1 /* $FreeBSD: src/sys/netinet6/in6.c,v 1.7.2.9 2002/04/28 05:40:26 suz Exp $ */ 2 /* $DragonFly: src/sys/netinet6/in6.c,v 1.26 2008/01/05 14:02:40 swildner Exp $ */ 3 /* $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ */ 4 5 /* 6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the project nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. All advertising materials mentioning features or use of this software 47 * must display the following acknowledgement: 48 * This product includes software developed by the University of 49 * California, Berkeley and its contributors. 50 * 4. Neither the name of the University nor the names of its contributors 51 * may be used to endorse or promote products derived from this software 52 * without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 64 * SUCH DAMAGE. 65 * 66 * @(#)in.c 8.2 (Berkeley) 11/15/93 67 */ 68 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 72 #include <sys/param.h> 73 #include <sys/errno.h> 74 #include <sys/malloc.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/sockio.h> 78 #include <sys/systm.h> 79 #include <sys/proc.h> 80 #include <sys/time.h> 81 #include <sys/kernel.h> 82 #include <sys/syslog.h> 83 #include <sys/thread2.h> 84 85 #include <net/if.h> 86 #include <net/if_types.h> 87 #include <net/route.h> 88 #include <net/if_dl.h> 89 90 #include <netinet/in.h> 91 #include <netinet/in_var.h> 92 #include <netinet/if_ether.h> 93 #include <netinet/in_systm.h> 94 #include <netinet/ip.h> 95 #include <netinet/in_pcb.h> 96 97 #include <netinet/ip6.h> 98 #include <netinet6/ip6_var.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/mld6_var.h> 101 #include <netinet6/ip6_mroute.h> 102 #include <netinet6/in6_ifattach.h> 103 #include <netinet6/scope6_var.h> 104 #include <netinet6/in6_pcb.h> 105 #include <netinet6/in6_var.h> 106 107 #include <net/net_osdep.h> 108 109 /* 110 * Definitions of some costant IP6 addresses. 111 */ 112 const struct in6_addr kin6addr_any = IN6ADDR_ANY_INIT; 113 const struct in6_addr kin6addr_loopback = IN6ADDR_LOOPBACK_INIT; 114 const struct in6_addr kin6addr_nodelocal_allnodes = 115 IN6ADDR_NODELOCAL_ALLNODES_INIT; 116 const struct in6_addr kin6addr_linklocal_allnodes = 117 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 118 const struct in6_addr kin6addr_linklocal_allrouters = 119 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 120 121 const struct in6_addr in6mask0 = IN6MASK0; 122 const struct in6_addr in6mask32 = IN6MASK32; 123 const struct in6_addr in6mask64 = IN6MASK64; 124 const struct in6_addr in6mask96 = IN6MASK96; 125 const struct in6_addr in6mask128 = IN6MASK128; 126 127 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6, 128 0, 0, IN6ADDR_ANY_INIT, 0}; 129 130 static int in6_lifaddr_ioctl (struct socket *, u_long, caddr_t, 131 struct ifnet *, struct thread *); 132 static int in6_ifinit (struct ifnet *, struct in6_ifaddr *, 133 struct sockaddr_in6 *, int); 134 static void in6_unlink_ifa (struct in6_ifaddr *, struct ifnet *); 135 static void in6_ifloop_request_callback(int, int, struct rt_addrinfo *, struct rtentry *, void *); 136 137 struct in6_multihead in6_multihead; /* XXX BSS initialization */ 138 139 int (*faithprefix_p)(struct in6_addr *); 140 141 /* 142 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 143 * This routine does actual work. 144 */ 145 static void 146 in6_ifloop_request(int cmd, struct ifaddr *ifa) 147 { 148 struct sockaddr_in6 all1_sa; 149 struct rt_addrinfo rtinfo; 150 int error; 151 152 bzero(&all1_sa, sizeof(all1_sa)); 153 all1_sa.sin6_family = AF_INET6; 154 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 155 all1_sa.sin6_addr = in6mask128; 156 157 /* 158 * We specify the address itself as the gateway, and set the 159 * RTF_LLINFO flag, so that the corresponding host route would have 160 * the flag, and thus applications that assume traditional behavior 161 * would be happy. Note that we assume the caller of the function 162 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 163 * which changes the outgoing interface to the loopback interface. 164 */ 165 bzero(&rtinfo, sizeof(struct rt_addrinfo)); 166 rtinfo.rti_info[RTAX_DST] = ifa->ifa_addr; 167 rtinfo.rti_info[RTAX_GATEWAY] = ifa->ifa_addr; 168 rtinfo.rti_info[RTAX_NETMASK] = (struct sockaddr *)&all1_sa; 169 rtinfo.rti_flags = RTF_UP|RTF_HOST|RTF_LLINFO; 170 171 error = rtrequest1_global(cmd, &rtinfo, 172 in6_ifloop_request_callback, ifa); 173 if (error != 0) { 174 log(LOG_ERR, "in6_ifloop_request: " 175 "%s operation failed for %s (errno=%d)\n", 176 cmd == RTM_ADD ? "ADD" : "DELETE", 177 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), 178 error); 179 } 180 } 181 182 static void 183 in6_ifloop_request_callback(int cmd, int error, struct rt_addrinfo *rtinfo, 184 struct rtentry *rt, void *arg) 185 { 186 struct ifaddr *ifa = arg; 187 188 if (error) 189 goto done; 190 191 /* 192 * Make sure rt_ifa be equal to IFA, the second argument of the 193 * function. 194 * We need this because when we refer to rt_ifa->ia6_flags in 195 * ip6_input, we assume that the rt_ifa points to the address instead 196 * of the loopback address. 197 */ 198 if (cmd == RTM_ADD && rt && ifa != rt->rt_ifa) { 199 ++rt->rt_refcnt; 200 IFAFREE(rt->rt_ifa); 201 IFAREF(ifa); 202 rt->rt_ifa = ifa; 203 --rt->rt_refcnt; 204 } 205 206 /* 207 * Report the addition/removal of the address to the routing socket. 208 * XXX: since we called rtinit for a p2p interface with a destination, 209 * we end up reporting twice in such a case. Should we rather 210 * omit the second report? 211 */ 212 if (rt) { 213 if (mycpuid == 0) 214 rt_newaddrmsg(cmd, ifa, error, rt); 215 if (cmd == RTM_DELETE) { 216 if (rt->rt_refcnt == 0) { 217 ++rt->rt_refcnt; 218 rtfree(rt); 219 } 220 } 221 } 222 done: 223 /* no way to return any new error */ 224 ; 225 } 226 227 /* 228 * Add ownaddr as loopback rtentry. We previously add the route only if 229 * necessary (ex. on a p2p link). However, since we now manage addresses 230 * separately from prefixes, we should always add the route. We can't 231 * rely on the cloning mechanism from the corresponding interface route 232 * any more. 233 */ 234 void 235 in6_ifaddloop(struct ifaddr *ifa) 236 { 237 struct rtentry *rt; 238 239 /* If there is no loopback entry, allocate one. */ 240 rt = rtpurelookup(ifa->ifa_addr); 241 if (rt == NULL || !(rt->rt_flags & RTF_HOST) || 242 !(rt->rt_ifp->if_flags & IFF_LOOPBACK)) 243 in6_ifloop_request(RTM_ADD, ifa); 244 if (rt != NULL) 245 rt->rt_refcnt--; 246 } 247 248 /* 249 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 250 * if it exists. 251 */ 252 void 253 in6_ifremloop(struct ifaddr *ifa) 254 { 255 struct in6_ifaddr *ia; 256 struct rtentry *rt; 257 int ia_count = 0; 258 259 /* 260 * Some of BSD variants do not remove cloned routes 261 * from an interface direct route, when removing the direct route 262 * (see comments in net/net_osdep.h). Even for variants that do remove 263 * cloned routes, they could fail to remove the cloned routes when 264 * we handle multple addresses that share a common prefix. 265 * So, we should remove the route corresponding to the deleted address 266 * regardless of the result of in6_is_ifloop_auto(). 267 */ 268 269 /* 270 * Delete the entry only if exact one ifa exists. More than one ifa 271 * can exist if we assign a same single address to multiple 272 * (probably p2p) interfaces. 273 * XXX: we should avoid such a configuration in IPv6... 274 */ 275 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 276 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { 277 ia_count++; 278 if (ia_count > 1) 279 break; 280 } 281 } 282 283 if (ia_count == 1) { 284 /* 285 * Before deleting, check if a corresponding loopbacked host 286 * route surely exists. With this check, we can avoid to 287 * delete an interface direct route whose destination is same 288 * as the address being removed. This can happen when remofing 289 * a subnet-router anycast address on an interface attahced 290 * to a shared medium. 291 */ 292 rt = rtpurelookup(ifa->ifa_addr); 293 if (rt != NULL && (rt->rt_flags & RTF_HOST) && 294 (rt->rt_ifp->if_flags & IFF_LOOPBACK)) { 295 rt->rt_refcnt--; 296 in6_ifloop_request(RTM_DELETE, ifa); 297 } 298 } 299 } 300 301 int 302 in6_ifindex2scopeid(int idx) 303 { 304 struct ifnet *ifp; 305 struct ifaddr *ifa; 306 struct sockaddr_in6 *sin6; 307 308 if (idx < 0 || if_index < idx) 309 return -1; 310 ifp = ifindex2ifnet[idx]; 311 312 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 313 { 314 if (ifa->ifa_addr->sa_family != AF_INET6) 315 continue; 316 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 317 if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) 318 return sin6->sin6_scope_id & 0xffff; 319 } 320 321 return -1; 322 } 323 324 int 325 in6_mask2len(struct in6_addr *mask, u_char *lim0) 326 { 327 int x = 0, y; 328 u_char *lim = lim0, *p; 329 330 if (lim0 == NULL || 331 lim0 - (u_char *)mask > sizeof(*mask)) /* ignore the scope_id part */ 332 lim = (u_char *)mask + sizeof(*mask); 333 for (p = (u_char *)mask; p < lim; x++, p++) { 334 if (*p != 0xff) 335 break; 336 } 337 y = 0; 338 if (p < lim) { 339 for (y = 0; y < 8; y++) { 340 if ((*p & (0x80 >> y)) == 0) 341 break; 342 } 343 } 344 345 /* 346 * when the limit pointer is given, do a stricter check on the 347 * remaining bits. 348 */ 349 if (p < lim) { 350 if (y != 0 && (*p & (0x00ff >> y)) != 0) 351 return (-1); 352 for (p = p + 1; p < lim; p++) 353 if (*p != 0) 354 return (-1); 355 } 356 357 return x * 8 + y; 358 } 359 360 void 361 in6_len2mask(struct in6_addr *mask, int len) 362 { 363 int i; 364 365 bzero(mask, sizeof(*mask)); 366 for (i = 0; i < len / 8; i++) 367 mask->s6_addr8[i] = 0xff; 368 if (len % 8) 369 mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff; 370 } 371 372 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 373 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 374 375 int 376 in6_control(struct socket *so, u_long cmd, caddr_t data, 377 struct ifnet *ifp, struct thread *td) 378 { 379 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 380 struct in6_ifaddr *ia = NULL; 381 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 382 int privileged; 383 int error; 384 385 privileged = 0; 386 if (suser(td) == 0) 387 privileged++; 388 389 switch (cmd) { 390 case SIOCGETSGCNT_IN6: 391 case SIOCGETMIFCNT_IN6: 392 return (mrt6_ioctl(cmd, data)); 393 } 394 395 if (ifp == NULL) 396 return (EOPNOTSUPP); 397 398 switch (cmd) { 399 case SIOCSNDFLUSH_IN6: 400 case SIOCSPFXFLUSH_IN6: 401 case SIOCSRTRFLUSH_IN6: 402 case SIOCSDEFIFACE_IN6: 403 case SIOCSIFINFO_FLAGS: 404 if (!privileged) 405 return (EPERM); 406 /* fall through */ 407 case OSIOCGIFINFO_IN6: 408 case SIOCGIFINFO_IN6: 409 case SIOCGDRLST_IN6: 410 case SIOCGPRLST_IN6: 411 case SIOCGNBRINFO_IN6: 412 case SIOCGDEFIFACE_IN6: 413 return (nd6_ioctl(cmd, data, ifp)); 414 } 415 416 switch (cmd) { 417 case SIOCSIFPREFIX_IN6: 418 case SIOCDIFPREFIX_IN6: 419 case SIOCAIFPREFIX_IN6: 420 case SIOCCIFPREFIX_IN6: 421 case SIOCSGIFPREFIX_IN6: 422 case SIOCGIFPREFIX_IN6: 423 log(LOG_NOTICE, 424 "prefix ioctls are now invalidated. " 425 "please use ifconfig.\n"); 426 return (EOPNOTSUPP); 427 } 428 429 switch (cmd) { 430 case SIOCSSCOPE6: 431 if (!privileged) 432 return (EPERM); 433 return (scope6_set(ifp, 434 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 435 break; 436 case SIOCGSCOPE6: 437 return (scope6_get(ifp, 438 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 439 break; 440 case SIOCGSCOPE6DEF: 441 return (scope6_get_default((struct scope6_id *) 442 ifr->ifr_ifru.ifru_scope_id)); 443 break; 444 } 445 446 switch (cmd) { 447 case SIOCALIFADDR: 448 case SIOCDLIFADDR: 449 if (!privileged) 450 return (EPERM); 451 /* fall through */ 452 case SIOCGLIFADDR: 453 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 454 } 455 456 /* 457 * Find address for this interface, if it exists. 458 */ 459 if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */ 460 struct sockaddr_in6 *sa6 = 461 (struct sockaddr_in6 *)&ifra->ifra_addr; 462 463 if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) { 464 if (sa6->sin6_addr.s6_addr16[1] == 0) { 465 /* link ID is not embedded by the user */ 466 sa6->sin6_addr.s6_addr16[1] = 467 htons(ifp->if_index); 468 } else if (sa6->sin6_addr.s6_addr16[1] != 469 htons(ifp->if_index)) { 470 return (EINVAL); /* link ID contradicts */ 471 } 472 if (sa6->sin6_scope_id) { 473 if (sa6->sin6_scope_id != 474 (u_int32_t)ifp->if_index) 475 return (EINVAL); 476 sa6->sin6_scope_id = 0; /* XXX: good way? */ 477 } 478 } 479 ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr); 480 } 481 482 switch (cmd) { 483 case SIOCSIFADDR_IN6: 484 case SIOCSIFDSTADDR_IN6: 485 case SIOCSIFNETMASK_IN6: 486 /* 487 * Since IPv6 allows a node to assign multiple addresses 488 * on a single interface, SIOCSIFxxx ioctls are not suitable 489 * and should be unused. 490 */ 491 /* we decided to obsolete this command (20000704) */ 492 return (EINVAL); 493 494 case SIOCDIFADDR_IN6: 495 /* 496 * for IPv4, we look for existing in_ifaddr here to allow 497 * "ifconfig if0 delete" to remove first IPv4 address on the 498 * interface. For IPv6, as the spec allow multiple interface 499 * address from the day one, we consider "remove the first one" 500 * semantics to be not preferable. 501 */ 502 if (ia == NULL) 503 return (EADDRNOTAVAIL); 504 /* FALLTHROUGH */ 505 case SIOCAIFADDR_IN6: 506 /* 507 * We always require users to specify a valid IPv6 address for 508 * the corresponding operation. 509 */ 510 if (ifra->ifra_addr.sin6_family != AF_INET6 || 511 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 512 return (EAFNOSUPPORT); 513 if (!privileged) 514 return (EPERM); 515 516 break; 517 518 case SIOCGIFADDR_IN6: 519 /* This interface is basically deprecated. use SIOCGIFCONF. */ 520 /* fall through */ 521 case SIOCGIFAFLAG_IN6: 522 case SIOCGIFNETMASK_IN6: 523 case SIOCGIFDSTADDR_IN6: 524 case SIOCGIFALIFETIME_IN6: 525 /* must think again about its semantics */ 526 if (ia == NULL) 527 return (EADDRNOTAVAIL); 528 break; 529 case SIOCSIFALIFETIME_IN6: 530 { 531 struct in6_addrlifetime *lt; 532 533 if (!privileged) 534 return (EPERM); 535 if (ia == NULL) 536 return (EADDRNOTAVAIL); 537 /* sanity for overflow - beware unsigned */ 538 lt = &ifr->ifr_ifru.ifru_lifetime; 539 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 540 && lt->ia6t_vltime + time_second < time_second) { 541 return EINVAL; 542 } 543 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 544 && lt->ia6t_pltime + time_second < time_second) { 545 return EINVAL; 546 } 547 break; 548 } 549 } 550 551 switch (cmd) { 552 553 case SIOCGIFADDR_IN6: 554 ifr->ifr_addr = ia->ia_addr; 555 break; 556 557 case SIOCGIFDSTADDR_IN6: 558 if (!(ifp->if_flags & IFF_POINTOPOINT)) 559 return (EINVAL); 560 /* 561 * XXX: should we check if ifa_dstaddr is NULL and return 562 * an error? 563 */ 564 ifr->ifr_dstaddr = ia->ia_dstaddr; 565 break; 566 567 case SIOCGIFNETMASK_IN6: 568 ifr->ifr_addr = ia->ia_prefixmask; 569 break; 570 571 case SIOCGIFAFLAG_IN6: 572 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 573 break; 574 575 case SIOCGIFSTAT_IN6: 576 if (ifp == NULL) 577 return EINVAL; 578 bzero(&ifr->ifr_ifru.ifru_stat, 579 sizeof(ifr->ifr_ifru.ifru_stat)); 580 ifr->ifr_ifru.ifru_stat = 581 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat; 582 break; 583 584 case SIOCGIFSTAT_ICMP6: 585 bzero(&ifr->ifr_ifru.ifru_stat, 586 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 587 ifr->ifr_ifru.ifru_icmp6stat = 588 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat; 589 break; 590 591 case SIOCGIFALIFETIME_IN6: 592 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 593 break; 594 595 case SIOCSIFALIFETIME_IN6: 596 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 597 /* for sanity */ 598 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 599 ia->ia6_lifetime.ia6t_expire = 600 time_second + ia->ia6_lifetime.ia6t_vltime; 601 } else 602 ia->ia6_lifetime.ia6t_expire = 0; 603 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 604 ia->ia6_lifetime.ia6t_preferred = 605 time_second + ia->ia6_lifetime.ia6t_pltime; 606 } else 607 ia->ia6_lifetime.ia6t_preferred = 0; 608 break; 609 610 case SIOCAIFADDR_IN6: 611 { 612 int i, error = 0; 613 struct nd_prefix pr0, *pr; 614 615 /* 616 * first, make or update the interface address structure, 617 * and link it to the list. 618 */ 619 if ((error = in6_update_ifa(ifp, ifra, ia)) != 0) 620 return (error); 621 622 /* 623 * then, make the prefix on-link on the interface. 624 * XXX: we'd rather create the prefix before the address, but 625 * we need at least one address to install the corresponding 626 * interface route, so we configure the address first. 627 */ 628 629 /* 630 * convert mask to prefix length (prefixmask has already 631 * been validated in in6_update_ifa(). 632 */ 633 bzero(&pr0, sizeof(pr0)); 634 pr0.ndpr_ifp = ifp; 635 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 636 NULL); 637 if (pr0.ndpr_plen == 128) 638 break; /* we don't need to install a host route. */ 639 pr0.ndpr_prefix = ifra->ifra_addr; 640 pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr; 641 /* apply the mask for safety. */ 642 for (i = 0; i < 4; i++) { 643 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 644 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 645 } 646 /* 647 * XXX: since we don't have an API to set prefix (not address) 648 * lifetimes, we just use the same lifetimes as addresses. 649 * The (temporarily) installed lifetimes can be overridden by 650 * later advertised RAs (when accept_rtadv is non 0), which is 651 * an intended behavior. 652 */ 653 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 654 pr0.ndpr_raf_auto = 655 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 656 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 657 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 658 659 /* add the prefix if there's one. */ 660 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 661 /* 662 * nd6_prelist_add will install the corresponding 663 * interface route. 664 */ 665 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 666 return (error); 667 if (pr == NULL) { 668 log(LOG_ERR, "nd6_prelist_add succedded but " 669 "no prefix\n"); 670 return (EINVAL); /* XXX panic here? */ 671 } 672 } 673 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 674 == NULL) { 675 /* XXX: this should not happen! */ 676 log(LOG_ERR, "in6_control: addition succeeded, but" 677 " no ifaddr\n"); 678 } else { 679 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 680 ia->ia6_ndpr == NULL) { /* new autoconfed addr */ 681 ia->ia6_ndpr = pr; 682 pr->ndpr_refcnt++; 683 684 /* 685 * If this is the first autoconf address from 686 * the prefix, create a temporary address 687 * as well (when specified). 688 */ 689 if (ip6_use_tempaddr && 690 pr->ndpr_refcnt == 1) { 691 int e; 692 if ((e = in6_tmpifadd(ia, 1)) != 0) { 693 log(LOG_NOTICE, "in6_control: " 694 "failed to create a " 695 "temporary address, " 696 "errno=%d\n", 697 e); 698 } 699 } 700 } 701 702 /* 703 * this might affect the status of autoconfigured 704 * addresses, that is, this address might make 705 * other addresses detached. 706 */ 707 pfxlist_onlink_check(); 708 } 709 if (error == 0 && ia) 710 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 711 break; 712 } 713 714 case SIOCDIFADDR_IN6: 715 { 716 int i = 0; 717 struct nd_prefix pr0, *pr; 718 719 /* 720 * If the address being deleted is the only one that owns 721 * the corresponding prefix, expire the prefix as well. 722 * XXX: theoretically, we don't have to warry about such 723 * relationship, since we separate the address management 724 * and the prefix management. We do this, however, to provide 725 * as much backward compatibility as possible in terms of 726 * the ioctl operation. 727 */ 728 bzero(&pr0, sizeof(pr0)); 729 pr0.ndpr_ifp = ifp; 730 pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, 731 NULL); 732 if (pr0.ndpr_plen == 128) 733 goto purgeaddr; 734 pr0.ndpr_prefix = ia->ia_addr; 735 pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr; 736 for (i = 0; i < 4; i++) { 737 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 738 ia->ia_prefixmask.sin6_addr.s6_addr32[i]; 739 } 740 /* 741 * The logic of the following condition is a bit complicated. 742 * We expire the prefix when 743 * 1. the address obeys autoconfiguration and it is the 744 * only owner of the associated prefix, or 745 * 2. the address does not obey autoconf and there is no 746 * other owner of the prefix. 747 */ 748 if ((pr = nd6_prefix_lookup(&pr0)) != NULL && 749 (((ia->ia6_flags & IN6_IFF_AUTOCONF) && 750 pr->ndpr_refcnt == 1) || 751 (!(ia->ia6_flags & IN6_IFF_AUTOCONF) && 752 pr->ndpr_refcnt == 0))) { 753 pr->ndpr_expire = 1; /* XXX: just for expiration */ 754 } 755 756 purgeaddr: 757 in6_purgeaddr(&ia->ia_ifa); 758 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 759 break; 760 } 761 762 default: 763 if (ifp == NULL || ifp->if_ioctl == 0) 764 return (EOPNOTSUPP); 765 lwkt_serialize_enter(ifp->if_serializer); 766 error = ifp->if_ioctl(ifp, cmd, data, td->td_proc->p_ucred); 767 lwkt_serialize_exit(ifp->if_serializer); 768 return (error); 769 } 770 771 return (0); 772 } 773 774 /* 775 * Update parameters of an IPv6 interface address. 776 * If necessary, a new entry is created and linked into address chains. 777 * This function is separated from in6_control(). 778 * XXX: should this be performed under splnet()? 779 */ 780 int 781 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 782 struct in6_ifaddr *ia) 783 { 784 int error = 0, hostIsNew = 0, plen = -1; 785 struct in6_ifaddr *oia; 786 struct sockaddr_in6 dst6; 787 struct in6_addrlifetime *lt; 788 789 /* Validate parameters */ 790 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 791 return (EINVAL); 792 793 /* 794 * The destination address for a p2p link must have a family 795 * of AF_UNSPEC or AF_INET6. 796 */ 797 if ((ifp->if_flags & IFF_POINTOPOINT) && 798 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 799 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 800 return (EAFNOSUPPORT); 801 /* 802 * validate ifra_prefixmask. don't check sin6_family, netmask 803 * does not carry fields other than sin6_len. 804 */ 805 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 806 return (EINVAL); 807 /* 808 * Because the IPv6 address architecture is classless, we require 809 * users to specify a (non 0) prefix length (mask) for a new address. 810 * We also require the prefix (when specified) mask is valid, and thus 811 * reject a non-consecutive mask. 812 */ 813 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 814 return (EINVAL); 815 if (ifra->ifra_prefixmask.sin6_len != 0) { 816 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 817 (u_char *)&ifra->ifra_prefixmask + 818 ifra->ifra_prefixmask.sin6_len); 819 if (plen <= 0) 820 return (EINVAL); 821 } 822 else { 823 /* 824 * In this case, ia must not be NULL. We just use its prefix 825 * length. 826 */ 827 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 828 } 829 /* 830 * If the destination address on a p2p interface is specified, 831 * and the address is a scoped one, validate/set the scope 832 * zone identifier. 833 */ 834 dst6 = ifra->ifra_dstaddr; 835 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) && 836 (dst6.sin6_family == AF_INET6)) { 837 int scopeid; 838 839 if ((error = in6_recoverscope(&dst6, 840 &ifra->ifra_dstaddr.sin6_addr, 841 ifp)) != 0) 842 return (error); 843 scopeid = in6_addr2scopeid(ifp, &dst6.sin6_addr); 844 if (dst6.sin6_scope_id == 0) /* user omit to specify the ID. */ 845 dst6.sin6_scope_id = scopeid; 846 else if (dst6.sin6_scope_id != scopeid) 847 return (EINVAL); /* scope ID mismatch. */ 848 if ((error = in6_embedscope(&dst6.sin6_addr, &dst6, NULL, NULL)) 849 != 0) 850 return (error); 851 dst6.sin6_scope_id = 0; /* XXX */ 852 } 853 /* 854 * The destination address can be specified only for a p2p or a 855 * loopback interface. If specified, the corresponding prefix length 856 * must be 128. 857 */ 858 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 859 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 860 /* XXX: noisy message */ 861 log(LOG_INFO, "in6_update_ifa: a destination can be " 862 "specified for a p2p or a loopback IF only\n"); 863 return (EINVAL); 864 } 865 if (plen != 128) { 866 /* 867 * The following message seems noisy, but we dare to 868 * add it for diagnosis. 869 */ 870 log(LOG_INFO, "in6_update_ifa: prefixlen must be 128 " 871 "when dstaddr is specified\n"); 872 return (EINVAL); 873 } 874 } 875 /* lifetime consistency check */ 876 lt = &ifra->ifra_lifetime; 877 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 878 && lt->ia6t_vltime + time_second < time_second) { 879 return EINVAL; 880 } 881 if (lt->ia6t_vltime == 0) { 882 /* 883 * the following log might be noisy, but this is a typical 884 * configuration mistake or a tool's bug. 885 */ 886 log(LOG_INFO, 887 "in6_update_ifa: valid lifetime is 0 for %s\n", 888 ip6_sprintf(&ifra->ifra_addr.sin6_addr)); 889 } 890 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 891 && lt->ia6t_pltime + time_second < time_second) { 892 return EINVAL; 893 } 894 895 /* 896 * If this is a new address, allocate a new ifaddr and link it 897 * into chains. 898 */ 899 if (ia == NULL) { 900 hostIsNew = 1; 901 /* 902 * When in6_update_ifa() is called in a process of a received 903 * RA, it is called under splnet(). So, we should call malloc 904 * with M_NOWAIT. 905 */ 906 ia = (struct in6_ifaddr *) 907 kmalloc(sizeof(*ia), M_IFADDR, M_NOWAIT | M_ZERO); 908 if (ia == NULL) 909 return (ENOBUFS); 910 /* Initialize the address and masks */ 911 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 912 ia->ia_addr.sin6_family = AF_INET6; 913 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 914 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 915 /* 916 * XXX: some functions expect that ifa_dstaddr is not 917 * NULL for p2p interfaces. 918 */ 919 ia->ia_ifa.ifa_dstaddr 920 = (struct sockaddr *)&ia->ia_dstaddr; 921 } else { 922 ia->ia_ifa.ifa_dstaddr = NULL; 923 } 924 ia->ia_ifa.ifa_netmask 925 = (struct sockaddr *)&ia->ia_prefixmask; 926 927 ia->ia_ifp = ifp; 928 if ((oia = in6_ifaddr) != NULL) { 929 for ( ; oia->ia_next; oia = oia->ia_next) 930 continue; 931 oia->ia_next = ia; 932 } else 933 in6_ifaddr = ia; 934 935 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, 936 ifa_list); 937 } 938 939 /* set prefix mask */ 940 if (ifra->ifra_prefixmask.sin6_len) { 941 /* 942 * We prohibit changing the prefix length of an existing 943 * address, because 944 * + such an operation should be rare in IPv6, and 945 * + the operation would confuse prefix management. 946 */ 947 if (ia->ia_prefixmask.sin6_len && 948 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 949 log(LOG_INFO, "in6_update_ifa: the prefix length of an" 950 " existing (%s) address should not be changed\n", 951 ip6_sprintf(&ia->ia_addr.sin6_addr)); 952 error = EINVAL; 953 goto unlink; 954 } 955 ia->ia_prefixmask = ifra->ifra_prefixmask; 956 } 957 958 /* 959 * If a new destination address is specified, scrub the old one and 960 * install the new destination. Note that the interface must be 961 * p2p or loopback (see the check above.) 962 */ 963 if (dst6.sin6_family == AF_INET6 && 964 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, 965 &ia->ia_dstaddr.sin6_addr)) { 966 int e; 967 968 if ((ia->ia_flags & IFA_ROUTE) && 969 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 970 != 0) { 971 log(LOG_ERR, "in6_update_ifa: failed to remove " 972 "a route to the old destination: %s\n", 973 ip6_sprintf(&ia->ia_addr.sin6_addr)); 974 /* proceed anyway... */ 975 } 976 else 977 ia->ia_flags &= ~IFA_ROUTE; 978 ia->ia_dstaddr = dst6; 979 } 980 981 /* reset the interface and routing table appropriately. */ 982 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 983 goto unlink; 984 985 /* 986 * Beyond this point, we should call in6_purgeaddr upon an error, 987 * not just go to unlink. 988 */ 989 990 #if 0 /* disable this mechanism for now */ 991 /* update prefix list */ 992 if (hostIsNew && 993 (ifra->ifra_flags & IN6_IFF_NOPFX) == 0) { /* XXX */ 994 int iilen; 995 996 iilen = (sizeof(ia->ia_prefixmask.sin6_addr) << 3) - plen; 997 if ((error = in6_prefix_add_ifid(iilen, ia)) != 0) { 998 in6_purgeaddr((struct ifaddr *)ia); 999 return (error); 1000 } 1001 } 1002 #endif 1003 1004 if (ifp->if_flags & IFF_MULTICAST) { 1005 struct sockaddr_in6 mltaddr, mltmask; 1006 struct in6_multi *in6m; 1007 1008 if (hostIsNew) { 1009 /* 1010 * join solicited multicast addr for new host id 1011 */ 1012 struct in6_addr llsol; 1013 bzero(&llsol, sizeof(struct in6_addr)); 1014 llsol.s6_addr16[0] = htons(0xff02); 1015 llsol.s6_addr16[1] = htons(ifp->if_index); 1016 llsol.s6_addr32[1] = 0; 1017 llsol.s6_addr32[2] = htonl(1); 1018 llsol.s6_addr32[3] = 1019 ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1020 llsol.s6_addr8[12] = 0xff; 1021 in6_addmulti(&llsol, ifp, &error); 1022 if (error != 0) { 1023 log(LOG_WARNING, 1024 "in6_update_ifa: addmulti failed for " 1025 "%s on %s (errno=%d)\n", 1026 ip6_sprintf(&llsol), if_name(ifp), 1027 error); 1028 in6_purgeaddr((struct ifaddr *)ia); 1029 return (error); 1030 } 1031 } 1032 1033 bzero(&mltmask, sizeof(mltmask)); 1034 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1035 mltmask.sin6_family = AF_INET6; 1036 mltmask.sin6_addr = in6mask32; 1037 1038 /* 1039 * join link-local all-nodes address 1040 */ 1041 bzero(&mltaddr, sizeof(mltaddr)); 1042 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1043 mltaddr.sin6_family = AF_INET6; 1044 mltaddr.sin6_addr = kin6addr_linklocal_allnodes; 1045 mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 1046 1047 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1048 if (in6m == NULL) { 1049 rtrequest_global(RTM_ADD, 1050 (struct sockaddr *)&mltaddr, 1051 (struct sockaddr *)&ia->ia_addr, 1052 (struct sockaddr *)&mltmask, 1053 RTF_UP|RTF_CLONING); /* xxx */ 1054 in6_addmulti(&mltaddr.sin6_addr, ifp, &error); 1055 if (error != 0) { 1056 log(LOG_WARNING, 1057 "in6_update_ifa: addmulti failed for " 1058 "%s on %s (errno=%d)\n", 1059 ip6_sprintf(&mltaddr.sin6_addr), 1060 if_name(ifp), error); 1061 } 1062 } 1063 1064 /* 1065 * join node information group address 1066 */ 1067 #define hostnamelen strlen(hostname) 1068 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr) 1069 == 0) { 1070 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1071 if (in6m == NULL && ia != NULL) { 1072 in6_addmulti(&mltaddr.sin6_addr, ifp, &error); 1073 if (error != 0) { 1074 log(LOG_WARNING, "in6_update_ifa: " 1075 "addmulti failed for " 1076 "%s on %s (errno=%d)\n", 1077 ip6_sprintf(&mltaddr.sin6_addr), 1078 if_name(ifp), error); 1079 } 1080 } 1081 } 1082 #undef hostnamelen 1083 1084 /* 1085 * join node-local all-nodes address, on loopback. 1086 * XXX: since "node-local" is obsoleted by interface-local, 1087 * we have to join the group on every interface with 1088 * some interface-boundary restriction. 1089 */ 1090 if (ifp->if_flags & IFF_LOOPBACK) { 1091 struct in6_ifaddr *ia_loop; 1092 1093 struct in6_addr loop6 = kin6addr_loopback; 1094 ia_loop = in6ifa_ifpwithaddr(ifp, &loop6); 1095 1096 mltaddr.sin6_addr = kin6addr_nodelocal_allnodes; 1097 1098 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1099 if (in6m == NULL && ia_loop != NULL) { 1100 rtrequest_global(RTM_ADD, 1101 (struct sockaddr *)&mltaddr, 1102 (struct sockaddr *)&ia_loop->ia_addr, 1103 (struct sockaddr *)&mltmask, 1104 RTF_UP); 1105 in6_addmulti(&mltaddr.sin6_addr, ifp, &error); 1106 if (error != 0) { 1107 log(LOG_WARNING, "in6_update_ifa: " 1108 "addmulti failed for %s on %s " 1109 "(errno=%d)\n", 1110 ip6_sprintf(&mltaddr.sin6_addr), 1111 if_name(ifp), error); 1112 } 1113 } 1114 } 1115 } 1116 1117 ia->ia6_flags = ifra->ifra_flags; 1118 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /*safety*/ 1119 ia->ia6_flags &= ~IN6_IFF_NODAD; /* Mobile IPv6 */ 1120 1121 ia->ia6_lifetime = ifra->ifra_lifetime; 1122 /* for sanity */ 1123 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1124 ia->ia6_lifetime.ia6t_expire = 1125 time_second + ia->ia6_lifetime.ia6t_vltime; 1126 } else 1127 ia->ia6_lifetime.ia6t_expire = 0; 1128 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1129 ia->ia6_lifetime.ia6t_preferred = 1130 time_second + ia->ia6_lifetime.ia6t_pltime; 1131 } else 1132 ia->ia6_lifetime.ia6t_preferred = 0; 1133 1134 /* 1135 * Perform DAD, if needed. 1136 * XXX It may be of use, if we can administratively 1137 * disable DAD. 1138 */ 1139 if (in6if_do_dad(ifp) && !(ifra->ifra_flags & IN6_IFF_NODAD)) { 1140 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1141 nd6_dad_start((struct ifaddr *)ia, NULL); 1142 } 1143 1144 return (error); 1145 1146 unlink: 1147 /* 1148 * XXX: if a change of an existing address failed, keep the entry 1149 * anyway. 1150 */ 1151 if (hostIsNew) 1152 in6_unlink_ifa(ia, ifp); 1153 return (error); 1154 } 1155 1156 void 1157 in6_purgeaddr(struct ifaddr *ifa) 1158 { 1159 struct ifnet *ifp = ifa->ifa_ifp; 1160 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1161 1162 /* stop DAD processing */ 1163 nd6_dad_stop(ifa); 1164 1165 /* 1166 * delete route to the destination of the address being purged. 1167 * The interface must be p2p or loopback in this case. 1168 */ 1169 if ((ia->ia_flags & IFA_ROUTE) && ia->ia_dstaddr.sin6_len != 0) { 1170 int e; 1171 1172 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1173 != 0) { 1174 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1175 "a route to the p2p destination: %s on %s, " 1176 "errno=%d\n", 1177 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp), 1178 e); 1179 /* proceed anyway... */ 1180 } 1181 else 1182 ia->ia_flags &= ~IFA_ROUTE; 1183 } 1184 1185 /* Remove ownaddr's loopback rtentry, if it exists. */ 1186 in6_ifremloop(&(ia->ia_ifa)); 1187 1188 if (ifp->if_flags & IFF_MULTICAST) { 1189 /* 1190 * delete solicited multicast addr for deleting host id 1191 */ 1192 struct in6_multi *in6m; 1193 struct in6_addr llsol; 1194 bzero(&llsol, sizeof(struct in6_addr)); 1195 llsol.s6_addr16[0] = htons(0xff02); 1196 llsol.s6_addr16[1] = htons(ifp->if_index); 1197 llsol.s6_addr32[1] = 0; 1198 llsol.s6_addr32[2] = htonl(1); 1199 llsol.s6_addr32[3] = 1200 ia->ia_addr.sin6_addr.s6_addr32[3]; 1201 llsol.s6_addr8[12] = 0xff; 1202 1203 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1204 if (in6m) 1205 in6_delmulti(in6m); 1206 } 1207 1208 in6_unlink_ifa(ia, ifp); 1209 } 1210 1211 static void 1212 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1213 { 1214 int plen, iilen; 1215 struct in6_ifaddr *oia; 1216 1217 crit_enter(); 1218 1219 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 1220 1221 oia = ia; 1222 if (oia == (ia = in6_ifaddr)) 1223 in6_ifaddr = ia->ia_next; 1224 else { 1225 while (ia->ia_next && (ia->ia_next != oia)) 1226 ia = ia->ia_next; 1227 if (ia->ia_next) 1228 ia->ia_next = oia->ia_next; 1229 else { 1230 /* search failed */ 1231 kprintf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1232 } 1233 } 1234 1235 if (oia->ia6_ifpr) { /* check for safety */ 1236 plen = in6_mask2len(&oia->ia_prefixmask.sin6_addr, NULL); 1237 iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) - plen; 1238 in6_prefix_remove_ifid(iilen, oia); 1239 } 1240 1241 /* 1242 * When an autoconfigured address is being removed, release the 1243 * reference to the base prefix. Also, since the release might 1244 * affect the status of other (detached) addresses, call 1245 * pfxlist_onlink_check(). 1246 */ 1247 if (oia->ia6_flags & IN6_IFF_AUTOCONF) { 1248 if (oia->ia6_ndpr == NULL) { 1249 log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address " 1250 "%p has no prefix\n", oia); 1251 } else { 1252 oia->ia6_ndpr->ndpr_refcnt--; 1253 oia->ia6_flags &= ~IN6_IFF_AUTOCONF; 1254 oia->ia6_ndpr = NULL; 1255 } 1256 1257 pfxlist_onlink_check(); 1258 } 1259 1260 /* 1261 * release another refcnt for the link from in6_ifaddr. 1262 * Note that we should decrement the refcnt at least once for all *BSD. 1263 */ 1264 IFAFREE(&oia->ia_ifa); 1265 1266 crit_exit(); 1267 } 1268 1269 void 1270 in6_purgeif(struct ifnet *ifp) 1271 { 1272 struct ifaddr *ifa, *nifa; 1273 1274 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) 1275 { 1276 nifa = TAILQ_NEXT(ifa, ifa_list); 1277 if (ifa->ifa_addr->sa_family != AF_INET6) 1278 continue; 1279 in6_purgeaddr(ifa); 1280 } 1281 1282 in6_ifdetach(ifp); 1283 } 1284 1285 /* 1286 * SIOC[GAD]LIFADDR. 1287 * SIOCGLIFADDR: get first address. (?) 1288 * SIOCGLIFADDR with IFLR_PREFIX: 1289 * get first address that matches the specified prefix. 1290 * SIOCALIFADDR: add the specified address. 1291 * SIOCALIFADDR with IFLR_PREFIX: 1292 * add the specified prefix, filling hostid part from 1293 * the first link-local address. prefixlen must be <= 64. 1294 * SIOCDLIFADDR: delete the specified address. 1295 * SIOCDLIFADDR with IFLR_PREFIX: 1296 * delete the first address that matches the specified prefix. 1297 * return values: 1298 * EINVAL on invalid parameters 1299 * EADDRNOTAVAIL on prefix match failed/specified address not found 1300 * other values may be returned from in6_ioctl() 1301 * 1302 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1303 * this is to accomodate address naming scheme other than RFC2374, 1304 * in the future. 1305 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1306 * address encoding scheme. (see figure on page 8) 1307 */ 1308 static int 1309 in6_lifaddr_ioctl(struct socket *so, u_long cmd, caddr_t data, 1310 struct ifnet *ifp, struct thread *td) 1311 { 1312 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1313 struct ifaddr *ifa; 1314 struct sockaddr *sa; 1315 1316 /* sanity checks */ 1317 if (!data || !ifp) { 1318 panic("invalid argument to in6_lifaddr_ioctl"); 1319 /*NOTRECHED*/ 1320 } 1321 1322 switch (cmd) { 1323 case SIOCGLIFADDR: 1324 /* address must be specified on GET with IFLR_PREFIX */ 1325 if (!(iflr->flags & IFLR_PREFIX)) 1326 break; 1327 /* FALLTHROUGH */ 1328 case SIOCALIFADDR: 1329 case SIOCDLIFADDR: 1330 /* address must be specified on ADD and DELETE */ 1331 sa = (struct sockaddr *)&iflr->addr; 1332 if (sa->sa_family != AF_INET6) 1333 return EINVAL; 1334 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1335 return EINVAL; 1336 /* XXX need improvement */ 1337 sa = (struct sockaddr *)&iflr->dstaddr; 1338 if (sa->sa_family && sa->sa_family != AF_INET6) 1339 return EINVAL; 1340 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1341 return EINVAL; 1342 break; 1343 default: /* shouldn't happen */ 1344 #if 0 1345 panic("invalid cmd to in6_lifaddr_ioctl"); 1346 /* NOTREACHED */ 1347 #else 1348 return EOPNOTSUPP; 1349 #endif 1350 } 1351 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1352 return EINVAL; 1353 1354 switch (cmd) { 1355 case SIOCALIFADDR: 1356 { 1357 struct in6_aliasreq ifra; 1358 struct in6_addr *hostid = NULL; 1359 int prefixlen; 1360 1361 if (iflr->flags & IFLR_PREFIX) { 1362 struct sockaddr_in6 *sin6; 1363 1364 /* 1365 * hostid is to fill in the hostid part of the 1366 * address. hostid points to the first link-local 1367 * address attached to the interface. 1368 */ 1369 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1370 if (!ifa) 1371 return EADDRNOTAVAIL; 1372 hostid = IFA_IN6(ifa); 1373 1374 /* prefixlen must be <= 64. */ 1375 if (64 < iflr->prefixlen) 1376 return EINVAL; 1377 prefixlen = iflr->prefixlen; 1378 1379 /* hostid part must be zero. */ 1380 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1381 if (sin6->sin6_addr.s6_addr32[2] != 0 1382 || sin6->sin6_addr.s6_addr32[3] != 0) { 1383 return EINVAL; 1384 } 1385 } else 1386 prefixlen = iflr->prefixlen; 1387 1388 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1389 bzero(&ifra, sizeof(ifra)); 1390 bcopy(iflr->iflr_name, ifra.ifra_name, 1391 sizeof(ifra.ifra_name)); 1392 1393 bcopy(&iflr->addr, &ifra.ifra_addr, 1394 ((struct sockaddr *)&iflr->addr)->sa_len); 1395 if (hostid) { 1396 /* fill in hostid part */ 1397 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1398 hostid->s6_addr32[2]; 1399 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1400 hostid->s6_addr32[3]; 1401 } 1402 1403 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/ 1404 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1405 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1406 if (hostid) { 1407 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1408 hostid->s6_addr32[2]; 1409 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1410 hostid->s6_addr32[3]; 1411 } 1412 } 1413 1414 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1415 in6_len2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1416 1417 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1418 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td); 1419 } 1420 case SIOCGLIFADDR: 1421 case SIOCDLIFADDR: 1422 { 1423 struct in6_ifaddr *ia; 1424 struct in6_addr mask, candidate, match; 1425 struct sockaddr_in6 *sin6; 1426 int cmp; 1427 1428 bzero(&mask, sizeof(mask)); 1429 if (iflr->flags & IFLR_PREFIX) { 1430 /* lookup a prefix rather than address. */ 1431 in6_len2mask(&mask, iflr->prefixlen); 1432 1433 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1434 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1435 match.s6_addr32[0] &= mask.s6_addr32[0]; 1436 match.s6_addr32[1] &= mask.s6_addr32[1]; 1437 match.s6_addr32[2] &= mask.s6_addr32[2]; 1438 match.s6_addr32[3] &= mask.s6_addr32[3]; 1439 1440 /* if you set extra bits, that's wrong */ 1441 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1442 return EINVAL; 1443 1444 cmp = 1; 1445 } else { 1446 if (cmd == SIOCGLIFADDR) { 1447 /* on getting an address, take the 1st match */ 1448 cmp = 0; /* XXX */ 1449 } else { 1450 /* on deleting an address, do exact match */ 1451 in6_len2mask(&mask, 128); 1452 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1453 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1454 1455 cmp = 1; 1456 } 1457 } 1458 1459 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1460 { 1461 if (ifa->ifa_addr->sa_family != AF_INET6) 1462 continue; 1463 if (!cmp) 1464 break; 1465 1466 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1467 /* 1468 * XXX: this is adhoc, but is necessary to allow 1469 * a user to specify fe80::/64 (not /10) for a 1470 * link-local address. 1471 */ 1472 if (IN6_IS_ADDR_LINKLOCAL(&candidate)) 1473 candidate.s6_addr16[1] = 0; 1474 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1475 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1476 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1477 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1478 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1479 break; 1480 } 1481 if (!ifa) 1482 return EADDRNOTAVAIL; 1483 ia = ifa2ia6(ifa); 1484 1485 if (cmd == SIOCGLIFADDR) { 1486 struct sockaddr_in6 *s6; 1487 1488 /* fill in the if_laddrreq structure */ 1489 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1490 s6 = (struct sockaddr_in6 *)&iflr->addr; 1491 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1492 s6->sin6_addr.s6_addr16[1] = 0; 1493 s6->sin6_scope_id = 1494 in6_addr2scopeid(ifp, &s6->sin6_addr); 1495 } 1496 if (ifp->if_flags & IFF_POINTOPOINT) { 1497 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1498 ia->ia_dstaddr.sin6_len); 1499 s6 = (struct sockaddr_in6 *)&iflr->dstaddr; 1500 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1501 s6->sin6_addr.s6_addr16[1] = 0; 1502 s6->sin6_scope_id = 1503 in6_addr2scopeid(ifp, 1504 &s6->sin6_addr); 1505 } 1506 } else 1507 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1508 1509 iflr->prefixlen = 1510 in6_mask2len(&ia->ia_prefixmask.sin6_addr, 1511 NULL); 1512 1513 iflr->flags = ia->ia6_flags; /* XXX */ 1514 1515 return 0; 1516 } else { 1517 struct in6_aliasreq ifra; 1518 1519 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1520 bzero(&ifra, sizeof(ifra)); 1521 bcopy(iflr->iflr_name, ifra.ifra_name, 1522 sizeof(ifra.ifra_name)); 1523 1524 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1525 ia->ia_addr.sin6_len); 1526 if (ifp->if_flags & IFF_POINTOPOINT) 1527 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1528 ia->ia_dstaddr.sin6_len); 1529 else 1530 bzero(&ifra.ifra_dstaddr, 1531 sizeof(ifra.ifra_dstaddr)); 1532 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1533 ia->ia_prefixmask.sin6_len); 1534 1535 ifra.ifra_flags = ia->ia6_flags; 1536 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1537 ifp, td); 1538 } 1539 } 1540 } 1541 1542 return EOPNOTSUPP; /* just for safety */ 1543 } 1544 1545 /* 1546 * Initialize an interface's intetnet6 address 1547 * and routing table entry. 1548 */ 1549 static int 1550 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, struct sockaddr_in6 *sin6, 1551 int newhost) 1552 { 1553 int error = 0, plen, ifacount = 0; 1554 struct ifaddr *ifa; 1555 1556 lwkt_serialize_enter(ifp->if_serializer); 1557 1558 /* 1559 * Give the interface a chance to initialize 1560 * if this is its first address, 1561 * and to validate the address if necessary. 1562 */ 1563 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1564 { 1565 if (ifa->ifa_addr == NULL) 1566 continue; /* just for safety */ 1567 if (ifa->ifa_addr->sa_family != AF_INET6) 1568 continue; 1569 ifacount++; 1570 } 1571 1572 ia->ia_addr = *sin6; 1573 1574 if (ifacount <= 1 && ifp->if_ioctl && 1575 (error = ifp->if_ioctl(ifp, SIOCSIFADDR, (caddr_t)ia, 1576 (struct ucred *)NULL))) { 1577 lwkt_serialize_exit(ifp->if_serializer); 1578 return (error); 1579 } 1580 lwkt_serialize_exit(ifp->if_serializer); 1581 1582 ia->ia_ifa.ifa_metric = ifp->if_metric; 1583 1584 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1585 1586 /* 1587 * Special case: 1588 * If the destination address is specified for a point-to-point 1589 * interface, install a route to the destination as an interface 1590 * direct route. 1591 */ 1592 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1593 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) { 1594 if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD, 1595 RTF_UP | RTF_HOST)) != 0) 1596 return (error); 1597 ia->ia_flags |= IFA_ROUTE; 1598 } 1599 if (plen < 128) { 1600 /* 1601 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). 1602 */ 1603 ia->ia_ifa.ifa_flags |= RTF_CLONING; 1604 } 1605 1606 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ 1607 if (newhost) { 1608 /* set the rtrequest function to create llinfo */ 1609 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1610 in6_ifaddloop(&(ia->ia_ifa)); 1611 } 1612 1613 return (error); 1614 } 1615 1616 struct in6_multi_mship * 1617 in6_joingroup(ifp, addr, errorp) 1618 struct ifnet *ifp; 1619 struct in6_addr *addr; 1620 int *errorp; 1621 { 1622 struct in6_multi_mship *imm; 1623 1624 imm = kmalloc(sizeof(*imm), M_IPMADDR, M_NOWAIT); 1625 if (!imm) { 1626 *errorp = ENOBUFS; 1627 return NULL; 1628 } 1629 imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp); 1630 if (!imm->i6mm_maddr) { 1631 /* *errorp is alrady set */ 1632 kfree(imm, M_IPMADDR); 1633 return NULL; 1634 } 1635 return imm; 1636 } 1637 1638 int 1639 in6_leavegroup(imm) 1640 struct in6_multi_mship *imm; 1641 { 1642 1643 if (imm->i6mm_maddr) 1644 in6_delmulti(imm->i6mm_maddr); 1645 kfree(imm, M_IPMADDR); 1646 return 0; 1647 } 1648 1649 /* 1650 * Add an address to the list of IP6 multicast addresses for a 1651 * given interface. 1652 */ 1653 struct in6_multi * 1654 in6_addmulti(struct in6_addr *maddr6, struct ifnet *ifp, int *errorp) 1655 { 1656 struct in6_multi *in6m; 1657 struct sockaddr_in6 sin6; 1658 struct ifmultiaddr *ifma; 1659 1660 *errorp = 0; 1661 1662 crit_enter(); 1663 1664 /* 1665 * Call generic routine to add membership or increment 1666 * refcount. It wants addresses in the form of a sockaddr, 1667 * so we build one here (being careful to zero the unused bytes). 1668 */ 1669 bzero(&sin6, sizeof sin6); 1670 sin6.sin6_family = AF_INET6; 1671 sin6.sin6_len = sizeof sin6; 1672 sin6.sin6_addr = *maddr6; 1673 *errorp = if_addmulti(ifp, (struct sockaddr *)&sin6, &ifma); 1674 if (*errorp) { 1675 crit_exit(); 1676 return 0; 1677 } 1678 1679 /* 1680 * If ifma->ifma_protospec is null, then if_addmulti() created 1681 * a new record. Otherwise, we are done. 1682 */ 1683 if (ifma->ifma_protospec != 0) { 1684 crit_exit(); 1685 return ifma->ifma_protospec; 1686 } 1687 1688 /* XXX - if_addmulti uses M_WAITOK. Can this really be called 1689 at interrupt time? If so, need to fix if_addmulti. XXX */ 1690 in6m = (struct in6_multi *)kmalloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT); 1691 if (in6m == NULL) { 1692 crit_exit(); 1693 return (NULL); 1694 } 1695 1696 bzero(in6m, sizeof *in6m); 1697 in6m->in6m_addr = *maddr6; 1698 in6m->in6m_ifp = ifp; 1699 in6m->in6m_ifma = ifma; 1700 ifma->ifma_protospec = in6m; 1701 LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry); 1702 1703 /* 1704 * Let MLD6 know that we have joined a new IP6 multicast 1705 * group. 1706 */ 1707 mld6_start_listening(in6m); 1708 crit_exit(); 1709 return (in6m); 1710 } 1711 1712 /* 1713 * Delete a multicast address record. 1714 */ 1715 void 1716 in6_delmulti(struct in6_multi *in6m) 1717 { 1718 struct ifmultiaddr *ifma = in6m->in6m_ifma; 1719 1720 crit_enter(); 1721 1722 if (ifma->ifma_refcount == 1) { 1723 /* 1724 * No remaining claims to this record; let MLD6 know 1725 * that we are leaving the multicast group. 1726 */ 1727 mld6_stop_listening(in6m); 1728 ifma->ifma_protospec = 0; 1729 LIST_REMOVE(in6m, in6m_entry); 1730 kfree(in6m, M_IPMADDR); 1731 } 1732 /* XXX - should be separate API for when we have an ifma? */ 1733 if_delmulti(ifma->ifma_ifp, ifma->ifma_addr); 1734 crit_exit(); 1735 } 1736 1737 /* 1738 * Find an IPv6 interface link-local address specific to an interface. 1739 */ 1740 struct in6_ifaddr * 1741 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1742 { 1743 struct ifaddr *ifa; 1744 1745 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1746 { 1747 if (ifa->ifa_addr == NULL) 1748 continue; /* just for safety */ 1749 if (ifa->ifa_addr->sa_family != AF_INET6) 1750 continue; 1751 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1752 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1753 ignoreflags) != 0) 1754 continue; 1755 break; 1756 } 1757 } 1758 1759 return ((struct in6_ifaddr *)ifa); 1760 } 1761 1762 1763 /* 1764 * find the internet address corresponding to a given interface and address. 1765 */ 1766 struct in6_ifaddr * 1767 in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr) 1768 { 1769 struct ifaddr *ifa; 1770 1771 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1772 { 1773 if (ifa->ifa_addr == NULL) 1774 continue; /* just for safety */ 1775 if (ifa->ifa_addr->sa_family != AF_INET6) 1776 continue; 1777 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1778 break; 1779 } 1780 1781 return ((struct in6_ifaddr *)ifa); 1782 } 1783 1784 /* 1785 * Convert IP6 address to printable (loggable) representation. 1786 */ 1787 static char digits[] = "0123456789abcdef"; 1788 static int ip6round = 0; 1789 char * 1790 ip6_sprintf(const struct in6_addr *addr) 1791 { 1792 static char ip6buf[8][48]; 1793 int i; 1794 char *cp; 1795 const u_short *a = (const u_short *)addr; 1796 const u_char *d; 1797 int dcolon = 0; 1798 1799 ip6round = (ip6round + 1) & 7; 1800 cp = ip6buf[ip6round]; 1801 1802 for (i = 0; i < 8; i++) { 1803 if (dcolon == 1) { 1804 if (*a == 0) { 1805 if (i == 7) 1806 *cp++ = ':'; 1807 a++; 1808 continue; 1809 } else 1810 dcolon = 2; 1811 } 1812 if (*a == 0) { 1813 if (dcolon == 0 && *(a + 1) == 0) { 1814 if (i == 0) 1815 *cp++ = ':'; 1816 *cp++ = ':'; 1817 dcolon = 1; 1818 } else { 1819 *cp++ = '0'; 1820 *cp++ = ':'; 1821 } 1822 a++; 1823 continue; 1824 } 1825 d = (const u_char *)a; 1826 *cp++ = digits[*d >> 4]; 1827 *cp++ = digits[*d++ & 0xf]; 1828 *cp++ = digits[*d >> 4]; 1829 *cp++ = digits[*d & 0xf]; 1830 *cp++ = ':'; 1831 a++; 1832 } 1833 *--cp = 0; 1834 return (ip6buf[ip6round]); 1835 } 1836 1837 int 1838 in6_localaddr(struct in6_addr *in6) 1839 { 1840 struct in6_ifaddr *ia; 1841 1842 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1843 return 1; 1844 1845 for (ia = in6_ifaddr; ia; ia = ia->ia_next) 1846 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1847 &ia->ia_prefixmask.sin6_addr)) 1848 return 1; 1849 1850 return (0); 1851 } 1852 1853 int 1854 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1855 { 1856 struct in6_ifaddr *ia; 1857 1858 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1859 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1860 &sa6->sin6_addr) && 1861 (ia->ia6_flags & IN6_IFF_DEPRECATED)) 1862 return (1); /* true */ 1863 1864 /* XXX: do we still have to go thru the rest of the list? */ 1865 } 1866 1867 return (0); /* false */ 1868 } 1869 1870 /* 1871 * return length of part which dst and src are equal 1872 * hard coding... 1873 */ 1874 int 1875 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 1876 { 1877 int match = 0; 1878 u_char *s = (u_char *)src, *d = (u_char *)dst; 1879 u_char *lim = s + 16, r; 1880 1881 while (s < lim) 1882 if ((r = (*d++ ^ *s++)) != 0) { 1883 while (r < 128) { 1884 match++; 1885 r <<= 1; 1886 } 1887 break; 1888 } else 1889 match += 8; 1890 return match; 1891 } 1892 1893 /* XXX: to be scope conscious */ 1894 int 1895 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 1896 { 1897 int bytelen, bitlen; 1898 1899 /* sanity check */ 1900 if (0 > len || len > 128) { 1901 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1902 len); 1903 return (0); 1904 } 1905 1906 bytelen = len / 8; 1907 bitlen = len % 8; 1908 1909 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1910 return (0); 1911 if (p1->s6_addr[bytelen] >> (8 - bitlen) != 1912 p2->s6_addr[bytelen] >> (8 - bitlen)) 1913 return (0); 1914 1915 return (1); 1916 } 1917 1918 void 1919 in6_prefixlen2mask(struct in6_addr *maskp, int len) 1920 { 1921 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1922 int bytelen, bitlen, i; 1923 1924 /* sanity check */ 1925 if (0 > len || len > 128) { 1926 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1927 len); 1928 return; 1929 } 1930 1931 bzero(maskp, sizeof(*maskp)); 1932 bytelen = len / 8; 1933 bitlen = len % 8; 1934 for (i = 0; i < bytelen; i++) 1935 maskp->s6_addr[i] = 0xff; 1936 if (bitlen) 1937 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1938 } 1939 1940 /* 1941 * return the best address out of the same scope 1942 */ 1943 struct in6_ifaddr * 1944 in6_ifawithscope(struct ifnet *oifp, struct in6_addr *dst) 1945 { 1946 int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0; 1947 int blen = -1; 1948 struct ifaddr *ifa; 1949 struct ifnet *ifp; 1950 struct in6_ifaddr *ifa_best = NULL; 1951 1952 if (oifp == NULL) { 1953 #if 0 1954 kprintf("in6_ifawithscope: output interface is not specified\n"); 1955 #endif 1956 return (NULL); 1957 } 1958 1959 /* 1960 * We search for all addresses on all interfaces from the beginning. 1961 * Comparing an interface with the outgoing interface will be done 1962 * only at the final stage of tiebreaking. 1963 */ 1964 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 1965 { 1966 /* 1967 * We can never take an address that breaks the scope zone 1968 * of the destination. 1969 */ 1970 if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst)) 1971 continue; 1972 1973 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1974 { 1975 int tlen = -1, dscopecmp, bscopecmp, matchcmp; 1976 1977 if (ifa->ifa_addr->sa_family != AF_INET6) 1978 continue; 1979 1980 src_scope = in6_addrscope(IFA_IN6(ifa)); 1981 1982 /* 1983 * Don't use an address before completing DAD 1984 * nor a duplicated address. 1985 */ 1986 if (((struct in6_ifaddr *)ifa)->ia6_flags & 1987 IN6_IFF_NOTREADY) 1988 continue; 1989 1990 /* XXX: is there any case to allow anycasts? */ 1991 if (((struct in6_ifaddr *)ifa)->ia6_flags & 1992 IN6_IFF_ANYCAST) 1993 continue; 1994 1995 if (((struct in6_ifaddr *)ifa)->ia6_flags & 1996 IN6_IFF_DETACHED) 1997 continue; 1998 1999 /* 2000 * If this is the first address we find, 2001 * keep it anyway. 2002 */ 2003 if (ifa_best == NULL) 2004 goto replace; 2005 2006 /* 2007 * ifa_best is never NULL beyond this line except 2008 * within the block labeled "replace". 2009 */ 2010 2011 /* 2012 * If ifa_best has a smaller scope than dst and 2013 * the current address has a larger one than 2014 * (or equal to) dst, always replace ifa_best. 2015 * Also, if the current address has a smaller scope 2016 * than dst, ignore it unless ifa_best also has a 2017 * smaller scope. 2018 * Consequently, after the two if-clause below, 2019 * the followings must be satisfied: 2020 * (scope(src) < scope(dst) && 2021 * scope(best) < scope(dst)) 2022 * OR 2023 * (scope(best) >= scope(dst) && 2024 * scope(src) >= scope(dst)) 2025 */ 2026 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 && 2027 IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0) 2028 goto replace; /* (A) */ 2029 if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 && 2030 IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0) 2031 continue; /* (B) */ 2032 2033 /* 2034 * A deprecated address SHOULD NOT be used in new 2035 * communications if an alternate (non-deprecated) 2036 * address is available and has sufficient scope. 2037 * RFC 2462, Section 5.5.4. 2038 */ 2039 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2040 IN6_IFF_DEPRECATED) { 2041 /* 2042 * Ignore any deprecated addresses if 2043 * specified by configuration. 2044 */ 2045 if (!ip6_use_deprecated) 2046 continue; 2047 2048 /* 2049 * If we have already found a non-deprecated 2050 * candidate, just ignore deprecated addresses. 2051 */ 2052 if (!(ifa_best->ia6_flags & IN6_IFF_DEPRECATED)) 2053 continue; 2054 } 2055 2056 /* 2057 * A non-deprecated address is always preferred 2058 * to a deprecated one regardless of scopes and 2059 * address matching (Note invariants ensured by the 2060 * conditions (A) and (B) above.) 2061 */ 2062 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) && 2063 !(((struct in6_ifaddr *)ifa)->ia6_flags & 2064 IN6_IFF_DEPRECATED)) 2065 goto replace; 2066 2067 /* 2068 * When we use temporary addresses described in 2069 * RFC 3041, we prefer temporary addresses to 2070 * public autoconf addresses. Again, note the 2071 * invariants from (A) and (B). Also note that we 2072 * don't have any preference between static addresses 2073 * and autoconf addresses (despite of whether or not 2074 * the latter is temporary or public.) 2075 */ 2076 if (ip6_use_tempaddr) { 2077 struct in6_ifaddr *ifat; 2078 2079 ifat = (struct in6_ifaddr *)ifa; 2080 if ((ifa_best->ia6_flags & 2081 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2082 == IN6_IFF_AUTOCONF && 2083 (ifat->ia6_flags & 2084 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2085 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) { 2086 goto replace; 2087 } 2088 if ((ifa_best->ia6_flags & 2089 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2090 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) && 2091 (ifat->ia6_flags & 2092 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2093 == IN6_IFF_AUTOCONF) { 2094 continue; 2095 } 2096 } 2097 2098 /* 2099 * At this point, we have two cases: 2100 * 1. we are looking at a non-deprecated address, 2101 * and ifa_best is also non-deprecated. 2102 * 2. we are looking at a deprecated address, 2103 * and ifa_best is also deprecated. 2104 * Also, we do not have to consider a case where 2105 * the scope of if_best is larger(smaller) than dst and 2106 * the scope of the current address is smaller(larger) 2107 * than dst. Such a case has already been covered. 2108 * Tiebreaking is done according to the following 2109 * items: 2110 * - the scope comparison between the address and 2111 * dst (dscopecmp) 2112 * - the scope comparison between the address and 2113 * ifa_best (bscopecmp) 2114 * - if the address match dst longer than ifa_best 2115 * (matchcmp) 2116 * - if the address is on the outgoing I/F (outI/F) 2117 * 2118 * Roughly speaking, the selection policy is 2119 * - the most important item is scope. The same scope 2120 * is best. Then search for a larger scope. 2121 * Smaller scopes are the last resort. 2122 * - A deprecated address is chosen only when we have 2123 * no address that has an enough scope, but is 2124 * prefered to any addresses of smaller scopes 2125 * (this must be already done above.) 2126 * - addresses on the outgoing I/F are preferred to 2127 * ones on other interfaces if none of above 2128 * tiebreaks. In the table below, the column "bI" 2129 * means if the best_ifa is on the outgoing 2130 * interface, and the column "sI" means if the ifa 2131 * is on the outgoing interface. 2132 * - If there is no other reasons to choose one, 2133 * longest address match against dst is considered. 2134 * 2135 * The precise decision table is as follows: 2136 * dscopecmp bscopecmp match bI oI | replace? 2137 * N/A equal N/A Y N | No (1) 2138 * N/A equal N/A N Y | Yes (2) 2139 * N/A equal larger N/A | Yes (3) 2140 * N/A equal !larger N/A | No (4) 2141 * larger larger N/A N/A | No (5) 2142 * larger smaller N/A N/A | Yes (6) 2143 * smaller larger N/A N/A | Yes (7) 2144 * smaller smaller N/A N/A | No (8) 2145 * equal smaller N/A N/A | Yes (9) 2146 * equal larger (already done at A above) 2147 */ 2148 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope); 2149 bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope); 2150 2151 if (bscopecmp == 0) { 2152 struct ifnet *bifp = ifa_best->ia_ifp; 2153 2154 if (bifp == oifp && ifp != oifp) /* (1) */ 2155 continue; 2156 if (bifp != oifp && ifp == oifp) /* (2) */ 2157 goto replace; 2158 2159 /* 2160 * Both bifp and ifp are on the outgoing 2161 * interface, or both two are on a different 2162 * interface from the outgoing I/F. 2163 * now we need address matching against dst 2164 * for tiebreaking. 2165 */ 2166 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2167 matchcmp = tlen - blen; 2168 if (matchcmp > 0) /* (3) */ 2169 goto replace; 2170 continue; /* (4) */ 2171 } 2172 if (dscopecmp > 0) { 2173 if (bscopecmp > 0) /* (5) */ 2174 continue; 2175 goto replace; /* (6) */ 2176 } 2177 if (dscopecmp < 0) { 2178 if (bscopecmp > 0) /* (7) */ 2179 goto replace; 2180 continue; /* (8) */ 2181 } 2182 2183 /* now dscopecmp must be 0 */ 2184 if (bscopecmp < 0) 2185 goto replace; /* (9) */ 2186 2187 replace: 2188 ifa_best = (struct in6_ifaddr *)ifa; 2189 blen = tlen >= 0 ? tlen : 2190 in6_matchlen(IFA_IN6(ifa), dst); 2191 best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr); 2192 } 2193 } 2194 2195 /* count statistics for future improvements */ 2196 if (ifa_best == NULL) 2197 ip6stat.ip6s_sources_none++; 2198 else { 2199 if (oifp == ifa_best->ia_ifp) 2200 ip6stat.ip6s_sources_sameif[best_scope]++; 2201 else 2202 ip6stat.ip6s_sources_otherif[best_scope]++; 2203 2204 if (best_scope == dst_scope) 2205 ip6stat.ip6s_sources_samescope[best_scope]++; 2206 else 2207 ip6stat.ip6s_sources_otherscope[best_scope]++; 2208 2209 if (ifa_best->ia6_flags & IN6_IFF_DEPRECATED) 2210 ip6stat.ip6s_sources_deprecated[best_scope]++; 2211 } 2212 2213 return (ifa_best); 2214 } 2215 2216 /* 2217 * return the best address out of the same scope. if no address was 2218 * found, return the first valid address from designated IF. 2219 */ 2220 struct in6_ifaddr * 2221 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 2222 { 2223 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2224 struct ifaddr *ifa; 2225 struct in6_ifaddr *besta = 0; 2226 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 2227 2228 dep[0] = dep[1] = NULL; 2229 2230 /* 2231 * We first look for addresses in the same scope. 2232 * If there is one, return it. 2233 * If two or more, return one which matches the dst longest. 2234 * If none, return one of global addresses assigned other ifs. 2235 */ 2236 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2237 { 2238 if (ifa->ifa_addr->sa_family != AF_INET6) 2239 continue; 2240 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2241 continue; /* XXX: is there any case to allow anycast? */ 2242 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2243 continue; /* don't use this interface */ 2244 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2245 continue; 2246 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2247 if (ip6_use_deprecated) 2248 dep[0] = (struct in6_ifaddr *)ifa; 2249 continue; 2250 } 2251 2252 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2253 /* 2254 * call in6_matchlen() as few as possible 2255 */ 2256 if (besta) { 2257 if (blen == -1) 2258 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2259 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2260 if (tlen > blen) { 2261 blen = tlen; 2262 besta = (struct in6_ifaddr *)ifa; 2263 } 2264 } else 2265 besta = (struct in6_ifaddr *)ifa; 2266 } 2267 } 2268 if (besta) 2269 return (besta); 2270 2271 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2272 { 2273 if (ifa->ifa_addr->sa_family != AF_INET6) 2274 continue; 2275 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2276 continue; /* XXX: is there any case to allow anycast? */ 2277 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2278 continue; /* don't use this interface */ 2279 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2280 continue; 2281 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2282 if (ip6_use_deprecated) 2283 dep[1] = (struct in6_ifaddr *)ifa; 2284 continue; 2285 } 2286 2287 return (struct in6_ifaddr *)ifa; 2288 } 2289 2290 /* use the last-resort values, that are, deprecated addresses */ 2291 if (dep[0]) 2292 return dep[0]; 2293 if (dep[1]) 2294 return dep[1]; 2295 2296 return NULL; 2297 } 2298 2299 /* 2300 * perform DAD when interface becomes IFF_UP. 2301 */ 2302 void 2303 in6_if_up(struct ifnet *ifp) 2304 { 2305 struct ifaddr *ifa; 2306 struct in6_ifaddr *ia; 2307 int dad_delay; /* delay ticks before DAD output */ 2308 2309 /* 2310 * special cases, like 6to4, are handled in in6_ifattach 2311 */ 2312 in6_ifattach(ifp, NULL); 2313 2314 dad_delay = 0; 2315 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2316 { 2317 if (ifa->ifa_addr->sa_family != AF_INET6) 2318 continue; 2319 ia = (struct in6_ifaddr *)ifa; 2320 if (ia->ia6_flags & IN6_IFF_TENTATIVE) 2321 nd6_dad_start(ifa, &dad_delay); 2322 } 2323 } 2324 2325 int 2326 in6if_do_dad(struct ifnet *ifp) 2327 { 2328 if (ifp->if_flags & IFF_LOOPBACK) 2329 return (0); 2330 2331 switch (ifp->if_type) { 2332 #ifdef IFT_DUMMY 2333 case IFT_DUMMY: 2334 #endif 2335 case IFT_FAITH: 2336 /* 2337 * These interfaces do not have the IFF_LOOPBACK flag, 2338 * but loop packets back. We do not have to do DAD on such 2339 * interfaces. We should even omit it, because loop-backed 2340 * NS would confuse the DAD procedure. 2341 */ 2342 return (0); 2343 default: 2344 /* 2345 * Our DAD routine requires the interface up and running. 2346 * However, some interfaces can be up before the RUNNING 2347 * status. Additionaly, users may try to assign addresses 2348 * before the interface becomes up (or running). 2349 * We simply skip DAD in such a case as a work around. 2350 * XXX: we should rather mark "tentative" on such addresses, 2351 * and do DAD after the interface becomes ready. 2352 */ 2353 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 2354 (IFF_UP|IFF_RUNNING)) 2355 return (0); 2356 2357 return (1); 2358 } 2359 } 2360 2361 /* 2362 * Calculate max IPv6 MTU through all the interfaces and store it 2363 * to in6_maxmtu. 2364 */ 2365 void 2366 in6_setmaxmtu(void) 2367 { 2368 unsigned long maxmtu = 0; 2369 struct ifnet *ifp; 2370 2371 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 2372 { 2373 if (!(ifp->if_flags & IFF_LOOPBACK) && 2374 ND_IFINFO(ifp)->linkmtu > maxmtu) 2375 maxmtu = ND_IFINFO(ifp)->linkmtu; 2376 } 2377 if (maxmtu) /* update only when maxmtu is positive */ 2378 in6_maxmtu = maxmtu; 2379 } 2380 2381 void * 2382 in6_domifattach(struct ifnet *ifp) 2383 { 2384 struct in6_ifextra *ext; 2385 2386 ext = (struct in6_ifextra *)kmalloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2387 bzero(ext, sizeof(*ext)); 2388 2389 ext->in6_ifstat = (struct in6_ifstat *)kmalloc(sizeof(struct in6_ifstat), 2390 M_IFADDR, M_WAITOK); 2391 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat)); 2392 2393 ext->icmp6_ifstat = 2394 (struct icmp6_ifstat *)kmalloc(sizeof(struct icmp6_ifstat), 2395 M_IFADDR, M_WAITOK); 2396 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat)); 2397 2398 ext->nd_ifinfo = nd6_ifattach(ifp); 2399 ext->scope6_id = scope6_ifattach(ifp); 2400 return ext; 2401 } 2402 2403 void 2404 in6_domifdetach(struct ifnet *ifp, void *aux) 2405 { 2406 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2407 scope6_ifdetach(ext->scope6_id); 2408 nd6_ifdetach(ext->nd_ifinfo); 2409 kfree(ext->in6_ifstat, M_IFADDR); 2410 kfree(ext->icmp6_ifstat, M_IFADDR); 2411 kfree(ext, M_IFADDR); 2412 } 2413 2414 /* 2415 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2416 * v4 mapped addr or v4 compat addr 2417 */ 2418 void 2419 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2420 { 2421 bzero(sin, sizeof(*sin)); 2422 sin->sin_len = sizeof(struct sockaddr_in); 2423 sin->sin_family = AF_INET; 2424 sin->sin_port = sin6->sin6_port; 2425 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2426 } 2427 2428 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2429 void 2430 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2431 { 2432 bzero(sin6, sizeof(*sin6)); 2433 sin6->sin6_len = sizeof(struct sockaddr_in6); 2434 sin6->sin6_family = AF_INET6; 2435 sin6->sin6_port = sin->sin_port; 2436 sin6->sin6_addr.s6_addr32[0] = 0; 2437 sin6->sin6_addr.s6_addr32[1] = 0; 2438 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2439 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2440 } 2441 2442 /* Convert sockaddr_in6 into sockaddr_in. */ 2443 void 2444 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2445 { 2446 struct sockaddr_in *sin_p; 2447 struct sockaddr_in6 sin6; 2448 2449 /* 2450 * Save original sockaddr_in6 addr and convert it 2451 * to sockaddr_in. 2452 */ 2453 sin6 = *(struct sockaddr_in6 *)nam; 2454 sin_p = (struct sockaddr_in *)nam; 2455 in6_sin6_2_sin(sin_p, &sin6); 2456 } 2457 2458 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2459 void 2460 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2461 { 2462 struct sockaddr_in *sin_p; 2463 struct sockaddr_in6 *sin6_p; 2464 2465 MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME, 2466 M_WAITOK); 2467 sin_p = (struct sockaddr_in *)*nam; 2468 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2469 FREE(*nam, M_SONAME); 2470 *nam = (struct sockaddr *)sin6_p; 2471 } 2472