1 /* $FreeBSD: src/sys/netinet6/in6.c,v 1.7.2.9 2002/04/28 05:40:26 suz Exp $ */ 2 /* $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)in.c 8.2 (Berkeley) 11/15/93 62 */ 63 64 #include "opt_inet.h" 65 #include "opt_inet6.h" 66 67 #include <sys/param.h> 68 #include <sys/errno.h> 69 #include <sys/malloc.h> 70 #include <sys/socket.h> 71 #include <sys/socketvar.h> 72 #include <sys/sockio.h> 73 #include <sys/systm.h> 74 #include <sys/proc.h> 75 #include <sys/caps.h> 76 #include <sys/time.h> 77 #include <sys/kernel.h> 78 #include <sys/syslog.h> 79 #include <sys/jail.h> 80 81 #include <sys/thread2.h> 82 #include <sys/msgport2.h> 83 84 #include <net/if.h> 85 #include <net/if_types.h> 86 #include <net/route.h> 87 #include <net/if_dl.h> 88 #include <net/netmsg2.h> 89 #include <net/netisr2.h> 90 91 #include <netinet/in.h> 92 #include <netinet/in_var.h> 93 #include <netinet/if_ether.h> 94 #include <netinet/in_systm.h> 95 #include <netinet/ip.h> 96 #include <netinet/in_pcb.h> 97 98 #include <netinet/ip6.h> 99 #include <netinet6/ip6_var.h> 100 #include <netinet6/nd6.h> 101 #include <netinet6/mld6_var.h> 102 #include <netinet6/ip6_mroute.h> 103 #include <netinet6/in6_ifattach.h> 104 #include <netinet6/scope6_var.h> 105 #include <netinet6/in6_pcb.h> 106 #include <netinet6/in6_var.h> 107 108 #include <net/net_osdep.h> 109 110 /* 111 * Definitions of some costant IP6 addresses. 112 */ 113 const struct in6_addr kin6addr_any = IN6ADDR_ANY_INIT; 114 const struct in6_addr kin6addr_loopback = IN6ADDR_LOOPBACK_INIT; 115 const struct in6_addr kin6addr_nodelocal_allnodes = 116 IN6ADDR_NODELOCAL_ALLNODES_INIT; 117 const struct in6_addr kin6addr_linklocal_allnodes = 118 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 119 const struct in6_addr kin6addr_linklocal_allrouters = 120 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 121 122 const struct in6_addr in6mask0 = IN6MASK0; 123 const struct in6_addr in6mask32 = IN6MASK32; 124 const struct in6_addr in6mask64 = IN6MASK64; 125 const struct in6_addr in6mask96 = IN6MASK96; 126 const struct in6_addr in6mask128 = IN6MASK128; 127 128 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6, 129 0, 0, IN6ADDR_ANY_INIT, 0}; 130 131 static int in6_lifaddr_ioctl (u_long, caddr_t, struct ifnet *, 132 struct thread *); 133 static int in6_ifinit (struct ifnet *, struct in6_ifaddr *, 134 struct sockaddr_in6 *, int); 135 static void in6_unlink_ifa (struct in6_ifaddr *, struct ifnet *); 136 static void in6_ifloop_request_callback(int, int, struct rt_addrinfo *, struct rtentry *, void *); 137 138 static void in6_control_internal_dispatch(netmsg_t); 139 static int in6_control_internal(u_long, caddr_t, struct ifnet *, 140 struct thread *); 141 142 struct in6_multihead in6_multihead; /* XXX BSS initialization */ 143 144 /* 145 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 146 * This routine does actual work. 147 */ 148 static void 149 in6_ifloop_request(int cmd, struct ifaddr *ifa, 150 void (*callback)(int, int, struct rt_addrinfo *, struct rtentry *, void *)) 151 { 152 struct sockaddr_in6 all1_sa; 153 struct rt_addrinfo rtinfo; 154 int error; 155 156 bzero(&all1_sa, sizeof(all1_sa)); 157 all1_sa.sin6_family = AF_INET6; 158 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 159 all1_sa.sin6_addr = in6mask128; 160 161 /* 162 * We specify the address itself as the gateway, and set the 163 * RTF_LLINFO flag, so that the corresponding host route would have 164 * the flag, and thus applications that assume traditional behavior 165 * would be happy. Note that we assume the caller of the function 166 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 167 * which changes the outgoing interface to the loopback interface. 168 */ 169 bzero(&rtinfo, sizeof(struct rt_addrinfo)); 170 rtinfo.rti_info[RTAX_DST] = ifa->ifa_addr; 171 rtinfo.rti_info[RTAX_GATEWAY] = ifa->ifa_addr; 172 rtinfo.rti_info[RTAX_NETMASK] = (struct sockaddr *)&all1_sa; 173 rtinfo.rti_flags = RTF_UP|RTF_HOST|RTF_LLINFO; 174 175 error = rtrequest1_global(cmd, &rtinfo, callback, ifa, RTREQ_PRIO_NORM); 176 if (error != 0) { 177 log(LOG_ERR, "in6_ifloop_request: " 178 "%s operation failed for %s (errno=%d)\n", 179 cmd == RTM_ADD ? "ADD" : cmd == RTM_DELETE ? "DELETE" : "GET", 180 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), 181 error); 182 } 183 } 184 185 static void 186 in6_ifloop_request_callback(int cmd, int error, struct rt_addrinfo *rtinfo, 187 struct rtentry *rt, void *arg) 188 { 189 struct ifaddr *ifa = arg; 190 191 if (error) 192 goto done; 193 194 /* 195 * Make sure rt_ifa be equal to IFA, the second argument of the 196 * function. 197 * We need this because when we refer to rt_ifa->ia6_flags in 198 * ip6_input, we assume that the rt_ifa points to the address instead 199 * of the loopback address. 200 */ 201 if (cmd == RTM_ADD && rt && ifa != rt->rt_ifa) { 202 ++rt->rt_refcnt; 203 IFAFREE(rt->rt_ifa); 204 IFAREF(ifa); 205 rt->rt_ifa = ifa; 206 --rt->rt_refcnt; 207 } 208 209 /* 210 * Report the addition/removal of the address to the routing socket, 211 * unless the address is marked as tentative, where it will be reported 212 * once DAD completes. 213 * XXX: since we called rtinit for a p2p interface with a destination, 214 * we end up reporting twice in such a case. Should we rather 215 * omit the second report? 216 */ 217 if (rt) { 218 if (mycpuid == 0) { 219 struct in6_ifaddr *ia6 = (struct in6_ifaddr *)ifa; 220 221 if (cmd != RTM_ADD || 222 !(ia6->ia6_flags & IN6_IFF_TENTATIVE)) 223 rt_newaddrmsg(cmd, ifa, error, rt); 224 } 225 if (cmd == RTM_DELETE) { 226 if (rt->rt_refcnt == 0) { 227 ++rt->rt_refcnt; 228 rtfree(rt); 229 } 230 } 231 } 232 done: 233 /* no way to return any new error */ 234 ; 235 } 236 237 static void 238 in6_newaddrmsg_callback(int cmd, int error, struct rt_addrinfo *rtinfo, 239 struct rtentry *rt, void *arg) 240 { 241 struct ifaddr *ifa = arg; 242 243 if (error == 0 && rt != NULL && mycpuid == 0) 244 rt_newaddrmsg(RTM_ADD, ifa, error, rt); 245 } 246 247 void 248 in6_newaddrmsg(struct ifaddr *ifa) 249 { 250 in6_ifloop_request(RTM_GET, ifa, in6_newaddrmsg_callback); 251 } 252 253 /* 254 * Add ownaddr as loopback rtentry. We previously add the route only if 255 * necessary (ex. on a p2p link). However, since we now manage addresses 256 * separately from prefixes, we should always add the route. We can't 257 * rely on the cloning mechanism from the corresponding interface route 258 * any more. 259 */ 260 void 261 in6_ifaddloop(struct ifaddr *ifa) 262 { 263 struct rtentry *rt; 264 265 /* If there is no loopback entry, allocate one. */ 266 rt = rtpurelookup(ifa->ifa_addr); 267 if (rt == NULL || !(rt->rt_flags & RTF_HOST) || 268 !(rt->rt_ifp->if_flags & IFF_LOOPBACK)) 269 in6_ifloop_request(RTM_ADD, ifa, in6_ifloop_request_callback); 270 if (rt != NULL) 271 rt->rt_refcnt--; 272 } 273 274 /* 275 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 276 * if it exists. 277 */ 278 void 279 in6_ifremloop(struct ifaddr *ifa) 280 { 281 struct in6_ifaddr *ia; 282 struct rtentry *rt; 283 int ia_count = 0; 284 285 /* 286 * Some of BSD variants do not remove cloned routes 287 * from an interface direct route, when removing the direct route 288 * (see comments in net/net_osdep.h). Even for variants that do remove 289 * cloned routes, they could fail to remove the cloned routes when 290 * we handle multple addresses that share a common prefix. 291 * So, we should remove the route corresponding to the deleted address 292 * regardless of the result of in6_is_ifloop_auto(). 293 */ 294 295 /* 296 * Delete the entry only if exact one ifa exists. More than one ifa 297 * can exist if we assign a same single address to multiple 298 * (probably p2p) interfaces. 299 * XXX: we should avoid such a configuration in IPv6... 300 */ 301 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 302 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { 303 ia_count++; 304 if (ia_count > 1) 305 break; 306 } 307 } 308 309 if (ia_count == 1) { 310 /* 311 * Before deleting, check if a corresponding loopbacked host 312 * route surely exists. With this check, we can avoid to 313 * delete an interface direct route whose destination is same 314 * as the address being removed. This can happen when remofing 315 * a subnet-router anycast address on an interface attahced 316 * to a shared medium. 317 */ 318 rt = rtpurelookup(ifa->ifa_addr); 319 if (rt != NULL && (rt->rt_flags & RTF_HOST) && 320 (rt->rt_ifp->if_flags & IFF_LOOPBACK)) { 321 rt->rt_refcnt--; 322 in6_ifloop_request(RTM_DELETE, ifa, 323 in6_ifloop_request_callback); 324 } 325 } 326 } 327 328 int 329 in6_mask2len(const struct in6_addr *mask, const u_char *lim0) 330 { 331 int x = 0, y; 332 const u_char *lim = lim0, *p; 333 334 if (lim0 == NULL || 335 lim0 - (const u_char *)mask > sizeof(*mask)) { 336 /* Ignore the scope_id part */ 337 lim = (const u_char *)mask + sizeof(*mask); 338 } 339 for (p = (const u_char *)mask; p < lim; x++, p++) { 340 if (*p != 0xff) 341 break; 342 } 343 y = 0; 344 if (p < lim) { 345 for (y = 0; y < 8; y++) { 346 if ((*p & (0x80 >> y)) == 0) 347 break; 348 } 349 } 350 351 /* 352 * When the limit pointer is given, do a stricter check on the 353 * remaining bits. 354 */ 355 if (p < lim) { 356 if (y != 0 && (*p & (0x00ff >> y)) != 0) 357 return (-1); 358 for (p = p + 1; p < lim; p++) 359 if (*p != 0) 360 return (-1); 361 } 362 363 return x * 8 + y; 364 } 365 366 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 367 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 368 369 void 370 in6_control_dispatch(netmsg_t msg) 371 { 372 int error; 373 374 error = in6_control(msg->control.nm_cmd, 375 msg->control.nm_data, 376 msg->control.nm_ifp, 377 msg->control.nm_td); 378 lwkt_replymsg(&msg->control.base.lmsg, error); 379 } 380 381 int 382 in6_control(u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) 383 { 384 struct netmsg_pru_control msg; 385 386 switch (cmd) { 387 case SIOCSIFPREFIX_IN6: 388 case SIOCDIFPREFIX_IN6: 389 case SIOCAIFPREFIX_IN6: 390 case SIOCCIFPREFIX_IN6: 391 case SIOCSGIFPREFIX_IN6: 392 case SIOCGIFPREFIX_IN6: 393 log(LOG_NOTICE, "prefix ioctls are now invalidated. " 394 "please use ifconfig.\n"); 395 return (EOPNOTSUPP); 396 397 case SIOCSIFADDR_IN6: 398 case SIOCSIFDSTADDR_IN6: 399 case SIOCSIFNETMASK_IN6: 400 /* 401 * Since IPv6 allows a node to assign multiple addresses 402 * on a single interface, SIOCSIFxxx ioctls are not suitable 403 * and should be unused. 404 */ 405 /* We decided to obsolete this command (20000704) */ 406 return (EINVAL); 407 408 case SIOCSIFADDR: 409 case SIOCSIFDSTADDR: 410 case SIOCSIFBRDADDR: 411 case SIOCSIFNETMASK: 412 /* 413 * Do not pass those ioctl to driver handler since they are not 414 * properly setup. Instead just error out. 415 */ 416 return (EOPNOTSUPP); 417 418 /* mroute */ 419 case SIOCGETSGCNT_IN6: 420 case SIOCGETMIFCNT_IN6: 421 /* srcsel policy */ 422 case SIOCAADDRCTL_POLICY: 423 case SIOCDADDRCTL_POLICY: 424 /* nd6 */ 425 case SIOCSNDFLUSH_IN6: 426 case SIOCSPFXFLUSH_IN6: 427 case SIOCSRTRFLUSH_IN6: 428 case SIOCSDEFIFACE_IN6: 429 case SIOCSIFINFO_FLAGS: 430 case SIOCSIFINFO_IN6: 431 case OSIOCGIFINFO_IN6: 432 case SIOCGIFINFO_IN6: 433 case SIOCGDRLST_IN6: 434 case SIOCGPRLST_IN6: 435 case SIOCGNBRINFO_IN6: 436 case SIOCGDEFIFACE_IN6: 437 /* scope6 */ 438 case SIOCSSCOPE6: 439 case SIOCGSCOPE6: 440 case SIOCGSCOPE6DEF: 441 /* change address */ 442 case SIOCALIFADDR: 443 case SIOCDLIFADDR: 444 case SIOCSIFALIFETIME_IN6: 445 case SIOCAIFADDR_IN6: 446 case SIOCDIFADDR_IN6: 447 /* 448 * Dispatch these SIOCs to netisr0. 449 */ 450 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0, 451 in6_control_internal_dispatch); 452 msg.nm_cmd = cmd; 453 msg.nm_data = data; 454 msg.nm_ifp = ifp; 455 msg.nm_td = td; 456 lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0); 457 return msg.base.lmsg.ms_error; 458 459 default: 460 return in6_control_internal(cmd, data, ifp, td); 461 } 462 } 463 464 static void 465 in6_control_internal_dispatch(netmsg_t msg) 466 { 467 int error; 468 469 error = in6_control_internal(msg->control.nm_cmd, msg->control.nm_data, 470 msg->control.nm_ifp, msg->control.nm_td); 471 lwkt_replymsg(&msg->lmsg, error); 472 } 473 474 static int 475 in6_control_internal(u_long cmd, caddr_t data, struct ifnet *ifp, 476 struct thread *td) 477 { 478 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 479 struct in6_ifaddr *ia = NULL; 480 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 481 struct in6_ifextra *xtra; 482 boolean_t privileged; 483 int error; 484 485 privileged = FALSE; 486 if (caps_priv_check_td(td, SYSCAP_RESTRICTEDROOT) == 0) 487 privileged = TRUE; 488 489 switch (cmd) { 490 case SIOCALIFADDR: 491 case SIOCDLIFADDR: 492 if (!privileged) 493 return (EPERM); 494 /* FALLTHROUGH */ 495 case SIOCGLIFADDR: 496 if (ifp == NULL) 497 return (EOPNOTSUPP); 498 return in6_lifaddr_ioctl(cmd, data, ifp, td); 499 } 500 501 switch (cmd) { 502 case SIOCGETSGCNT_IN6: 503 case SIOCGETMIFCNT_IN6: 504 return (mrt6_ioctl(cmd, data)); 505 } 506 507 switch(cmd) { 508 case SIOCAADDRCTL_POLICY: 509 case SIOCDADDRCTL_POLICY: 510 if (!privileged) 511 return (EPERM); 512 return (in6_src_ioctl(cmd, data)); 513 } 514 515 if (ifp == NULL) 516 return (EOPNOTSUPP); 517 518 switch (cmd) { 519 case SIOCSNDFLUSH_IN6: 520 case SIOCSPFXFLUSH_IN6: 521 case SIOCSRTRFLUSH_IN6: 522 case SIOCSDEFIFACE_IN6: 523 case SIOCSIFINFO_FLAGS: 524 case SIOCSIFINFO_IN6: 525 if (!privileged) 526 return (EPERM); 527 /* FALLTHROUGH */ 528 case OSIOCGIFINFO_IN6: 529 case SIOCGIFINFO_IN6: 530 case SIOCGDRLST_IN6: 531 case SIOCGPRLST_IN6: 532 case SIOCGNBRINFO_IN6: 533 case SIOCGDEFIFACE_IN6: 534 return (nd6_ioctl(cmd, data, ifp)); 535 } 536 537 switch (cmd) { 538 case SIOCSSCOPE6: 539 if (!privileged) 540 return (EPERM); 541 return (scope6_set(ifp, 542 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 543 544 case SIOCGSCOPE6: 545 return (scope6_get(ifp, 546 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 547 548 case SIOCGSCOPE6DEF: 549 return (scope6_get_default((struct scope6_id *) 550 ifr->ifr_ifru.ifru_scope_id)); 551 } 552 553 /* 554 * Find address for this interface, if it exists. 555 */ 556 if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */ 557 struct sockaddr_in6 *sa6 = 558 (struct sockaddr_in6 *)&ifra->ifra_addr; 559 560 if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) { 561 if (sa6->sin6_addr.s6_addr16[1] == 0) { 562 /* Link ID is not embedded by the user */ 563 sa6->sin6_addr.s6_addr16[1] = 564 htons(ifp->if_index); 565 } else if (sa6->sin6_addr.s6_addr16[1] != 566 htons(ifp->if_index)) { 567 /* Link ID contradicts */ 568 return (EINVAL); 569 } 570 if (sa6->sin6_scope_id) { 571 if (sa6->sin6_scope_id != 572 (u_int32_t)ifp->if_index) 573 return (EINVAL); 574 sa6->sin6_scope_id = 0; /* XXX: good way? */ 575 } 576 } 577 ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr); 578 } 579 580 switch (cmd) { 581 case SIOCDIFADDR_IN6: 582 /* 583 * For IPv4, we look for existing in_ifaddr here to allow 584 * "ifconfig if0 delete" to remove first IPv4 address on the 585 * interface. For IPv6, as the spec allow multiple interface 586 * address from the day one, we consider "remove the first one" 587 * semantics to be not preferable. 588 */ 589 if (ia == NULL) 590 return (EADDRNOTAVAIL); 591 /* FALLTHROUGH */ 592 case SIOCAIFADDR_IN6: 593 /* 594 * We always require users to specify a valid IPv6 address for 595 * the corresponding operation. 596 */ 597 if (ifra->ifra_addr.sin6_family != AF_INET6 || 598 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 599 return (EAFNOSUPPORT); 600 if (!privileged) 601 return (EPERM); 602 break; 603 604 case SIOCGIFADDR_IN6: 605 /* This interface is basically deprecated. Use SIOCGIFCONF. */ 606 /* FALLTHROUGH */ 607 case SIOCGIFAFLAG_IN6: 608 case SIOCGIFNETMASK_IN6: 609 case SIOCGIFDSTADDR_IN6: 610 case SIOCGIFALIFETIME_IN6: 611 /* Must think again about its semantics */ 612 if (ia == NULL) 613 return (EADDRNOTAVAIL); 614 break; 615 616 case SIOCSIFALIFETIME_IN6: 617 { 618 const struct in6_addrlifetime *lt; 619 620 if (!privileged) 621 return (EPERM); 622 if (ia == NULL) 623 return (EADDRNOTAVAIL); 624 /* Sanity for overflow - beware unsigned */ 625 lt = &ifr->ifr_ifru.ifru_lifetime; 626 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME && 627 lt->ia6t_vltime + time_uptime < time_uptime) 628 return EINVAL; 629 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME && 630 lt->ia6t_pltime + time_uptime < time_uptime) 631 return EINVAL; 632 break; 633 } 634 } 635 636 switch (cmd) { 637 case SIOCGIFADDR_IN6: 638 ifr->ifr_addr = ia->ia_addr; 639 break; 640 641 case SIOCGIFDSTADDR_IN6: 642 if (!(ifp->if_flags & IFF_POINTOPOINT)) 643 return (EINVAL); 644 /* 645 * XXX: Should we check if ifa_dstaddr is NULL and return 646 * an error? 647 */ 648 ifr->ifr_dstaddr = ia->ia_dstaddr; 649 break; 650 651 case SIOCGIFNETMASK_IN6: 652 ifr->ifr_addr = ia->ia_prefixmask; 653 break; 654 655 case SIOCGIFAFLAG_IN6: 656 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 657 break; 658 659 case SIOCGIFSTAT_IN6: 660 if ((xtra = ifp->if_afdata[AF_INET6]) == NULL) 661 return EINVAL; 662 bzero(&ifr->ifr_ifru.ifru_stat, 663 sizeof(ifr->ifr_ifru.ifru_stat)); 664 ifr->ifr_ifru.ifru_stat = *xtra->in6_ifstat; 665 break; 666 667 case SIOCGIFSTAT_ICMP6: 668 if ((xtra = ifp->if_afdata[AF_INET6]) == NULL) 669 return EINVAL; 670 bzero(&ifr->ifr_ifru.ifru_stat, 671 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 672 ifr->ifr_ifru.ifru_icmp6stat = *xtra->icmp6_ifstat; 673 break; 674 675 case SIOCGIFALIFETIME_IN6: 676 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 677 break; 678 679 case SIOCSIFALIFETIME_IN6: 680 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 681 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 682 ia->ia6_lifetime.ia6t_expire = 683 time_uptime + ia->ia6_lifetime.ia6t_vltime; 684 } else { 685 ia->ia6_lifetime.ia6t_expire = 0; 686 } 687 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 688 ia->ia6_lifetime.ia6t_preferred = 689 time_uptime + ia->ia6_lifetime.ia6t_pltime; 690 } else { 691 ia->ia6_lifetime.ia6t_preferred = 0; 692 } 693 break; 694 695 case SIOCAIFADDR_IN6: 696 { 697 int i, error = 0, iaIsNew; 698 struct nd_prefix pr0, *pr; 699 700 if (ia != NULL) 701 iaIsNew = 0; 702 else 703 iaIsNew = 1; 704 705 /* 706 * First, make or update the interface address structure, 707 * and link it to the list. 708 */ 709 if ((error = in6_update_ifa(ifp, ifra, ia)) != 0) 710 return (error); 711 712 /* 713 * Then, make the prefix on-link on the interface. 714 * XXX: We'd rather create the prefix before the address, but 715 * we need at least one address to install the corresponding 716 * interface route, so we configure the address first. 717 */ 718 719 /* 720 * Convert mask to prefix length (prefixmask has already 721 * been validated in in6_update_ifa(). 722 */ 723 bzero(&pr0, sizeof(pr0)); 724 pr0.ndpr_ifp = ifp; 725 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 726 NULL); 727 if (pr0.ndpr_plen == 128) 728 break; /* no need to install a host route. */ 729 pr0.ndpr_prefix = ifra->ifra_addr; 730 pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr; 731 /* Apply the mask for safety. */ 732 for (i = 0; i < 4; i++) { 733 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 734 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 735 } 736 /* 737 * XXX: Since we don't have an API to set prefix (not address) 738 * lifetimes, we just use the same lifetimes as addresses. 739 * The (temporarily) installed lifetimes can be overridden by 740 * later advertised RAs (when accept_rtadv is non 0), which is 741 * an intended behavior. 742 */ 743 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 744 pr0.ndpr_raf_auto = 745 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 746 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 747 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 748 749 /* Add the prefix if there's one. */ 750 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 751 /* 752 * nd6_prelist_add will install the corresponding 753 * interface route. 754 */ 755 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 756 return (error); 757 if (pr == NULL) { 758 log(LOG_ERR, "nd6_prelist_add succeeded but " 759 "no prefix\n"); 760 return (EINVAL); /* XXX panic here? */ 761 } 762 } 763 764 ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr); 765 if (ia == NULL) { 766 /* XXX: This should not happen! */ 767 log(LOG_ERR, "in6_control: addition succeeded, but" 768 " no ifaddr\n"); 769 } else { 770 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 771 ia->ia6_ndpr == NULL) { 772 /* 773 * New autoconf address 774 */ 775 ia->ia6_ndpr = pr; 776 pr->ndpr_refcnt++; 777 778 /* 779 * If this is the first autoconf address from 780 * the prefix, create a temporary address 781 * as well (when specified). 782 */ 783 if (ip6_use_tempaddr && pr->ndpr_refcnt == 1) { 784 int e; 785 786 if ((e = in6_tmpifadd(ia, 1)) != 0) { 787 log(LOG_NOTICE, "in6_control: " 788 "failed to create a " 789 "temporary address, " 790 "errno=%d\n", e); 791 } 792 } 793 } 794 795 /* 796 * This might affect the status of autoconfigured 797 * addresses, that is, this address might make 798 * other addresses detached. 799 */ 800 pfxlist_onlink_check(); 801 } 802 if (error == 0 && ia) { 803 EVENTHANDLER_INVOKE(ifaddr_event, ifp, 804 iaIsNew ? IFADDR_EVENT_ADD : IFADDR_EVENT_CHANGE, 805 &ia->ia_ifa); 806 } 807 break; 808 } 809 810 case SIOCDIFADDR_IN6: 811 { 812 int i = 0; 813 struct nd_prefix pr0, *pr; 814 815 /* 816 * If the address being deleted is the only one that owns 817 * the corresponding prefix, expire the prefix as well. 818 * XXX: Theoretically, we don't have to warry about such 819 * relationship, since we separate the address management 820 * and the prefix management. We do this, however, to provide 821 * as much backward compatibility as possible in terms of 822 * the ioctl operation. 823 */ 824 bzero(&pr0, sizeof(pr0)); 825 pr0.ndpr_ifp = ifp; 826 pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, 827 NULL); 828 if (pr0.ndpr_plen == 128) 829 goto purgeaddr; 830 pr0.ndpr_prefix = ia->ia_addr; 831 pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr; 832 for (i = 0; i < 4; i++) { 833 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 834 ia->ia_prefixmask.sin6_addr.s6_addr32[i]; 835 } 836 /* 837 * The logic of the following condition is a bit complicated. 838 * We expire the prefix when 839 * 1. The address obeys autoconfiguration and it is the 840 * only owner of the associated prefix, or 841 * 2. The address does not obey autoconf and there is no 842 * other owner of the prefix. 843 */ 844 if ((pr = nd6_prefix_lookup(&pr0)) != NULL && 845 (((ia->ia6_flags & IN6_IFF_AUTOCONF) && 846 pr->ndpr_refcnt == 1) || 847 (!(ia->ia6_flags & IN6_IFF_AUTOCONF) && 848 pr->ndpr_refcnt == 0))) 849 pr->ndpr_expire = 1; /* XXX: just for expiration */ 850 851 purgeaddr: 852 EVENTHANDLER_INVOKE(ifaddr_event, ifp, IFADDR_EVENT_DELETE, 853 &ia->ia_ifa); 854 in6_purgeaddr(&ia->ia_ifa); 855 break; 856 } 857 858 default: 859 if (ifp->if_ioctl == NULL) 860 return (EOPNOTSUPP); 861 ifnet_serialize_all(ifp); 862 error = ifp->if_ioctl(ifp, cmd, data, td->td_proc->p_ucred); 863 ifnet_deserialize_all(ifp); 864 return (error); 865 } 866 867 return (0); 868 } 869 870 /* 871 * Update parameters of an IPv6 interface address. 872 * If necessary, a new entry is created and linked into address chains. 873 * This function is separated from in6_control(). 874 * XXX: should this be performed under splnet()? 875 */ 876 int 877 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 878 struct in6_ifaddr *ia) 879 { 880 int error = 0, hostIsNew = 0, was_tentative, plen = -1; 881 struct in6_ifaddr *oia; 882 struct sockaddr_in6 dst6; 883 struct in6_addrlifetime *lt; 884 885 /* Validate parameters */ 886 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 887 return (EINVAL); 888 889 /* 890 * The destination address for a p2p link must have a family 891 * of AF_UNSPEC or AF_INET6. 892 */ 893 if ((ifp->if_flags & IFF_POINTOPOINT) && 894 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 895 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 896 return (EAFNOSUPPORT); 897 /* 898 * validate ifra_prefixmask. don't check sin6_family, netmask 899 * does not carry fields other than sin6_len. 900 */ 901 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 902 return (EINVAL); 903 /* 904 * Because the IPv6 address architecture is classless, we require 905 * users to specify a (non 0) prefix length (mask) for a new address. 906 * We also require the prefix (when specified) mask is valid, and thus 907 * reject a non-consecutive mask. 908 */ 909 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 910 return (EINVAL); 911 if (ifra->ifra_prefixmask.sin6_len != 0) { 912 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 913 (u_char *)&ifra->ifra_prefixmask + 914 ifra->ifra_prefixmask.sin6_len); 915 if (plen <= 0) 916 return (EINVAL); 917 } 918 else { 919 /* 920 * In this case, ia must not be NULL. We just use its prefix 921 * length. 922 */ 923 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 924 } 925 /* 926 * If the destination address on a p2p interface is specified, 927 * and the address is a scoped one, validate/set the scope 928 * zone identifier. 929 */ 930 dst6 = ifra->ifra_dstaddr; 931 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) && 932 (dst6.sin6_family == AF_INET6)) { 933 int scopeid; 934 935 if ((error = in6_recoverscope(&dst6, 936 &ifra->ifra_dstaddr.sin6_addr, 937 ifp)) != 0) 938 return (error); 939 if (in6_addr2zoneid(ifp, &dst6.sin6_addr, &scopeid)) 940 return (EINVAL); 941 if (dst6.sin6_scope_id == 0) /* user omit to specify the ID. */ 942 dst6.sin6_scope_id = scopeid; 943 else if (dst6.sin6_scope_id != scopeid) 944 return (EINVAL); /* scope ID mismatch. */ 945 if ((error = in6_embedscope(&dst6.sin6_addr, &dst6, NULL, NULL)) 946 != 0) 947 return (error); 948 dst6.sin6_scope_id = 0; /* XXX */ 949 } 950 /* 951 * The destination address can be specified only for a p2p or a 952 * loopback interface. If specified, the corresponding prefix length 953 * must be 128. 954 */ 955 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 956 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 957 /* XXX: noisy message */ 958 log(LOG_INFO, "in6_update_ifa: a destination can be " 959 "specified for a p2p or a loopback IF only\n"); 960 return (EINVAL); 961 } 962 if (plen != 128) { 963 /* 964 * The following message seems noisy, but we dare to 965 * add it for diagnosis. 966 */ 967 log(LOG_INFO, "in6_update_ifa: prefixlen must be 128 " 968 "when dstaddr is specified\n"); 969 return (EINVAL); 970 } 971 } 972 /* lifetime consistency check */ 973 lt = &ifra->ifra_lifetime; 974 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 975 && lt->ia6t_vltime + time_uptime < time_uptime) { 976 return EINVAL; 977 } 978 if (lt->ia6t_vltime == 0) { 979 /* 980 * the following log might be noisy, but this is a typical 981 * configuration mistake or a tool's bug. 982 */ 983 log(LOG_INFO, 984 "in6_update_ifa: valid lifetime is 0 for %s\n", 985 ip6_sprintf(&ifra->ifra_addr.sin6_addr)); 986 } 987 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 988 && lt->ia6t_pltime + time_uptime < time_uptime) { 989 return EINVAL; 990 } 991 992 /* 993 * If this is a new address, allocate a new ifaddr and link it 994 * into chains. 995 */ 996 if (ia == NULL) { 997 hostIsNew = 1; 998 ia = ifa_create(sizeof(*ia)); 999 1000 /* Initialize the address and masks */ 1001 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 1002 ia->ia_addr.sin6_family = AF_INET6; 1003 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 1004 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 1005 /* 1006 * XXX: some functions expect that ifa_dstaddr is not 1007 * NULL for p2p interfaces. 1008 */ 1009 ia->ia_ifa.ifa_dstaddr 1010 = (struct sockaddr *)&ia->ia_dstaddr; 1011 } else { 1012 ia->ia_ifa.ifa_dstaddr = NULL; 1013 } 1014 ia->ia_ifa.ifa_netmask 1015 = (struct sockaddr *)&ia->ia_prefixmask; 1016 1017 ia->ia_ifp = ifp; 1018 if ((oia = in6_ifaddr) != NULL) { 1019 for ( ; oia->ia_next; oia = oia->ia_next) 1020 continue; 1021 oia->ia_next = ia; 1022 } else 1023 in6_ifaddr = ia; 1024 1025 ifa_iflink(&ia->ia_ifa, ifp, 1); 1026 } 1027 1028 /* set prefix mask */ 1029 if (ifra->ifra_prefixmask.sin6_len) { 1030 /* 1031 * We prohibit changing the prefix length of an existing 1032 * address, because 1033 * + such an operation should be rare in IPv6, and 1034 * + the operation would confuse prefix management. 1035 */ 1036 if (ia->ia_prefixmask.sin6_len && 1037 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 1038 log(LOG_INFO, "in6_update_ifa: the prefix length of an" 1039 " existing (%s) address should not be changed\n", 1040 ip6_sprintf(&ia->ia_addr.sin6_addr)); 1041 error = EINVAL; 1042 goto unlink; 1043 } 1044 ia->ia_prefixmask = ifra->ifra_prefixmask; 1045 } 1046 1047 /* 1048 * If a new destination address is specified, scrub the old one and 1049 * install the new destination. Note that the interface must be 1050 * p2p or loopback (see the check above.) 1051 */ 1052 if (dst6.sin6_family == AF_INET6 && 1053 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, 1054 &ia->ia_dstaddr.sin6_addr)) { 1055 int e; 1056 1057 if ((ia->ia_flags & IFA_ROUTE) && 1058 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1059 != 0) { 1060 log(LOG_ERR, "in6_update_ifa: failed to remove " 1061 "a route to the old destination: %s\n", 1062 ip6_sprintf(&ia->ia_addr.sin6_addr)); 1063 /* proceed anyway... */ 1064 } 1065 else 1066 ia->ia_flags &= ~IFA_ROUTE; 1067 ia->ia_dstaddr = dst6; 1068 } 1069 1070 was_tentative = ia->ia6_flags & (IN6_IFF_TENTATIVE|IN6_IFF_DUPLICATED); 1071 ia->ia6_flags = ifra->ifra_flags; 1072 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /*safety*/ 1073 ia->ia6_flags &= ~IN6_IFF_NODAD; /* Mobile IPv6 */ 1074 if ((hostIsNew || was_tentative) && 1075 in6if_do_dad(ifp) && 1076 !(ifra->ifra_flags & IN6_IFF_NODAD)) 1077 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1078 1079 ia->ia6_lifetime = ifra->ifra_lifetime; 1080 /* for sanity */ 1081 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1082 ia->ia6_lifetime.ia6t_expire = 1083 time_uptime + ia->ia6_lifetime.ia6t_vltime; 1084 } else 1085 ia->ia6_lifetime.ia6t_expire = 0; 1086 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1087 ia->ia6_lifetime.ia6t_preferred = 1088 time_uptime + ia->ia6_lifetime.ia6t_pltime; 1089 } else 1090 ia->ia6_lifetime.ia6t_preferred = 0; 1091 1092 /* reset the interface and routing table appropriately. */ 1093 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 1094 goto unlink; 1095 1096 /* 1097 * Beyond this point, we should call in6_purgeaddr upon an error, 1098 * not just go to unlink. 1099 */ 1100 1101 if (ifp->if_flags & IFF_MULTICAST) { 1102 struct sockaddr_in6 mltaddr, mltmask; 1103 struct in6_multi *in6m; 1104 1105 if (hostIsNew) { 1106 /* 1107 * join solicited multicast addr for new host id 1108 */ 1109 struct in6_addr llsol; 1110 bzero(&llsol, sizeof(struct in6_addr)); 1111 llsol.s6_addr16[0] = htons(0xff02); 1112 llsol.s6_addr16[1] = htons(ifp->if_index); 1113 llsol.s6_addr32[1] = 0; 1114 llsol.s6_addr32[2] = htonl(1); 1115 llsol.s6_addr32[3] = 1116 ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1117 llsol.s6_addr8[12] = 0xff; 1118 in6_addmulti(&llsol, ifp, &error); 1119 if (error != 0) { 1120 log(LOG_WARNING, 1121 "in6_update_ifa: addmulti failed for " 1122 "%s on %s (errno=%d)\n", 1123 ip6_sprintf(&llsol), if_name(ifp), 1124 error); 1125 in6_purgeaddr((struct ifaddr *)ia); 1126 return (error); 1127 } 1128 } 1129 1130 bzero(&mltmask, sizeof(mltmask)); 1131 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1132 mltmask.sin6_family = AF_INET6; 1133 mltmask.sin6_addr = in6mask32; 1134 1135 /* 1136 * join link-local all-nodes address 1137 */ 1138 bzero(&mltaddr, sizeof(mltaddr)); 1139 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1140 mltaddr.sin6_family = AF_INET6; 1141 mltaddr.sin6_addr = kin6addr_linklocal_allnodes; 1142 mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 1143 1144 in6m = IN6_LOOKUP_MULTI(&mltaddr.sin6_addr, ifp); 1145 if (in6m == NULL) { 1146 rtrequest_global(RTM_ADD, 1147 (struct sockaddr *)&mltaddr, 1148 (struct sockaddr *)&ia->ia_addr, 1149 (struct sockaddr *)&mltmask, 1150 RTF_UP|RTF_CLONING); /* xxx */ 1151 in6_addmulti(&mltaddr.sin6_addr, ifp, &error); 1152 if (error != 0) { 1153 log(LOG_WARNING, 1154 "in6_update_ifa: addmulti failed for " 1155 "%s on %s (errno=%d)\n", 1156 ip6_sprintf(&mltaddr.sin6_addr), 1157 if_name(ifp), error); 1158 } 1159 } 1160 1161 /* 1162 * join node information group address 1163 */ 1164 if (in6_nigroup(ifp, hostname, strlen(hostname), 1165 &mltaddr.sin6_addr) == 0) { 1166 in6m = IN6_LOOKUP_MULTI(&mltaddr.sin6_addr, ifp); 1167 if (in6m == NULL && ia != NULL) { 1168 in6_addmulti(&mltaddr.sin6_addr, ifp, &error); 1169 if (error != 0) { 1170 log(LOG_WARNING, "in6_update_ifa: " 1171 "addmulti failed for " 1172 "%s on %s (errno=%d)\n", 1173 ip6_sprintf(&mltaddr.sin6_addr), 1174 if_name(ifp), error); 1175 } 1176 } 1177 } 1178 1179 /* 1180 * join node-local all-nodes address, on loopback. 1181 * XXX: since "node-local" is obsoleted by interface-local, 1182 * we have to join the group on every interface with 1183 * some interface-boundary restriction. 1184 */ 1185 if (ifp->if_flags & IFF_LOOPBACK) { 1186 struct in6_ifaddr *ia_loop; 1187 1188 struct in6_addr loop6 = kin6addr_loopback; 1189 ia_loop = in6ifa_ifpwithaddr(ifp, &loop6); 1190 1191 mltaddr.sin6_addr = kin6addr_nodelocal_allnodes; 1192 1193 in6m = IN6_LOOKUP_MULTI(&mltaddr.sin6_addr, ifp); 1194 if (in6m == NULL && ia_loop != NULL) { 1195 rtrequest_global(RTM_ADD, 1196 (struct sockaddr *)&mltaddr, 1197 (struct sockaddr *)&ia_loop->ia_addr, 1198 (struct sockaddr *)&mltmask, 1199 RTF_UP); 1200 in6_addmulti(&mltaddr.sin6_addr, ifp, &error); 1201 if (error != 0) { 1202 log(LOG_WARNING, "in6_update_ifa: " 1203 "addmulti failed for %s on %s " 1204 "(errno=%d)\n", 1205 ip6_sprintf(&mltaddr.sin6_addr), 1206 if_name(ifp), error); 1207 } 1208 } 1209 } 1210 } 1211 1212 /* 1213 * Perform DAD, if needed. 1214 * XXX It may be of use, if we can administratively 1215 * disable DAD. 1216 */ 1217 if (in6if_do_dad(ifp) && 1218 !(ifra->ifra_flags & IN6_IFF_NODAD) && 1219 ia->ia6_flags & IN6_IFF_TENTATIVE) 1220 nd6_dad_start((struct ifaddr *)ia, NULL); 1221 1222 return (error); 1223 1224 unlink: 1225 /* 1226 * XXX: if a change of an existing address failed, keep the entry 1227 * anyway. 1228 */ 1229 if (hostIsNew) 1230 in6_unlink_ifa(ia, ifp); 1231 return (error); 1232 } 1233 1234 void 1235 in6_purgeaddr(struct ifaddr *ifa) 1236 { 1237 struct ifnet *ifp = ifa->ifa_ifp; 1238 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1239 1240 /* stop DAD processing */ 1241 nd6_dad_stop(ifa); 1242 1243 /* 1244 * delete route to the destination of the address being purged. 1245 * The interface must be p2p or loopback in this case. 1246 */ 1247 if ((ia->ia_flags & IFA_ROUTE) && ia->ia_dstaddr.sin6_len != 0) { 1248 int e; 1249 1250 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1251 != 0) { 1252 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1253 "a route to the p2p destination: %s on %s, " 1254 "errno=%d\n", 1255 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp), 1256 e); 1257 /* proceed anyway... */ 1258 } 1259 else 1260 ia->ia_flags &= ~IFA_ROUTE; 1261 } 1262 1263 /* Remove ownaddr's loopback rtentry, if it exists. */ 1264 in6_ifremloop(&(ia->ia_ifa)); 1265 1266 if (ifp->if_flags & IFF_MULTICAST) { 1267 /* 1268 * delete solicited multicast addr for deleting host id 1269 */ 1270 struct in6_multi *in6m; 1271 struct in6_addr llsol; 1272 bzero(&llsol, sizeof(struct in6_addr)); 1273 llsol.s6_addr16[0] = htons(0xff02); 1274 llsol.s6_addr16[1] = htons(ifp->if_index); 1275 llsol.s6_addr32[1] = 0; 1276 llsol.s6_addr32[2] = htonl(1); 1277 llsol.s6_addr32[3] = 1278 ia->ia_addr.sin6_addr.s6_addr32[3]; 1279 llsol.s6_addr8[12] = 0xff; 1280 1281 in6m = IN6_LOOKUP_MULTI(&llsol, ifp); 1282 if (in6m) 1283 in6_delmulti(in6m); 1284 } 1285 1286 in6_unlink_ifa(ia, ifp); 1287 } 1288 1289 static void 1290 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1291 { 1292 struct in6_ifaddr *oia; 1293 1294 crit_enter(); 1295 1296 ifa_ifunlink(&ia->ia_ifa, ifp); 1297 1298 oia = ia; 1299 if (oia == (ia = in6_ifaddr)) 1300 in6_ifaddr = ia->ia_next; 1301 else { 1302 while (ia->ia_next && (ia->ia_next != oia)) 1303 ia = ia->ia_next; 1304 if (ia->ia_next) 1305 ia->ia_next = oia->ia_next; 1306 else { 1307 /* search failed */ 1308 kprintf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1309 } 1310 } 1311 1312 /* 1313 * When an autoconfigured address is being removed, release the 1314 * reference to the base prefix. Also, since the release might 1315 * affect the status of other (detached) addresses, call 1316 * pfxlist_onlink_check(). 1317 */ 1318 if (oia->ia6_flags & IN6_IFF_AUTOCONF) { 1319 if (oia->ia6_ndpr == NULL) { 1320 log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address " 1321 "%p has no prefix\n", oia); 1322 } else { 1323 oia->ia6_ndpr->ndpr_refcnt--; 1324 oia->ia6_flags &= ~IN6_IFF_AUTOCONF; 1325 oia->ia6_ndpr = NULL; 1326 } 1327 1328 pfxlist_onlink_check(); 1329 } 1330 1331 /* 1332 * release another refcnt for the link from in6_ifaddr. 1333 * Note that we should decrement the refcnt at least once for all *BSD. 1334 */ 1335 ifa_destroy(&oia->ia_ifa); 1336 1337 crit_exit(); 1338 } 1339 1340 void 1341 in6_purgeif(struct ifnet *ifp) 1342 { 1343 struct ifaddr_container *ifac, *next; 1344 1345 TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid], 1346 ifa_link, next) { 1347 if (ifac->ifa->ifa_addr->sa_family != AF_INET6) 1348 continue; 1349 in6_purgeaddr(ifac->ifa); 1350 } 1351 1352 in6_ifdetach(ifp); 1353 } 1354 1355 /* 1356 * SIOC[GAD]LIFADDR. 1357 * SIOCGLIFADDR: get first address. (?) 1358 * SIOCGLIFADDR with IFLR_PREFIX: 1359 * get first address that matches the specified prefix. 1360 * SIOCALIFADDR: add the specified address. 1361 * SIOCALIFADDR with IFLR_PREFIX: 1362 * add the specified prefix, filling hostid part from 1363 * the first link-local address. prefixlen must be <= 64. 1364 * SIOCDLIFADDR: delete the specified address. 1365 * SIOCDLIFADDR with IFLR_PREFIX: 1366 * delete the first address that matches the specified prefix. 1367 * return values: 1368 * EINVAL on invalid parameters 1369 * EADDRNOTAVAIL on prefix match failed/specified address not found 1370 * other values may be returned from in6_ioctl() 1371 * 1372 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1373 * this is to accomodate address naming scheme other than RFC2374, 1374 * in the future. 1375 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1376 * address encoding scheme. (see figure on page 8) 1377 */ 1378 static int 1379 in6_lifaddr_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp, 1380 struct thread *td) 1381 { 1382 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1383 struct sockaddr *sa; 1384 1385 /* sanity checks */ 1386 if (!data || !ifp) { 1387 panic("invalid argument to in6_lifaddr_ioctl"); 1388 /*NOTRECHED*/ 1389 } 1390 1391 switch (cmd) { 1392 case SIOCGLIFADDR: 1393 /* address must be specified on GET with IFLR_PREFIX */ 1394 if (!(iflr->flags & IFLR_PREFIX)) 1395 break; 1396 /* FALLTHROUGH */ 1397 case SIOCALIFADDR: 1398 case SIOCDLIFADDR: 1399 /* address must be specified on ADD and DELETE */ 1400 sa = (struct sockaddr *)&iflr->addr; 1401 if (sa->sa_family != AF_INET6) 1402 return EINVAL; 1403 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1404 return EINVAL; 1405 /* XXX need improvement */ 1406 sa = (struct sockaddr *)&iflr->dstaddr; 1407 if (sa->sa_family && sa->sa_family != AF_INET6) 1408 return EINVAL; 1409 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1410 return EINVAL; 1411 break; 1412 default: /* shouldn't happen */ 1413 #if 0 1414 panic("invalid cmd to in6_lifaddr_ioctl"); 1415 /* NOTREACHED */ 1416 #else 1417 return EOPNOTSUPP; 1418 #endif 1419 } 1420 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1421 return EINVAL; 1422 1423 switch (cmd) { 1424 case SIOCALIFADDR: 1425 { 1426 struct in6_aliasreq ifra; 1427 struct in6_addr *hostid = NULL; 1428 int prefixlen; 1429 1430 if (iflr->flags & IFLR_PREFIX) { 1431 struct ifaddr *ifa; 1432 struct sockaddr_in6 *sin6; 1433 1434 /* 1435 * hostid is to fill in the hostid part of the 1436 * address. hostid points to the first link-local 1437 * address attached to the interface. 1438 */ 1439 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1440 if (!ifa) 1441 return EADDRNOTAVAIL; 1442 hostid = IFA_IN6(ifa); 1443 1444 /* prefixlen must be <= 64. */ 1445 if (64 < iflr->prefixlen) 1446 return EINVAL; 1447 prefixlen = iflr->prefixlen; 1448 1449 /* hostid part must be zero. */ 1450 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1451 if (sin6->sin6_addr.s6_addr32[2] != 0 1452 || sin6->sin6_addr.s6_addr32[3] != 0) { 1453 return EINVAL; 1454 } 1455 } else 1456 prefixlen = iflr->prefixlen; 1457 1458 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1459 bzero(&ifra, sizeof(ifra)); 1460 bcopy(iflr->iflr_name, ifra.ifra_name, 1461 sizeof(ifra.ifra_name)); 1462 1463 bcopy(&iflr->addr, &ifra.ifra_addr, 1464 ((struct sockaddr *)&iflr->addr)->sa_len); 1465 if (hostid) { 1466 /* fill in hostid part */ 1467 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1468 hostid->s6_addr32[2]; 1469 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1470 hostid->s6_addr32[3]; 1471 } 1472 1473 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/ 1474 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1475 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1476 if (hostid) { 1477 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1478 hostid->s6_addr32[2]; 1479 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1480 hostid->s6_addr32[3]; 1481 } 1482 } 1483 1484 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1485 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1486 1487 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1488 return in6_control_internal(SIOCAIFADDR_IN6, (caddr_t)&ifra, 1489 ifp, td); 1490 } 1491 case SIOCGLIFADDR: 1492 case SIOCDLIFADDR: 1493 { 1494 struct ifaddr_container *ifac; 1495 struct in6_ifaddr *ia; 1496 struct in6_addr mask, candidate, match; 1497 struct sockaddr_in6 *sin6; 1498 int cmp; 1499 1500 bzero(&mask, sizeof(mask)); 1501 if (iflr->flags & IFLR_PREFIX) { 1502 /* lookup a prefix rather than address. */ 1503 in6_prefixlen2mask(&mask, iflr->prefixlen); 1504 1505 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1506 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1507 match.s6_addr32[0] &= mask.s6_addr32[0]; 1508 match.s6_addr32[1] &= mask.s6_addr32[1]; 1509 match.s6_addr32[2] &= mask.s6_addr32[2]; 1510 match.s6_addr32[3] &= mask.s6_addr32[3]; 1511 1512 /* if you set extra bits, that's wrong */ 1513 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1514 return EINVAL; 1515 1516 cmp = 1; 1517 } else { 1518 if (cmd == SIOCGLIFADDR) { 1519 /* on getting an address, take the 1st match */ 1520 cmp = 0; /* XXX */ 1521 } else { 1522 /* on deleting an address, do exact match */ 1523 in6_prefixlen2mask(&mask, 128); 1524 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1525 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1526 1527 cmp = 1; 1528 } 1529 } 1530 1531 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1532 struct ifaddr *ifa = ifac->ifa; 1533 1534 if (ifa->ifa_addr->sa_family != AF_INET6) 1535 continue; 1536 if (!cmp) 1537 break; 1538 1539 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1540 /* 1541 * XXX: this is adhoc, but is necessary to allow 1542 * a user to specify fe80::/64 (not /10) for a 1543 * link-local address. 1544 */ 1545 if (IN6_IS_ADDR_LINKLOCAL(&candidate)) 1546 candidate.s6_addr16[1] = 0; 1547 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1548 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1549 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1550 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1551 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1552 break; 1553 } 1554 if (ifac == NULL) 1555 return EADDRNOTAVAIL; 1556 ia = ifa2ia6(ifac->ifa); 1557 1558 if (cmd == SIOCGLIFADDR) { 1559 struct sockaddr_in6 *s6; 1560 1561 /* fill in the if_laddrreq structure */ 1562 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1563 s6 = (struct sockaddr_in6 *)&iflr->addr; 1564 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1565 s6->sin6_addr.s6_addr16[1] = 0; 1566 if (in6_addr2zoneid(ifp, &s6->sin6_addr, 1567 &s6->sin6_scope_id)) 1568 return (EINVAL);/* XXX */ 1569 } 1570 if (ifp->if_flags & IFF_POINTOPOINT) { 1571 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1572 ia->ia_dstaddr.sin6_len); 1573 s6 = (struct sockaddr_in6 *)&iflr->dstaddr; 1574 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1575 s6->sin6_addr.s6_addr16[1] = 0; 1576 if (in6_addr2zoneid(ifp, 1577 &s6->sin6_addr, &s6->sin6_scope_id)) 1578 return (EINVAL); /* EINVAL */ 1579 } 1580 } else 1581 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1582 1583 iflr->prefixlen = 1584 in6_mask2len(&ia->ia_prefixmask.sin6_addr, 1585 NULL); 1586 1587 iflr->flags = ia->ia6_flags; /* XXX */ 1588 1589 return 0; 1590 } else { 1591 struct in6_aliasreq ifra; 1592 1593 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1594 bzero(&ifra, sizeof(ifra)); 1595 bcopy(iflr->iflr_name, ifra.ifra_name, 1596 sizeof(ifra.ifra_name)); 1597 1598 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1599 ia->ia_addr.sin6_len); 1600 if (ifp->if_flags & IFF_POINTOPOINT) 1601 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1602 ia->ia_dstaddr.sin6_len); 1603 else 1604 bzero(&ifra.ifra_dstaddr, 1605 sizeof(ifra.ifra_dstaddr)); 1606 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1607 ia->ia_prefixmask.sin6_len); 1608 1609 ifra.ifra_flags = ia->ia6_flags; 1610 return in6_control_internal(SIOCDIFADDR_IN6, 1611 (caddr_t)&ifra, ifp, td); 1612 } 1613 } 1614 } 1615 1616 return EOPNOTSUPP; /* just for safety */ 1617 } 1618 1619 /* 1620 * Initialize an interface's internet6 address 1621 * and routing table entry. 1622 */ 1623 static int 1624 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, struct sockaddr_in6 *sin6, 1625 int newhost) 1626 { 1627 int error = 0, plen; 1628 1629 ia->ia_addr = *sin6; 1630 1631 if (ifp->if_ioctl != NULL) { 1632 ifnet_serialize_all(ifp); 1633 error = ifp->if_ioctl(ifp, SIOCSIFADDR, (caddr_t)ia, NULL); 1634 ifnet_deserialize_all(ifp); 1635 if (error) 1636 return (error); 1637 } 1638 1639 ia->ia_ifa.ifa_metric = ifp->if_metric; 1640 1641 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1642 1643 /* 1644 * Special case: 1645 * If the destination address is specified for a point-to-point 1646 * interface, install a route to the destination as an interface 1647 * direct route. 1648 */ 1649 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1650 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) { 1651 if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD, 1652 RTF_UP | RTF_HOST)) != 0) 1653 return (error); 1654 ia->ia_flags |= IFA_ROUTE; 1655 } 1656 if (plen < 128) { 1657 /* 1658 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). 1659 */ 1660 ia->ia_ifa.ifa_flags |= RTF_CLONING; 1661 } 1662 1663 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ 1664 if (newhost) { 1665 /* set the rtrequest function to create llinfo */ 1666 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1667 in6_ifaddloop(&(ia->ia_ifa)); 1668 } 1669 1670 return (error); 1671 } 1672 1673 struct in6_multi_mship * 1674 in6_joingroup(struct ifnet *ifp, struct in6_addr *addr, int *errorp) 1675 { 1676 struct in6_multi_mship *imm; 1677 1678 imm = kmalloc(sizeof(*imm), M_IPMADDR, M_NOWAIT); 1679 if (!imm) { 1680 *errorp = ENOBUFS; 1681 return NULL; 1682 } 1683 imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp); 1684 if (!imm->i6mm_maddr) { 1685 /* *errorp is alrady set */ 1686 kfree(imm, M_IPMADDR); 1687 return NULL; 1688 } 1689 return imm; 1690 } 1691 1692 int 1693 in6_leavegroup(struct in6_multi_mship *imm) 1694 { 1695 1696 if (imm->i6mm_maddr) 1697 in6_delmulti(imm->i6mm_maddr); 1698 kfree(imm, M_IPMADDR); 1699 return 0; 1700 } 1701 1702 /* 1703 * Add an address to the list of IP6 multicast addresses for a 1704 * given interface. 1705 */ 1706 struct in6_multi * 1707 in6_addmulti(struct in6_addr *maddr6, struct ifnet *ifp, int *errorp) 1708 { 1709 struct in6_multi *in6m; 1710 struct sockaddr_in6 sin6; 1711 struct ifmultiaddr *ifma; 1712 1713 *errorp = 0; 1714 1715 crit_enter(); 1716 1717 /* 1718 * Call generic routine to add membership or increment 1719 * refcount. It wants addresses in the form of a sockaddr, 1720 * so we build one here (being careful to zero the unused bytes). 1721 */ 1722 bzero(&sin6, sizeof sin6); 1723 sin6.sin6_family = AF_INET6; 1724 sin6.sin6_len = sizeof sin6; 1725 sin6.sin6_addr = *maddr6; 1726 *errorp = if_addmulti(ifp, (struct sockaddr *)&sin6, &ifma); 1727 if (*errorp) { 1728 crit_exit(); 1729 return 0; 1730 } 1731 1732 /* 1733 * If ifma->ifma_protospec is null, then if_addmulti() created 1734 * a new record. Otherwise, we are done. 1735 */ 1736 if (ifma->ifma_protospec != NULL) { 1737 crit_exit(); 1738 return ifma->ifma_protospec; 1739 } 1740 1741 in6m = kmalloc(sizeof(*in6m), M_IPMADDR, M_INTWAIT | M_ZERO); 1742 in6m->in6m_addr = *maddr6; 1743 in6m->in6m_ifp = ifp; 1744 in6m->in6m_ifma = ifma; 1745 ifma->ifma_protospec = in6m; 1746 LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry); 1747 1748 /* 1749 * Let MLD6 know that we have joined a new IP6 multicast 1750 * group. 1751 */ 1752 mld6_start_listening(in6m); 1753 crit_exit(); 1754 return (in6m); 1755 } 1756 1757 /* 1758 * Delete a multicast address record. 1759 */ 1760 void 1761 in6_delmulti(struct in6_multi *in6m) 1762 { 1763 struct ifmultiaddr *ifma = in6m->in6m_ifma; 1764 1765 crit_enter(); 1766 1767 if (ifma->ifma_refcount == 1) { 1768 /* 1769 * No remaining claims to this record; let MLD6 know 1770 * that we are leaving the multicast group. 1771 */ 1772 mld6_stop_listening(in6m); 1773 ifma->ifma_protospec = NULL; 1774 LIST_REMOVE(in6m, in6m_entry); 1775 kfree(in6m, M_IPMADDR); 1776 } 1777 /* XXX - should be separate API for when we have an ifma? */ 1778 if_delmulti(ifma->ifma_ifp, ifma->ifma_addr); 1779 crit_exit(); 1780 } 1781 1782 /* 1783 * Find an IPv6 interface link-local address specific to an interface. 1784 */ 1785 struct in6_ifaddr * 1786 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1787 { 1788 const struct ifaddr_container *ifac; 1789 1790 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1791 struct ifaddr *ifa = ifac->ifa; 1792 1793 if (ifa->ifa_addr == NULL) 1794 continue; /* just for safety */ 1795 if (ifa->ifa_addr->sa_family != AF_INET6) 1796 continue; 1797 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1798 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1799 ignoreflags) != 0) 1800 continue; 1801 return (struct in6_ifaddr *)ifa; 1802 } 1803 } 1804 return NULL; 1805 } 1806 1807 1808 /* 1809 * find the internet address corresponding to a given interface and address. 1810 */ 1811 struct in6_ifaddr * 1812 in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr) 1813 { 1814 const struct ifaddr_container *ifac; 1815 1816 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1817 struct ifaddr *ifa = ifac->ifa; 1818 1819 if (ifa->ifa_addr == NULL) 1820 continue; /* just for safety */ 1821 if (ifa->ifa_addr->sa_family != AF_INET6) 1822 continue; 1823 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1824 return (struct in6_ifaddr *)ifa; 1825 } 1826 return NULL; 1827 } 1828 1829 /* 1830 * Find a link-local scoped address on ifp and return it if any. 1831 */ 1832 struct in6_ifaddr * 1833 in6ifa_llaonifp(struct ifnet *ifp) 1834 { 1835 const struct ifaddr_container *ifac; 1836 1837 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1838 const struct sockaddr_in6 *sin6; 1839 struct ifaddr *ifa = ifac->ifa; 1840 1841 if (ifa->ifa_addr->sa_family != AF_INET6) 1842 continue; 1843 sin6 = (const struct sockaddr_in6 *)ifa->ifa_addr; 1844 if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr) || 1845 /* XXX why are mcast addresses ifp address list? */ 1846 IN6_IS_ADDR_MC_INTFACELOCAL(&sin6->sin6_addr) || 1847 IN6_IS_ADDR_MC_NODELOCAL(&sin6->sin6_addr)) 1848 return (struct in6_ifaddr *)ifa; 1849 } 1850 return NULL; 1851 } 1852 1853 /* 1854 * Convert IP6 address to printable (loggable) representation. 1855 */ 1856 static char digits[] = "0123456789abcdef"; 1857 static int ip6round = 0; 1858 char * 1859 ip6_sprintf(const struct in6_addr *addr) 1860 { 1861 static char ip6buf[8][48]; 1862 int i; 1863 char *cp; 1864 const u_short *a = (const u_short *)addr; 1865 const u_char *d; 1866 int dcolon = 0; 1867 1868 ip6round = (ip6round + 1) & 7; 1869 cp = ip6buf[ip6round]; 1870 1871 for (i = 0; i < 8; i++) { 1872 if (dcolon == 1) { 1873 if (*a == 0) { 1874 if (i == 7) 1875 *cp++ = ':'; 1876 a++; 1877 continue; 1878 } else 1879 dcolon = 2; 1880 } 1881 if (*a == 0) { 1882 if (dcolon == 0 && *(a + 1) == 0) { 1883 if (i == 0) 1884 *cp++ = ':'; 1885 *cp++ = ':'; 1886 dcolon = 1; 1887 } else { 1888 *cp++ = '0'; 1889 *cp++ = ':'; 1890 } 1891 a++; 1892 continue; 1893 } 1894 d = (const u_char *)a; 1895 *cp++ = digits[*d >> 4]; 1896 *cp++ = digits[*d++ & 0xf]; 1897 *cp++ = digits[*d >> 4]; 1898 *cp++ = digits[*d & 0xf]; 1899 *cp++ = ':'; 1900 a++; 1901 } 1902 *--cp = 0; 1903 return (ip6buf[ip6round]); 1904 } 1905 1906 int 1907 in6_localaddr(struct in6_addr *in6) 1908 { 1909 struct in6_ifaddr *ia; 1910 1911 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1912 return 1; 1913 1914 for (ia = in6_ifaddr; ia; ia = ia->ia_next) 1915 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1916 &ia->ia_prefixmask.sin6_addr)) 1917 return 1; 1918 1919 return (0); 1920 } 1921 1922 int 1923 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1924 { 1925 struct in6_ifaddr *ia; 1926 1927 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1928 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1929 &sa6->sin6_addr) && 1930 (ia->ia6_flags & IN6_IFF_DEPRECATED)) 1931 return (1); /* true */ 1932 1933 /* XXX: do we still have to go thru the rest of the list? */ 1934 } 1935 1936 return (0); /* false */ 1937 } 1938 1939 /* 1940 * return length of part which dst and src are equal 1941 * hard coding... 1942 */ 1943 int 1944 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 1945 { 1946 int match = 0; 1947 u_char *s = (u_char *)src, *d = (u_char *)dst; 1948 u_char *lim = s + 16, r; 1949 1950 while (s < lim) 1951 if ((r = (*d++ ^ *s++)) != 0) { 1952 while (r < 128) { 1953 match++; 1954 r <<= 1; 1955 } 1956 break; 1957 } else 1958 match += 8; 1959 return match; 1960 } 1961 1962 /* XXX: to be scope conscious */ 1963 int 1964 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 1965 { 1966 int bytelen, bitlen; 1967 1968 /* sanity check */ 1969 if (0 > len || len > 128) { 1970 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1971 len); 1972 return (0); 1973 } 1974 1975 bytelen = len / 8; 1976 bitlen = len % 8; 1977 1978 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1979 return (0); 1980 if (p1->s6_addr[bytelen] >> (8 - bitlen) != 1981 p2->s6_addr[bytelen] >> (8 - bitlen)) 1982 return (0); 1983 1984 return (1); 1985 } 1986 1987 void 1988 in6_prefixlen2mask(struct in6_addr *maskp, int len) 1989 { 1990 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1991 int bytelen, bitlen, i; 1992 1993 /* sanity check */ 1994 if (0 > len || len > 128) { 1995 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1996 len); 1997 return; 1998 } 1999 2000 bzero(maskp, sizeof(*maskp)); 2001 bytelen = len / 8; 2002 bitlen = len % 8; 2003 for (i = 0; i < bytelen; i++) 2004 maskp->s6_addr[i] = 0xff; 2005 if (bitlen) 2006 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 2007 } 2008 2009 /* 2010 * return the best address out of the same scope 2011 */ 2012 struct in6_ifaddr * 2013 in6_ifawithscope(struct ifnet *oifp, struct in6_addr *dst, struct ucred *cred) 2014 { 2015 int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0; 2016 int blen = -1; 2017 struct in6_ifaddr *ifa_best = NULL; 2018 u_int32_t dstzone, odstzone; 2019 int jailed = 0; 2020 const struct ifnet_array *arr; 2021 int i; 2022 2023 if(cred && cred->cr_prison) 2024 jailed = 1; 2025 2026 if (oifp == NULL) 2027 return (NULL); 2028 2029 if (in6_addr2zoneid(oifp, dst, &odstzone)) 2030 return (NULL); 2031 2032 /* 2033 * We search for all addresses on all interfaces from the beginning. 2034 * Comparing an interface with the outgoing interface will be done 2035 * only at the final stage of tiebreaking. 2036 */ 2037 arr = ifnet_array_get(); 2038 for (i = 0; i < arr->ifnet_count; ++i) { 2039 struct ifnet *ifp = arr->ifnet_arr[i]; 2040 struct ifaddr_container *ifac; 2041 2042 /* 2043 * We can never take an address that breaks the scope zone 2044 * of the destination. 2045 */ 2046 if (ifp->if_afdata[AF_INET6] == NULL) 2047 continue; 2048 if (in6_addr2zoneid(ifp, dst, &dstzone) || dstzone != odstzone) 2049 continue; 2050 2051 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2052 int tlen = -1, dscopecmp, bscopecmp, matchcmp; 2053 struct ifaddr *ifa = ifac->ifa; 2054 2055 if (ifa->ifa_addr->sa_family != AF_INET6) 2056 continue; 2057 2058 src_scope = in6_addrscope(IFA_IN6(ifa)); 2059 2060 /* 2061 * Don't use an address before completing DAD 2062 * nor a duplicated address. 2063 */ 2064 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2065 IN6_IFF_NOTREADY) 2066 continue; 2067 2068 /* XXX: is there any case to allow anycasts? */ 2069 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2070 IN6_IFF_ANYCAST) 2071 continue; 2072 2073 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2074 IN6_IFF_DETACHED) 2075 continue; 2076 2077 /* Skip adresses not valid for current jail */ 2078 if (jailed && 2079 !(jailed_ip(cred->cr_prison, (struct sockaddr *)(ifa->ifa_addr)) != 0)) 2080 continue; 2081 2082 /* 2083 * If this is the first address we find, 2084 * keep it anyway. 2085 */ 2086 if (ifa_best == NULL) 2087 goto replace; 2088 2089 /* 2090 * ifa_best is never NULL beyond this line except 2091 * within the block labeled "replace". 2092 */ 2093 2094 /* 2095 * If ifa_best has a smaller scope than dst and 2096 * the current address has a larger one than 2097 * (or equal to) dst, always replace ifa_best. 2098 * Also, if the current address has a smaller scope 2099 * than dst, ignore it unless ifa_best also has a 2100 * smaller scope. 2101 * Consequently, after the two if-clause below, 2102 * the followings must be satisfied: 2103 * (scope(src) < scope(dst) && 2104 * scope(best) < scope(dst)) 2105 * OR 2106 * (scope(best) >= scope(dst) && 2107 * scope(src) >= scope(dst)) 2108 */ 2109 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 && 2110 IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0) 2111 goto replace; /* (A) */ 2112 if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 && 2113 IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0) 2114 continue; /* (B) */ 2115 2116 /* 2117 * A deprecated address SHOULD NOT be used in new 2118 * communications if an alternate (non-deprecated) 2119 * address is available and has sufficient scope. 2120 * RFC 2462, Section 5.5.4. 2121 */ 2122 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2123 IN6_IFF_DEPRECATED) { 2124 /* 2125 * Ignore any deprecated addresses if 2126 * specified by configuration. 2127 */ 2128 if (!ip6_use_deprecated) 2129 continue; 2130 2131 /* 2132 * If we have already found a non-deprecated 2133 * candidate, just ignore deprecated addresses. 2134 */ 2135 if (!(ifa_best->ia6_flags & IN6_IFF_DEPRECATED)) 2136 continue; 2137 } 2138 2139 /* 2140 * A non-deprecated address is always preferred 2141 * to a deprecated one regardless of scopes and 2142 * address matching (Note invariants ensured by the 2143 * conditions (A) and (B) above.) 2144 */ 2145 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) && 2146 !(((struct in6_ifaddr *)ifa)->ia6_flags & 2147 IN6_IFF_DEPRECATED)) 2148 goto replace; 2149 2150 /* 2151 * When we use temporary addresses described in 2152 * RFC 3041, we prefer temporary addresses to 2153 * public autoconf addresses. Again, note the 2154 * invariants from (A) and (B). Also note that we 2155 * don't have any preference between static addresses 2156 * and autoconf addresses (despite of whether or not 2157 * the latter is temporary or public.) 2158 */ 2159 if (ip6_use_tempaddr) { 2160 struct in6_ifaddr *ifat; 2161 2162 ifat = (struct in6_ifaddr *)ifa; 2163 if ((ifa_best->ia6_flags & 2164 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2165 == IN6_IFF_AUTOCONF && 2166 (ifat->ia6_flags & 2167 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2168 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) { 2169 goto replace; 2170 } 2171 if ((ifa_best->ia6_flags & 2172 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2173 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) && 2174 (ifat->ia6_flags & 2175 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2176 == IN6_IFF_AUTOCONF) { 2177 continue; 2178 } 2179 } 2180 2181 /* 2182 * At this point, we have two cases: 2183 * 1. we are looking at a non-deprecated address, 2184 * and ifa_best is also non-deprecated. 2185 * 2. we are looking at a deprecated address, 2186 * and ifa_best is also deprecated. 2187 * Also, we do not have to consider a case where 2188 * the scope of if_best is larger(smaller) than dst and 2189 * the scope of the current address is smaller(larger) 2190 * than dst. Such a case has already been covered. 2191 * Tiebreaking is done according to the following 2192 * items: 2193 * - the scope comparison between the address and 2194 * dst (dscopecmp) 2195 * - the scope comparison between the address and 2196 * ifa_best (bscopecmp) 2197 * - if the address match dst longer than ifa_best 2198 * (matchcmp) 2199 * - if the address is on the outgoing I/F (outI/F) 2200 * 2201 * Roughly speaking, the selection policy is 2202 * - the most important item is scope. The same scope 2203 * is best. Then search for a larger scope. 2204 * Smaller scopes are the last resort. 2205 * - A deprecated address is chosen only when we have 2206 * no address that has an enough scope, but is 2207 * prefered to any addresses of smaller scopes 2208 * (this must be already done above.) 2209 * - addresses on the outgoing I/F are preferred to 2210 * ones on other interfaces if none of above 2211 * tiebreaks. In the table below, the column "bI" 2212 * means if the best_ifa is on the outgoing 2213 * interface, and the column "sI" means if the ifa 2214 * is on the outgoing interface. 2215 * - If there is no other reasons to choose one, 2216 * longest address match against dst is considered. 2217 * 2218 * The precise decision table is as follows: 2219 * dscopecmp bscopecmp match bI oI | replace? 2220 * N/A equal N/A Y N | No (1) 2221 * N/A equal N/A N Y | Yes (2) 2222 * N/A equal larger N/A | Yes (3) 2223 * N/A equal !larger N/A | No (4) 2224 * larger larger N/A N/A | No (5) 2225 * larger smaller N/A N/A | Yes (6) 2226 * smaller larger N/A N/A | Yes (7) 2227 * smaller smaller N/A N/A | No (8) 2228 * equal smaller N/A N/A | Yes (9) 2229 * equal larger (already done at A above) 2230 */ 2231 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope); 2232 bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope); 2233 2234 if (bscopecmp == 0) { 2235 struct ifnet *bifp = ifa_best->ia_ifp; 2236 2237 if (bifp == oifp && ifp != oifp) /* (1) */ 2238 continue; 2239 if (bifp != oifp && ifp == oifp) /* (2) */ 2240 goto replace; 2241 2242 /* 2243 * Both bifp and ifp are on the outgoing 2244 * interface, or both two are on a different 2245 * interface from the outgoing I/F. 2246 * now we need address matching against dst 2247 * for tiebreaking. 2248 */ 2249 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2250 matchcmp = tlen - blen; 2251 if (matchcmp > 0) /* (3) */ 2252 goto replace; 2253 continue; /* (4) */ 2254 } 2255 if (dscopecmp > 0) { 2256 if (bscopecmp > 0) /* (5) */ 2257 continue; 2258 goto replace; /* (6) */ 2259 } 2260 if (dscopecmp < 0) { 2261 if (bscopecmp > 0) /* (7) */ 2262 goto replace; 2263 continue; /* (8) */ 2264 } 2265 2266 /* now dscopecmp must be 0 */ 2267 if (bscopecmp < 0) 2268 goto replace; /* (9) */ 2269 2270 replace: 2271 ifa_best = (struct in6_ifaddr *)ifa; 2272 blen = tlen >= 0 ? tlen : 2273 in6_matchlen(IFA_IN6(ifa), dst); 2274 best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr); 2275 } 2276 } 2277 2278 /* count statistics for future improvements */ 2279 if (ifa_best == NULL) 2280 ip6stat.ip6s_sources_none++; 2281 else { 2282 if (oifp == ifa_best->ia_ifp) 2283 ip6stat.ip6s_sources_sameif[best_scope]++; 2284 else 2285 ip6stat.ip6s_sources_otherif[best_scope]++; 2286 2287 if (best_scope == dst_scope) 2288 ip6stat.ip6s_sources_samescope[best_scope]++; 2289 else 2290 ip6stat.ip6s_sources_otherscope[best_scope]++; 2291 2292 if (ifa_best->ia6_flags & IN6_IFF_DEPRECATED) 2293 ip6stat.ip6s_sources_deprecated[best_scope]++; 2294 } 2295 2296 return (ifa_best); 2297 } 2298 2299 /* 2300 * return the best address out of the same scope. if no address was 2301 * found, return the first valid address from designated IF. 2302 */ 2303 struct in6_ifaddr * 2304 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 2305 { 2306 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2307 struct ifaddr_container *ifac; 2308 struct in6_ifaddr *besta = NULL; 2309 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 2310 2311 dep[0] = dep[1] = NULL; 2312 2313 /* 2314 * We first look for addresses in the same scope. 2315 * If there is one, return it. 2316 * If two or more, return one which matches the dst longest. 2317 * If none, return one of global addresses assigned other ifs. 2318 */ 2319 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2320 struct ifaddr *ifa = ifac->ifa; 2321 2322 if (ifa->ifa_addr->sa_family != AF_INET6) 2323 continue; 2324 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2325 continue; /* XXX: is there any case to allow anycast? */ 2326 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2327 continue; /* don't use this interface */ 2328 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2329 continue; 2330 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2331 if (ip6_use_deprecated) 2332 dep[0] = (struct in6_ifaddr *)ifa; 2333 continue; 2334 } 2335 2336 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2337 /* 2338 * call in6_matchlen() as few as possible 2339 */ 2340 if (besta) { 2341 if (blen == -1) 2342 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2343 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2344 if (tlen > blen) { 2345 blen = tlen; 2346 besta = (struct in6_ifaddr *)ifa; 2347 } 2348 } else 2349 besta = (struct in6_ifaddr *)ifa; 2350 } 2351 } 2352 if (besta) 2353 return (besta); 2354 2355 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2356 struct ifaddr *ifa = ifac->ifa; 2357 2358 if (ifa->ifa_addr->sa_family != AF_INET6) 2359 continue; 2360 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2361 continue; /* XXX: is there any case to allow anycast? */ 2362 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2363 continue; /* don't use this interface */ 2364 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2365 continue; 2366 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2367 if (ip6_use_deprecated) 2368 dep[1] = (struct in6_ifaddr *)ifa; 2369 continue; 2370 } 2371 2372 return (struct in6_ifaddr *)ifa; 2373 } 2374 2375 /* use the last-resort values, that are, deprecated addresses */ 2376 if (dep[0]) 2377 return dep[0]; 2378 if (dep[1]) 2379 return dep[1]; 2380 2381 return NULL; 2382 } 2383 2384 /* 2385 * perform DAD when interface becomes IFF_UP. 2386 */ 2387 static void 2388 in6_if_up_dispatch(netmsg_t nmsg) 2389 { 2390 struct ifnet *ifp = nmsg->lmsg.u.ms_resultp; 2391 struct ifaddr_container *ifac; 2392 struct in6_ifaddr *ia; 2393 int dad_delay; /* delay ticks before DAD output */ 2394 2395 ASSERT_NETISR0; 2396 2397 in6_ifattach(ifp, NULL); /* will handle special cases */ 2398 2399 dad_delay = 0; 2400 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2401 struct ifaddr *ifa = ifac->ifa; 2402 2403 if (ifa->ifa_addr->sa_family != AF_INET6) 2404 continue; 2405 ia = (struct in6_ifaddr *)ifa; 2406 if (ia->ia6_flags & IN6_IFF_TENTATIVE) 2407 nd6_dad_start(ifa, &dad_delay); 2408 } 2409 2410 netisr_replymsg(&nmsg->base, 0); 2411 } 2412 2413 void 2414 in6_if_up(struct ifnet *ifp) 2415 { 2416 struct netmsg_base nmsg; 2417 2418 netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0, in6_if_up_dispatch); 2419 nmsg.lmsg.u.ms_resultp = ifp; 2420 netisr_domsg(&nmsg, 0); 2421 } 2422 2423 void 2424 in6_if_down(struct ifnet *ifp) 2425 { 2426 rt_purgecloned(ifp, AF_INET6); 2427 } 2428 2429 int 2430 in6if_do_dad(struct ifnet *ifp) 2431 { 2432 if (ifp->if_flags & IFF_LOOPBACK) 2433 return (0); 2434 if (!(ifp->if_flags & IFF_MULTICAST)) 2435 return (0); 2436 2437 /* 2438 * Our DAD routine requires the interface up and running. 2439 * However, some interfaces can be up before the RUNNING 2440 * status. Additionally, users may try to assign addresses 2441 * before the interface becomes up (or running). 2442 * We simply skip DAD in such a case as a workaround. 2443 * XXX: we should rather mark "tentative" on such addresses, 2444 * and do DAD after the interface becomes ready. 2445 */ 2446 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) 2447 return (0); 2448 2449 if (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) 2450 return (0); 2451 2452 return (1); 2453 } 2454 2455 /* 2456 * Calculate max IPv6 MTU through all the interfaces and store it 2457 * to in6_maxmtu. 2458 */ 2459 void 2460 in6_setmaxmtu(void) 2461 { 2462 unsigned long maxmtu = 0; 2463 const struct ifnet_array *arr; 2464 int i; 2465 2466 ASSERT_NETISR0; 2467 2468 arr = ifnet_array_get(); 2469 for (i = 0; i < arr->ifnet_count; ++i) { 2470 struct ifnet *ifp = arr->ifnet_arr[i]; 2471 2472 /* this function can be called during ifnet initialization */ 2473 if (ifp->if_afdata[AF_INET6] == NULL) 2474 continue; 2475 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2476 IN6_LINKMTU(ifp) > maxmtu) 2477 maxmtu = IN6_LINKMTU(ifp); 2478 } 2479 if (maxmtu) /* update only when maxmtu is positive */ 2480 in6_maxmtu = maxmtu; 2481 } 2482 2483 void * 2484 in6_domifattach(struct ifnet *ifp) 2485 { 2486 struct in6_ifextra *ext; 2487 2488 ext = (struct in6_ifextra *)kmalloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2489 bzero(ext, sizeof(*ext)); 2490 2491 ext->in6_ifstat = (struct in6_ifstat *)kmalloc(sizeof(struct in6_ifstat), 2492 M_IFADDR, M_WAITOK); 2493 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat)); 2494 2495 ext->icmp6_ifstat = 2496 (struct icmp6_ifstat *)kmalloc(sizeof(struct icmp6_ifstat), 2497 M_IFADDR, M_WAITOK); 2498 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat)); 2499 2500 ext->nd_ifinfo = nd6_ifattach(ifp); 2501 ext->scope6_id = scope6_ifattach(ifp); 2502 return ext; 2503 } 2504 2505 void 2506 in6_domifdetach(struct ifnet *ifp, void *aux) 2507 { 2508 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2509 scope6_ifdetach(ext->scope6_id); 2510 nd6_ifdetach(ext->nd_ifinfo); 2511 kfree(ext->in6_ifstat, M_IFADDR); 2512 kfree(ext->icmp6_ifstat, M_IFADDR); 2513 kfree(ext, M_IFADDR); 2514 } 2515