1 /* $FreeBSD: src/sys/netinet6/ip6_output.c,v 1.13.2.18 2003/01/24 05:11:35 sam Exp $ */ 2 /* $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 66 */ 67 68 #include "opt_ip6fw.h" 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 #include "opt_ipsec.h" 72 73 #include <sys/param.h> 74 #include <sys/malloc.h> 75 #include <sys/mbuf.h> 76 #include <sys/errno.h> 77 #include <sys/protosw.h> 78 #include <sys/socket.h> 79 #include <sys/socketvar.h> 80 #include <sys/systm.h> 81 #include <sys/kernel.h> 82 #include <sys/proc.h> 83 #include <sys/priv.h> 84 85 #include <sys/thread2.h> 86 #include <sys/msgport2.h> 87 88 #include <net/if.h> 89 #include <net/route.h> 90 #include <net/pfil.h> 91 92 #include <netinet/in.h> 93 #include <netinet/in_var.h> 94 #include <netinet6/in6_var.h> 95 #include <netinet/ip6.h> 96 #include <netinet/icmp6.h> 97 #include <netinet6/ip6_var.h> 98 #include <netinet/in_pcb.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6protosw.h> 101 102 #ifdef IPSEC 103 #include <netinet6/ipsec.h> 104 #ifdef INET6 105 #include <netinet6/ipsec6.h> 106 #endif 107 #include <netproto/key/key.h> 108 #endif /* IPSEC */ 109 110 #ifdef FAST_IPSEC 111 #include <netproto/ipsec/ipsec.h> 112 #include <netproto/ipsec/ipsec6.h> 113 #include <netproto/ipsec/key.h> 114 #endif 115 116 #include <net/ip6fw/ip6_fw.h> 117 118 #include <net/net_osdep.h> 119 120 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options"); 121 122 struct ip6_exthdrs { 123 struct mbuf *ip6e_ip6; 124 struct mbuf *ip6e_hbh; 125 struct mbuf *ip6e_dest1; 126 struct mbuf *ip6e_rthdr; 127 struct mbuf *ip6e_dest2; 128 }; 129 130 static int ip6_pcbopt (int, u_char *, int, struct ip6_pktopts **, int); 131 static int ip6_setpktoption (int, u_char *, int, struct ip6_pktopts *, 132 int, int, int, int); 133 static int ip6_pcbopts (struct ip6_pktopts **, struct mbuf *, 134 struct socket *, struct sockopt *); 135 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 136 static int ip6_setmoptions (int, struct ip6_moptions **, struct mbuf *); 137 static int ip6_getmoptions (int, struct ip6_moptions *, struct mbuf **); 138 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *, 139 struct ifnet *, struct in6_addr *, u_long *, int *); 140 static int copyexthdr (void *, struct mbuf **); 141 static int ip6_insertfraghdr (struct mbuf *, struct mbuf *, int, 142 struct ip6_frag **); 143 static int ip6_insert_jumboopt (struct ip6_exthdrs *, u_int32_t); 144 static struct mbuf *ip6_splithdr (struct mbuf *); 145 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 146 147 /* 148 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 149 * header (with pri, len, nxt, hlim, src, dst). 150 * This function may modify ver and hlim only. 151 * The mbuf chain containing the packet will be freed. 152 * The mbuf opt, if present, will not be freed. 153 * 154 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 155 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 156 * which is rt_rmx.rmx_mtu. 157 */ 158 int 159 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro, 160 int flags, struct ip6_moptions *im6o, 161 struct ifnet **ifpp, /* XXX: just for statistics */ 162 struct inpcb *inp) 163 { 164 struct ip6_hdr *ip6, *mhip6; 165 struct ifnet *ifp, *origifp; 166 struct mbuf *m = m0; 167 struct mbuf *mprev; 168 u_char *nexthdrp; 169 int hlen, tlen, len, off; 170 struct route_in6 ip6route; 171 struct sockaddr_in6 *dst; 172 int error = 0; 173 struct in6_ifaddr *ia = NULL; 174 u_long mtu; 175 int alwaysfrag, dontfrag; 176 u_int32_t optlen, plen = 0, unfragpartlen; 177 struct ip6_exthdrs exthdrs; 178 struct in6_addr finaldst; 179 struct route_in6 *ro_pmtu = NULL; 180 boolean_t hdrsplit = FALSE; 181 boolean_t needipsec = FALSE; 182 #ifdef IPSEC 183 boolean_t needipsectun = FALSE; 184 struct secpolicy *sp = NULL; 185 struct socket *so = inp ? inp->inp_socket : NULL; 186 187 ip6 = mtod(m, struct ip6_hdr *); 188 #endif 189 #ifdef FAST_IPSEC 190 boolean_t needipsectun = FALSE; 191 struct secpolicy *sp = NULL; 192 193 ip6 = mtod(m, struct ip6_hdr *); 194 #endif 195 196 bzero(&exthdrs, sizeof exthdrs); 197 198 if (opt) { 199 if ((error = copyexthdr(opt->ip6po_hbh, &exthdrs.ip6e_hbh))) 200 goto freehdrs; 201 if ((error = copyexthdr(opt->ip6po_dest1, &exthdrs.ip6e_dest1))) 202 goto freehdrs; 203 if ((error = copyexthdr(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr))) 204 goto freehdrs; 205 if ((error = copyexthdr(opt->ip6po_dest2, &exthdrs.ip6e_dest2))) 206 goto freehdrs; 207 } 208 209 #ifdef IPSEC 210 /* get a security policy for this packet */ 211 if (so == NULL) 212 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 213 else 214 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 215 216 if (sp == NULL) { 217 ipsec6stat.out_inval++; 218 goto freehdrs; 219 } 220 221 error = 0; 222 223 /* check policy */ 224 switch (sp->policy) { 225 case IPSEC_POLICY_DISCARD: 226 /* 227 * This packet is just discarded. 228 */ 229 ipsec6stat.out_polvio++; 230 goto freehdrs; 231 232 case IPSEC_POLICY_BYPASS: 233 case IPSEC_POLICY_NONE: 234 /* no need to do IPsec. */ 235 needipsec = FALSE; 236 break; 237 238 case IPSEC_POLICY_IPSEC: 239 if (sp->req == NULL) { 240 error = key_spdacquire(sp); /* acquire a policy */ 241 goto freehdrs; 242 } 243 needipsec = TRUE; 244 break; 245 246 case IPSEC_POLICY_ENTRUST: 247 default: 248 kprintf("ip6_output: Invalid policy found. %d\n", sp->policy); 249 } 250 #endif /* IPSEC */ 251 #ifdef FAST_IPSEC 252 /* get a security policy for this packet */ 253 if (inp == NULL) 254 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 255 else 256 sp = ipsec_getpolicybysock(m, IPSEC_DIR_OUTBOUND, inp, &error); 257 258 if (sp == NULL) { 259 newipsecstat.ips_out_inval++; 260 goto freehdrs; 261 } 262 263 error = 0; 264 265 /* check policy */ 266 switch (sp->policy) { 267 case IPSEC_POLICY_DISCARD: 268 /* 269 * This packet is just discarded. 270 */ 271 newipsecstat.ips_out_polvio++; 272 goto freehdrs; 273 274 case IPSEC_POLICY_BYPASS: 275 case IPSEC_POLICY_NONE: 276 /* no need to do IPsec. */ 277 needipsec = FALSE; 278 break; 279 280 case IPSEC_POLICY_IPSEC: 281 if (sp->req == NULL) { 282 error = key_spdacquire(sp); /* acquire a policy */ 283 goto freehdrs; 284 } 285 needipsec = TRUE; 286 break; 287 288 case IPSEC_POLICY_ENTRUST: 289 default: 290 kprintf("ip6_output: Invalid policy found. %d\n", sp->policy); 291 } 292 #endif /* FAST_IPSEC */ 293 294 /* 295 * Calculate the total length of the extension header chain. 296 * Keep the length of the unfragmentable part for fragmentation. 297 */ 298 optlen = m_lengthm(exthdrs.ip6e_hbh, NULL) + 299 m_lengthm(exthdrs.ip6e_dest1, NULL) + 300 m_lengthm(exthdrs.ip6e_rthdr, NULL); 301 302 unfragpartlen = optlen + sizeof(struct ip6_hdr); 303 304 /* NOTE: we don't add AH/ESP length here. do that later. */ 305 optlen += m_lengthm(exthdrs.ip6e_dest2, NULL); 306 307 /* 308 * If we need IPsec, or there is at least one extension header, 309 * separate IP6 header from the payload. 310 */ 311 if ((needipsec || optlen) && !hdrsplit) { 312 exthdrs.ip6e_ip6 = ip6_splithdr(m); 313 if (exthdrs.ip6e_ip6 == NULL) { 314 error = ENOBUFS; 315 goto freehdrs; 316 } 317 m = exthdrs.ip6e_ip6; 318 hdrsplit = TRUE; 319 } 320 321 /* adjust pointer */ 322 ip6 = mtod(m, struct ip6_hdr *); 323 324 /* adjust mbuf packet header length */ 325 m->m_pkthdr.len += optlen; 326 plen = m->m_pkthdr.len - sizeof(*ip6); 327 328 /* If this is a jumbo payload, insert a jumbo payload option. */ 329 if (plen > IPV6_MAXPACKET) { 330 if (!hdrsplit) { 331 exthdrs.ip6e_ip6 = ip6_splithdr(m); 332 if (exthdrs.ip6e_ip6 == NULL) { 333 error = ENOBUFS; 334 goto freehdrs; 335 } 336 m = exthdrs.ip6e_ip6; 337 hdrsplit = TRUE; 338 } 339 /* adjust pointer */ 340 ip6 = mtod(m, struct ip6_hdr *); 341 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 342 goto freehdrs; 343 ip6->ip6_plen = 0; 344 } else 345 ip6->ip6_plen = htons(plen); 346 347 /* 348 * Concatenate headers and fill in next header fields. 349 * Here we have, on "m" 350 * IPv6 payload 351 * and we insert headers accordingly. Finally, we should be getting: 352 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 353 * 354 * during the header composing process, "m" points to IPv6 header. 355 * "mprev" points to an extension header prior to esp. 356 */ 357 358 nexthdrp = &ip6->ip6_nxt; 359 mprev = m; 360 361 /* 362 * we treat dest2 specially. this makes IPsec processing 363 * much easier. the goal here is to make mprev point the 364 * mbuf prior to dest2. 365 * 366 * result: IPv6 dest2 payload 367 * m and mprev will point to IPv6 header. 368 */ 369 if (exthdrs.ip6e_dest2) { 370 if (!hdrsplit) 371 panic("assumption failed: hdr not split"); 372 exthdrs.ip6e_dest2->m_next = m->m_next; 373 m->m_next = exthdrs.ip6e_dest2; 374 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 375 ip6->ip6_nxt = IPPROTO_DSTOPTS; 376 } 377 378 /* 379 * Place m1 after mprev. 380 */ 381 #define MAKE_CHAIN(m1, mprev, nexthdrp, i)\ 382 do {\ 383 if (m1) {\ 384 if (!hdrsplit)\ 385 panic("assumption failed: hdr not split");\ 386 *mtod(m1, u_char *) = *nexthdrp;\ 387 *nexthdrp = (i);\ 388 nexthdrp = mtod(m1, u_char *);\ 389 m1->m_next = mprev->m_next;\ 390 mprev->m_next = m1;\ 391 mprev = m1;\ 392 }\ 393 } while (0) 394 395 /* 396 * result: IPv6 hbh dest1 rthdr dest2 payload 397 * m will point to IPv6 header. mprev will point to the 398 * extension header prior to dest2 (rthdr in the above case). 399 */ 400 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 401 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, IPPROTO_DSTOPTS); 402 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, IPPROTO_ROUTING); 403 404 #if defined(IPSEC) || defined(FAST_IPSEC) 405 if (needipsec) { 406 struct ipsec_output_state state; 407 int segleft_org = 0; 408 struct ip6_rthdr *rh = NULL; 409 410 /* 411 * pointers after IPsec headers are not valid any more. 412 * other pointers need a great care too. 413 * (IPsec routines should not mangle mbufs prior to AH/ESP) 414 */ 415 exthdrs.ip6e_dest2 = NULL; 416 417 if (exthdrs.ip6e_rthdr) { 418 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 419 segleft_org = rh->ip6r_segleft; 420 rh->ip6r_segleft = 0; 421 } 422 423 bzero(&state, sizeof state); 424 state.m = m; 425 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 426 &needipsectun); 427 m = state.m; 428 if (error) { 429 /* mbuf is already reclaimed in ipsec6_output_trans. */ 430 m = NULL; 431 switch (error) { 432 case EHOSTUNREACH: 433 case ENETUNREACH: 434 case EMSGSIZE: 435 case ENOBUFS: 436 case ENOMEM: 437 break; 438 default: 439 kprintf("ip6_output (ipsec): error code %d\n", 440 error); 441 /* fall through */ 442 case ENOENT: 443 /* don't show these error codes to the user */ 444 error = 0; 445 break; 446 } 447 goto bad; 448 } 449 if (exthdrs.ip6e_rthdr) { 450 /* ah6_output doesn't modify mbuf chain */ 451 rh->ip6r_segleft = segleft_org; 452 } 453 } 454 #endif 455 456 /* 457 * If there is a routing header, replace destination address field 458 * with the first hop of the routing header. 459 */ 460 if (exthdrs.ip6e_rthdr) { 461 struct ip6_rthdr *rh; 462 463 finaldst = ip6->ip6_dst; 464 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 465 switch (rh->ip6r_type) { 466 default: /* is it possible? */ 467 error = EINVAL; 468 goto bad; 469 } 470 } 471 472 /* Source address validation */ 473 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 474 !(flags & IPV6_DADOUTPUT)) { 475 error = EOPNOTSUPP; 476 ip6stat.ip6s_badscope++; 477 goto bad; 478 } 479 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 480 error = EOPNOTSUPP; 481 ip6stat.ip6s_badscope++; 482 goto bad; 483 } 484 485 ip6stat.ip6s_localout++; 486 487 /* 488 * Route packet. 489 */ 490 if (ro == NULL) { 491 ro = &ip6route; 492 bzero(ro, sizeof(*ro)); 493 } 494 ro_pmtu = ro; 495 if (opt && opt->ip6po_rthdr) 496 ro = &opt->ip6po_route; 497 dst = (struct sockaddr_in6 *)&ro->ro_dst; 498 /* 499 * If there is a cached route, 500 * check that it is to the same destination 501 * and is still up. If not, free it and try again. 502 */ 503 if (ro->ro_rt != NULL && 504 (!(ro->ro_rt->rt_flags & RTF_UP) || dst->sin6_family != AF_INET6 || 505 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 506 RTFREE(ro->ro_rt); 507 ro->ro_rt = NULL; 508 } 509 if (ro->ro_rt == NULL) { 510 bzero(dst, sizeof(*dst)); 511 dst->sin6_family = AF_INET6; 512 dst->sin6_len = sizeof(struct sockaddr_in6); 513 dst->sin6_addr = ip6->ip6_dst; 514 } 515 #if defined(IPSEC) || defined(FAST_IPSEC) 516 if (needipsec && needipsectun) { 517 struct ipsec_output_state state; 518 519 /* 520 * All the extension headers will become inaccessible 521 * (since they can be encrypted). 522 * Don't panic, we need no more updates to extension headers 523 * on inner IPv6 packet (since they are now encapsulated). 524 * 525 * IPv6 [ESP|AH] IPv6 [extension headers] payload 526 */ 527 bzero(&exthdrs, sizeof(exthdrs)); 528 exthdrs.ip6e_ip6 = m; 529 530 bzero(&state, sizeof(state)); 531 state.m = m; 532 state.ro = (struct route *)ro; 533 state.dst = (struct sockaddr *)dst; 534 535 error = ipsec6_output_tunnel(&state, sp, flags); 536 537 m = state.m; 538 ro = (struct route_in6 *)state.ro; 539 dst = (struct sockaddr_in6 *)state.dst; 540 if (error) { 541 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 542 m0 = m = NULL; 543 m = NULL; 544 switch (error) { 545 case EHOSTUNREACH: 546 case ENETUNREACH: 547 case EMSGSIZE: 548 case ENOBUFS: 549 case ENOMEM: 550 break; 551 default: 552 kprintf("ip6_output (ipsec): error code %d\n", error); 553 /* fall through */ 554 case ENOENT: 555 /* don't show these error codes to the user */ 556 error = 0; 557 break; 558 } 559 goto bad; 560 } 561 562 exthdrs.ip6e_ip6 = m; 563 } 564 #endif 565 566 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 567 /* Unicast */ 568 569 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 570 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 571 /* xxx 572 * interface selection comes here 573 * if an interface is specified from an upper layer, 574 * ifp must point it. 575 */ 576 if (ro->ro_rt == NULL) { 577 /* 578 * non-bsdi always clone routes, if parent is 579 * PRF_CLONING. 580 */ 581 rtalloc((struct route *)ro); 582 } 583 if (ro->ro_rt == NULL) { 584 ip6stat.ip6s_noroute++; 585 error = EHOSTUNREACH; 586 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 587 goto bad; 588 } 589 ia = ifatoia6(ro->ro_rt->rt_ifa); 590 ifp = ro->ro_rt->rt_ifp; 591 ro->ro_rt->rt_use++; 592 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 593 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 594 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 595 596 in6_ifstat_inc(ifp, ifs6_out_request); 597 598 /* 599 * Check if the outgoing interface conflicts with 600 * the interface specified by ifi6_ifindex (if specified). 601 * Note that loopback interface is always okay. 602 * (this may happen when we are sending a packet to one of 603 * our own addresses.) 604 */ 605 if (opt && opt->ip6po_pktinfo 606 && opt->ip6po_pktinfo->ipi6_ifindex) { 607 if (!(ifp->if_flags & IFF_LOOPBACK) 608 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 609 ip6stat.ip6s_noroute++; 610 in6_ifstat_inc(ifp, ifs6_out_discard); 611 error = EHOSTUNREACH; 612 goto bad; 613 } 614 } 615 616 if (opt && opt->ip6po_hlim != -1) 617 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 618 } else { 619 /* Multicast */ 620 struct in6_multi *in6m; 621 622 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 623 624 /* 625 * See if the caller provided any multicast options 626 */ 627 ifp = NULL; 628 if (im6o != NULL) { 629 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 630 if (im6o->im6o_multicast_ifp != NULL) 631 ifp = im6o->im6o_multicast_ifp; 632 } else 633 ip6->ip6_hlim = ip6_defmcasthlim; 634 635 /* 636 * See if the caller provided the outgoing interface 637 * as an ancillary data. 638 * Boundary check for ifindex is assumed to be already done. 639 */ 640 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 641 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 642 643 /* 644 * If the destination is a node-local scope multicast, 645 * the packet should be loop-backed only. 646 */ 647 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 648 /* 649 * If the outgoing interface is already specified, 650 * it should be a loopback interface. 651 */ 652 if (ifp && !(ifp->if_flags & IFF_LOOPBACK)) { 653 ip6stat.ip6s_badscope++; 654 error = ENETUNREACH; /* XXX: better error? */ 655 /* XXX correct ifp? */ 656 in6_ifstat_inc(ifp, ifs6_out_discard); 657 goto bad; 658 } else { 659 ifp = &loif[0]; 660 } 661 } 662 663 if (opt && opt->ip6po_hlim != -1) 664 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 665 666 /* 667 * If caller did not provide an interface lookup a 668 * default in the routing table. This is either a 669 * default for the speicfied group (i.e. a host 670 * route), or a multicast default (a route for the 671 * ``net'' ff00::/8). 672 */ 673 if (ifp == NULL) { 674 if (ro->ro_rt == NULL) { 675 ro->ro_rt = 676 rtpurelookup((struct sockaddr *)&ro->ro_dst); 677 } 678 if (ro->ro_rt == NULL) { 679 ip6stat.ip6s_noroute++; 680 error = EHOSTUNREACH; 681 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 682 goto bad; 683 } 684 ia = ifatoia6(ro->ro_rt->rt_ifa); 685 ifp = ro->ro_rt->rt_ifp; 686 ro->ro_rt->rt_use++; 687 } 688 689 if (!(flags & IPV6_FORWARDING)) 690 in6_ifstat_inc(ifp, ifs6_out_request); 691 in6_ifstat_inc(ifp, ifs6_out_mcast); 692 693 /* 694 * Confirm that the outgoing interface supports multicast. 695 */ 696 if (!(ifp->if_flags & IFF_MULTICAST)) { 697 ip6stat.ip6s_noroute++; 698 in6_ifstat_inc(ifp, ifs6_out_discard); 699 error = ENETUNREACH; 700 goto bad; 701 } 702 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 703 if (in6m != NULL && 704 (im6o == NULL || im6o->im6o_multicast_loop)) { 705 /* 706 * If we belong to the destination multicast group 707 * on the outgoing interface, and the caller did not 708 * forbid loopback, loop back a copy. 709 */ 710 ip6_mloopback(ifp, m, dst); 711 } else { 712 /* 713 * If we are acting as a multicast router, perform 714 * multicast forwarding as if the packet had just 715 * arrived on the interface to which we are about 716 * to send. The multicast forwarding function 717 * recursively calls this function, using the 718 * IPV6_FORWARDING flag to prevent infinite recursion. 719 * 720 * Multicasts that are looped back by ip6_mloopback(), 721 * above, will be forwarded by the ip6_input() routine, 722 * if necessary. 723 */ 724 if (ip6_mrouter && !(flags & IPV6_FORWARDING)) { 725 if (ip6_mforward(ip6, ifp, m) != 0) { 726 m_freem(m); 727 goto done; 728 } 729 } 730 } 731 /* 732 * Multicasts with a hoplimit of zero may be looped back, 733 * above, but must not be transmitted on a network. 734 * Also, multicasts addressed to the loopback interface 735 * are not sent -- the above call to ip6_mloopback() will 736 * loop back a copy if this host actually belongs to the 737 * destination group on the loopback interface. 738 */ 739 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 740 m_freem(m); 741 goto done; 742 } 743 } 744 745 /* 746 * Fill the outgoing inteface to tell the upper layer 747 * to increment per-interface statistics. 748 */ 749 if (ifpp) 750 *ifpp = ifp; 751 752 /* Determine path MTU. */ 753 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 754 &alwaysfrag)) != 0) 755 goto bad; 756 757 /* 758 * The caller of this function may specify to use the minimum MTU 759 * in some cases. 760 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 761 * setting. The logic is a bit complicated; by default, unicast 762 * packets will follow path MTU while multicast packets will be sent at 763 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 764 * including unicast ones will be sent at the minimum MTU. Multicast 765 * packets will always be sent at the minimum MTU unless 766 * IP6PO_MINMTU_DISABLE is explicitly specified. 767 * See RFC 3542 for more details. 768 */ 769 if (mtu > IPV6_MMTU) { 770 if ((flags & IPV6_MINMTU)) 771 mtu = IPV6_MMTU; 772 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 773 mtu = IPV6_MMTU; 774 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 775 (opt == NULL || 776 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 777 mtu = IPV6_MMTU; 778 } 779 } 780 781 /* Fake scoped addresses */ 782 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 783 /* 784 * If source or destination address is a scoped address, and 785 * the packet is going to be sent to a loopback interface, 786 * we should keep the original interface. 787 */ 788 789 /* 790 * XXX: this is a very experimental and temporary solution. 791 * We eventually have sockaddr_in6 and use the sin6_scope_id 792 * field of the structure here. 793 * We rely on the consistency between two scope zone ids 794 * of source and destination, which should already be assured. 795 * Larger scopes than link will be supported in the future. 796 */ 797 origifp = NULL; 798 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 799 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])]; 800 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 801 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])]; 802 /* 803 * XXX: origifp can be NULL even in those two cases above. 804 * For example, if we remove the (only) link-local address 805 * from the loopback interface, and try to send a link-local 806 * address without link-id information. Then the source 807 * address is ::1, and the destination address is the 808 * link-local address with its s6_addr16[1] being zero. 809 * What is worse, if the packet goes to the loopback interface 810 * by a default rejected route, the null pointer would be 811 * passed to looutput, and the kernel would hang. 812 * The following last resort would prevent such disaster. 813 */ 814 if (origifp == NULL) 815 origifp = ifp; 816 } 817 else 818 origifp = ifp; 819 /* 820 * clear embedded scope identifiers if necessary. 821 * in6_clearscope will touch the addresses only when necessary. 822 */ 823 in6_clearscope(&ip6->ip6_src); 824 in6_clearscope(&ip6->ip6_dst); 825 826 /* 827 * Check with the firewall... 828 */ 829 if (ip6_fw_enable && ip6_fw_chk_ptr) { 830 u_short port = 0; 831 832 m->m_pkthdr.rcvif = NULL; /* XXX */ 833 /* If ipfw says divert, we have to just drop packet */ 834 if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) { 835 m_freem(m); 836 goto done; 837 } 838 if (!m) { 839 error = EACCES; 840 goto done; 841 } 842 } 843 844 /* 845 * If the outgoing packet contains a hop-by-hop options header, 846 * it must be examined and processed even by the source node. 847 * (RFC 2460, section 4.) 848 */ 849 if (exthdrs.ip6e_hbh) { 850 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 851 u_int32_t dummy1; /* XXX unused */ 852 u_int32_t dummy2; /* XXX unused */ 853 854 #ifdef DIAGNOSTIC 855 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 856 panic("ip6e_hbh is not continuous"); 857 #endif 858 /* 859 * XXX: if we have to send an ICMPv6 error to the sender, 860 * we need the M_LOOP flag since icmp6_error() expects 861 * the IPv6 and the hop-by-hop options header are 862 * continuous unless the flag is set. 863 */ 864 m->m_flags |= M_LOOP; 865 m->m_pkthdr.rcvif = ifp; 866 if (ip6_process_hopopts(m, 867 (u_int8_t *)(hbh + 1), 868 ((hbh->ip6h_len + 1) << 3) - 869 sizeof(struct ip6_hbh), 870 &dummy1, &dummy2) < 0) { 871 /* m was already freed at this point */ 872 error = EINVAL;/* better error? */ 873 goto done; 874 } 875 m->m_flags &= ~M_LOOP; /* XXX */ 876 m->m_pkthdr.rcvif = NULL; 877 } 878 879 /* 880 * Run through list of hooks for output packets. 881 */ 882 if (pfil_has_hooks(&inet6_pfil_hook)) { 883 error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT); 884 if (error != 0 || m == NULL) 885 goto done; 886 ip6 = mtod(m, struct ip6_hdr *); 887 } 888 889 /* 890 * Send the packet to the outgoing interface. 891 * If necessary, do IPv6 fragmentation before sending. 892 * 893 * the logic here is rather complex: 894 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 895 * 1-a: send as is if tlen <= path mtu 896 * 1-b: fragment if tlen > path mtu 897 * 898 * 2: if user asks us not to fragment (dontfrag == 1) 899 * 2-a: send as is if tlen <= interface mtu 900 * 2-b: error if tlen > interface mtu 901 * 902 * 3: if we always need to attach fragment header (alwaysfrag == 1) 903 * always fragment 904 * 905 * 4: if dontfrag == 1 && alwaysfrag == 1 906 * error, as we cannot handle this conflicting request 907 */ 908 tlen = m->m_pkthdr.len; 909 910 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 911 dontfrag = 1; 912 else 913 dontfrag = 0; 914 if (dontfrag && alwaysfrag) { /* case 4 */ 915 /* conflicting request - can't transmit */ 916 error = EMSGSIZE; 917 goto bad; 918 } 919 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */ 920 /* 921 * Even if the DONTFRAG option is specified, we cannot send the 922 * packet when the data length is larger than the MTU of the 923 * outgoing interface. 924 * Notify the error by sending IPV6_PATHMTU ancillary data as 925 * well as returning an error code (the latter is not described 926 * in the API spec.) 927 */ 928 u_int32_t mtu32; 929 struct ip6ctlparam ip6cp; 930 931 mtu32 = (u_int32_t)mtu; 932 bzero(&ip6cp, sizeof(ip6cp)); 933 ip6cp.ip6c_cmdarg = (void *)&mtu32; 934 kpfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 935 (void *)&ip6cp); 936 937 error = EMSGSIZE; 938 goto bad; 939 } 940 941 /* 942 * transmit packet without fragmentation 943 */ 944 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 945 struct in6_ifaddr *ia6; 946 947 ip6 = mtod(m, struct ip6_hdr *); 948 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 949 if (ia6) { 950 /* Record statistics for this interface address. */ 951 ia6->ia_ifa.if_opackets++; 952 ia6->ia_ifa.if_obytes += m->m_pkthdr.len; 953 } 954 #ifdef IPSEC 955 /* clean ipsec history once it goes out of the node */ 956 ipsec_delaux(m); 957 #endif 958 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 959 goto done; 960 } 961 962 /* 963 * try to fragment the packet. case 1-b and 3 964 */ 965 if (mtu < IPV6_MMTU) { 966 /* 967 * note that path MTU is never less than IPV6_MMTU 968 * (see icmp6_input). 969 */ 970 error = EMSGSIZE; 971 in6_ifstat_inc(ifp, ifs6_out_fragfail); 972 goto bad; 973 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 974 error = EMSGSIZE; 975 in6_ifstat_inc(ifp, ifs6_out_fragfail); 976 goto bad; 977 } else { 978 struct mbuf **mnext, *m_frgpart; 979 struct ip6_frag *ip6f; 980 u_int32_t id = htonl(ip6_id++); 981 u_char nextproto; 982 983 /* 984 * Too large for the destination or interface; 985 * fragment if possible. 986 * Must be able to put at least 8 bytes per fragment. 987 */ 988 hlen = unfragpartlen; 989 if (mtu > IPV6_MAXPACKET) 990 mtu = IPV6_MAXPACKET; 991 992 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 993 if (len < 8) { 994 error = EMSGSIZE; 995 in6_ifstat_inc(ifp, ifs6_out_fragfail); 996 goto bad; 997 } 998 999 mnext = &m->m_nextpkt; 1000 1001 /* 1002 * Change the next header field of the last header in the 1003 * unfragmentable part. 1004 */ 1005 if (exthdrs.ip6e_rthdr) { 1006 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1007 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1008 } else if (exthdrs.ip6e_dest1) { 1009 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1010 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1011 } else if (exthdrs.ip6e_hbh) { 1012 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1013 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1014 } else { 1015 nextproto = ip6->ip6_nxt; 1016 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1017 } 1018 1019 /* 1020 * Loop through length of segment after first fragment, 1021 * make new header and copy data of each part and link onto 1022 * chain. 1023 */ 1024 m0 = m; 1025 for (off = hlen; off < tlen; off += len) { 1026 MGETHDR(m, MB_DONTWAIT, MT_HEADER); 1027 if (!m) { 1028 error = ENOBUFS; 1029 ip6stat.ip6s_odropped++; 1030 goto sendorfree; 1031 } 1032 m->m_pkthdr.rcvif = NULL; 1033 m->m_flags = m0->m_flags & M_COPYFLAGS; 1034 *mnext = m; 1035 mnext = &m->m_nextpkt; 1036 m->m_data += max_linkhdr; 1037 mhip6 = mtod(m, struct ip6_hdr *); 1038 *mhip6 = *ip6; 1039 m->m_len = sizeof(*mhip6); 1040 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1041 if (error) { 1042 ip6stat.ip6s_odropped++; 1043 goto sendorfree; 1044 } 1045 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1046 if (off + len >= tlen) 1047 len = tlen - off; 1048 else 1049 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1050 mhip6->ip6_plen = htons((u_short)(len + hlen + 1051 sizeof(*ip6f) - 1052 sizeof(struct ip6_hdr))); 1053 if ((m_frgpart = m_copy(m0, off, len)) == NULL) { 1054 error = ENOBUFS; 1055 ip6stat.ip6s_odropped++; 1056 goto sendorfree; 1057 } 1058 m_cat(m, m_frgpart); 1059 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1060 m->m_pkthdr.rcvif = NULL; 1061 ip6f->ip6f_reserved = 0; 1062 ip6f->ip6f_ident = id; 1063 ip6f->ip6f_nxt = nextproto; 1064 ip6stat.ip6s_ofragments++; 1065 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1066 } 1067 1068 in6_ifstat_inc(ifp, ifs6_out_fragok); 1069 } 1070 1071 /* 1072 * Remove leading garbages. 1073 */ 1074 sendorfree: 1075 m = m0->m_nextpkt; 1076 m0->m_nextpkt = NULL; 1077 m_freem(m0); 1078 for (m0 = m; m; m = m0) { 1079 m0 = m->m_nextpkt; 1080 m->m_nextpkt = NULL; 1081 if (error == 0) { 1082 /* Record statistics for this interface address. */ 1083 if (ia) { 1084 ia->ia_ifa.if_opackets++; 1085 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1086 } 1087 #ifdef IPSEC 1088 /* clean ipsec history once it goes out of the node */ 1089 ipsec_delaux(m); 1090 #endif 1091 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1092 } else 1093 m_freem(m); 1094 } 1095 1096 if (error == 0) 1097 ip6stat.ip6s_fragmented++; 1098 1099 done: 1100 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1101 RTFREE(ro->ro_rt); 1102 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1103 RTFREE(ro_pmtu->ro_rt); 1104 } 1105 1106 #ifdef IPSEC 1107 if (sp != NULL) 1108 key_freesp(sp); 1109 #endif 1110 #ifdef FAST_IPSEC 1111 if (sp != NULL) 1112 KEY_FREESP(&sp); 1113 #endif 1114 1115 return (error); 1116 1117 freehdrs: 1118 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1119 m_freem(exthdrs.ip6e_dest1); 1120 m_freem(exthdrs.ip6e_rthdr); 1121 m_freem(exthdrs.ip6e_dest2); 1122 /* fall through */ 1123 bad: 1124 m_freem(m); 1125 goto done; 1126 } 1127 1128 static int 1129 copyexthdr(void *h, struct mbuf **mp) 1130 { 1131 struct ip6_ext *hdr = h; 1132 int hlen; 1133 struct mbuf *m; 1134 1135 if (hdr == NULL) 1136 return 0; 1137 1138 hlen = (hdr->ip6e_len + 1) * 8; 1139 if (hlen > MCLBYTES) 1140 return ENOBUFS; /* XXX */ 1141 1142 m = m_getb(hlen, MB_DONTWAIT, MT_DATA, 0); 1143 if (!m) 1144 return ENOBUFS; 1145 m->m_len = hlen; 1146 1147 bcopy(hdr, mtod(m, caddr_t), hlen); 1148 1149 *mp = m; 1150 return 0; 1151 } 1152 1153 /* 1154 * Insert jumbo payload option. 1155 */ 1156 static int 1157 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1158 { 1159 struct mbuf *mopt; 1160 u_char *optbuf; 1161 u_int32_t v; 1162 1163 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1164 1165 /* 1166 * If there is no hop-by-hop options header, allocate new one. 1167 * If there is one but it doesn't have enough space to store the 1168 * jumbo payload option, allocate a cluster to store the whole options. 1169 * Otherwise, use it to store the options. 1170 */ 1171 if (exthdrs->ip6e_hbh == NULL) { 1172 MGET(mopt, MB_DONTWAIT, MT_DATA); 1173 if (mopt == NULL) 1174 return (ENOBUFS); 1175 mopt->m_len = JUMBOOPTLEN; 1176 optbuf = mtod(mopt, u_char *); 1177 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1178 exthdrs->ip6e_hbh = mopt; 1179 } else { 1180 struct ip6_hbh *hbh; 1181 1182 mopt = exthdrs->ip6e_hbh; 1183 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1184 /* 1185 * XXX assumption: 1186 * - exthdrs->ip6e_hbh is not referenced from places 1187 * other than exthdrs. 1188 * - exthdrs->ip6e_hbh is not an mbuf chain. 1189 */ 1190 int oldoptlen = mopt->m_len; 1191 struct mbuf *n; 1192 1193 /* 1194 * XXX: give up if the whole (new) hbh header does 1195 * not fit even in an mbuf cluster. 1196 */ 1197 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1198 return (ENOBUFS); 1199 1200 /* 1201 * As a consequence, we must always prepare a cluster 1202 * at this point. 1203 */ 1204 n = m_getcl(MB_DONTWAIT, MT_DATA, 0); 1205 if (!n) 1206 return (ENOBUFS); 1207 n->m_len = oldoptlen + JUMBOOPTLEN; 1208 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), oldoptlen); 1209 optbuf = mtod(n, caddr_t) + oldoptlen; 1210 m_freem(mopt); 1211 mopt = exthdrs->ip6e_hbh = n; 1212 } else { 1213 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1214 mopt->m_len += JUMBOOPTLEN; 1215 } 1216 optbuf[0] = IP6OPT_PADN; 1217 optbuf[1] = 1; 1218 1219 /* 1220 * Adjust the header length according to the pad and 1221 * the jumbo payload option. 1222 */ 1223 hbh = mtod(mopt, struct ip6_hbh *); 1224 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1225 } 1226 1227 /* fill in the option. */ 1228 optbuf[2] = IP6OPT_JUMBO; 1229 optbuf[3] = 4; 1230 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1231 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1232 1233 /* finally, adjust the packet header length */ 1234 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1235 1236 return (0); 1237 #undef JUMBOOPTLEN 1238 } 1239 1240 /* 1241 * Insert fragment header and copy unfragmentable header portions. 1242 */ 1243 static int 1244 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1245 struct ip6_frag **frghdrp) 1246 { 1247 struct mbuf *n, *mlast; 1248 1249 if (hlen > sizeof(struct ip6_hdr)) { 1250 n = m_copym(m0, sizeof(struct ip6_hdr), 1251 hlen - sizeof(struct ip6_hdr), MB_DONTWAIT); 1252 if (n == NULL) 1253 return (ENOBUFS); 1254 m->m_next = n; 1255 } else 1256 n = m; 1257 1258 /* Search for the last mbuf of unfragmentable part. */ 1259 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1260 ; 1261 1262 if (!(mlast->m_flags & M_EXT) && 1263 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1264 /* use the trailing space of the last mbuf for the fragment hdr */ 1265 *frghdrp = 1266 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1267 mlast->m_len += sizeof(struct ip6_frag); 1268 m->m_pkthdr.len += sizeof(struct ip6_frag); 1269 } else { 1270 /* allocate a new mbuf for the fragment header */ 1271 struct mbuf *mfrg; 1272 1273 MGET(mfrg, MB_DONTWAIT, MT_DATA); 1274 if (mfrg == NULL) 1275 return (ENOBUFS); 1276 mfrg->m_len = sizeof(struct ip6_frag); 1277 *frghdrp = mtod(mfrg, struct ip6_frag *); 1278 mlast->m_next = mfrg; 1279 } 1280 1281 return (0); 1282 } 1283 1284 static int 1285 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1286 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1287 int *alwaysfragp) 1288 { 1289 u_int32_t mtu = 0; 1290 int alwaysfrag = 0; 1291 int error = 0; 1292 1293 if (ro_pmtu != ro) { 1294 /* The first hop and the final destination may differ. */ 1295 struct sockaddr_in6 *sa6_dst = 1296 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1297 if (ro_pmtu->ro_rt && 1298 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1299 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1300 RTFREE(ro_pmtu->ro_rt); 1301 ro_pmtu->ro_rt = NULL; 1302 } 1303 if (ro_pmtu->ro_rt == NULL) { 1304 bzero(sa6_dst, sizeof(*sa6_dst)); 1305 sa6_dst->sin6_family = AF_INET6; 1306 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1307 sa6_dst->sin6_addr = *dst; 1308 1309 rtalloc((struct route *)ro_pmtu); 1310 } 1311 } 1312 if (ro_pmtu->ro_rt) { 1313 u_int32_t ifmtu; 1314 struct in_conninfo inc; 1315 1316 bzero(&inc, sizeof(inc)); 1317 inc.inc_flags = 1; /* IPv6 */ 1318 inc.inc6_faddr = *dst; 1319 1320 if (ifp == NULL) 1321 ifp = ro_pmtu->ro_rt->rt_ifp; 1322 ifmtu = IN6_LINKMTU(ifp); 1323 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1324 if (mtu == 0) 1325 mtu = ifmtu; 1326 else if (mtu < IPV6_MMTU) { 1327 /* 1328 * RFC2460 section 5, last paragraph: 1329 * if we record ICMPv6 too big message with 1330 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1331 * or smaller, with framgent header attached. 1332 * (fragment header is needed regardless from the 1333 * packet size, for translators to identify packets) 1334 */ 1335 alwaysfrag = 1; 1336 mtu = IPV6_MMTU; 1337 } else if (mtu > ifmtu) { 1338 /* 1339 * The MTU on the route is larger than the MTU on 1340 * the interface! This shouldn't happen, unless the 1341 * MTU of the interface has been changed after the 1342 * interface was brought up. Change the MTU in the 1343 * route to match the interface MTU (as long as the 1344 * field isn't locked). 1345 */ 1346 mtu = ifmtu; 1347 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1348 } 1349 } else if (ifp) { 1350 mtu = IN6_LINKMTU(ifp); 1351 } else 1352 error = EHOSTUNREACH; /* XXX */ 1353 1354 *mtup = mtu; 1355 if (alwaysfragp) 1356 *alwaysfragp = alwaysfrag; 1357 return (error); 1358 } 1359 1360 /* 1361 * IP6 socket option processing. 1362 */ 1363 void 1364 ip6_ctloutput_dispatch(netmsg_t msg) 1365 { 1366 int error; 1367 1368 error = ip6_ctloutput(msg->ctloutput.base.nm_so, 1369 msg->ctloutput.nm_sopt); 1370 lwkt_replymsg(&msg->ctloutput.base.lmsg, error); 1371 } 1372 1373 int 1374 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1375 { 1376 int optdatalen,uproto; 1377 int privileged; 1378 struct inpcb *in6p = so->so_pcb; 1379 void *optdata; 1380 int error, optval; 1381 int level, op, optname; 1382 int optlen; 1383 struct thread *td; 1384 1385 if (sopt) { 1386 level = sopt->sopt_level; 1387 op = sopt->sopt_dir; 1388 optname = sopt->sopt_name; 1389 optlen = sopt->sopt_valsize; 1390 td = sopt->sopt_td; 1391 } else { 1392 panic("ip6_ctloutput: arg soopt is NULL"); 1393 /* NOT REACHED */ 1394 td = NULL; 1395 } 1396 error = optval = 0; 1397 1398 uproto = (int)so->so_proto->pr_protocol; 1399 privileged = (td == NULL || priv_check(td, PRIV_ROOT)) ? 0 : 1; 1400 1401 if (level == IPPROTO_IPV6) { 1402 switch (op) { 1403 1404 case SOPT_SET: 1405 switch (optname) { 1406 case IPV6_2292PKTOPTIONS: 1407 #ifdef IPV6_PKTOPTIONS 1408 case IPV6_PKTOPTIONS: 1409 #endif 1410 { 1411 struct mbuf *m; 1412 1413 error = soopt_getm(sopt, &m); /* XXX */ 1414 if (error != 0) 1415 break; 1416 soopt_to_mbuf(sopt, m); /* XXX */ 1417 error = ip6_pcbopts(&in6p->in6p_outputopts, 1418 m, so, sopt); 1419 m_freem(m); /* XXX */ 1420 break; 1421 } 1422 1423 /* 1424 * Use of some Hop-by-Hop options or some 1425 * Destination options, might require special 1426 * privilege. That is, normal applications 1427 * (without special privilege) might be forbidden 1428 * from setting certain options in outgoing packets, 1429 * and might never see certain options in received 1430 * packets. [RFC 2292 Section 6] 1431 * KAME specific note: 1432 * KAME prevents non-privileged users from sending or 1433 * receiving ANY hbh/dst options in order to avoid 1434 * overhead of parsing options in the kernel. 1435 */ 1436 case IPV6_RECVHOPOPTS: 1437 case IPV6_RECVDSTOPTS: 1438 case IPV6_RECVRTHDRDSTOPTS: 1439 if (!privileged) 1440 return (EPERM); 1441 case IPV6_RECVPKTINFO: 1442 case IPV6_RECVHOPLIMIT: 1443 case IPV6_RECVRTHDR: 1444 case IPV6_RECVPATHMTU: 1445 case IPV6_RECVTCLASS: 1446 case IPV6_AUTOFLOWLABEL: 1447 case IPV6_HOPLIMIT: 1448 /* FALLTHROUGH */ 1449 case IPV6_UNICAST_HOPS: 1450 case IPV6_FAITH: 1451 1452 case IPV6_V6ONLY: 1453 if (optlen != sizeof(int)) { 1454 error = EINVAL; 1455 break; 1456 } 1457 error = soopt_to_kbuf(sopt, &optval, 1458 sizeof optval, sizeof optval); 1459 if (error) 1460 break; 1461 switch (optname) { 1462 1463 case IPV6_UNICAST_HOPS: 1464 if (optval < -1 || optval >= 256) 1465 error = EINVAL; 1466 else { 1467 /* -1 = kernel default */ 1468 in6p->in6p_hops = optval; 1469 1470 if ((in6p->in6p_vflag & 1471 INP_IPV4) != 0) 1472 in6p->inp_ip_ttl = optval; 1473 } 1474 break; 1475 #define OPTSET(bit) \ 1476 do { \ 1477 if (optval) \ 1478 in6p->in6p_flags |= (bit); \ 1479 else \ 1480 in6p->in6p_flags &= ~(bit); \ 1481 } while (0) 1482 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1483 /* 1484 * Although changed to RFC3542, It's better to also support RFC2292 API 1485 */ 1486 #define OPTSET2292(bit) \ 1487 do { \ 1488 in6p->in6p_flags |= IN6P_RFC2292; \ 1489 if (optval) \ 1490 in6p->in6p_flags |= (bit); \ 1491 else \ 1492 in6p->in6p_flags &= ~(bit); \ 1493 } while (/*CONSTCOND*/ 0) 1494 1495 case IPV6_RECVPKTINFO: 1496 /* cannot mix with RFC2292 */ 1497 if (OPTBIT(IN6P_RFC2292)) { 1498 error = EINVAL; 1499 break; 1500 } 1501 OPTSET(IN6P_PKTINFO); 1502 break; 1503 1504 case IPV6_HOPLIMIT: 1505 { 1506 struct ip6_pktopts **optp; 1507 1508 /* cannot mix with RFC2292 */ 1509 if (OPTBIT(IN6P_RFC2292)) { 1510 error = EINVAL; 1511 break; 1512 } 1513 optp = &in6p->in6p_outputopts; 1514 error = ip6_pcbopt(IPV6_HOPLIMIT, 1515 (u_char *)&optval, sizeof(optval), 1516 optp, uproto); 1517 break; 1518 } 1519 1520 case IPV6_RECVHOPLIMIT: 1521 /* cannot mix with RFC2292 */ 1522 if (OPTBIT(IN6P_RFC2292)) { 1523 error = EINVAL; 1524 break; 1525 } 1526 OPTSET(IN6P_HOPLIMIT); 1527 break; 1528 1529 case IPV6_RECVHOPOPTS: 1530 /* cannot mix with RFC2292 */ 1531 if (OPTBIT(IN6P_RFC2292)) { 1532 error = EINVAL; 1533 break; 1534 } 1535 OPTSET(IN6P_HOPOPTS); 1536 break; 1537 1538 case IPV6_RECVDSTOPTS: 1539 /* cannot mix with RFC2292 */ 1540 if (OPTBIT(IN6P_RFC2292)) { 1541 error = EINVAL; 1542 break; 1543 } 1544 OPTSET(IN6P_DSTOPTS); 1545 break; 1546 1547 case IPV6_RECVRTHDRDSTOPTS: 1548 /* cannot mix with RFC2292 */ 1549 if (OPTBIT(IN6P_RFC2292)) { 1550 error = EINVAL; 1551 break; 1552 } 1553 OPTSET(IN6P_RTHDRDSTOPTS); 1554 break; 1555 1556 case IPV6_RECVRTHDR: 1557 /* cannot mix with RFC2292 */ 1558 if (OPTBIT(IN6P_RFC2292)) { 1559 error = EINVAL; 1560 break; 1561 } 1562 OPTSET(IN6P_RTHDR); 1563 break; 1564 1565 case IPV6_RECVPATHMTU: 1566 /* 1567 * We ignore this option for TCP 1568 * sockets. 1569 * (RFC3542 leaves this case 1570 * unspecified.) 1571 */ 1572 if (uproto != IPPROTO_TCP) 1573 OPTSET(IN6P_MTU); 1574 break; 1575 1576 case IPV6_RECVTCLASS: 1577 /* cannot mix with RFC2292 XXX */ 1578 if (OPTBIT(IN6P_RFC2292)) { 1579 error = EINVAL; 1580 break; 1581 } 1582 OPTSET(IN6P_TCLASS); 1583 break; 1584 1585 case IPV6_AUTOFLOWLABEL: 1586 OPTSET(IN6P_AUTOFLOWLABEL); 1587 break; 1588 1589 case IPV6_FAITH: 1590 OPTSET(IN6P_FAITH); 1591 break; 1592 1593 case IPV6_V6ONLY: 1594 /* 1595 * make setsockopt(IPV6_V6ONLY) 1596 * available only prior to bind(2). 1597 */ 1598 if (in6p->in6p_lport || 1599 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) 1600 { 1601 error = EINVAL; 1602 break; 1603 } 1604 OPTSET(IN6P_IPV6_V6ONLY); 1605 if (optval) 1606 in6p->in6p_vflag &= ~INP_IPV4; 1607 else 1608 in6p->in6p_vflag |= INP_IPV4; 1609 break; 1610 } 1611 break; 1612 1613 case IPV6_TCLASS: 1614 case IPV6_DONTFRAG: 1615 case IPV6_USE_MIN_MTU: 1616 case IPV6_PREFER_TEMPADDR: 1617 if (optlen != sizeof(optval)) { 1618 error = EINVAL; 1619 break; 1620 } 1621 error = soopt_to_kbuf(sopt, &optval, 1622 sizeof optval, sizeof optval); 1623 if (error) 1624 break; 1625 { 1626 struct ip6_pktopts **optp; 1627 optp = &in6p->in6p_outputopts; 1628 error = ip6_pcbopt(optname, 1629 (u_char *)&optval, sizeof(optval), 1630 optp, uproto); 1631 break; 1632 } 1633 1634 case IPV6_2292PKTINFO: 1635 case IPV6_2292HOPLIMIT: 1636 case IPV6_2292HOPOPTS: 1637 case IPV6_2292DSTOPTS: 1638 case IPV6_2292RTHDR: 1639 /* RFC 2292 */ 1640 if (optlen != sizeof(int)) { 1641 error = EINVAL; 1642 break; 1643 } 1644 error = soopt_to_kbuf(sopt, &optval, 1645 sizeof optval, sizeof optval); 1646 if (error) 1647 break; 1648 switch (optname) { 1649 case IPV6_2292PKTINFO: 1650 OPTSET2292(IN6P_PKTINFO); 1651 break; 1652 case IPV6_2292HOPLIMIT: 1653 OPTSET2292(IN6P_HOPLIMIT); 1654 break; 1655 case IPV6_2292HOPOPTS: 1656 /* 1657 * Check super-user privilege. 1658 * See comments for IPV6_RECVHOPOPTS. 1659 */ 1660 if (!privileged) 1661 return (EPERM); 1662 OPTSET2292(IN6P_HOPOPTS); 1663 break; 1664 case IPV6_2292DSTOPTS: 1665 if (!privileged) 1666 return (EPERM); 1667 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1668 break; 1669 case IPV6_2292RTHDR: 1670 OPTSET2292(IN6P_RTHDR); 1671 break; 1672 } 1673 break; 1674 1675 case IPV6_PKTINFO: 1676 case IPV6_HOPOPTS: 1677 case IPV6_RTHDR: 1678 case IPV6_DSTOPTS: 1679 case IPV6_RTHDRDSTOPTS: 1680 case IPV6_NEXTHOP: 1681 { 1682 /* 1683 * New advanced API (RFC3542) 1684 */ 1685 u_char *optbuf; 1686 u_char optbuf_storage[MCLBYTES]; 1687 int optlen; 1688 struct ip6_pktopts **optp; 1689 1690 /* cannot mix with RFC2292 */ 1691 if (OPTBIT(IN6P_RFC2292)) { 1692 error = EINVAL; 1693 break; 1694 } 1695 1696 /* 1697 * We only ensure valsize is not too large 1698 * here. Further validation will be done 1699 * later. 1700 */ 1701 error = soopt_to_kbuf(sopt, optbuf_storage, 1702 sizeof(optbuf_storage), 0); 1703 if (error) 1704 break; 1705 optlen = sopt->sopt_valsize; 1706 optbuf = optbuf_storage; 1707 optp = &in6p->in6p_outputopts; 1708 error = ip6_pcbopt(optname, optbuf, optlen, 1709 optp, uproto); 1710 break; 1711 } 1712 #undef OPTSET 1713 1714 case IPV6_MULTICAST_IF: 1715 case IPV6_MULTICAST_HOPS: 1716 case IPV6_MULTICAST_LOOP: 1717 case IPV6_JOIN_GROUP: 1718 case IPV6_LEAVE_GROUP: 1719 { 1720 struct mbuf *m; 1721 if (sopt->sopt_valsize > MLEN) { 1722 error = EMSGSIZE; 1723 break; 1724 } 1725 /* XXX */ 1726 MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_HEADER); 1727 if (m == NULL) { 1728 error = ENOBUFS; 1729 break; 1730 } 1731 m->m_len = sopt->sopt_valsize; 1732 error = soopt_to_kbuf(sopt, mtod(m, char *), 1733 m->m_len, m->m_len); 1734 error = ip6_setmoptions(sopt->sopt_name, 1735 &in6p->in6p_moptions, 1736 m); 1737 m_free(m); 1738 } 1739 break; 1740 1741 case IPV6_PORTRANGE: 1742 error = soopt_to_kbuf(sopt, &optval, 1743 sizeof optval, sizeof optval); 1744 if (error) 1745 break; 1746 1747 switch (optval) { 1748 case IPV6_PORTRANGE_DEFAULT: 1749 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1750 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1751 break; 1752 1753 case IPV6_PORTRANGE_HIGH: 1754 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1755 in6p->in6p_flags |= IN6P_HIGHPORT; 1756 break; 1757 1758 case IPV6_PORTRANGE_LOW: 1759 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1760 in6p->in6p_flags |= IN6P_LOWPORT; 1761 break; 1762 1763 default: 1764 error = EINVAL; 1765 break; 1766 } 1767 break; 1768 1769 #if defined(IPSEC) || defined(FAST_IPSEC) 1770 case IPV6_IPSEC_POLICY: 1771 { 1772 caddr_t req = NULL; 1773 size_t len = 0; 1774 struct mbuf *m; 1775 1776 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1777 break; 1778 soopt_to_mbuf(sopt, m); /* XXX */ 1779 if (m) { 1780 req = mtod(m, caddr_t); 1781 len = m->m_len; 1782 } 1783 error = ipsec6_set_policy(in6p, optname, req, 1784 len, privileged); 1785 m_freem(m); 1786 } 1787 break; 1788 #endif /* KAME IPSEC */ 1789 1790 case IPV6_FW_ADD: 1791 case IPV6_FW_DEL: 1792 case IPV6_FW_FLUSH: 1793 case IPV6_FW_ZERO: 1794 { 1795 struct mbuf *m; 1796 struct mbuf **mp = &m; 1797 1798 if (ip6_fw_ctl_ptr == NULL) 1799 return EINVAL; 1800 /* XXX */ 1801 if ((error = soopt_getm(sopt, &m)) != 0) 1802 break; 1803 /* XXX */ 1804 soopt_to_mbuf(sopt, m); 1805 error = (*ip6_fw_ctl_ptr)(optname, mp); 1806 m = *mp; 1807 } 1808 break; 1809 1810 default: 1811 error = ENOPROTOOPT; 1812 break; 1813 } 1814 break; 1815 1816 case SOPT_GET: 1817 switch (optname) { 1818 case IPV6_2292PKTOPTIONS: 1819 #ifdef IPV6_PKTOPTIONS 1820 case IPV6_PKTOPTIONS: 1821 #endif 1822 /* 1823 * RFC3542 (effectively) deprecated the 1824 * semantics of the 2292-style pktoptions. 1825 * Since it was not reliable in nature (i.e., 1826 * applications had to expect the lack of some 1827 * information after all), it would make sense 1828 * to simplify this part by always returning 1829 * empty data. 1830 */ 1831 if (in6p->in6p_options) { 1832 struct mbuf *m; 1833 m = m_copym(in6p->in6p_options, 1834 0, M_COPYALL, MB_WAIT); 1835 error = soopt_from_mbuf(sopt, m); 1836 if (error == 0) 1837 m_freem(m); 1838 } else 1839 sopt->sopt_valsize = 0; 1840 break; 1841 1842 case IPV6_RECVHOPOPTS: 1843 case IPV6_RECVDSTOPTS: 1844 case IPV6_RECVRTHDRDSTOPTS: 1845 case IPV6_UNICAST_HOPS: 1846 case IPV6_RECVPKTINFO: 1847 case IPV6_RECVHOPLIMIT: 1848 case IPV6_RECVRTHDR: 1849 case IPV6_RECVPATHMTU: 1850 case IPV6_RECVTCLASS: 1851 case IPV6_AUTOFLOWLABEL: 1852 case IPV6_FAITH: 1853 case IPV6_V6ONLY: 1854 case IPV6_PORTRANGE: 1855 switch (optname) { 1856 1857 case IPV6_RECVHOPOPTS: 1858 optval = OPTBIT(IN6P_HOPOPTS); 1859 break; 1860 1861 case IPV6_RECVDSTOPTS: 1862 optval = OPTBIT(IN6P_DSTOPTS); 1863 break; 1864 1865 case IPV6_RECVRTHDRDSTOPTS: 1866 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1867 break; 1868 1869 case IPV6_RECVPKTINFO: 1870 optval = OPTBIT(IN6P_PKTINFO); 1871 break; 1872 1873 case IPV6_RECVHOPLIMIT: 1874 optval = OPTBIT(IN6P_HOPLIMIT); 1875 break; 1876 1877 case IPV6_RECVRTHDR: 1878 optval = OPTBIT(IN6P_RTHDR); 1879 break; 1880 1881 case IPV6_RECVPATHMTU: 1882 optval = OPTBIT(IN6P_MTU); 1883 break; 1884 1885 case IPV6_RECVTCLASS: 1886 optval = OPTBIT(IN6P_TCLASS); 1887 break; 1888 1889 case IPV6_AUTOFLOWLABEL: 1890 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1891 break; 1892 1893 1894 case IPV6_UNICAST_HOPS: 1895 optval = in6p->in6p_hops; 1896 break; 1897 1898 case IPV6_FAITH: 1899 optval = OPTBIT(IN6P_FAITH); 1900 break; 1901 1902 case IPV6_V6ONLY: 1903 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1904 break; 1905 1906 case IPV6_PORTRANGE: 1907 { 1908 int flags; 1909 flags = in6p->in6p_flags; 1910 if (flags & IN6P_HIGHPORT) 1911 optval = IPV6_PORTRANGE_HIGH; 1912 else if (flags & IN6P_LOWPORT) 1913 optval = IPV6_PORTRANGE_LOW; 1914 else 1915 optval = 0; 1916 break; 1917 } 1918 } 1919 soopt_from_kbuf(sopt, &optval, 1920 sizeof optval); 1921 break; 1922 1923 case IPV6_PATHMTU: 1924 { 1925 u_long pmtu = 0; 1926 struct ip6_mtuinfo mtuinfo; 1927 struct route_in6 sro; 1928 1929 bzero(&sro, sizeof(sro)); 1930 1931 if (!(so->so_state & SS_ISCONNECTED)) 1932 return (ENOTCONN); 1933 /* 1934 * XXX: we dot not consider the case of source 1935 * routing, or optional information to specify 1936 * the outgoing interface. 1937 */ 1938 error = ip6_getpmtu(&sro, NULL, NULL, 1939 &in6p->in6p_faddr, &pmtu, NULL); 1940 if (sro.ro_rt) 1941 RTFREE(sro.ro_rt); 1942 if (error) 1943 break; 1944 if (pmtu > IPV6_MAXPACKET) 1945 pmtu = IPV6_MAXPACKET; 1946 1947 bzero(&mtuinfo, sizeof(mtuinfo)); 1948 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1949 optdata = (void *)&mtuinfo; 1950 optdatalen = sizeof(mtuinfo); 1951 soopt_from_kbuf(sopt, optdata, 1952 optdatalen); 1953 break; 1954 } 1955 1956 case IPV6_2292PKTINFO: 1957 case IPV6_2292HOPLIMIT: 1958 case IPV6_2292HOPOPTS: 1959 case IPV6_2292RTHDR: 1960 case IPV6_2292DSTOPTS: 1961 if (optname == IPV6_2292HOPOPTS || 1962 optname == IPV6_2292DSTOPTS || 1963 !privileged) 1964 return (EPERM); 1965 switch (optname) { 1966 case IPV6_2292PKTINFO: 1967 optval = OPTBIT(IN6P_PKTINFO); 1968 break; 1969 case IPV6_2292HOPLIMIT: 1970 optval = OPTBIT(IN6P_HOPLIMIT); 1971 break; 1972 case IPV6_2292HOPOPTS: 1973 if (!privileged) 1974 return (EPERM); 1975 optval = OPTBIT(IN6P_HOPOPTS); 1976 break; 1977 case IPV6_2292RTHDR: 1978 optval = OPTBIT(IN6P_RTHDR); 1979 break; 1980 case IPV6_2292DSTOPTS: 1981 if (!privileged) 1982 return (EPERM); 1983 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1984 break; 1985 } 1986 soopt_from_kbuf(sopt, &optval, 1987 sizeof optval); 1988 break; 1989 1990 case IPV6_PKTINFO: 1991 case IPV6_HOPOPTS: 1992 case IPV6_RTHDR: 1993 case IPV6_DSTOPTS: 1994 case IPV6_RTHDRDSTOPTS: 1995 case IPV6_NEXTHOP: 1996 case IPV6_TCLASS: 1997 case IPV6_DONTFRAG: 1998 case IPV6_USE_MIN_MTU: 1999 case IPV6_PREFER_TEMPADDR: 2000 error = ip6_getpcbopt(in6p->in6p_outputopts, 2001 optname, sopt); 2002 break; 2003 2004 case IPV6_MULTICAST_IF: 2005 case IPV6_MULTICAST_HOPS: 2006 case IPV6_MULTICAST_LOOP: 2007 case IPV6_JOIN_GROUP: 2008 case IPV6_LEAVE_GROUP: 2009 { 2010 struct mbuf *m; 2011 error = ip6_getmoptions(sopt->sopt_name, 2012 in6p->in6p_moptions, &m); 2013 if (error == 0) 2014 soopt_from_kbuf(sopt, 2015 mtod(m, char *), m->m_len); 2016 m_freem(m); 2017 } 2018 break; 2019 2020 #if defined(IPSEC) || defined(FAST_IPSEC) 2021 case IPV6_IPSEC_POLICY: 2022 { 2023 caddr_t req = NULL; 2024 size_t len = 0; 2025 struct mbuf *m = NULL; 2026 struct mbuf **mp = &m; 2027 2028 error = soopt_getm(sopt, &m); /* XXX */ 2029 if (error != 0) 2030 break; 2031 soopt_to_mbuf(sopt, m); /* XXX */ 2032 if (m) { 2033 req = mtod(m, caddr_t); 2034 len = m->m_len; 2035 } 2036 error = ipsec6_get_policy(in6p, req, len, mp); 2037 if (error == 0) 2038 error = soopt_from_mbuf(sopt, m); /*XXX*/ 2039 if (error == 0 && m != NULL) 2040 m_freem(m); 2041 break; 2042 } 2043 #endif /* KAME IPSEC */ 2044 2045 case IPV6_FW_GET: 2046 { 2047 struct mbuf *m; 2048 struct mbuf **mp = &m; 2049 2050 if (ip6_fw_ctl_ptr == NULL) 2051 { 2052 return EINVAL; 2053 } 2054 error = (*ip6_fw_ctl_ptr)(optname, mp); 2055 if (error == 0) 2056 error = soopt_from_mbuf(sopt, m); /* XXX */ 2057 if (error == 0 && m != NULL) 2058 m_freem(m); 2059 } 2060 break; 2061 2062 default: 2063 error = ENOPROTOOPT; 2064 break; 2065 } 2066 break; 2067 } 2068 } else { 2069 error = EINVAL; 2070 } 2071 return (error); 2072 } 2073 2074 int 2075 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2076 { 2077 int error = 0, optval, optlen; 2078 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2079 struct in6pcb *in6p = sotoin6pcb(so); 2080 int level, op, optname; 2081 2082 if (sopt) { 2083 level = sopt->sopt_level; 2084 op = sopt->sopt_dir; 2085 optname = sopt->sopt_name; 2086 optlen = sopt->sopt_valsize; 2087 } else 2088 panic("ip6_raw_ctloutput: arg soopt is NULL"); 2089 2090 if (level != IPPROTO_IPV6) { 2091 return (EINVAL); 2092 } 2093 2094 switch (optname) { 2095 case IPV6_CHECKSUM: 2096 /* 2097 * For ICMPv6 sockets, no modification allowed for checksum 2098 * offset, permit "no change" values to help existing apps. 2099 * 2100 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2101 * for an ICMPv6 socket will fail." 2102 * The current behavior does not meet RFC3542. 2103 */ 2104 switch (op) { 2105 case SOPT_SET: 2106 if (optlen != sizeof(int)) { 2107 error = EINVAL; 2108 break; 2109 } 2110 error = soopt_to_kbuf(sopt, &optval, 2111 sizeof optval, sizeof optval); 2112 if (error) 2113 break; 2114 if ((optval % 2) != 0) { 2115 /* the API assumes even offset values */ 2116 error = EINVAL; 2117 } else if (so->so_proto->pr_protocol == 2118 IPPROTO_ICMPV6) { 2119 if (optval != icmp6off) 2120 error = EINVAL; 2121 } else 2122 in6p->in6p_cksum = optval; 2123 break; 2124 2125 case SOPT_GET: 2126 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2127 optval = icmp6off; 2128 else 2129 optval = in6p->in6p_cksum; 2130 2131 soopt_from_kbuf(sopt, &optval, sizeof(optval)); 2132 break; 2133 2134 default: 2135 error = EINVAL; 2136 break; 2137 } 2138 break; 2139 2140 default: 2141 error = ENOPROTOOPT; 2142 break; 2143 } 2144 2145 return (error); 2146 } 2147 2148 /* 2149 * Set up IP6 options in pcb for insertion in output packets or 2150 * specifying behavior of outgoing packets. 2151 */ 2152 static int 2153 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2154 struct socket *so, struct sockopt *sopt) 2155 { 2156 int priv = 0; 2157 struct ip6_pktopts *opt = *pktopt; 2158 int error = 0; 2159 2160 /* turn off any old options. */ 2161 if (opt) { 2162 #ifdef DIAGNOSTIC 2163 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2164 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2165 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2166 kprintf("ip6_pcbopts: all specified options are cleared.\n"); 2167 #endif 2168 ip6_clearpktopts(opt, -1); 2169 } else 2170 opt = kmalloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2171 *pktopt = NULL; 2172 2173 if (!m || m->m_len == 0) { 2174 /* 2175 * Only turning off any previous options, regardless of 2176 * whether the opt is just created or given. 2177 */ 2178 kfree(opt, M_IP6OPT); 2179 return (0); 2180 } 2181 2182 /* set options specified by user. */ 2183 if ((error = ip6_setpktoptions(m, opt, NULL, so->so_proto->pr_protocol, priv)) != 0) { 2184 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2185 kfree(opt, M_IP6OPT); 2186 return (error); 2187 } 2188 *pktopt = opt; 2189 return (0); 2190 } 2191 2192 2193 /* 2194 * Below three functions are introduced by merge to RFC3542 2195 */ 2196 2197 static int 2198 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2199 { 2200 void *optdata = NULL; 2201 int optdatalen = 0; 2202 struct ip6_ext *ip6e; 2203 int error = 0; 2204 struct in6_pktinfo null_pktinfo; 2205 int deftclass = 0, on; 2206 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2207 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2208 2209 switch (optname) { 2210 case IPV6_PKTINFO: 2211 if (pktopt && pktopt->ip6po_pktinfo) 2212 optdata = (void *)pktopt->ip6po_pktinfo; 2213 else { 2214 /* XXX: we don't have to do this every time... */ 2215 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2216 optdata = (void *)&null_pktinfo; 2217 } 2218 optdatalen = sizeof(struct in6_pktinfo); 2219 break; 2220 case IPV6_TCLASS: 2221 if (pktopt && pktopt->ip6po_tclass >= 0) 2222 optdata = (void *)&pktopt->ip6po_tclass; 2223 else 2224 optdata = (void *)&deftclass; 2225 optdatalen = sizeof(int); 2226 break; 2227 case IPV6_HOPOPTS: 2228 if (pktopt && pktopt->ip6po_hbh) { 2229 optdata = (void *)pktopt->ip6po_hbh; 2230 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2231 optdatalen = (ip6e->ip6e_len + 1) << 3; 2232 } 2233 break; 2234 case IPV6_RTHDR: 2235 if (pktopt && pktopt->ip6po_rthdr) { 2236 optdata = (void *)pktopt->ip6po_rthdr; 2237 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2238 optdatalen = (ip6e->ip6e_len + 1) << 3; 2239 } 2240 break; 2241 case IPV6_RTHDRDSTOPTS: 2242 if (pktopt && pktopt->ip6po_dest1) { 2243 optdata = (void *)pktopt->ip6po_dest1; 2244 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2245 optdatalen = (ip6e->ip6e_len + 1) << 3; 2246 } 2247 break; 2248 case IPV6_DSTOPTS: 2249 if (pktopt && pktopt->ip6po_dest2) { 2250 optdata = (void *)pktopt->ip6po_dest2; 2251 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2252 optdatalen = (ip6e->ip6e_len + 1) << 3; 2253 } 2254 break; 2255 case IPV6_NEXTHOP: 2256 if (pktopt && pktopt->ip6po_nexthop) { 2257 optdata = (void *)pktopt->ip6po_nexthop; 2258 optdatalen = pktopt->ip6po_nexthop->sa_len; 2259 } 2260 break; 2261 case IPV6_USE_MIN_MTU: 2262 if (pktopt) 2263 optdata = (void *)&pktopt->ip6po_minmtu; 2264 else 2265 optdata = (void *)&defminmtu; 2266 optdatalen = sizeof(int); 2267 break; 2268 case IPV6_DONTFRAG: 2269 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2270 on = 1; 2271 else 2272 on = 0; 2273 optdata = (void *)&on; 2274 optdatalen = sizeof(on); 2275 break; 2276 case IPV6_PREFER_TEMPADDR: 2277 if (pktopt) 2278 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2279 else 2280 optdata = (void *)&defpreftemp; 2281 optdatalen = sizeof(int); 2282 break; 2283 default: /* should not happen */ 2284 #ifdef DIAGNOSTIC 2285 panic("ip6_getpcbopt: unexpected option"); 2286 #endif 2287 return (ENOPROTOOPT); 2288 } 2289 2290 soopt_from_kbuf(sopt, optdata, optdatalen); 2291 2292 return (error); 2293 } 2294 2295 /* 2296 * initialize ip6_pktopts. beware that there are non-zero default values in 2297 * the struct. 2298 */ 2299 2300 static int 2301 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, int uproto) 2302 { 2303 struct ip6_pktopts *opt; 2304 int priv =0; 2305 if (*pktopt == NULL) { 2306 *pktopt = kmalloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2307 init_ip6pktopts(*pktopt); 2308 } 2309 opt = *pktopt; 2310 2311 return (ip6_setpktoption(optname, buf, len, opt, 1, 0, uproto, priv)); 2312 } 2313 2314 /* 2315 * initialize ip6_pktopts. beware that there are non-zero default values in 2316 * the struct. 2317 */ 2318 void 2319 init_ip6pktopts(struct ip6_pktopts *opt) 2320 { 2321 2322 bzero(opt, sizeof(*opt)); 2323 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2324 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2325 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2326 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2327 } 2328 2329 void 2330 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2331 { 2332 if (pktopt == NULL) 2333 return; 2334 2335 if (optname == -1 || optname == IPV6_PKTINFO) { 2336 if (pktopt->ip6po_pktinfo) 2337 kfree(pktopt->ip6po_pktinfo, M_IP6OPT); 2338 pktopt->ip6po_pktinfo = NULL; 2339 } 2340 if (optname == -1 || optname == IPV6_HOPLIMIT) 2341 pktopt->ip6po_hlim = -1; 2342 if (optname == -1 || optname == IPV6_TCLASS) 2343 pktopt->ip6po_tclass = -1; 2344 if (optname == -1 || optname == IPV6_NEXTHOP) { 2345 if (pktopt->ip6po_nextroute.ro_rt) { 2346 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2347 pktopt->ip6po_nextroute.ro_rt = NULL; 2348 } 2349 if (pktopt->ip6po_nexthop) 2350 kfree(pktopt->ip6po_nexthop, M_IP6OPT); 2351 pktopt->ip6po_nexthop = NULL; 2352 } 2353 if (optname == -1 || optname == IPV6_HOPOPTS) { 2354 if (pktopt->ip6po_hbh) 2355 kfree(pktopt->ip6po_hbh, M_IP6OPT); 2356 pktopt->ip6po_hbh = NULL; 2357 } 2358 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2359 if (pktopt->ip6po_dest1) 2360 kfree(pktopt->ip6po_dest1, M_IP6OPT); 2361 pktopt->ip6po_dest1 = NULL; 2362 } 2363 if (optname == -1 || optname == IPV6_RTHDR) { 2364 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2365 kfree(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2366 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2367 if (pktopt->ip6po_route.ro_rt) { 2368 RTFREE(pktopt->ip6po_route.ro_rt); 2369 pktopt->ip6po_route.ro_rt = NULL; 2370 } 2371 } 2372 if (optname == -1 || optname == IPV6_DSTOPTS) { 2373 if (pktopt->ip6po_dest2) 2374 kfree(pktopt->ip6po_dest2, M_IP6OPT); 2375 pktopt->ip6po_dest2 = NULL; 2376 } 2377 } 2378 2379 #define PKTOPT_EXTHDRCPY(type) \ 2380 do {\ 2381 if (src->type) {\ 2382 int hlen =\ 2383 (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2384 dst->type = kmalloc(hlen, M_IP6OPT, canwait);\ 2385 if (dst->type == NULL)\ 2386 goto bad;\ 2387 bcopy(src->type, dst->type, hlen);\ 2388 }\ 2389 } while (0) 2390 2391 struct ip6_pktopts * 2392 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2393 { 2394 struct ip6_pktopts *dst; 2395 2396 if (src == NULL) { 2397 kprintf("ip6_clearpktopts: invalid argument\n"); 2398 return (NULL); 2399 } 2400 2401 dst = kmalloc(sizeof(*dst), M_IP6OPT, canwait | M_ZERO); 2402 if (dst == NULL) 2403 return (NULL); 2404 2405 dst->ip6po_hlim = src->ip6po_hlim; 2406 if (src->ip6po_pktinfo) { 2407 dst->ip6po_pktinfo = kmalloc(sizeof(*dst->ip6po_pktinfo), 2408 M_IP6OPT, canwait); 2409 if (dst->ip6po_pktinfo == NULL) 2410 goto bad; 2411 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2412 } 2413 if (src->ip6po_nexthop) { 2414 dst->ip6po_nexthop = kmalloc(src->ip6po_nexthop->sa_len, 2415 M_IP6OPT, canwait); 2416 if (dst->ip6po_nexthop == NULL) 2417 goto bad; 2418 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2419 src->ip6po_nexthop->sa_len); 2420 } 2421 PKTOPT_EXTHDRCPY(ip6po_hbh); 2422 PKTOPT_EXTHDRCPY(ip6po_dest1); 2423 PKTOPT_EXTHDRCPY(ip6po_dest2); 2424 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2425 return (dst); 2426 2427 bad: 2428 if (dst->ip6po_pktinfo) kfree(dst->ip6po_pktinfo, M_IP6OPT); 2429 if (dst->ip6po_nexthop) kfree(dst->ip6po_nexthop, M_IP6OPT); 2430 if (dst->ip6po_hbh) kfree(dst->ip6po_hbh, M_IP6OPT); 2431 if (dst->ip6po_dest1) kfree(dst->ip6po_dest1, M_IP6OPT); 2432 if (dst->ip6po_dest2) kfree(dst->ip6po_dest2, M_IP6OPT); 2433 if (dst->ip6po_rthdr) kfree(dst->ip6po_rthdr, M_IP6OPT); 2434 kfree(dst, M_IP6OPT); 2435 return (NULL); 2436 } 2437 2438 static int 2439 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2440 { 2441 if (dst == NULL || src == NULL) { 2442 #ifdef DIAGNOSTIC 2443 kprintf("ip6_clearpktopts: invalid argument\n"); 2444 #endif 2445 return (EINVAL); 2446 } 2447 2448 dst->ip6po_hlim = src->ip6po_hlim; 2449 dst->ip6po_tclass = src->ip6po_tclass; 2450 dst->ip6po_flags = src->ip6po_flags; 2451 if (src->ip6po_pktinfo) { 2452 dst->ip6po_pktinfo = kmalloc(sizeof(*dst->ip6po_pktinfo), 2453 M_IP6OPT, canwait); 2454 if (dst->ip6po_pktinfo == NULL) 2455 goto bad; 2456 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2457 } 2458 if (src->ip6po_nexthop) { 2459 dst->ip6po_nexthop = kmalloc(src->ip6po_nexthop->sa_len, 2460 M_IP6OPT, canwait); 2461 if (dst->ip6po_nexthop == NULL) 2462 goto bad; 2463 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2464 src->ip6po_nexthop->sa_len); 2465 } 2466 PKTOPT_EXTHDRCPY(ip6po_hbh); 2467 PKTOPT_EXTHDRCPY(ip6po_dest1); 2468 PKTOPT_EXTHDRCPY(ip6po_dest2); 2469 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2470 return (0); 2471 2472 bad: 2473 ip6_clearpktopts(dst, -1); 2474 return (ENOBUFS); 2475 } 2476 #undef PKTOPT_EXTHDRCPY 2477 2478 void 2479 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2480 { 2481 if (pktopt == NULL) 2482 return; 2483 2484 ip6_clearpktopts(pktopt, -1); 2485 2486 kfree(pktopt, M_IP6OPT); 2487 } 2488 2489 /* 2490 * Set the IP6 multicast options in response to user setsockopt(). 2491 */ 2492 static int 2493 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m) 2494 { 2495 int error = 0; 2496 u_int loop, ifindex; 2497 struct ipv6_mreq *mreq; 2498 struct ifnet *ifp; 2499 struct ip6_moptions *im6o = *im6op; 2500 struct route_in6 ro; 2501 struct sockaddr_in6 *dst; 2502 struct in6_multi_mship *imm; 2503 struct thread *td = curthread; /* XXX */ 2504 2505 if (im6o == NULL) { 2506 /* 2507 * No multicast option buffer attached to the pcb; 2508 * allocate one and initialize to default values. 2509 */ 2510 im6o = (struct ip6_moptions *) 2511 kmalloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 2512 2513 *im6op = im6o; 2514 im6o->im6o_multicast_ifp = NULL; 2515 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2516 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2517 LIST_INIT(&im6o->im6o_memberships); 2518 } 2519 2520 switch (optname) { 2521 2522 case IPV6_MULTICAST_IF: 2523 /* 2524 * Select the interface for outgoing multicast packets. 2525 */ 2526 if (m == NULL || m->m_len != sizeof(u_int)) { 2527 error = EINVAL; 2528 break; 2529 } 2530 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 2531 if (ifindex < 0 || if_index < ifindex) { 2532 error = ENXIO; /* XXX EINVAL? */ 2533 break; 2534 } 2535 ifp = ifindex2ifnet[ifindex]; 2536 if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) { 2537 error = EADDRNOTAVAIL; 2538 break; 2539 } 2540 im6o->im6o_multicast_ifp = ifp; 2541 break; 2542 2543 case IPV6_MULTICAST_HOPS: 2544 { 2545 /* 2546 * Set the IP6 hoplimit for outgoing multicast packets. 2547 */ 2548 int optval; 2549 if (m == NULL || m->m_len != sizeof(int)) { 2550 error = EINVAL; 2551 break; 2552 } 2553 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 2554 if (optval < -1 || optval >= 256) 2555 error = EINVAL; 2556 else if (optval == -1) 2557 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2558 else 2559 im6o->im6o_multicast_hlim = optval; 2560 break; 2561 } 2562 2563 case IPV6_MULTICAST_LOOP: 2564 /* 2565 * Set the loopback flag for outgoing multicast packets. 2566 * Must be zero or one. 2567 */ 2568 if (m == NULL || m->m_len != sizeof(u_int)) { 2569 error = EINVAL; 2570 break; 2571 } 2572 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 2573 if (loop > 1) { 2574 error = EINVAL; 2575 break; 2576 } 2577 im6o->im6o_multicast_loop = loop; 2578 break; 2579 2580 case IPV6_JOIN_GROUP: 2581 /* 2582 * Add a multicast group membership. 2583 * Group must be a valid IP6 multicast address. 2584 */ 2585 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2586 error = EINVAL; 2587 break; 2588 } 2589 mreq = mtod(m, struct ipv6_mreq *); 2590 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2591 /* 2592 * We use the unspecified address to specify to accept 2593 * all multicast addresses. Only super user is allowed 2594 * to do this. 2595 */ 2596 if (priv_check(td, PRIV_ROOT)) 2597 { 2598 error = EACCES; 2599 break; 2600 } 2601 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2602 error = EINVAL; 2603 break; 2604 } 2605 2606 /* 2607 * If the interface is specified, validate it. 2608 */ 2609 if (mreq->ipv6mr_interface < 0 2610 || if_index < mreq->ipv6mr_interface) { 2611 error = ENXIO; /* XXX EINVAL? */ 2612 break; 2613 } 2614 /* 2615 * If no interface was explicitly specified, choose an 2616 * appropriate one according to the given multicast address. 2617 */ 2618 if (mreq->ipv6mr_interface == 0) { 2619 /* 2620 * If the multicast address is in node-local scope, 2621 * the interface should be a loopback interface. 2622 * Otherwise, look up the routing table for the 2623 * address, and choose the outgoing interface. 2624 * XXX: is it a good approach? 2625 */ 2626 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 2627 ifp = &loif[0]; 2628 } else { 2629 ro.ro_rt = NULL; 2630 dst = (struct sockaddr_in6 *)&ro.ro_dst; 2631 bzero(dst, sizeof(*dst)); 2632 dst->sin6_len = sizeof(struct sockaddr_in6); 2633 dst->sin6_family = AF_INET6; 2634 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2635 rtalloc((struct route *)&ro); 2636 if (ro.ro_rt == NULL) { 2637 error = EADDRNOTAVAIL; 2638 break; 2639 } 2640 ifp = ro.ro_rt->rt_ifp; 2641 rtfree(ro.ro_rt); 2642 } 2643 } else 2644 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 2645 2646 /* 2647 * See if we found an interface, and confirm that it 2648 * supports multicast 2649 */ 2650 if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) { 2651 error = EADDRNOTAVAIL; 2652 break; 2653 } 2654 /* 2655 * Put interface index into the multicast address, 2656 * if the address has link-local scope. 2657 */ 2658 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2659 mreq->ipv6mr_multiaddr.s6_addr16[1] 2660 = htons(mreq->ipv6mr_interface); 2661 } 2662 /* 2663 * See if the membership already exists. 2664 */ 2665 for (imm = im6o->im6o_memberships.lh_first; 2666 imm != NULL; imm = imm->i6mm_chain.le_next) 2667 if (imm->i6mm_maddr->in6m_ifp == ifp && 2668 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2669 &mreq->ipv6mr_multiaddr)) 2670 break; 2671 if (imm != NULL) { 2672 error = EADDRINUSE; 2673 break; 2674 } 2675 /* 2676 * Everything looks good; add a new record to the multicast 2677 * address list for the given interface. 2678 */ 2679 imm = kmalloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 2680 if ((imm->i6mm_maddr = 2681 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 2682 kfree(imm, M_IPMADDR); 2683 break; 2684 } 2685 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2686 break; 2687 2688 case IPV6_LEAVE_GROUP: 2689 /* 2690 * Drop a multicast group membership. 2691 * Group must be a valid IP6 multicast address. 2692 */ 2693 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2694 error = EINVAL; 2695 break; 2696 } 2697 mreq = mtod(m, struct ipv6_mreq *); 2698 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2699 if (priv_check(td, PRIV_ROOT)) { 2700 error = EACCES; 2701 break; 2702 } 2703 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2704 error = EINVAL; 2705 break; 2706 } 2707 /* 2708 * If an interface address was specified, get a pointer 2709 * to its ifnet structure. 2710 */ 2711 if (mreq->ipv6mr_interface < 0 2712 || if_index < mreq->ipv6mr_interface) { 2713 error = ENXIO; /* XXX EINVAL? */ 2714 break; 2715 } 2716 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 2717 /* 2718 * Put interface index into the multicast address, 2719 * if the address has link-local scope. 2720 */ 2721 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2722 mreq->ipv6mr_multiaddr.s6_addr16[1] 2723 = htons(mreq->ipv6mr_interface); 2724 } 2725 /* 2726 * Find the membership in the membership list. 2727 */ 2728 for (imm = im6o->im6o_memberships.lh_first; 2729 imm != NULL; imm = imm->i6mm_chain.le_next) { 2730 if ((ifp == NULL || 2731 imm->i6mm_maddr->in6m_ifp == ifp) && 2732 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2733 &mreq->ipv6mr_multiaddr)) 2734 break; 2735 } 2736 if (imm == NULL) { 2737 /* Unable to resolve interface */ 2738 error = EADDRNOTAVAIL; 2739 break; 2740 } 2741 /* 2742 * Give up the multicast address record to which the 2743 * membership points. 2744 */ 2745 LIST_REMOVE(imm, i6mm_chain); 2746 in6_delmulti(imm->i6mm_maddr); 2747 kfree(imm, M_IPMADDR); 2748 break; 2749 2750 default: 2751 error = EOPNOTSUPP; 2752 break; 2753 } 2754 2755 /* 2756 * If all options have default values, no need to keep the mbuf. 2757 */ 2758 if (im6o->im6o_multicast_ifp == NULL && 2759 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2760 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2761 im6o->im6o_memberships.lh_first == NULL) { 2762 kfree(*im6op, M_IPMOPTS); 2763 *im6op = NULL; 2764 } 2765 2766 return (error); 2767 } 2768 2769 /* 2770 * Return the IP6 multicast options in response to user getsockopt(). 2771 */ 2772 static int 2773 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp) 2774 { 2775 u_int *hlim, *loop, *ifindex; 2776 2777 *mp = m_get(MB_WAIT, MT_HEADER); /* XXX */ 2778 2779 switch (optname) { 2780 2781 case IPV6_MULTICAST_IF: 2782 ifindex = mtod(*mp, u_int *); 2783 (*mp)->m_len = sizeof(u_int); 2784 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2785 *ifindex = 0; 2786 else 2787 *ifindex = im6o->im6o_multicast_ifp->if_index; 2788 return (0); 2789 2790 case IPV6_MULTICAST_HOPS: 2791 hlim = mtod(*mp, u_int *); 2792 (*mp)->m_len = sizeof(u_int); 2793 if (im6o == NULL) 2794 *hlim = ip6_defmcasthlim; 2795 else 2796 *hlim = im6o->im6o_multicast_hlim; 2797 return (0); 2798 2799 case IPV6_MULTICAST_LOOP: 2800 loop = mtod(*mp, u_int *); 2801 (*mp)->m_len = sizeof(u_int); 2802 if (im6o == NULL) 2803 *loop = ip6_defmcasthlim; 2804 else 2805 *loop = im6o->im6o_multicast_loop; 2806 return (0); 2807 2808 default: 2809 return (EOPNOTSUPP); 2810 } 2811 } 2812 2813 /* 2814 * Discard the IP6 multicast options. 2815 */ 2816 void 2817 ip6_freemoptions(struct ip6_moptions *im6o) 2818 { 2819 struct in6_multi_mship *imm; 2820 2821 if (im6o == NULL) 2822 return; 2823 2824 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2825 LIST_REMOVE(imm, i6mm_chain); 2826 if (imm->i6mm_maddr) 2827 in6_delmulti(imm->i6mm_maddr); 2828 kfree(imm, M_IPMADDR); 2829 } 2830 kfree(im6o, M_IPMOPTS); 2831 } 2832 2833 /* 2834 * Set a particular packet option, as a sticky option or an ancillary data 2835 * item. "len" can be 0 only when it's a sticky option. 2836 * We have 4 cases of combination of "sticky" and "cmsg": 2837 * "sticky=0, cmsg=0": impossible 2838 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2839 * "sticky=1, cmsg=0": RFC3542 socket option 2840 * "sticky=1, cmsg=1": RFC2292 socket option 2841 */ 2842 static int 2843 ip6_setpktoption(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2844 int sticky, int cmsg, int uproto, int priv) 2845 { 2846 int minmtupolicy, preftemp; 2847 //int error; 2848 2849 if (!sticky && !cmsg) { 2850 kprintf("ip6_setpktoption: impossible case\n"); 2851 return (EINVAL); 2852 } 2853 2854 /* 2855 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2856 * not be specified in the context of RFC3542. Conversely, 2857 * RFC3542 types should not be specified in the context of RFC2292. 2858 */ 2859 if (!cmsg) { 2860 switch (optname) { 2861 case IPV6_2292PKTINFO: 2862 case IPV6_2292HOPLIMIT: 2863 case IPV6_2292NEXTHOP: 2864 case IPV6_2292HOPOPTS: 2865 case IPV6_2292DSTOPTS: 2866 case IPV6_2292RTHDR: 2867 case IPV6_2292PKTOPTIONS: 2868 return (ENOPROTOOPT); 2869 } 2870 } 2871 if (sticky && cmsg) { 2872 switch (optname) { 2873 case IPV6_PKTINFO: 2874 case IPV6_HOPLIMIT: 2875 case IPV6_NEXTHOP: 2876 case IPV6_HOPOPTS: 2877 case IPV6_DSTOPTS: 2878 case IPV6_RTHDRDSTOPTS: 2879 case IPV6_RTHDR: 2880 case IPV6_USE_MIN_MTU: 2881 case IPV6_DONTFRAG: 2882 case IPV6_TCLASS: 2883 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2884 return (ENOPROTOOPT); 2885 } 2886 } 2887 2888 switch (optname) { 2889 case IPV6_2292PKTINFO: 2890 case IPV6_PKTINFO: 2891 { 2892 struct in6_pktinfo *pktinfo; 2893 if (len != sizeof(struct in6_pktinfo)) 2894 return (EINVAL); 2895 pktinfo = (struct in6_pktinfo *)buf; 2896 2897 /* 2898 * An application can clear any sticky IPV6_PKTINFO option by 2899 * doing a "regular" setsockopt with ipi6_addr being 2900 * in6addr_any and ipi6_ifindex being zero. 2901 * [RFC 3542, Section 6] 2902 */ 2903 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2904 pktinfo->ipi6_ifindex == 0 && 2905 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2906 ip6_clearpktopts(opt, optname); 2907 break; 2908 } 2909 2910 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2911 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2912 return (EINVAL); 2913 } 2914 2915 /* validate the interface index if specified. */ 2916 if (pktinfo->ipi6_ifindex > if_index || 2917 pktinfo->ipi6_ifindex < 0) { 2918 return (ENXIO); 2919 } 2920 /* 2921 * Check if the requested source address is indeed a 2922 * unicast address assigned to the node, and can be 2923 * used as the packet's source address. 2924 */ 2925 if (opt->ip6po_pktinfo != NULL && 2926 !IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 2927 struct in6_ifaddr *ia6; 2928 struct sockaddr_in6 sin6; 2929 2930 bzero(&sin6, sizeof(sin6)); 2931 sin6.sin6_len = sizeof(sin6); 2932 sin6.sin6_family = AF_INET6; 2933 sin6.sin6_addr = 2934 opt->ip6po_pktinfo->ipi6_addr; 2935 ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(sin6tosa(&sin6)); 2936 if (ia6 == NULL || 2937 (ia6->ia6_flags & (IN6_IFF_ANYCAST | 2938 IN6_IFF_NOTREADY)) != 0) 2939 return (EADDRNOTAVAIL); 2940 } 2941 2942 /* 2943 * We store the address anyway, and let in6_selectsrc() 2944 * validate the specified address. This is because ipi6_addr 2945 * may not have enough information about its scope zone, and 2946 * we may need additional information (such as outgoing 2947 * interface or the scope zone of a destination address) to 2948 * disambiguate the scope. 2949 * XXX: the delay of the validation may confuse the 2950 * application when it is used as a sticky option. 2951 */ 2952 if (opt->ip6po_pktinfo == NULL) { 2953 opt->ip6po_pktinfo = kmalloc(sizeof(*pktinfo), 2954 M_IP6OPT, M_NOWAIT); 2955 if (opt->ip6po_pktinfo == NULL) 2956 return (ENOBUFS); 2957 } 2958 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2959 break; 2960 } 2961 2962 case IPV6_2292HOPLIMIT: 2963 case IPV6_HOPLIMIT: 2964 { 2965 int *hlimp; 2966 2967 /* 2968 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2969 * to simplify the ordering among hoplimit options. 2970 */ 2971 if (optname == IPV6_HOPLIMIT && sticky) 2972 return (ENOPROTOOPT); 2973 2974 if (len != sizeof(int)) 2975 return (EINVAL); 2976 hlimp = (int *)buf; 2977 if (*hlimp < -1 || *hlimp > 255) 2978 return (EINVAL); 2979 2980 opt->ip6po_hlim = *hlimp; 2981 break; 2982 } 2983 2984 case IPV6_TCLASS: 2985 { 2986 int tclass; 2987 2988 if (len != sizeof(int)) 2989 return (EINVAL); 2990 tclass = *(int *)buf; 2991 if (tclass < -1 || tclass > 255) 2992 return (EINVAL); 2993 2994 opt->ip6po_tclass = tclass; 2995 break; 2996 } 2997 2998 case IPV6_2292NEXTHOP: 2999 case IPV6_NEXTHOP: 3000 if (!priv) 3001 return (EPERM); 3002 3003 if (len == 0) { /* just remove the option */ 3004 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3005 break; 3006 } 3007 3008 /* check if cmsg_len is large enough for sa_len */ 3009 if (len < sizeof(struct sockaddr) || len < *buf) 3010 return (EINVAL); 3011 3012 switch (((struct sockaddr *)buf)->sa_family) { 3013 case AF_INET6: 3014 { 3015 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3016 //int error; 3017 3018 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3019 return (EINVAL); 3020 3021 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3022 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3023 return (EINVAL); 3024 } 3025 break; 3026 } 3027 case AF_LINK: /* should eventually be supported */ 3028 default: 3029 return (EAFNOSUPPORT); 3030 } 3031 3032 /* turn off the previous option, then set the new option. */ 3033 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3034 opt->ip6po_nexthop = kmalloc(*buf, M_IP6OPT, M_NOWAIT); 3035 if (opt->ip6po_nexthop == NULL) 3036 return (ENOBUFS); 3037 bcopy(buf, opt->ip6po_nexthop, *buf); 3038 break; 3039 3040 case IPV6_2292HOPOPTS: 3041 case IPV6_HOPOPTS: 3042 { 3043 struct ip6_hbh *hbh; 3044 int hbhlen; 3045 3046 /* 3047 * XXX: We don't allow a non-privileged user to set ANY HbH 3048 * options, since per-option restriction has too much 3049 * overhead. 3050 */ 3051 if (!priv) 3052 return (EPERM); 3053 if (len == 0) { 3054 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3055 break; /* just remove the option */ 3056 } 3057 3058 /* message length validation */ 3059 if (len < sizeof(struct ip6_hbh)) 3060 return (EINVAL); 3061 hbh = (struct ip6_hbh *)buf; 3062 hbhlen = (hbh->ip6h_len + 1) << 3; 3063 if (len != hbhlen) 3064 return (EINVAL); 3065 3066 /* turn off the previous option, then set the new option. */ 3067 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3068 opt->ip6po_hbh = kmalloc(hbhlen, M_IP6OPT, M_NOWAIT); 3069 if (opt->ip6po_hbh == NULL) 3070 return (ENOBUFS); 3071 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3072 3073 break; 3074 } 3075 3076 case IPV6_2292DSTOPTS: 3077 case IPV6_DSTOPTS: 3078 case IPV6_RTHDRDSTOPTS: 3079 { 3080 struct ip6_dest *dest, **newdest = NULL; 3081 int destlen; 3082 if (!priv) 3083 return (EPERM); 3084 3085 if (len == 0) { 3086 ip6_clearpktopts(opt, optname); 3087 break; /* just remove the option */ 3088 } 3089 3090 /* message length validation */ 3091 if (len < sizeof(struct ip6_dest)) 3092 return (EINVAL); 3093 dest = (struct ip6_dest *)buf; 3094 destlen = (dest->ip6d_len + 1) << 3; 3095 if (len != destlen) 3096 return (EINVAL); 3097 3098 /* 3099 * Determine the position that the destination options header 3100 * should be inserted; before or after the routing header. 3101 */ 3102 switch (optname) { 3103 case IPV6_2292DSTOPTS: 3104 /* 3105 * The old advacned API is ambiguous on this point. 3106 * Our approach is to determine the position based 3107 * according to the existence of a routing header. 3108 * Note, however, that this depends on the order of the 3109 * extension headers in the ancillary data; the 1st 3110 * part of the destination options header must appear 3111 * before the routing header in the ancillary data, 3112 * too. 3113 * RFC3542 solved the ambiguity by introducing 3114 * separate ancillary data or option types. 3115 */ 3116 if (opt->ip6po_rthdr == NULL) 3117 newdest = &opt->ip6po_dest1; 3118 else 3119 newdest = &opt->ip6po_dest2; 3120 break; 3121 case IPV6_RTHDRDSTOPTS: 3122 newdest = &opt->ip6po_dest1; 3123 break; 3124 case IPV6_DSTOPTS: 3125 newdest = &opt->ip6po_dest2; 3126 break; 3127 } 3128 3129 /* turn off the previous option, then set the new option. */ 3130 ip6_clearpktopts(opt, optname); 3131 *newdest = kmalloc(destlen, M_IP6OPT, M_NOWAIT); 3132 if (*newdest == NULL) 3133 return (ENOBUFS); 3134 bcopy(dest, *newdest, destlen); 3135 3136 break; 3137 } 3138 3139 case IPV6_2292RTHDR: 3140 case IPV6_RTHDR: 3141 { 3142 struct ip6_rthdr *rth; 3143 int rthlen; 3144 3145 if (len == 0) { 3146 ip6_clearpktopts(opt, IPV6_RTHDR); 3147 break; /* just remove the option */ 3148 } 3149 3150 /* message length validation */ 3151 if (len < sizeof(struct ip6_rthdr)) 3152 return (EINVAL); 3153 rth = (struct ip6_rthdr *)buf; 3154 rthlen = (rth->ip6r_len + 1) << 3; 3155 if (len != rthlen) 3156 return (EINVAL); 3157 3158 switch (rth->ip6r_type) { 3159 default: 3160 return (EINVAL); /* not supported */ 3161 } 3162 3163 /* turn off the previous option */ 3164 ip6_clearpktopts(opt, IPV6_RTHDR); 3165 opt->ip6po_rthdr = kmalloc(rthlen, M_IP6OPT, M_NOWAIT); 3166 if (opt->ip6po_rthdr == NULL) 3167 return (ENOBUFS); 3168 bcopy(rth, opt->ip6po_rthdr, rthlen); 3169 3170 break; 3171 } 3172 3173 case IPV6_USE_MIN_MTU: 3174 if (len != sizeof(int)) 3175 return (EINVAL); 3176 minmtupolicy = *(int *)buf; 3177 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3178 minmtupolicy != IP6PO_MINMTU_DISABLE && 3179 minmtupolicy != IP6PO_MINMTU_ALL) { 3180 return (EINVAL); 3181 } 3182 opt->ip6po_minmtu = minmtupolicy; 3183 break; 3184 3185 case IPV6_DONTFRAG: 3186 if (len != sizeof(int)) 3187 return (EINVAL); 3188 3189 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3190 /* 3191 * we ignore this option for TCP sockets. 3192 * (RFC3542 leaves this case unspecified.) 3193 */ 3194 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3195 } else 3196 opt->ip6po_flags |= IP6PO_DONTFRAG; 3197 break; 3198 3199 case IPV6_PREFER_TEMPADDR: 3200 if (len != sizeof(int)) 3201 return (EINVAL); 3202 preftemp = *(int *)buf; 3203 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3204 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3205 preftemp != IP6PO_TEMPADDR_PREFER) { 3206 return (EINVAL); 3207 } 3208 opt->ip6po_prefer_tempaddr = preftemp; 3209 break; 3210 3211 default: 3212 return (ENOPROTOOPT); 3213 } /* end of switch */ 3214 3215 return (0); 3216 } 3217 3218 3219 /* 3220 * Set IPv6 outgoing packet options based on advanced API. 3221 */ 3222 int 3223 ip6_setpktoptions(struct mbuf *control, struct ip6_pktopts *opt, 3224 struct ip6_pktopts *stickyopt, int uproto, int priv) 3225 { 3226 struct cmsghdr *cm = NULL; 3227 3228 if (control == NULL || opt == NULL) 3229 return (EINVAL); 3230 3231 init_ip6pktopts(opt); 3232 3233 /* 3234 * XXX: Currently, we assume all the optional information is stored 3235 * in a single mbuf. 3236 */ 3237 if (stickyopt) { 3238 int error; 3239 3240 /* 3241 * If stickyopt is provided, make a local copy of the options 3242 * for this particular packet, then override them by ancillary 3243 * objects. 3244 * XXX: copypktopts() does not copy the cached route to a next 3245 * hop (if any). This is not very good in terms of efficiency, 3246 * but we can allow this since this option should be rarely 3247 * used. 3248 */ 3249 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 3250 return (error); 3251 } 3252 3253 /* 3254 * XXX: Currently, we assume all the optional information is stored 3255 * in a single mbuf. 3256 */ 3257 if (control->m_next) 3258 return (EINVAL); 3259 3260 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 3261 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 3262 int error; 3263 3264 if (control->m_len < CMSG_LEN(0)) 3265 return (EINVAL); 3266 3267 cm = mtod(control, struct cmsghdr *); 3268 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 3269 return (EINVAL); 3270 if (cm->cmsg_level != IPPROTO_IPV6) 3271 continue; 3272 3273 error = ip6_setpktoption(cm->cmsg_type, CMSG_DATA(cm), 3274 cm->cmsg_len - CMSG_LEN(0), opt, 0, 1, uproto, priv); 3275 if (error) 3276 return (error); 3277 } 3278 3279 return (0); 3280 } 3281 3282 /* 3283 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3284 * packet to the input queue of a specified interface. Note that this 3285 * calls the output routine of the loopback "driver", but with an interface 3286 * pointer that might NOT be &loif -- easier than replicating that code here. 3287 */ 3288 void 3289 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 3290 { 3291 struct mbuf *copym; 3292 struct ip6_hdr *ip6; 3293 3294 copym = m_copy(m, 0, M_COPYALL); 3295 if (copym == NULL) 3296 return; 3297 3298 /* 3299 * Make sure to deep-copy IPv6 header portion in case the data 3300 * is in an mbuf cluster, so that we can safely override the IPv6 3301 * header portion later. 3302 */ 3303 if ((copym->m_flags & M_EXT) != 0 || 3304 copym->m_len < sizeof(struct ip6_hdr)) { 3305 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3306 if (copym == NULL) 3307 return; 3308 } 3309 3310 #ifdef DIAGNOSTIC 3311 if (copym->m_len < sizeof(*ip6)) { 3312 m_freem(copym); 3313 return; 3314 } 3315 #endif 3316 3317 ip6 = mtod(copym, struct ip6_hdr *); 3318 /* 3319 * clear embedded scope identifiers if necessary. 3320 * in6_clearscope will touch the addresses only when necessary. 3321 */ 3322 in6_clearscope(&ip6->ip6_src); 3323 in6_clearscope(&ip6->ip6_dst); 3324 3325 if_simloop(ifp, copym, dst->sin6_family, 0); 3326 } 3327 3328 /* 3329 * Separate the IPv6 header from the payload into its own mbuf. 3330 * 3331 * Returns the new mbuf chain or the original mbuf if no payload. 3332 * Returns NULL if can't allocate new mbuf for header. 3333 */ 3334 static struct mbuf * 3335 ip6_splithdr(struct mbuf *m) 3336 { 3337 struct mbuf *mh; 3338 3339 if (m->m_len <= sizeof(struct ip6_hdr)) /* no payload */ 3340 return (m); 3341 3342 MGETHDR(mh, MB_DONTWAIT, MT_HEADER); 3343 if (mh == NULL) 3344 return (NULL); 3345 mh->m_len = sizeof(struct ip6_hdr); 3346 M_MOVE_PKTHDR(mh, m); 3347 MH_ALIGN(mh, sizeof(struct ip6_hdr)); 3348 bcopy(mtod(m, caddr_t), mtod(mh, caddr_t), sizeof(struct ip6_hdr)); 3349 m->m_data += sizeof(struct ip6_hdr); 3350 m->m_len -= sizeof(struct ip6_hdr); 3351 mh->m_next = m; 3352 return (mh); 3353 } 3354 3355 /* 3356 * Compute IPv6 extension header length. 3357 */ 3358 int 3359 ip6_optlen(struct in6pcb *in6p) 3360 { 3361 int len; 3362 3363 if (!in6p->in6p_outputopts) 3364 return 0; 3365 3366 len = 0; 3367 #define elen(x) \ 3368 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3369 3370 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3371 if (in6p->in6p_outputopts->ip6po_rthdr) 3372 /* dest1 is valid with rthdr only */ 3373 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3374 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3375 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3376 return len; 3377 #undef elen 3378 } 3379