip6_fw_ctl_ptr == NULL) 2044 { 2045 return EINVAL; 2046 } 2047 error = (*ip6_fw_ctl_ptr)(optname, mp); 2048 if (error == 0) 2049 error = soopt_from_mbuf(sopt, m); /* XXX */ 2050 if (error == 0 && m != NULL) 2051 m_freem(m); 2052 } 2053 break; 2054 2055 default: 2056 error = ENOPROTOOPT; 2057 break; 2058 } 2059 break; 2060 } 2061 } else { 2062 error = EINVAL; 2063 } 2064 return (error); 2065 } 2066 2067 int 2068 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2069 { 2070 int error = 0, optval, optlen; 2071 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2072 struct in6pcb *in6p = sotoin6pcb(so); 2073 int level, op, optname; 2074 2075 if (sopt) { 2076 level = sopt->sopt_level; 2077 op = sopt->sopt_dir; 2078 optname = sopt->sopt_name; 2079 optlen = sopt->sopt_valsize; 2080 } else 2081 panic("ip6_raw_ctloutput: arg soopt is NULL"); 2082 2083 if (level != IPPROTO_IPV6) { 2084 return (EINVAL); 2085 } 2086 2087 switch (optname) { 2088 case IPV6_CHECKSUM: 2089 /* 2090 * For ICMPv6 sockets, no modification allowed for checksum 2091 * offset, permit "no change" values to help existing apps. 2092 * 2093 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2094 * for an ICMPv6 socket will fail." 2095 * The current behavior does not meet RFC3542. 2096 */ 2097 switch (op) { 2098 case SOPT_SET: 2099 if (optlen != sizeof(int)) { 2100 error = EINVAL; 2101 break; 2102 } 2103 error = soopt_to_kbuf(sopt, &optval, 2104 sizeof optval, sizeof optval); 2105 if (error) 2106 break; 2107 if ((optval % 2) != 0) { 2108 /* the API assumes even offset values */ 2109 error = EINVAL; 2110 } else if (so->so_proto->pr_protocol == 2111 IPPROTO_ICMPV6) { 2112 if (optval != icmp6off) 2113 error = EINVAL; 2114 } else 2115 in6p->in6p_cksum = optval; 2116 break; 2117 2118 case SOPT_GET: 2119 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2120 optval = icmp6off; 2121 else 2122 optval = in6p->in6p_cksum; 2123 2124 soopt_from_kbuf(sopt, &optval, sizeof(optval)); 2125 break; 2126 2127 default: 2128 error = EINVAL; 2129 break; 2130 } 2131 break; 2132 2133 default: 2134 error = ENOPROTOOPT; 2135 break; 2136 } 2137 2138 return (error); 2139 } 2140 2141 /* 2142 * Set up IP6 options in pcb for insertion in output packets or 2143 * specifying behavior of outgoing packets. 2144 */ 2145 static int 2146 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2147 struct socket *so, struct sockopt *sopt) 2148 { 2149 int priv = 0; 2150 struct ip6_pktopts *opt = *pktopt; 2151 int error = 0; 2152 2153 /* turn off any old options. */ 2154 if (opt) { 2155 #ifdef DIAGNOSTIC 2156 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2157 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2158 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2159 kprintf("ip6_pcbopts: all specified options are cleared.\n"); 2160 #endif 2161 ip6_clearpktopts(opt, -1); 2162 } else 2163 opt = kmalloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2164 *pktopt = NULL; 2165 2166 if (!m || m->m_len == 0) { 2167 /* 2168 * Only turning off any previous options, regardless of 2169 * whether the opt is just created or given. 2170 */ 2171 kfree(opt, M_IP6OPT); 2172 return (0); 2173 } 2174 2175 /* set options specified by user. */ 2176 if ((error = ip6_setpktoptions(m, opt, NULL, so->so_proto->pr_protocol, priv)) != 0) { 2177 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2178 kfree(opt, M_IP6OPT); 2179 return (error); 2180 } 2181 *pktopt = opt; 2182 return (0); 2183 } 2184 2185 2186 /* 2187 * Below three functions are introduced by merge to RFC3542 2188 */ 2189 2190 static int 2191 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2192 { 2193 void *optdata = NULL; 2194 int optdatalen = 0; 2195 struct ip6_ext *ip6e; 2196 int error = 0; 2197 struct in6_pktinfo null_pktinfo; 2198 int deftclass = 0, on; 2199 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2200 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2201 2202 switch (optname) { 2203 case IPV6_PKTINFO: 2204 if (pktopt && pktopt->ip6po_pktinfo) 2205 optdata = (void *)pktopt->ip6po_pktinfo; 2206 else { 2207 /* XXX: we don't have to do this every time... */ 2208 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2209 optdata = (void *)&null_pktinfo; 2210 } 2211 optdatalen = sizeof(struct in6_pktinfo); 2212 break; 2213 case IPV6_TCLASS: 2214 if (pktopt && pktopt->ip6po_tclass >= 0) 2215 optdata = (void *)&pktopt->ip6po_tclass; 2216 else 2217 optdata = (void *)&deftclass; 2218 optdatalen = sizeof(int); 2219 break; 2220 case IPV6_HOPOPTS: 2221 if (pktopt && pktopt->ip6po_hbh) { 2222 optdata = (void *)pktopt->ip6po_hbh; 2223 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2224 optdatalen = (ip6e->ip6e_len + 1) << 3; 2225 } 2226 break; 2227 case IPV6_RTHDR: 2228 if (pktopt && pktopt->ip6po_rthdr) { 2229 optdata = (void *)pktopt->ip6po_rthdr; 2230 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2231 optdatalen = (ip6e->ip6e_len + 1) << 3; 2232 } 2233 break; 2234 case IPV6_RTHDRDSTOPTS: 2235 if (pktopt && pktopt->ip6po_dest1) { 2236 optdata = (void *)pktopt->ip6po_dest1; 2237 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2238 optdatalen = (ip6e->ip6e_len + 1) << 3; 2239 } 2240 break; 2241 case IPV6_DSTOPTS: 2242 if (pktopt && pktopt->ip6po_dest2) { 2243 optdata = (void *)pktopt->ip6po_dest2; 2244 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2245 optdatalen = (ip6e->ip6e_len + 1) << 3; 2246 } 2247 break; 2248 case IPV6_NEXTHOP: 2249 if (pktopt && pktopt->ip6po_nexthop) { 2250 optdata = (void *)pktopt->ip6po_nexthop; 2251 optdatalen = pktopt->ip6po_nexthop->sa_len; 2252 } 2253 break; 2254 case IPV6_USE_MIN_MTU: 2255 if (pktopt) 2256 optdata = (void *)&pktopt->ip6po_minmtu; 2257 else 2258 optdata = (void *)&defminmtu; 2259 optdatalen = sizeof(int); 2260 break; 2261 case IPV6_DONTFRAG: 2262 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2263 on = 1; 2264 else 2265 on = 0; 2266 optdata = (void *)&on; 2267 optdatalen = sizeof(on); 2268 break; 2269 case IPV6_PREFER_TEMPADDR: 2270 if (pktopt) 2271 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2272 else 2273 optdata = (void *)&defpreftemp; 2274 optdatalen = sizeof(int); 2275 break; 2276 default: /* should not happen */ 2277 #ifdef DIAGNOSTIC 2278 panic("ip6_getpcbopt: unexpected option"); 2279 #endif 2280 return (ENOPROTOOPT); 2281 } 2282 2283 soopt_from_kbuf(sopt, optdata, optdatalen); 2284 2285 return (error); 2286 } 2287 2288 /* 2289 * initialize ip6_pktopts. beware that there are non-zero default values in 2290 * the struct. 2291 */ 2292 2293 static int 2294 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, int uproto) 2295 { 2296 struct ip6_pktopts *opt; 2297 int priv =0; 2298 if (*pktopt == NULL) { 2299 *pktopt = kmalloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2300 init_ip6pktopts(*pktopt); 2301 } 2302 opt = *pktopt; 2303 2304 return (ip6_setpktoption(optname, buf, len, opt, 1, 0, uproto, priv)); 2305 } 2306 2307 /* 2308 * initialize ip6_pktopts. beware that there are non-zero default values in 2309 * the struct. 2310 */ 2311 void 2312 init_ip6pktopts(struct ip6_pktopts *opt) 2313 { 2314 2315 bzero(opt, sizeof(*opt)); 2316 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2317 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2318 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2319 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2320 } 2321 2322 void 2323 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2324 { 2325 if (pktopt == NULL) 2326 return; 2327 2328 if (optname == -1 || optname == IPV6_PKTINFO) { 2329 if (pktopt->ip6po_pktinfo) 2330 kfree(pktopt->ip6po_pktinfo, M_IP6OPT); 2331 pktopt->ip6po_pktinfo = NULL; 2332 } 2333 if (optname == -1 || optname == IPV6_HOPLIMIT) 2334 pktopt->ip6po_hlim = -1; 2335 if (optname == -1 || optname == IPV6_TCLASS) 2336 pktopt->ip6po_tclass = -1; 2337 if (optname == -1 || optname == IPV6_NEXTHOP) { 2338 if (pktopt->ip6po_nextroute.ro_rt) { 2339 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2340 pktopt->ip6po_nextroute.ro_rt = NULL; 2341 } 2342 if (pktopt->ip6po_nexthop) 2343 kfree(pktopt->ip6po_nexthop, M_IP6OPT); 2344 pktopt->ip6po_nexthop = NULL; 2345 } 2346 if (optname == -1 || optname == IPV6_HOPOPTS) { 2347 if (pktopt->ip6po_hbh) 2348 kfree(pktopt->ip6po_hbh, M_IP6OPT); 2349 pktopt->ip6po_hbh = NULL; 2350 } 2351 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2352 if (pktopt->ip6po_dest1) 2353 kfree(pktopt->ip6po_dest1, M_IP6OPT); 2354 pktopt->ip6po_dest1 = NULL; 2355 } 2356 if (optname == -1 || optname == IPV6_RTHDR) { 2357 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2358 kfree(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2359 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2360 if (pktopt->ip6po_route.ro_rt) { 2361 RTFREE(pktopt->ip6po_route.ro_rt); 2362 pktopt->ip6po_route.ro_rt = NULL; 2363 } 2364 } 2365 if (optname == -1 || optname == IPV6_DSTOPTS) { 2366 if (pktopt->ip6po_dest2) 2367 kfree(pktopt->ip6po_dest2, M_IP6OPT); 2368 pktopt->ip6po_dest2 = NULL; 2369 } 2370 } 2371 2372 #define PKTOPT_EXTHDRCPY(type) \ 2373 do {\ 2374 if (src->type) {\ 2375 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2376 dst->type = kmalloc(hlen, M_IP6OPT, canwait);\ 2377 if (dst->type == NULL)\ 2378 goto bad;\ 2379 bcopy(src->type, dst->type, hlen);\ 2380 }\ 2381 } while (0) 2382 2383 struct ip6_pktopts * 2384 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2385 { 2386 struct ip6_pktopts *dst; 2387 2388 if (src == NULL) { 2389 kprintf("ip6_clearpktopts: invalid argument\n"); 2390 return (NULL); 2391 } 2392 2393 dst = kmalloc(sizeof(*dst), M_IP6OPT, canwait | M_ZERO); 2394 if (dst == NULL) 2395 return (NULL); 2396 2397 dst->ip6po_hlim = src->ip6po_hlim; 2398 if (src->ip6po_pktinfo) { 2399 dst->ip6po_pktinfo = kmalloc(sizeof(*dst->ip6po_pktinfo), 2400 M_IP6OPT, canwait); 2401 if (dst->ip6po_pktinfo == NULL) 2402 goto bad; 2403 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2404 } 2405 if (src->ip6po_nexthop) { 2406 dst->ip6po_nexthop = kmalloc(src->ip6po_nexthop->sa_len, 2407 M_IP6OPT, canwait); 2408 if (dst->ip6po_nexthop == NULL) 2409 goto bad; 2410 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2411 src->ip6po_nexthop->sa_len); 2412 } 2413 PKTOPT_EXTHDRCPY(ip6po_hbh); 2414 PKTOPT_EXTHDRCPY(ip6po_dest1); 2415 PKTOPT_EXTHDRCPY(ip6po_dest2); 2416 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2417 return (dst); 2418 2419 bad: 2420 if (dst->ip6po_pktinfo) kfree(dst->ip6po_pktinfo, M_IP6OPT); 2421 if (dst->ip6po_nexthop) kfree(dst->ip6po_nexthop, M_IP6OPT); 2422 if (dst->ip6po_hbh) kfree(dst->ip6po_hbh, M_IP6OPT); 2423 if (dst->ip6po_dest1) kfree(dst->ip6po_dest1, M_IP6OPT); 2424 if (dst->ip6po_dest2) kfree(dst->ip6po_dest2, M_IP6OPT); 2425 if (dst->ip6po_rthdr) kfree(dst->ip6po_rthdr, M_IP6OPT); 2426 kfree(dst, M_IP6OPT); 2427 return (NULL); 2428 } 2429 2430 static int 2431 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2432 { 2433 if (dst == NULL || src == NULL) { 2434 #ifdef DIAGNOSTIC 2435 kprintf("ip6_clearpktopts: invalid argument\n"); 2436 #endif 2437 return (EINVAL); 2438 } 2439 2440 dst->ip6po_hlim = src->ip6po_hlim; 2441 dst->ip6po_tclass = src->ip6po_tclass; 2442 dst->ip6po_flags = src->ip6po_flags; 2443 if (src->ip6po_pktinfo) { 2444 dst->ip6po_pktinfo = kmalloc(sizeof(*dst->ip6po_pktinfo), 2445 M_IP6OPT, canwait); 2446 if (dst->ip6po_pktinfo == NULL) 2447 goto bad; 2448 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2449 } 2450 if (src->ip6po_nexthop) { 2451 dst->ip6po_nexthop = kmalloc(src->ip6po_nexthop->sa_len, 2452 M_IP6OPT, canwait); 2453 if (dst->ip6po_nexthop == NULL) 2454 goto bad; 2455 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2456 src->ip6po_nexthop->sa_len); 2457 } 2458 PKTOPT_EXTHDRCPY(ip6po_hbh); 2459 PKTOPT_EXTHDRCPY(ip6po_dest1); 2460 PKTOPT_EXTHDRCPY(ip6po_dest2); 2461 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2462 return (0); 2463 2464 bad: 2465 ip6_clearpktopts(dst, -1); 2466 return (ENOBUFS); 2467 } 2468 #undef PKTOPT_EXTHDRCPY 2469 2470 void 2471 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2472 { 2473 if (pktopt == NULL) 2474 return; 2475 2476 ip6_clearpktopts(pktopt, -1); 2477 2478 kfree(pktopt, M_IP6OPT); 2479 } 2480 2481 /* 2482 * Set the IP6 multicast options in response to user setsockopt(). 2483 */ 2484 static int 2485 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m) 2486 { 2487 int error = 0; 2488 u_int loop, ifindex; 2489 struct ipv6_mreq *mreq; 2490 struct ifnet *ifp; 2491 struct ip6_moptions *im6o = *im6op; 2492 struct route_in6 ro; 2493 struct sockaddr_in6 *dst; 2494 struct in6_multi_mship *imm; 2495 struct thread *td = curthread; 2496 2497 if (im6o == NULL) { 2498 /* 2499 * No multicast option buffer attached to the pcb; 2500 * allocate one and initialize to default values. 2501 */ 2502 im6o = (struct ip6_moptions *) 2503 kmalloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 2504 2505 *im6op = im6o; 2506 im6o->im6o_multicast_ifp = NULL; 2507 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2508 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2509 LIST_INIT(&im6o->im6o_memberships); 2510 } 2511 2512 switch (optname) { 2513 2514 case IPV6_MULTICAST_IF: 2515 /* 2516 * Select the interface for outgoing multicast packets. 2517 */ 2518 if (m == NULL || m->m_len != sizeof(u_int)) { 2519 error = EINVAL; 2520 break; 2521 } 2522 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 2523 if (ifindex < 0 || if_index < ifindex) { 2524 error = ENXIO; /* XXX EINVAL? */ 2525 break; 2526 } 2527 ifp = ifindex2ifnet[ifindex]; 2528 if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) { 2529 error = EADDRNOTAVAIL; 2530 break; 2531 } 2532 im6o->im6o_multicast_ifp = ifp; 2533 break; 2534 2535 case IPV6_MULTICAST_HOPS: 2536 { 2537 /* 2538 * Set the IP6 hoplimit for outgoing multicast packets. 2539 */ 2540 int optval; 2541 if (m == NULL || m->m_len != sizeof(int)) { 2542 error = EINVAL; 2543 break; 2544 } 2545 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 2546 if (optval < -1 || optval >= 256) 2547 error = EINVAL; 2548 else if (optval == -1) 2549 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2550 else 2551 im6o->im6o_multicast_hlim = optval; 2552 break; 2553 } 2554 2555 case IPV6_MULTICAST_LOOP: 2556 /* 2557 * Set the loopback flag for outgoing multicast packets. 2558 * Must be zero or one. 2559 */ 2560 if (m == NULL || m->m_len != sizeof(u_int)) { 2561 error = EINVAL; 2562 break; 2563 } 2564 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 2565 if (loop > 1) { 2566 error = EINVAL; 2567 break; 2568 } 2569 im6o->im6o_multicast_loop = loop; 2570 break; 2571 2572 case IPV6_JOIN_GROUP: 2573 /* 2574 * Add a multicast group membership. 2575 * Group must be a valid IP6 multicast address. 2576 */ 2577 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2578 error = EINVAL; 2579 break; 2580 } 2581 mreq = mtod(m, struct ipv6_mreq *); 2582 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2583 /* 2584 * We use the unspecified address to specify to accept 2585 * all multicast addresses. Only super user is allowed 2586 * to do this. 2587 */ 2588 if (priv_check(td, PRIV_ROOT)) { 2589 error = EACCES; 2590 break; 2591 } 2592 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2593 error = EINVAL; 2594 break; 2595 } 2596 2597 /* 2598 * If the interface is specified, validate it. 2599 */ 2600 if (mreq->ipv6mr_interface < 0 2601 || if_index < mreq->ipv6mr_interface) { 2602 error = ENXIO; /* XXX EINVAL? */ 2603 break; 2604 } 2605 /* 2606 * If no interface was explicitly specified, choose an 2607 * appropriate one according to the given multicast address. 2608 */ 2609 if (mreq->ipv6mr_interface == 0) { 2610 /* 2611 * If the multicast address is in node-local scope, 2612 * the interface should be a loopback interface. 2613 * Otherwise, look up the routing table for the 2614 * address, and choose the outgoing interface. 2615 * XXX: is it a good approach? 2616 */ 2617 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 2618 ifp = &loif[0]; 2619 } else { 2620 ro.ro_rt = NULL; 2621 dst = (struct sockaddr_in6 *)&ro.ro_dst; 2622 bzero(dst, sizeof(*dst)); 2623 dst->sin6_len = sizeof(struct sockaddr_in6); 2624 dst->sin6_family = AF_INET6; 2625 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2626 rtalloc((struct route *)&ro); 2627 if (ro.ro_rt == NULL) { 2628 error = EADDRNOTAVAIL; 2629 break; 2630 } 2631 ifp = ro.ro_rt->rt_ifp; 2632 rtfree(ro.ro_rt); 2633 } 2634 } else 2635 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 2636 2637 /* 2638 * See if we found an interface, and confirm that it 2639 * supports multicast 2640 */ 2641 if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) { 2642 error = EADDRNOTAVAIL; 2643 break; 2644 } 2645 /* 2646 * Put interface index into the multicast address, 2647 * if the address has link-local scope. 2648 */ 2649 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2650 mreq->ipv6mr_multiaddr.s6_addr16[1] 2651 = htons(mreq->ipv6mr_interface); 2652 } 2653 /* 2654 * See if the membership already exists. 2655 */ 2656 for (imm = im6o->im6o_memberships.lh_first; 2657 imm != NULL; imm = imm->i6mm_chain.le_next) 2658 if (imm->i6mm_maddr->in6m_ifp == ifp && 2659 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2660 &mreq->ipv6mr_multiaddr)) 2661 break; 2662 if (imm != NULL) { 2663 error = EADDRINUSE; 2664 break; 2665 } 2666 /* 2667 * Everything looks good; add a new record to the multicast 2668 * address list for the given interface. 2669 */ 2670 imm = kmalloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 2671 if ((imm->i6mm_maddr = 2672 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 2673 kfree(imm, M_IPMADDR); 2674 break; 2675 } 2676 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2677 break; 2678 2679 case IPV6_LEAVE_GROUP: 2680 /* 2681 * Drop a multicast group membership. 2682 * Group must be a valid IP6 multicast address. 2683 */ 2684 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2685 error = EINVAL; 2686 break; 2687 } 2688 mreq = mtod(m, struct ipv6_mreq *); 2689 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2690 if (priv_check(td, PRIV_ROOT)) { 2691 error = EACCES; 2692 break; 2693 } 2694 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2695 error = EINVAL; 2696 break; 2697 } 2698 /* 2699 * If an interface address was specified, get a pointer 2700 * to its ifnet structure. 2701 */ 2702 if (mreq->ipv6mr_interface < 0 2703 || if_index < mreq->ipv6mr_interface) { 2704 error = ENXIO; /* XXX EINVAL? */ 2705 break; 2706 } 2707 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 2708 /* 2709 * Put interface index into the multicast address, 2710 * if the address has link-local scope. 2711 */ 2712 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2713 mreq->ipv6mr_multiaddr.s6_addr16[1] 2714 = htons(mreq->ipv6mr_interface); 2715 } 2716 2717 /* 2718 * Find the membership in the membership list. 2719 */ 2720 for (imm = im6o->im6o_memberships.lh_first; 2721 imm != NULL; imm = imm->i6mm_chain.le_next) { 2722 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2723 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2724 &mreq->ipv6mr_multiaddr)) 2725 break; 2726 } 2727 if (imm == NULL) { 2728 /* Unable to resolve interface */ 2729 error = EADDRNOTAVAIL; 2730 break; 2731 } 2732 /* 2733 * Give up the multicast address record to which the 2734 * membership points. 2735 */ 2736 LIST_REMOVE(imm, i6mm_chain); 2737 in6_delmulti(imm->i6mm_maddr); 2738 kfree(imm, M_IPMADDR); 2739 break; 2740 2741 default: 2742 error = EOPNOTSUPP; 2743 break; 2744 } 2745 2746 /* 2747 * If all options have default values, no need to keep the mbuf. 2748 */ 2749 if (im6o->im6o_multicast_ifp == NULL && 2750 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2751 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2752 im6o->im6o_memberships.lh_first == NULL) { 2753 kfree(*im6op, M_IPMOPTS); 2754 *im6op = NULL; 2755 } 2756 2757 return (error); 2758 } 2759 2760 /* 2761 * Return the IP6 multicast options in response to user getsockopt(). 2762 */ 2763 static int 2764 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp) 2765 { 2766 u_int *hlim, *loop, *ifindex; 2767 2768 *mp = m_get(M_WAITOK, MT_HEADER); /* XXX */ 2769 2770 switch (optname) { 2771 2772 case IPV6_MULTICAST_IF: 2773 ifindex = mtod(*mp, u_int *); 2774 (*mp)->m_len = sizeof(u_int); 2775 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2776 *ifindex = 0; 2777 else 2778 *ifindex = im6o->im6o_multicast_ifp->if_index; 2779 return (0); 2780 2781 case IPV6_MULTICAST_HOPS: 2782 hlim = mtod(*mp, u_int *); 2783 (*mp)->m_len = sizeof(u_int); 2784 if (im6o == NULL) 2785 *hlim = ip6_defmcasthlim; 2786 else 2787 *hlim = im6o->im6o_multicast_hlim; 2788 return (0); 2789 2790 case IPV6_MULTICAST_LOOP: 2791 loop = mtod(*mp, u_int *); 2792 (*mp)->m_len = sizeof(u_int); 2793 if (im6o == NULL) 2794 *loop = ip6_defmcasthlim; 2795 else 2796 *loop = im6o->im6o_multicast_loop; 2797 return (0); 2798 2799 default: 2800 return (EOPNOTSUPP); 2801 } 2802 } 2803 2804 /* 2805 * Discard the IP6 multicast options. 2806 */ 2807 void 2808 ip6_freemoptions(struct ip6_moptions *im6o) 2809 { 2810 struct in6_multi_mship *imm; 2811 2812 if (im6o == NULL) 2813 return; 2814 2815 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2816 LIST_REMOVE(imm, i6mm_chain); 2817 if (imm->i6mm_maddr) 2818 in6_delmulti(imm->i6mm_maddr); 2819 kfree(imm, M_IPMADDR); 2820 } 2821 kfree(im6o, M_IPMOPTS); 2822 } 2823 2824 /* 2825 * Set a particular packet option, as a sticky option or an ancillary data 2826 * item. "len" can be 0 only when it's a sticky option. 2827 * We have 4 cases of combination of "sticky" and "cmsg": 2828 * "sticky=0, cmsg=0": impossible 2829 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2830 * "sticky=1, cmsg=0": RFC3542 socket option 2831 * "sticky=1, cmsg=1": RFC2292 socket option 2832 */ 2833 static int 2834 ip6_setpktoption(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2835 int sticky, int cmsg, int uproto, int priv) 2836 { 2837 int minmtupolicy, preftemp; 2838 //int error; 2839 2840 if (!sticky && !cmsg) { 2841 kprintf("ip6_setpktoption: impossible case\n"); 2842 return (EINVAL); 2843 } 2844 2845 /* 2846 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2847 * not be specified in the context of RFC3542. Conversely, 2848 * RFC3542 types should not be specified in the context of RFC2292. 2849 */ 2850 if (!cmsg) { 2851 switch (optname) { 2852 case IPV6_2292PKTINFO: 2853 case IPV6_2292HOPLIMIT: 2854 case IPV6_2292NEXTHOP: 2855 case IPV6_2292HOPOPTS: 2856 case IPV6_2292DSTOPTS: 2857 case IPV6_2292RTHDR: 2858 case IPV6_2292PKTOPTIONS: 2859 return (ENOPROTOOPT); 2860 } 2861 } 2862 if (sticky && cmsg) { 2863 switch (optname) { 2864 case IPV6_PKTINFO: 2865 case IPV6_HOPLIMIT: 2866 case IPV6_NEXTHOP: 2867 case IPV6_HOPOPTS: 2868 case IPV6_DSTOPTS: 2869 case IPV6_RTHDRDSTOPTS: 2870 case IPV6_RTHDR: 2871 case IPV6_USE_MIN_MTU: 2872 case IPV6_DONTFRAG: 2873 case IPV6_TCLASS: 2874 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2875 return (ENOPROTOOPT); 2876 } 2877 } 2878 2879 switch (optname) { 2880 case IPV6_2292PKTINFO: 2881 case IPV6_PKTINFO: 2882 { 2883 struct in6_pktinfo *pktinfo; 2884 if (len != sizeof(struct in6_pktinfo)) 2885 return (EINVAL); 2886 pktinfo = (struct in6_pktinfo *)buf; 2887 2888 /* 2889 * An application can clear any sticky IPV6_PKTINFO option by 2890 * doing a "regular" setsockopt with ipi6_addr being 2891 * in6addr_any and ipi6_ifindex being zero. 2892 * [RFC 3542, Section 6] 2893 */ 2894 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2895 pktinfo->ipi6_ifindex == 0 && 2896 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2897 ip6_clearpktopts(opt, optname); 2898 break; 2899 } 2900 2901 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2902 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2903 return (EINVAL); 2904 } 2905 2906 /* validate the interface index if specified. */ 2907 if (pktinfo->ipi6_ifindex > if_index || 2908 pktinfo->ipi6_ifindex < 0) { 2909 return (ENXIO); 2910 } 2911 /* 2912 * Check if the requested source address is indeed a 2913 * unicast address assigned to the node, and can be 2914 * used as the packet's source address. 2915 */ 2916 if (opt->ip6po_pktinfo != NULL && 2917 !IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 2918 struct in6_ifaddr *ia6; 2919 struct sockaddr_in6 sin6; 2920 2921 bzero(&sin6, sizeof(sin6)); 2922 sin6.sin6_len = sizeof(sin6); 2923 sin6.sin6_family = AF_INET6; 2924 sin6.sin6_addr = 2925 opt->ip6po_pktinfo->ipi6_addr; 2926 ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(sin6tosa(&sin6)); 2927 if (ia6 == NULL || 2928 (ia6->ia6_flags & (IN6_IFF_ANYCAST | 2929 IN6_IFF_NOTREADY)) != 0) 2930 return (EADDRNOTAVAIL); 2931 } 2932 2933 /* 2934 * We store the address anyway, and let in6_selectsrc() 2935 * validate the specified address. This is because ipi6_addr 2936 * may not have enough information about its scope zone, and 2937 * we may need additional information (such as outgoing 2938 * interface or the scope zone of a destination address) to 2939 * disambiguate the scope. 2940 * XXX: the delay of the validation may confuse the 2941 * application when it is used as a sticky option. 2942 */ 2943 if (opt->ip6po_pktinfo == NULL) { 2944 opt->ip6po_pktinfo = kmalloc(sizeof(*pktinfo), 2945 M_IP6OPT, M_NOWAIT); 2946 if (opt->ip6po_pktinfo == NULL) 2947 return (ENOBUFS); 2948 } 2949 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2950 break; 2951 } 2952 2953 case IPV6_2292HOPLIMIT: 2954 case IPV6_HOPLIMIT: 2955 { 2956 int *hlimp; 2957 2958 /* 2959 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2960 * to simplify the ordering among hoplimit options. 2961 */ 2962 if (optname == IPV6_HOPLIMIT && sticky) 2963 return (ENOPROTOOPT); 2964 2965 if (len != sizeof(int)) 2966 return (EINVAL); 2967 hlimp = (int *)buf; 2968 if (*hlimp < -1 || *hlimp > 255) 2969 return (EINVAL); 2970 2971 opt->ip6po_hlim = *hlimp; 2972 break; 2973 } 2974 2975 case IPV6_TCLASS: 2976 { 2977 int tclass; 2978 2979 if (len != sizeof(int)) 2980 return (EINVAL); 2981 tclass = *(int *)buf; 2982 if (tclass < -1 || tclass > 255) 2983 return (EINVAL); 2984 2985 opt->ip6po_tclass = tclass; 2986 break; 2987 } 2988 2989 case IPV6_2292NEXTHOP: 2990 case IPV6_NEXTHOP: 2991 if (!priv) 2992 return (EPERM); 2993 2994 if (len == 0) { /* just remove the option */ 2995 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2996 break; 2997 } 2998 2999 /* check if cmsg_len is large enough for sa_len */ 3000 if (len < sizeof(struct sockaddr) || len < *buf) 3001 return (EINVAL); 3002 3003 switch (((struct sockaddr *)buf)->sa_family) { 3004 case AF_INET6: 3005 { 3006 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3007 //int error; 3008 3009 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3010 return (EINVAL); 3011 3012 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3013 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3014 return (EINVAL); 3015 } 3016 break; 3017 } 3018 case AF_LINK: /* should eventually be supported */ 3019 default: 3020 return (EAFNOSUPPORT); 3021 } 3022 3023 /* turn off the previous option, then set the new option. */ 3024 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3025 opt->ip6po_nexthop = kmalloc(*buf, M_IP6OPT, M_NOWAIT); 3026 if (opt->ip6po_nexthop == NULL) 3027 return (ENOBUFS); 3028 bcopy(buf, opt->ip6po_nexthop, *buf); 3029 break; 3030 3031 case IPV6_2292HOPOPTS: 3032 case IPV6_HOPOPTS: 3033 { 3034 struct ip6_hbh *hbh; 3035 int hbhlen; 3036 3037 /* 3038 * XXX: We don't allow a non-privileged user to set ANY HbH 3039 * options, since per-option restriction has too much 3040 * overhead. 3041 */ 3042 if (!priv) 3043 return (EPERM); 3044 if (len == 0) { 3045 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3046 break; /* just remove the option */ 3047 } 3048 3049 /* message length validation */ 3050 if (len < sizeof(struct ip6_hbh)) 3051 return (EINVAL); 3052 hbh = (struct ip6_hbh *)buf; 3053 hbhlen = (hbh->ip6h_len + 1) << 3; 3054 if (len != hbhlen) 3055 return (EINVAL); 3056 3057 /* turn off the previous option, then set the new option. */ 3058 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3059 opt->ip6po_hbh = kmalloc(hbhlen, M_IP6OPT, M_NOWAIT); 3060 if (opt->ip6po_hbh == NULL) 3061 return (ENOBUFS); 3062 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3063 3064 break; 3065 } 3066 3067 case IPV6_2292DSTOPTS: 3068 case IPV6_DSTOPTS: 3069 case IPV6_RTHDRDSTOPTS: 3070 { 3071 struct ip6_dest *dest, **newdest = NULL; 3072 int destlen; 3073 if (!priv) 3074 return (EPERM); 3075 3076 if (len == 0) { 3077 ip6_clearpktopts(opt, optname); 3078 break; /* just remove the option */ 3079 } 3080 3081 /* message length validation */ 3082 if (len < sizeof(struct ip6_dest)) 3083 return (EINVAL); 3084 dest = (struct ip6_dest *)buf; 3085 destlen = (dest->ip6d_len + 1) << 3; 3086 if (len != destlen) 3087 return (EINVAL); 3088 3089 /* 3090 * Determine the position that the destination options header 3091 * should be inserted; before or after the routing header. 3092 */ 3093 switch (optname) { 3094 case IPV6_2292DSTOPTS: 3095 /* 3096 * The old advacned API is ambiguous on this point. 3097 * Our approach is to determine the position based 3098 * according to the existence of a routing header. 3099 * Note, however, that this depends on the order of the 3100 * extension headers in the ancillary data; the 1st 3101 * part of the destination options header must appear 3102 * before the routing header in the ancillary data, 3103 * too. 3104 * RFC3542 solved the ambiguity by introducing 3105 * separate ancillary data or option types. 3106 */ 3107 if (opt->ip6po_rthdr == NULL) 3108 newdest = &opt->ip6po_dest1; 3109 else 3110 newdest = &opt->ip6po_dest2; 3111 break; 3112 case IPV6_RTHDRDSTOPTS: 3113 newdest = &opt->ip6po_dest1; 3114 break; 3115 case IPV6_DSTOPTS: 3116 newdest = &opt->ip6po_dest2; 3117 break; 3118 } 3119 3120 /* turn off the previous option, then set the new option. */ 3121 ip6_clearpktopts(opt, optname); 3122 *newdest = kmalloc(destlen, M_IP6OPT, M_NOWAIT); 3123 if (*newdest == NULL) 3124 return (ENOBUFS); 3125 bcopy(dest, *newdest, destlen); 3126 3127 break; 3128 } 3129 3130 case IPV6_2292RTHDR: 3131 case IPV6_RTHDR: 3132 { 3133 struct ip6_rthdr *rth; 3134 int rthlen; 3135 3136 if (len == 0) { 3137 ip6_clearpktopts(opt, IPV6_RTHDR); 3138 break; /* just remove the option */ 3139 } 3140 3141 /* message length validation */ 3142 if (len < sizeof(struct ip6_rthdr)) 3143 return (EINVAL); 3144 rth = (struct ip6_rthdr *)buf; 3145 rthlen = (rth->ip6r_len + 1) << 3; 3146 if (len != rthlen) 3147 return (EINVAL); 3148 3149 switch (rth->ip6r_type) { 3150 default: 3151 return (EINVAL); /* not supported */ 3152 } 3153 3154 /* turn off the previous option */ 3155 ip6_clearpktopts(opt, IPV6_RTHDR); 3156 opt->ip6po_rthdr = kmalloc(rthlen, M_IP6OPT, M_NOWAIT); 3157 if (opt->ip6po_rthdr == NULL) 3158 return (ENOBUFS); 3159 bcopy(rth, opt->ip6po_rthdr, rthlen); 3160 3161 break; 3162 } 3163 3164 case IPV6_USE_MIN_MTU: 3165 if (len != sizeof(int)) 3166 return (EINVAL); 3167 minmtupolicy = *(int *)buf; 3168 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3169 minmtupolicy != IP6PO_MINMTU_DISABLE && 3170 minmtupolicy != IP6PO_MINMTU_ALL) { 3171 return (EINVAL); 3172 } 3173 opt->ip6po_minmtu = minmtupolicy; 3174 break; 3175 3176 case IPV6_DONTFRAG: 3177 if (len != sizeof(int)) 3178 return (EINVAL); 3179 3180 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3181 /* 3182 * we ignore this option for TCP sockets. 3183 * (RFC3542 leaves this case unspecified.) 3184 */ 3185 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3186 } else 3187 opt->ip6po_flags |= IP6PO_DONTFRAG; 3188 break; 3189 3190 case IPV6_PREFER_TEMPADDR: 3191 if (len != sizeof(int)) 3192 return (EINVAL); 3193 preftemp = *(int *)buf; 3194 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3195 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3196 preftemp != IP6PO_TEMPADDR_PREFER) { 3197 return (EINVAL); 3198 } 3199 opt->ip6po_prefer_tempaddr = preftemp; 3200 break; 3201 3202 default: 3203 return (ENOPROTOOPT); 3204 } /* end of switch */ 3205 3206 return (0); 3207 } 3208 3209 3210 /* 3211 * Set IPv6 outgoing packet options based on advanced API. 3212 */ 3213 int 3214 ip6_setpktoptions(struct mbuf *control, struct ip6_pktopts *opt, 3215 struct ip6_pktopts *stickyopt, int uproto, int priv) 3216 { 3217 struct cmsghdr *cm = NULL; 3218 3219 if (control == NULL || opt == NULL) 3220 return (EINVAL); 3221 3222 init_ip6pktopts(opt); 3223 3224 /* 3225 * XXX: Currently, we assume all the optional information is stored 3226 * in a single mbuf. 3227 */ 3228 if (stickyopt) { 3229 int error; 3230 3231 /* 3232 * If stickyopt is provided, make a local copy of the options 3233 * for this particular packet, then override them by ancillary 3234 * objects. 3235 * XXX: copypktopts() does not copy the cached route to a next 3236 * hop (if any). This is not very good in terms of efficiency, 3237 * but we can allow this since this option should be rarely 3238 * used. 3239 */ 3240 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 3241 return (error); 3242 } 3243 3244 /* 3245 * XXX: Currently, we assume all the optional information is stored 3246 * in a single mbuf. 3247 */ 3248 if (control->m_next) 3249 return (EINVAL); 3250 3251 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 3252 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 3253 int error; 3254 3255 if (control->m_len < CMSG_LEN(0)) 3256 return (EINVAL); 3257 3258 cm = mtod(control, struct cmsghdr *); 3259 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 3260 return (EINVAL); 3261 if (cm->cmsg_level != IPPROTO_IPV6) 3262 continue; 3263 3264 error = ip6_setpktoption(cm->cmsg_type, CMSG_DATA(cm), 3265 cm->cmsg_len - CMSG_LEN(0), opt, 0, 1, uproto, priv); 3266 if (error) 3267 return (error); 3268 } 3269 3270 return (0); 3271 } 3272 3273 /* 3274 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3275 * packet to the input queue of a specified interface. Note that this 3276 * calls the output routine of the loopback "driver", but with an interface 3277 * pointer that might NOT be &loif -- easier than replicating that code here. 3278 */ 3279 void 3280 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 3281 { 3282 struct mbuf *copym; 3283 struct ip6_hdr *ip6; 3284 3285 copym = m_copy(m, 0, M_COPYALL); 3286 if (copym == NULL) 3287 return; 3288 3289 /* 3290 * Make sure to deep-copy IPv6 header portion in case the data 3291 * is in an mbuf cluster, so that we can safely override the IPv6 3292 * header portion later. 3293 */ 3294 if ((copym->m_flags & M_EXT) != 0 || 3295 copym->m_len < sizeof(struct ip6_hdr)) { 3296 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3297 if (copym == NULL) 3298 return; 3299 } 3300 3301 #ifdef DIAGNOSTIC 3302 if (copym->m_len < sizeof(*ip6)) { 3303 m_freem(copym); 3304 return; 3305 } 3306 #endif 3307 3308 ip6 = mtod(copym, struct ip6_hdr *); 3309 /* 3310 * clear embedded scope identifiers if necessary. 3311 * in6_clearscope will touch the addresses only when necessary. 3312 */ 3313 in6_clearscope(&ip6->ip6_src); 3314 in6_clearscope(&ip6->ip6_dst); 3315 3316 if_simloop(ifp, copym, dst->sin6_family, 0); 3317 } 3318 3319 /* 3320 * Separate the IPv6 header from the payload into its own mbuf. 3321 * 3322 * Returns the new mbuf chain or the original mbuf if no payload. 3323 * Returns NULL if can't allocate new mbuf for header. 3324 */ 3325 static struct mbuf * 3326 ip6_splithdr(struct mbuf *m) 3327 { 3328 struct mbuf *mh; 3329 3330 if (m->m_len <= sizeof(struct ip6_hdr)) /* no payload */ 3331 return (m); 3332 3333 MGETHDR(mh, M_NOWAIT, MT_HEADER); 3334 if (mh == NULL) 3335 return (NULL); 3336 mh->m_len = sizeof(struct ip6_hdr); 3337 M_MOVE_PKTHDR(mh, m); 3338 MH_ALIGN(mh, sizeof(struct ip6_hdr)); 3339 bcopy(mtod(m, caddr_t), mtod(mh, caddr_t), sizeof(struct ip6_hdr)); 3340 m->m_data += sizeof(struct ip6_hdr); 3341 m->m_len -= sizeof(struct ip6_hdr); 3342 mh->m_next = m; 3343 return (mh); 3344 } 3345 3346 /* 3347 * Compute IPv6 extension header length. 3348 */ 3349 int 3350 ip6_optlen(struct in6pcb *in6p) 3351 { 3352 int len; 3353 3354 if (!in6p->in6p_outputopts) 3355 return 0; 3356 3357 len = 0; 3358 #define elen(x) \ 3359 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3360 3361 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3362 if (in6p->in6p_outputopts->ip6po_rthdr) 3363 /* dest1 is valid with rthdr only */ 3364 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3365 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3366 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3367 return len; 3368 #undef elen 3369 } 3370