1 /* $FreeBSD: src/sys/netinet6/in6.c,v 1.7.2.9 2002/04/28 05:40:26 suz Exp $ */ 2 /* $DragonFly: src/sys/netinet6/in6.c,v 1.16 2005/11/28 17:13:46 dillon Exp $ */ 3 /* $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ */ 4 5 /* 6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the project nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. All advertising materials mentioning features or use of this software 47 * must display the following acknowledgement: 48 * This product includes software developed by the University of 49 * California, Berkeley and its contributors. 50 * 4. Neither the name of the University nor the names of its contributors 51 * may be used to endorse or promote products derived from this software 52 * without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 64 * SUCH DAMAGE. 65 * 66 * @(#)in.c 8.2 (Berkeley) 11/15/93 67 */ 68 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 72 #include <sys/param.h> 73 #include <sys/errno.h> 74 #include <sys/malloc.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/sockio.h> 78 #include <sys/systm.h> 79 #include <sys/proc.h> 80 #include <sys/time.h> 81 #include <sys/kernel.h> 82 #include <sys/syslog.h> 83 #include <sys/thread2.h> 84 85 #include <net/if.h> 86 #include <net/if_types.h> 87 #include <net/route.h> 88 #include <net/if_dl.h> 89 90 #include <netinet/in.h> 91 #include <netinet/in_var.h> 92 #include <netinet/if_ether.h> 93 #include <netinet/in_systm.h> 94 #include <netinet/ip.h> 95 #include <netinet/in_pcb.h> 96 97 #include <netinet/ip6.h> 98 #include <netinet6/ip6_var.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/mld6_var.h> 101 #include <netinet6/ip6_mroute.h> 102 #include <netinet6/in6_ifattach.h> 103 #include <netinet6/scope6_var.h> 104 #include <netinet6/in6_pcb.h> 105 106 #include <net/net_osdep.h> 107 108 MALLOC_DEFINE(M_IPMADDR, "in6_multi", "internet multicast address"); 109 110 /* 111 * Definitions of some costant IP6 addresses. 112 */ 113 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 114 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 115 const struct in6_addr in6addr_nodelocal_allnodes = 116 IN6ADDR_NODELOCAL_ALLNODES_INIT; 117 const struct in6_addr in6addr_linklocal_allnodes = 118 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 119 const struct in6_addr in6addr_linklocal_allrouters = 120 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 121 122 const struct in6_addr in6mask0 = IN6MASK0; 123 const struct in6_addr in6mask32 = IN6MASK32; 124 const struct in6_addr in6mask64 = IN6MASK64; 125 const struct in6_addr in6mask96 = IN6MASK96; 126 const struct in6_addr in6mask128 = IN6MASK128; 127 128 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6, 129 0, 0, IN6ADDR_ANY_INIT, 0}; 130 131 static int in6_lifaddr_ioctl (struct socket *, u_long, caddr_t, 132 struct ifnet *, struct thread *); 133 static int in6_ifinit (struct ifnet *, struct in6_ifaddr *, 134 struct sockaddr_in6 *, int); 135 static void in6_unlink_ifa (struct in6_ifaddr *, struct ifnet *); 136 137 struct in6_multihead in6_multihead; /* XXX BSS initialization */ 138 139 int (*faithprefix_p)(struct in6_addr *); 140 141 /* 142 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 143 * This routine does actual work. 144 */ 145 static void 146 in6_ifloop_request(int cmd, struct ifaddr *ifa) 147 { 148 struct sockaddr_in6 all1_sa; 149 struct rtentry *nrt = NULL; 150 int e; 151 152 bzero(&all1_sa, sizeof(all1_sa)); 153 all1_sa.sin6_family = AF_INET6; 154 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 155 all1_sa.sin6_addr = in6mask128; 156 157 /* 158 * We specify the address itself as the gateway, and set the 159 * RTF_LLINFO flag, so that the corresponding host route would have 160 * the flag, and thus applications that assume traditional behavior 161 * would be happy. Note that we assume the caller of the function 162 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 163 * which changes the outgoing interface to the loopback interface. 164 */ 165 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr, 166 (struct sockaddr *)&all1_sa, 167 RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); 168 if (e != 0) { 169 log(LOG_ERR, "in6_ifloop_request: " 170 "%s operation failed for %s (errno=%d)\n", 171 cmd == RTM_ADD ? "ADD" : "DELETE", 172 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), 173 e); 174 } 175 176 /* 177 * Make sure rt_ifa be equal to IFA, the second argument of the 178 * function. 179 * We need this because when we refer to rt_ifa->ia6_flags in 180 * ip6_input, we assume that the rt_ifa points to the address instead 181 * of the loopback address. 182 */ 183 if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) { 184 IFAFREE(nrt->rt_ifa); 185 IFAREF(ifa); 186 nrt->rt_ifa = ifa; 187 } 188 189 /* 190 * Report the addition/removal of the address to the routing socket. 191 * XXX: since we called rtinit for a p2p interface with a destination, 192 * we end up reporting twice in such a case. Should we rather 193 * omit the second report? 194 */ 195 if (nrt) { 196 rt_newaddrmsg(cmd, ifa, e, nrt); 197 if (cmd == RTM_DELETE) { 198 if (nrt->rt_refcnt <= 0) { 199 /* XXX: we should free the entry ourselves. */ 200 nrt->rt_refcnt++; 201 rtfree(nrt); 202 } 203 } else { 204 /* the cmd must be RTM_ADD here */ 205 nrt->rt_refcnt--; 206 } 207 } 208 } 209 210 /* 211 * Add ownaddr as loopback rtentry. We previously add the route only if 212 * necessary (ex. on a p2p link). However, since we now manage addresses 213 * separately from prefixes, we should always add the route. We can't 214 * rely on the cloning mechanism from the corresponding interface route 215 * any more. 216 */ 217 static void 218 in6_ifaddloop(struct ifaddr *ifa) 219 { 220 struct rtentry *rt; 221 222 /* If there is no loopback entry, allocate one. */ 223 rt = rtpurelookup(ifa->ifa_addr); 224 if (rt == NULL || !(rt->rt_flags & RTF_HOST) || 225 !(rt->rt_ifp->if_flags & IFF_LOOPBACK)) 226 in6_ifloop_request(RTM_ADD, ifa); 227 if (rt != NULL) 228 rt->rt_refcnt--; 229 } 230 231 /* 232 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 233 * if it exists. 234 */ 235 static void 236 in6_ifremloop(struct ifaddr *ifa) 237 { 238 struct in6_ifaddr *ia; 239 struct rtentry *rt; 240 int ia_count = 0; 241 242 /* 243 * Some of BSD variants do not remove cloned routes 244 * from an interface direct route, when removing the direct route 245 * (see comments in net/net_osdep.h). Even for variants that do remove 246 * cloned routes, they could fail to remove the cloned routes when 247 * we handle multple addresses that share a common prefix. 248 * So, we should remove the route corresponding to the deleted address 249 * regardless of the result of in6_is_ifloop_auto(). 250 */ 251 252 /* 253 * Delete the entry only if exact one ifa exists. More than one ifa 254 * can exist if we assign a same single address to multiple 255 * (probably p2p) interfaces. 256 * XXX: we should avoid such a configuration in IPv6... 257 */ 258 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 259 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { 260 ia_count++; 261 if (ia_count > 1) 262 break; 263 } 264 } 265 266 if (ia_count == 1) { 267 /* 268 * Before deleting, check if a corresponding loopbacked host 269 * route surely exists. With this check, we can avoid to 270 * delete an interface direct route whose destination is same 271 * as the address being removed. This can happen when remofing 272 * a subnet-router anycast address on an interface attahced 273 * to a shared medium. 274 */ 275 rt = rtpurelookup(ifa->ifa_addr); 276 if (rt != NULL && (rt->rt_flags & RTF_HOST) && 277 (rt->rt_ifp->if_flags & IFF_LOOPBACK)) { 278 rt->rt_refcnt--; 279 in6_ifloop_request(RTM_DELETE, ifa); 280 } 281 } 282 } 283 284 int 285 in6_ifindex2scopeid(int idx) 286 { 287 struct ifnet *ifp; 288 struct ifaddr *ifa; 289 struct sockaddr_in6 *sin6; 290 291 if (idx < 0 || if_index < idx) 292 return -1; 293 ifp = ifindex2ifnet[idx]; 294 295 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 296 { 297 if (ifa->ifa_addr->sa_family != AF_INET6) 298 continue; 299 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 300 if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) 301 return sin6->sin6_scope_id & 0xffff; 302 } 303 304 return -1; 305 } 306 307 int 308 in6_mask2len(struct in6_addr *mask, u_char *lim0) 309 { 310 int x = 0, y; 311 u_char *lim = lim0, *p; 312 313 if (lim0 == NULL || 314 lim0 - (u_char *)mask > sizeof(*mask)) /* ignore the scope_id part */ 315 lim = (u_char *)mask + sizeof(*mask); 316 for (p = (u_char *)mask; p < lim; x++, p++) { 317 if (*p != 0xff) 318 break; 319 } 320 y = 0; 321 if (p < lim) { 322 for (y = 0; y < 8; y++) { 323 if ((*p & (0x80 >> y)) == 0) 324 break; 325 } 326 } 327 328 /* 329 * when the limit pointer is given, do a stricter check on the 330 * remaining bits. 331 */ 332 if (p < lim) { 333 if (y != 0 && (*p & (0x00ff >> y)) != 0) 334 return(-1); 335 for (p = p + 1; p < lim; p++) 336 if (*p != 0) 337 return(-1); 338 } 339 340 return x * 8 + y; 341 } 342 343 void 344 in6_len2mask(struct in6_addr *mask, int len) 345 { 346 int i; 347 348 bzero(mask, sizeof(*mask)); 349 for (i = 0; i < len / 8; i++) 350 mask->s6_addr8[i] = 0xff; 351 if (len % 8) 352 mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff; 353 } 354 355 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 356 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 357 358 int 359 in6_control(struct socket *so, u_long cmd, caddr_t data, 360 struct ifnet *ifp, struct thread *td) 361 { 362 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 363 struct in6_ifaddr *ia = NULL; 364 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 365 int privileged; 366 int error; 367 368 privileged = 0; 369 if (suser(td) == 0) 370 privileged++; 371 372 switch (cmd) { 373 case SIOCGETSGCNT_IN6: 374 case SIOCGETMIFCNT_IN6: 375 return (mrt6_ioctl(cmd, data)); 376 } 377 378 if (ifp == NULL) 379 return(EOPNOTSUPP); 380 381 switch (cmd) { 382 case SIOCSNDFLUSH_IN6: 383 case SIOCSPFXFLUSH_IN6: 384 case SIOCSRTRFLUSH_IN6: 385 case SIOCSDEFIFACE_IN6: 386 case SIOCSIFINFO_FLAGS: 387 if (!privileged) 388 return(EPERM); 389 /* fall through */ 390 case OSIOCGIFINFO_IN6: 391 case SIOCGIFINFO_IN6: 392 case SIOCGDRLST_IN6: 393 case SIOCGPRLST_IN6: 394 case SIOCGNBRINFO_IN6: 395 case SIOCGDEFIFACE_IN6: 396 return(nd6_ioctl(cmd, data, ifp)); 397 } 398 399 switch (cmd) { 400 case SIOCSIFPREFIX_IN6: 401 case SIOCDIFPREFIX_IN6: 402 case SIOCAIFPREFIX_IN6: 403 case SIOCCIFPREFIX_IN6: 404 case SIOCSGIFPREFIX_IN6: 405 case SIOCGIFPREFIX_IN6: 406 log(LOG_NOTICE, 407 "prefix ioctls are now invalidated. " 408 "please use ifconfig.\n"); 409 return(EOPNOTSUPP); 410 } 411 412 switch (cmd) { 413 case SIOCSSCOPE6: 414 if (!privileged) 415 return(EPERM); 416 return(scope6_set(ifp, 417 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 418 break; 419 case SIOCGSCOPE6: 420 return(scope6_get(ifp, 421 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 422 break; 423 case SIOCGSCOPE6DEF: 424 return(scope6_get_default((struct scope6_id *) 425 ifr->ifr_ifru.ifru_scope_id)); 426 break; 427 } 428 429 switch (cmd) { 430 case SIOCALIFADDR: 431 case SIOCDLIFADDR: 432 if (!privileged) 433 return(EPERM); 434 /* fall through */ 435 case SIOCGLIFADDR: 436 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 437 } 438 439 /* 440 * Find address for this interface, if it exists. 441 */ 442 if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */ 443 struct sockaddr_in6 *sa6 = 444 (struct sockaddr_in6 *)&ifra->ifra_addr; 445 446 if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) { 447 if (sa6->sin6_addr.s6_addr16[1] == 0) { 448 /* link ID is not embedded by the user */ 449 sa6->sin6_addr.s6_addr16[1] = 450 htons(ifp->if_index); 451 } else if (sa6->sin6_addr.s6_addr16[1] != 452 htons(ifp->if_index)) { 453 return(EINVAL); /* link ID contradicts */ 454 } 455 if (sa6->sin6_scope_id) { 456 if (sa6->sin6_scope_id != 457 (u_int32_t)ifp->if_index) 458 return(EINVAL); 459 sa6->sin6_scope_id = 0; /* XXX: good way? */ 460 } 461 } 462 ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr); 463 } 464 465 switch (cmd) { 466 case SIOCSIFADDR_IN6: 467 case SIOCSIFDSTADDR_IN6: 468 case SIOCSIFNETMASK_IN6: 469 /* 470 * Since IPv6 allows a node to assign multiple addresses 471 * on a single interface, SIOCSIFxxx ioctls are not suitable 472 * and should be unused. 473 */ 474 /* we decided to obsolete this command (20000704) */ 475 return(EINVAL); 476 477 case SIOCDIFADDR_IN6: 478 /* 479 * for IPv4, we look for existing in_ifaddr here to allow 480 * "ifconfig if0 delete" to remove first IPv4 address on the 481 * interface. For IPv6, as the spec allow multiple interface 482 * address from the day one, we consider "remove the first one" 483 * semantics to be not preferable. 484 */ 485 if (ia == NULL) 486 return(EADDRNOTAVAIL); 487 /* FALLTHROUGH */ 488 case SIOCAIFADDR_IN6: 489 /* 490 * We always require users to specify a valid IPv6 address for 491 * the corresponding operation. 492 */ 493 if (ifra->ifra_addr.sin6_family != AF_INET6 || 494 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 495 return(EAFNOSUPPORT); 496 if (!privileged) 497 return(EPERM); 498 499 break; 500 501 case SIOCGIFADDR_IN6: 502 /* This interface is basically deprecated. use SIOCGIFCONF. */ 503 /* fall through */ 504 case SIOCGIFAFLAG_IN6: 505 case SIOCGIFNETMASK_IN6: 506 case SIOCGIFDSTADDR_IN6: 507 case SIOCGIFALIFETIME_IN6: 508 /* must think again about its semantics */ 509 if (ia == NULL) 510 return(EADDRNOTAVAIL); 511 break; 512 case SIOCSIFALIFETIME_IN6: 513 { 514 struct in6_addrlifetime *lt; 515 516 if (!privileged) 517 return(EPERM); 518 if (ia == NULL) 519 return(EADDRNOTAVAIL); 520 /* sanity for overflow - beware unsigned */ 521 lt = &ifr->ifr_ifru.ifru_lifetime; 522 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 523 && lt->ia6t_vltime + time_second < time_second) { 524 return EINVAL; 525 } 526 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 527 && lt->ia6t_pltime + time_second < time_second) { 528 return EINVAL; 529 } 530 break; 531 } 532 } 533 534 switch (cmd) { 535 536 case SIOCGIFADDR_IN6: 537 ifr->ifr_addr = ia->ia_addr; 538 break; 539 540 case SIOCGIFDSTADDR_IN6: 541 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 542 return(EINVAL); 543 /* 544 * XXX: should we check if ifa_dstaddr is NULL and return 545 * an error? 546 */ 547 ifr->ifr_dstaddr = ia->ia_dstaddr; 548 break; 549 550 case SIOCGIFNETMASK_IN6: 551 ifr->ifr_addr = ia->ia_prefixmask; 552 break; 553 554 case SIOCGIFAFLAG_IN6: 555 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 556 break; 557 558 case SIOCGIFSTAT_IN6: 559 if (ifp == NULL) 560 return EINVAL; 561 bzero(&ifr->ifr_ifru.ifru_stat, 562 sizeof(ifr->ifr_ifru.ifru_stat)); 563 ifr->ifr_ifru.ifru_stat = 564 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat; 565 break; 566 567 case SIOCGIFSTAT_ICMP6: 568 bzero(&ifr->ifr_ifru.ifru_stat, 569 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 570 ifr->ifr_ifru.ifru_icmp6stat = 571 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat; 572 break; 573 574 case SIOCGIFALIFETIME_IN6: 575 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 576 break; 577 578 case SIOCSIFALIFETIME_IN6: 579 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 580 /* for sanity */ 581 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 582 ia->ia6_lifetime.ia6t_expire = 583 time_second + ia->ia6_lifetime.ia6t_vltime; 584 } else 585 ia->ia6_lifetime.ia6t_expire = 0; 586 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 587 ia->ia6_lifetime.ia6t_preferred = 588 time_second + ia->ia6_lifetime.ia6t_pltime; 589 } else 590 ia->ia6_lifetime.ia6t_preferred = 0; 591 break; 592 593 case SIOCAIFADDR_IN6: 594 { 595 int i, error = 0; 596 struct nd_prefix pr0, *pr; 597 598 /* 599 * first, make or update the interface address structure, 600 * and link it to the list. 601 */ 602 if ((error = in6_update_ifa(ifp, ifra, ia)) != 0) 603 return(error); 604 605 /* 606 * then, make the prefix on-link on the interface. 607 * XXX: we'd rather create the prefix before the address, but 608 * we need at least one address to install the corresponding 609 * interface route, so we configure the address first. 610 */ 611 612 /* 613 * convert mask to prefix length (prefixmask has already 614 * been validated in in6_update_ifa(). 615 */ 616 bzero(&pr0, sizeof(pr0)); 617 pr0.ndpr_ifp = ifp; 618 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 619 NULL); 620 if (pr0.ndpr_plen == 128) 621 break; /* we don't need to install a host route. */ 622 pr0.ndpr_prefix = ifra->ifra_addr; 623 pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr; 624 /* apply the mask for safety. */ 625 for (i = 0; i < 4; i++) { 626 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 627 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 628 } 629 /* 630 * XXX: since we don't have an API to set prefix (not address) 631 * lifetimes, we just use the same lifetimes as addresses. 632 * The (temporarily) installed lifetimes can be overridden by 633 * later advertised RAs (when accept_rtadv is non 0), which is 634 * an intended behavior. 635 */ 636 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 637 pr0.ndpr_raf_auto = 638 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 639 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 640 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 641 642 /* add the prefix if there's one. */ 643 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 644 /* 645 * nd6_prelist_add will install the corresponding 646 * interface route. 647 */ 648 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 649 return(error); 650 if (pr == NULL) { 651 log(LOG_ERR, "nd6_prelist_add succedded but " 652 "no prefix\n"); 653 return(EINVAL); /* XXX panic here? */ 654 } 655 } 656 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 657 == NULL) { 658 /* XXX: this should not happen! */ 659 log(LOG_ERR, "in6_control: addition succeeded, but" 660 " no ifaddr\n"); 661 } else { 662 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && 663 ia->ia6_ndpr == NULL) { /* new autoconfed addr */ 664 ia->ia6_ndpr = pr; 665 pr->ndpr_refcnt++; 666 667 /* 668 * If this is the first autoconf address from 669 * the prefix, create a temporary address 670 * as well (when specified). 671 */ 672 if (ip6_use_tempaddr && 673 pr->ndpr_refcnt == 1) { 674 int e; 675 if ((e = in6_tmpifadd(ia, 1)) != 0) { 676 log(LOG_NOTICE, "in6_control: " 677 "failed to create a " 678 "temporary address, " 679 "errno=%d\n", 680 e); 681 } 682 } 683 } 684 685 /* 686 * this might affect the status of autoconfigured 687 * addresses, that is, this address might make 688 * other addresses detached. 689 */ 690 pfxlist_onlink_check(); 691 } 692 if (error == 0 && ia) 693 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 694 break; 695 } 696 697 case SIOCDIFADDR_IN6: 698 { 699 int i = 0; 700 struct nd_prefix pr0, *pr; 701 702 /* 703 * If the address being deleted is the only one that owns 704 * the corresponding prefix, expire the prefix as well. 705 * XXX: theoretically, we don't have to warry about such 706 * relationship, since we separate the address management 707 * and the prefix management. We do this, however, to provide 708 * as much backward compatibility as possible in terms of 709 * the ioctl operation. 710 */ 711 bzero(&pr0, sizeof(pr0)); 712 pr0.ndpr_ifp = ifp; 713 pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, 714 NULL); 715 if (pr0.ndpr_plen == 128) 716 goto purgeaddr; 717 pr0.ndpr_prefix = ia->ia_addr; 718 pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr; 719 for (i = 0; i < 4; i++) { 720 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 721 ia->ia_prefixmask.sin6_addr.s6_addr32[i]; 722 } 723 /* 724 * The logic of the following condition is a bit complicated. 725 * We expire the prefix when 726 * 1. the address obeys autoconfiguration and it is the 727 * only owner of the associated prefix, or 728 * 2. the address does not obey autoconf and there is no 729 * other owner of the prefix. 730 */ 731 if ((pr = nd6_prefix_lookup(&pr0)) != NULL && 732 (((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && 733 pr->ndpr_refcnt == 1) || 734 ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0 && 735 pr->ndpr_refcnt == 0))) { 736 pr->ndpr_expire = 1; /* XXX: just for expiration */ 737 } 738 739 purgeaddr: 740 in6_purgeaddr(&ia->ia_ifa); 741 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 742 break; 743 } 744 745 default: 746 if (ifp == NULL || ifp->if_ioctl == 0) 747 return(EOPNOTSUPP); 748 lwkt_serialize_enter(ifp->if_serializer); 749 error = ifp->if_ioctl(ifp, cmd, data, td->td_proc->p_ucred); 750 lwkt_serialize_exit(ifp->if_serializer); 751 return (error); 752 } 753 754 return(0); 755 } 756 757 /* 758 * Update parameters of an IPv6 interface address. 759 * If necessary, a new entry is created and linked into address chains. 760 * This function is separated from in6_control(). 761 * XXX: should this be performed under splnet()? 762 */ 763 int 764 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 765 struct in6_ifaddr *ia) 766 { 767 int error = 0, hostIsNew = 0, plen = -1; 768 struct in6_ifaddr *oia; 769 struct sockaddr_in6 dst6; 770 struct in6_addrlifetime *lt; 771 772 /* Validate parameters */ 773 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 774 return(EINVAL); 775 776 /* 777 * The destination address for a p2p link must have a family 778 * of AF_UNSPEC or AF_INET6. 779 */ 780 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 781 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 782 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 783 return(EAFNOSUPPORT); 784 /* 785 * validate ifra_prefixmask. don't check sin6_family, netmask 786 * does not carry fields other than sin6_len. 787 */ 788 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 789 return(EINVAL); 790 /* 791 * Because the IPv6 address architecture is classless, we require 792 * users to specify a (non 0) prefix length (mask) for a new address. 793 * We also require the prefix (when specified) mask is valid, and thus 794 * reject a non-consecutive mask. 795 */ 796 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 797 return(EINVAL); 798 if (ifra->ifra_prefixmask.sin6_len != 0) { 799 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 800 (u_char *)&ifra->ifra_prefixmask + 801 ifra->ifra_prefixmask.sin6_len); 802 if (plen <= 0) 803 return(EINVAL); 804 } 805 else { 806 /* 807 * In this case, ia must not be NULL. We just use its prefix 808 * length. 809 */ 810 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 811 } 812 /* 813 * If the destination address on a p2p interface is specified, 814 * and the address is a scoped one, validate/set the scope 815 * zone identifier. 816 */ 817 dst6 = ifra->ifra_dstaddr; 818 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) && 819 (dst6.sin6_family == AF_INET6)) { 820 int scopeid; 821 822 if ((error = in6_recoverscope(&dst6, 823 &ifra->ifra_dstaddr.sin6_addr, 824 ifp)) != 0) 825 return(error); 826 scopeid = in6_addr2scopeid(ifp, &dst6.sin6_addr); 827 if (dst6.sin6_scope_id == 0) /* user omit to specify the ID. */ 828 dst6.sin6_scope_id = scopeid; 829 else if (dst6.sin6_scope_id != scopeid) 830 return(EINVAL); /* scope ID mismatch. */ 831 if ((error = in6_embedscope(&dst6.sin6_addr, &dst6, NULL, NULL)) 832 != 0) 833 return(error); 834 dst6.sin6_scope_id = 0; /* XXX */ 835 } 836 /* 837 * The destination address can be specified only for a p2p or a 838 * loopback interface. If specified, the corresponding prefix length 839 * must be 128. 840 */ 841 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 842 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 843 /* XXX: noisy message */ 844 log(LOG_INFO, "in6_update_ifa: a destination can be " 845 "specified for a p2p or a loopback IF only\n"); 846 return(EINVAL); 847 } 848 if (plen != 128) { 849 /* 850 * The following message seems noisy, but we dare to 851 * add it for diagnosis. 852 */ 853 log(LOG_INFO, "in6_update_ifa: prefixlen must be 128 " 854 "when dstaddr is specified\n"); 855 return(EINVAL); 856 } 857 } 858 /* lifetime consistency check */ 859 lt = &ifra->ifra_lifetime; 860 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 861 && lt->ia6t_vltime + time_second < time_second) { 862 return EINVAL; 863 } 864 if (lt->ia6t_vltime == 0) { 865 /* 866 * the following log might be noisy, but this is a typical 867 * configuration mistake or a tool's bug. 868 */ 869 log(LOG_INFO, 870 "in6_update_ifa: valid lifetime is 0 for %s\n", 871 ip6_sprintf(&ifra->ifra_addr.sin6_addr)); 872 } 873 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 874 && lt->ia6t_pltime + time_second < time_second) { 875 return EINVAL; 876 } 877 878 /* 879 * If this is a new address, allocate a new ifaddr and link it 880 * into chains. 881 */ 882 if (ia == NULL) { 883 hostIsNew = 1; 884 /* 885 * When in6_update_ifa() is called in a process of a received 886 * RA, it is called under splnet(). So, we should call malloc 887 * with M_NOWAIT. 888 */ 889 ia = (struct in6_ifaddr *) 890 malloc(sizeof(*ia), M_IFADDR, M_NOWAIT); 891 if (ia == NULL) 892 return (ENOBUFS); 893 bzero((caddr_t)ia, sizeof(*ia)); 894 /* Initialize the address and masks */ 895 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 896 ia->ia_addr.sin6_family = AF_INET6; 897 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 898 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 899 /* 900 * XXX: some functions expect that ifa_dstaddr is not 901 * NULL for p2p interfaces. 902 */ 903 ia->ia_ifa.ifa_dstaddr 904 = (struct sockaddr *)&ia->ia_dstaddr; 905 } else { 906 ia->ia_ifa.ifa_dstaddr = NULL; 907 } 908 ia->ia_ifa.ifa_netmask 909 = (struct sockaddr *)&ia->ia_prefixmask; 910 911 ia->ia_ifp = ifp; 912 if ((oia = in6_ifaddr) != NULL) { 913 for ( ; oia->ia_next; oia = oia->ia_next) 914 continue; 915 oia->ia_next = ia; 916 } else 917 in6_ifaddr = ia; 918 919 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, 920 ifa_list); 921 } 922 923 /* set prefix mask */ 924 if (ifra->ifra_prefixmask.sin6_len) { 925 /* 926 * We prohibit changing the prefix length of an existing 927 * address, because 928 * + such an operation should be rare in IPv6, and 929 * + the operation would confuse prefix management. 930 */ 931 if (ia->ia_prefixmask.sin6_len && 932 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 933 log(LOG_INFO, "in6_update_ifa: the prefix length of an" 934 " existing (%s) address should not be changed\n", 935 ip6_sprintf(&ia->ia_addr.sin6_addr)); 936 error = EINVAL; 937 goto unlink; 938 } 939 ia->ia_prefixmask = ifra->ifra_prefixmask; 940 } 941 942 /* 943 * If a new destination address is specified, scrub the old one and 944 * install the new destination. Note that the interface must be 945 * p2p or loopback (see the check above.) 946 */ 947 if (dst6.sin6_family == AF_INET6 && 948 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, 949 &ia->ia_dstaddr.sin6_addr)) { 950 int e; 951 952 if ((ia->ia_flags & IFA_ROUTE) != 0 && 953 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 954 != 0) { 955 log(LOG_ERR, "in6_update_ifa: failed to remove " 956 "a route to the old destination: %s\n", 957 ip6_sprintf(&ia->ia_addr.sin6_addr)); 958 /* proceed anyway... */ 959 } 960 else 961 ia->ia_flags &= ~IFA_ROUTE; 962 ia->ia_dstaddr = dst6; 963 } 964 965 /* reset the interface and routing table appropriately. */ 966 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 967 goto unlink; 968 969 /* 970 * Beyond this point, we should call in6_purgeaddr upon an error, 971 * not just go to unlink. 972 */ 973 974 #if 0 /* disable this mechanism for now */ 975 /* update prefix list */ 976 if (hostIsNew && 977 (ifra->ifra_flags & IN6_IFF_NOPFX) == 0) { /* XXX */ 978 int iilen; 979 980 iilen = (sizeof(ia->ia_prefixmask.sin6_addr) << 3) - plen; 981 if ((error = in6_prefix_add_ifid(iilen, ia)) != 0) { 982 in6_purgeaddr((struct ifaddr *)ia); 983 return(error); 984 } 985 } 986 #endif 987 988 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 989 struct sockaddr_in6 mltaddr, mltmask; 990 struct in6_multi *in6m; 991 992 if (hostIsNew) { 993 /* 994 * join solicited multicast addr for new host id 995 */ 996 struct in6_addr llsol; 997 bzero(&llsol, sizeof(struct in6_addr)); 998 llsol.s6_addr16[0] = htons(0xff02); 999 llsol.s6_addr16[1] = htons(ifp->if_index); 1000 llsol.s6_addr32[1] = 0; 1001 llsol.s6_addr32[2] = htonl(1); 1002 llsol.s6_addr32[3] = 1003 ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1004 llsol.s6_addr8[12] = 0xff; 1005 (void)in6_addmulti(&llsol, ifp, &error); 1006 if (error != 0) { 1007 log(LOG_WARNING, 1008 "in6_update_ifa: addmulti failed for " 1009 "%s on %s (errno=%d)\n", 1010 ip6_sprintf(&llsol), if_name(ifp), 1011 error); 1012 in6_purgeaddr((struct ifaddr *)ia); 1013 return(error); 1014 } 1015 } 1016 1017 bzero(&mltmask, sizeof(mltmask)); 1018 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1019 mltmask.sin6_family = AF_INET6; 1020 mltmask.sin6_addr = in6mask32; 1021 1022 /* 1023 * join link-local all-nodes address 1024 */ 1025 bzero(&mltaddr, sizeof(mltaddr)); 1026 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1027 mltaddr.sin6_family = AF_INET6; 1028 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1029 mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 1030 1031 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1032 if (in6m == NULL) { 1033 rtrequest(RTM_ADD, 1034 (struct sockaddr *)&mltaddr, 1035 (struct sockaddr *)&ia->ia_addr, 1036 (struct sockaddr *)&mltmask, 1037 RTF_UP|RTF_CLONING, /* xxx */ 1038 (struct rtentry **)0); 1039 (void)in6_addmulti(&mltaddr.sin6_addr, ifp, &error); 1040 if (error != 0) { 1041 log(LOG_WARNING, 1042 "in6_update_ifa: addmulti failed for " 1043 "%s on %s (errno=%d)\n", 1044 ip6_sprintf(&mltaddr.sin6_addr), 1045 if_name(ifp), error); 1046 } 1047 } 1048 1049 /* 1050 * join node information group address 1051 */ 1052 #define hostnamelen strlen(hostname) 1053 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr) 1054 == 0) { 1055 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1056 if (in6m == NULL && ia != NULL) { 1057 (void)in6_addmulti(&mltaddr.sin6_addr, 1058 ifp, &error); 1059 if (error != 0) { 1060 log(LOG_WARNING, "in6_update_ifa: " 1061 "addmulti failed for " 1062 "%s on %s (errno=%d)\n", 1063 ip6_sprintf(&mltaddr.sin6_addr), 1064 if_name(ifp), error); 1065 } 1066 } 1067 } 1068 #undef hostnamelen 1069 1070 /* 1071 * join node-local all-nodes address, on loopback. 1072 * XXX: since "node-local" is obsoleted by interface-local, 1073 * we have to join the group on every interface with 1074 * some interface-boundary restriction. 1075 */ 1076 if (ifp->if_flags & IFF_LOOPBACK) { 1077 struct in6_ifaddr *ia_loop; 1078 1079 struct in6_addr loop6 = in6addr_loopback; 1080 ia_loop = in6ifa_ifpwithaddr(ifp, &loop6); 1081 1082 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1083 1084 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1085 if (in6m == NULL && ia_loop != NULL) { 1086 rtrequest(RTM_ADD, 1087 (struct sockaddr *)&mltaddr, 1088 (struct sockaddr *)&ia_loop->ia_addr, 1089 (struct sockaddr *)&mltmask, 1090 RTF_UP, 1091 (struct rtentry **)0); 1092 (void)in6_addmulti(&mltaddr.sin6_addr, ifp, 1093 &error); 1094 if (error != 0) { 1095 log(LOG_WARNING, "in6_update_ifa: " 1096 "addmulti failed for %s on %s " 1097 "(errno=%d)\n", 1098 ip6_sprintf(&mltaddr.sin6_addr), 1099 if_name(ifp), error); 1100 } 1101 } 1102 } 1103 } 1104 1105 ia->ia6_flags = ifra->ifra_flags; 1106 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /*safety*/ 1107 ia->ia6_flags &= ~IN6_IFF_NODAD; /* Mobile IPv6 */ 1108 1109 ia->ia6_lifetime = ifra->ifra_lifetime; 1110 /* for sanity */ 1111 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1112 ia->ia6_lifetime.ia6t_expire = 1113 time_second + ia->ia6_lifetime.ia6t_vltime; 1114 } else 1115 ia->ia6_lifetime.ia6t_expire = 0; 1116 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1117 ia->ia6_lifetime.ia6t_preferred = 1118 time_second + ia->ia6_lifetime.ia6t_pltime; 1119 } else 1120 ia->ia6_lifetime.ia6t_preferred = 0; 1121 1122 /* 1123 * Perform DAD, if needed. 1124 * XXX It may be of use, if we can administratively 1125 * disable DAD. 1126 */ 1127 if (in6if_do_dad(ifp) && (ifra->ifra_flags & IN6_IFF_NODAD) == 0) { 1128 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1129 nd6_dad_start((struct ifaddr *)ia, NULL); 1130 } 1131 1132 return(error); 1133 1134 unlink: 1135 /* 1136 * XXX: if a change of an existing address failed, keep the entry 1137 * anyway. 1138 */ 1139 if (hostIsNew) 1140 in6_unlink_ifa(ia, ifp); 1141 return(error); 1142 } 1143 1144 void 1145 in6_purgeaddr(struct ifaddr *ifa) 1146 { 1147 struct ifnet *ifp = ifa->ifa_ifp; 1148 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1149 1150 /* stop DAD processing */ 1151 nd6_dad_stop(ifa); 1152 1153 /* 1154 * delete route to the destination of the address being purged. 1155 * The interface must be p2p or loopback in this case. 1156 */ 1157 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) { 1158 int e; 1159 1160 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1161 != 0) { 1162 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1163 "a route to the p2p destination: %s on %s, " 1164 "errno=%d\n", 1165 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp), 1166 e); 1167 /* proceed anyway... */ 1168 } 1169 else 1170 ia->ia_flags &= ~IFA_ROUTE; 1171 } 1172 1173 /* Remove ownaddr's loopback rtentry, if it exists. */ 1174 in6_ifremloop(&(ia->ia_ifa)); 1175 1176 if (ifp->if_flags & IFF_MULTICAST) { 1177 /* 1178 * delete solicited multicast addr for deleting host id 1179 */ 1180 struct in6_multi *in6m; 1181 struct in6_addr llsol; 1182 bzero(&llsol, sizeof(struct in6_addr)); 1183 llsol.s6_addr16[0] = htons(0xff02); 1184 llsol.s6_addr16[1] = htons(ifp->if_index); 1185 llsol.s6_addr32[1] = 0; 1186 llsol.s6_addr32[2] = htonl(1); 1187 llsol.s6_addr32[3] = 1188 ia->ia_addr.sin6_addr.s6_addr32[3]; 1189 llsol.s6_addr8[12] = 0xff; 1190 1191 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1192 if (in6m) 1193 in6_delmulti(in6m); 1194 } 1195 1196 in6_unlink_ifa(ia, ifp); 1197 } 1198 1199 static void 1200 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1201 { 1202 int plen, iilen; 1203 struct in6_ifaddr *oia; 1204 1205 crit_enter(); 1206 1207 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 1208 1209 oia = ia; 1210 if (oia == (ia = in6_ifaddr)) 1211 in6_ifaddr = ia->ia_next; 1212 else { 1213 while (ia->ia_next && (ia->ia_next != oia)) 1214 ia = ia->ia_next; 1215 if (ia->ia_next) 1216 ia->ia_next = oia->ia_next; 1217 else { 1218 /* search failed */ 1219 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1220 } 1221 } 1222 1223 if (oia->ia6_ifpr) { /* check for safety */ 1224 plen = in6_mask2len(&oia->ia_prefixmask.sin6_addr, NULL); 1225 iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) - plen; 1226 in6_prefix_remove_ifid(iilen, oia); 1227 } 1228 1229 /* 1230 * When an autoconfigured address is being removed, release the 1231 * reference to the base prefix. Also, since the release might 1232 * affect the status of other (detached) addresses, call 1233 * pfxlist_onlink_check(). 1234 */ 1235 if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) { 1236 if (oia->ia6_ndpr == NULL) { 1237 log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address " 1238 "%p has no prefix\n", oia); 1239 } else { 1240 oia->ia6_ndpr->ndpr_refcnt--; 1241 oia->ia6_flags &= ~IN6_IFF_AUTOCONF; 1242 oia->ia6_ndpr = NULL; 1243 } 1244 1245 pfxlist_onlink_check(); 1246 } 1247 1248 /* 1249 * release another refcnt for the link from in6_ifaddr. 1250 * Note that we should decrement the refcnt at least once for all *BSD. 1251 */ 1252 IFAFREE(&oia->ia_ifa); 1253 1254 crit_exit(); 1255 } 1256 1257 void 1258 in6_purgeif(struct ifnet *ifp) 1259 { 1260 struct ifaddr *ifa, *nifa; 1261 1262 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) 1263 { 1264 nifa = TAILQ_NEXT(ifa, ifa_list); 1265 if (ifa->ifa_addr->sa_family != AF_INET6) 1266 continue; 1267 in6_purgeaddr(ifa); 1268 } 1269 1270 in6_ifdetach(ifp); 1271 } 1272 1273 /* 1274 * SIOC[GAD]LIFADDR. 1275 * SIOCGLIFADDR: get first address. (?) 1276 * SIOCGLIFADDR with IFLR_PREFIX: 1277 * get first address that matches the specified prefix. 1278 * SIOCALIFADDR: add the specified address. 1279 * SIOCALIFADDR with IFLR_PREFIX: 1280 * add the specified prefix, filling hostid part from 1281 * the first link-local address. prefixlen must be <= 64. 1282 * SIOCDLIFADDR: delete the specified address. 1283 * SIOCDLIFADDR with IFLR_PREFIX: 1284 * delete the first address that matches the specified prefix. 1285 * return values: 1286 * EINVAL on invalid parameters 1287 * EADDRNOTAVAIL on prefix match failed/specified address not found 1288 * other values may be returned from in6_ioctl() 1289 * 1290 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1291 * this is to accomodate address naming scheme other than RFC2374, 1292 * in the future. 1293 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1294 * address encoding scheme. (see figure on page 8) 1295 */ 1296 static int 1297 in6_lifaddr_ioctl(struct socket *so, u_long cmd, caddr_t data, 1298 struct ifnet *ifp, struct thread *td) 1299 { 1300 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1301 struct ifaddr *ifa; 1302 struct sockaddr *sa; 1303 1304 /* sanity checks */ 1305 if (!data || !ifp) { 1306 panic("invalid argument to in6_lifaddr_ioctl"); 1307 /*NOTRECHED*/ 1308 } 1309 1310 switch (cmd) { 1311 case SIOCGLIFADDR: 1312 /* address must be specified on GET with IFLR_PREFIX */ 1313 if ((iflr->flags & IFLR_PREFIX) == 0) 1314 break; 1315 /* FALLTHROUGH */ 1316 case SIOCALIFADDR: 1317 case SIOCDLIFADDR: 1318 /* address must be specified on ADD and DELETE */ 1319 sa = (struct sockaddr *)&iflr->addr; 1320 if (sa->sa_family != AF_INET6) 1321 return EINVAL; 1322 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1323 return EINVAL; 1324 /* XXX need improvement */ 1325 sa = (struct sockaddr *)&iflr->dstaddr; 1326 if (sa->sa_family && sa->sa_family != AF_INET6) 1327 return EINVAL; 1328 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1329 return EINVAL; 1330 break; 1331 default: /* shouldn't happen */ 1332 #if 0 1333 panic("invalid cmd to in6_lifaddr_ioctl"); 1334 /* NOTREACHED */ 1335 #else 1336 return EOPNOTSUPP; 1337 #endif 1338 } 1339 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1340 return EINVAL; 1341 1342 switch (cmd) { 1343 case SIOCALIFADDR: 1344 { 1345 struct in6_aliasreq ifra; 1346 struct in6_addr *hostid = NULL; 1347 int prefixlen; 1348 1349 if ((iflr->flags & IFLR_PREFIX) != 0) { 1350 struct sockaddr_in6 *sin6; 1351 1352 /* 1353 * hostid is to fill in the hostid part of the 1354 * address. hostid points to the first link-local 1355 * address attached to the interface. 1356 */ 1357 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1358 if (!ifa) 1359 return EADDRNOTAVAIL; 1360 hostid = IFA_IN6(ifa); 1361 1362 /* prefixlen must be <= 64. */ 1363 if (64 < iflr->prefixlen) 1364 return EINVAL; 1365 prefixlen = iflr->prefixlen; 1366 1367 /* hostid part must be zero. */ 1368 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1369 if (sin6->sin6_addr.s6_addr32[2] != 0 1370 || sin6->sin6_addr.s6_addr32[3] != 0) { 1371 return EINVAL; 1372 } 1373 } else 1374 prefixlen = iflr->prefixlen; 1375 1376 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1377 bzero(&ifra, sizeof(ifra)); 1378 bcopy(iflr->iflr_name, ifra.ifra_name, 1379 sizeof(ifra.ifra_name)); 1380 1381 bcopy(&iflr->addr, &ifra.ifra_addr, 1382 ((struct sockaddr *)&iflr->addr)->sa_len); 1383 if (hostid) { 1384 /* fill in hostid part */ 1385 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1386 hostid->s6_addr32[2]; 1387 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1388 hostid->s6_addr32[3]; 1389 } 1390 1391 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/ 1392 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1393 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1394 if (hostid) { 1395 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1396 hostid->s6_addr32[2]; 1397 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1398 hostid->s6_addr32[3]; 1399 } 1400 } 1401 1402 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1403 in6_len2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1404 1405 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1406 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td); 1407 } 1408 case SIOCGLIFADDR: 1409 case SIOCDLIFADDR: 1410 { 1411 struct in6_ifaddr *ia; 1412 struct in6_addr mask, candidate, match; 1413 struct sockaddr_in6 *sin6; 1414 int cmp; 1415 1416 bzero(&mask, sizeof(mask)); 1417 if (iflr->flags & IFLR_PREFIX) { 1418 /* lookup a prefix rather than address. */ 1419 in6_len2mask(&mask, iflr->prefixlen); 1420 1421 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1422 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1423 match.s6_addr32[0] &= mask.s6_addr32[0]; 1424 match.s6_addr32[1] &= mask.s6_addr32[1]; 1425 match.s6_addr32[2] &= mask.s6_addr32[2]; 1426 match.s6_addr32[3] &= mask.s6_addr32[3]; 1427 1428 /* if you set extra bits, that's wrong */ 1429 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1430 return EINVAL; 1431 1432 cmp = 1; 1433 } else { 1434 if (cmd == SIOCGLIFADDR) { 1435 /* on getting an address, take the 1st match */ 1436 cmp = 0; /* XXX */ 1437 } else { 1438 /* on deleting an address, do exact match */ 1439 in6_len2mask(&mask, 128); 1440 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1441 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1442 1443 cmp = 1; 1444 } 1445 } 1446 1447 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1448 { 1449 if (ifa->ifa_addr->sa_family != AF_INET6) 1450 continue; 1451 if (!cmp) 1452 break; 1453 1454 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1455 /* 1456 * XXX: this is adhoc, but is necessary to allow 1457 * a user to specify fe80::/64 (not /10) for a 1458 * link-local address. 1459 */ 1460 if (IN6_IS_ADDR_LINKLOCAL(&candidate)) 1461 candidate.s6_addr16[1] = 0; 1462 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1463 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1464 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1465 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1466 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1467 break; 1468 } 1469 if (!ifa) 1470 return EADDRNOTAVAIL; 1471 ia = ifa2ia6(ifa); 1472 1473 if (cmd == SIOCGLIFADDR) { 1474 struct sockaddr_in6 *s6; 1475 1476 /* fill in the if_laddrreq structure */ 1477 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1478 s6 = (struct sockaddr_in6 *)&iflr->addr; 1479 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1480 s6->sin6_addr.s6_addr16[1] = 0; 1481 s6->sin6_scope_id = 1482 in6_addr2scopeid(ifp, &s6->sin6_addr); 1483 } 1484 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1485 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1486 ia->ia_dstaddr.sin6_len); 1487 s6 = (struct sockaddr_in6 *)&iflr->dstaddr; 1488 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1489 s6->sin6_addr.s6_addr16[1] = 0; 1490 s6->sin6_scope_id = 1491 in6_addr2scopeid(ifp, 1492 &s6->sin6_addr); 1493 } 1494 } else 1495 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1496 1497 iflr->prefixlen = 1498 in6_mask2len(&ia->ia_prefixmask.sin6_addr, 1499 NULL); 1500 1501 iflr->flags = ia->ia6_flags; /* XXX */ 1502 1503 return 0; 1504 } else { 1505 struct in6_aliasreq ifra; 1506 1507 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1508 bzero(&ifra, sizeof(ifra)); 1509 bcopy(iflr->iflr_name, ifra.ifra_name, 1510 sizeof(ifra.ifra_name)); 1511 1512 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1513 ia->ia_addr.sin6_len); 1514 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1515 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1516 ia->ia_dstaddr.sin6_len); 1517 } else { 1518 bzero(&ifra.ifra_dstaddr, 1519 sizeof(ifra.ifra_dstaddr)); 1520 } 1521 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1522 ia->ia_prefixmask.sin6_len); 1523 1524 ifra.ifra_flags = ia->ia6_flags; 1525 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1526 ifp, td); 1527 } 1528 } 1529 } 1530 1531 return EOPNOTSUPP; /* just for safety */ 1532 } 1533 1534 /* 1535 * Initialize an interface's intetnet6 address 1536 * and routing table entry. 1537 */ 1538 static int 1539 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, struct sockaddr_in6 *sin6, 1540 int newhost) 1541 { 1542 int error = 0, plen, ifacount = 0; 1543 struct ifaddr *ifa; 1544 1545 lwkt_serialize_enter(ifp->if_serializer); 1546 1547 /* 1548 * Give the interface a chance to initialize 1549 * if this is its first address, 1550 * and to validate the address if necessary. 1551 */ 1552 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1553 { 1554 if (ifa->ifa_addr == NULL) 1555 continue; /* just for safety */ 1556 if (ifa->ifa_addr->sa_family != AF_INET6) 1557 continue; 1558 ifacount++; 1559 } 1560 1561 ia->ia_addr = *sin6; 1562 1563 if (ifacount <= 1 && ifp->if_ioctl && 1564 (error = ifp->if_ioctl(ifp, SIOCSIFADDR, (caddr_t)ia, 1565 (struct ucred *)NULL))) { 1566 lwkt_serialize_exit(ifp->if_serializer); 1567 return(error); 1568 } 1569 lwkt_serialize_exit(ifp->if_serializer); 1570 1571 ia->ia_ifa.ifa_metric = ifp->if_metric; 1572 1573 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1574 1575 /* 1576 * Special case: 1577 * If the destination address is specified for a point-to-point 1578 * interface, install a route to the destination as an interface 1579 * direct route. 1580 */ 1581 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1582 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) { 1583 if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD, 1584 RTF_UP | RTF_HOST)) != 0) 1585 return(error); 1586 ia->ia_flags |= IFA_ROUTE; 1587 } 1588 if (plen < 128) { 1589 /* 1590 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). 1591 */ 1592 ia->ia_ifa.ifa_flags |= RTF_CLONING; 1593 } 1594 1595 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ 1596 if (newhost) { 1597 /* set the rtrequest function to create llinfo */ 1598 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1599 in6_ifaddloop(&(ia->ia_ifa)); 1600 } 1601 1602 return(error); 1603 } 1604 1605 /* 1606 * Add an address to the list of IP6 multicast addresses for a 1607 * given interface. 1608 */ 1609 struct in6_multi * 1610 in6_addmulti(struct in6_addr *maddr6, struct ifnet *ifp, int *errorp) 1611 { 1612 struct in6_multi *in6m; 1613 struct sockaddr_in6 sin6; 1614 struct ifmultiaddr *ifma; 1615 1616 *errorp = 0; 1617 1618 crit_enter(); 1619 1620 /* 1621 * Call generic routine to add membership or increment 1622 * refcount. It wants addresses in the form of a sockaddr, 1623 * so we build one here (being careful to zero the unused bytes). 1624 */ 1625 bzero(&sin6, sizeof sin6); 1626 sin6.sin6_family = AF_INET6; 1627 sin6.sin6_len = sizeof sin6; 1628 sin6.sin6_addr = *maddr6; 1629 *errorp = if_addmulti(ifp, (struct sockaddr *)&sin6, &ifma); 1630 if (*errorp) { 1631 crit_exit(); 1632 return 0; 1633 } 1634 1635 /* 1636 * If ifma->ifma_protospec is null, then if_addmulti() created 1637 * a new record. Otherwise, we are done. 1638 */ 1639 if (ifma->ifma_protospec != 0) { 1640 crit_exit(); 1641 return ifma->ifma_protospec; 1642 } 1643 1644 /* XXX - if_addmulti uses M_WAITOK. Can this really be called 1645 at interrupt time? If so, need to fix if_addmulti. XXX */ 1646 in6m = (struct in6_multi *)malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT); 1647 if (in6m == NULL) { 1648 crit_exit(); 1649 return (NULL); 1650 } 1651 1652 bzero(in6m, sizeof *in6m); 1653 in6m->in6m_addr = *maddr6; 1654 in6m->in6m_ifp = ifp; 1655 in6m->in6m_ifma = ifma; 1656 ifma->ifma_protospec = in6m; 1657 LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry); 1658 1659 /* 1660 * Let MLD6 know that we have joined a new IP6 multicast 1661 * group. 1662 */ 1663 mld6_start_listening(in6m); 1664 crit_exit(); 1665 return(in6m); 1666 } 1667 1668 /* 1669 * Delete a multicast address record. 1670 */ 1671 void 1672 in6_delmulti(struct in6_multi *in6m) 1673 { 1674 struct ifmultiaddr *ifma = in6m->in6m_ifma; 1675 1676 crit_enter(); 1677 1678 if (ifma->ifma_refcount == 1) { 1679 /* 1680 * No remaining claims to this record; let MLD6 know 1681 * that we are leaving the multicast group. 1682 */ 1683 mld6_stop_listening(in6m); 1684 ifma->ifma_protospec = 0; 1685 LIST_REMOVE(in6m, in6m_entry); 1686 free(in6m, M_IPMADDR); 1687 } 1688 /* XXX - should be separate API for when we have an ifma? */ 1689 if_delmulti(ifma->ifma_ifp, ifma->ifma_addr); 1690 crit_exit(); 1691 } 1692 1693 /* 1694 * Find an IPv6 interface link-local address specific to an interface. 1695 */ 1696 struct in6_ifaddr * 1697 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1698 { 1699 struct ifaddr *ifa; 1700 1701 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1702 { 1703 if (ifa->ifa_addr == NULL) 1704 continue; /* just for safety */ 1705 if (ifa->ifa_addr->sa_family != AF_INET6) 1706 continue; 1707 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1708 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1709 ignoreflags) != 0) 1710 continue; 1711 break; 1712 } 1713 } 1714 1715 return((struct in6_ifaddr *)ifa); 1716 } 1717 1718 1719 /* 1720 * find the internet address corresponding to a given interface and address. 1721 */ 1722 struct in6_ifaddr * 1723 in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr) 1724 { 1725 struct ifaddr *ifa; 1726 1727 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1728 { 1729 if (ifa->ifa_addr == NULL) 1730 continue; /* just for safety */ 1731 if (ifa->ifa_addr->sa_family != AF_INET6) 1732 continue; 1733 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1734 break; 1735 } 1736 1737 return((struct in6_ifaddr *)ifa); 1738 } 1739 1740 /* 1741 * Convert IP6 address to printable (loggable) representation. 1742 */ 1743 static char digits[] = "0123456789abcdef"; 1744 static int ip6round = 0; 1745 char * 1746 ip6_sprintf(const struct in6_addr *addr) 1747 { 1748 static char ip6buf[8][48]; 1749 int i; 1750 char *cp; 1751 const u_short *a = (const u_short *)addr; 1752 const u_char *d; 1753 int dcolon = 0; 1754 1755 ip6round = (ip6round + 1) & 7; 1756 cp = ip6buf[ip6round]; 1757 1758 for (i = 0; i < 8; i++) { 1759 if (dcolon == 1) { 1760 if (*a == 0) { 1761 if (i == 7) 1762 *cp++ = ':'; 1763 a++; 1764 continue; 1765 } else 1766 dcolon = 2; 1767 } 1768 if (*a == 0) { 1769 if (dcolon == 0 && *(a + 1) == 0) { 1770 if (i == 0) 1771 *cp++ = ':'; 1772 *cp++ = ':'; 1773 dcolon = 1; 1774 } else { 1775 *cp++ = '0'; 1776 *cp++ = ':'; 1777 } 1778 a++; 1779 continue; 1780 } 1781 d = (const u_char *)a; 1782 *cp++ = digits[*d >> 4]; 1783 *cp++ = digits[*d++ & 0xf]; 1784 *cp++ = digits[*d >> 4]; 1785 *cp++ = digits[*d & 0xf]; 1786 *cp++ = ':'; 1787 a++; 1788 } 1789 *--cp = 0; 1790 return(ip6buf[ip6round]); 1791 } 1792 1793 int 1794 in6_localaddr(struct in6_addr *in6) 1795 { 1796 struct in6_ifaddr *ia; 1797 1798 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1799 return 1; 1800 1801 for (ia = in6_ifaddr; ia; ia = ia->ia_next) 1802 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1803 &ia->ia_prefixmask.sin6_addr)) 1804 return 1; 1805 1806 return (0); 1807 } 1808 1809 int 1810 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1811 { 1812 struct in6_ifaddr *ia; 1813 1814 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1815 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1816 &sa6->sin6_addr) && 1817 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) 1818 return(1); /* true */ 1819 1820 /* XXX: do we still have to go thru the rest of the list? */ 1821 } 1822 1823 return(0); /* false */ 1824 } 1825 1826 /* 1827 * return length of part which dst and src are equal 1828 * hard coding... 1829 */ 1830 int 1831 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 1832 { 1833 int match = 0; 1834 u_char *s = (u_char *)src, *d = (u_char *)dst; 1835 u_char *lim = s + 16, r; 1836 1837 while (s < lim) 1838 if ((r = (*d++ ^ *s++)) != 0) { 1839 while (r < 128) { 1840 match++; 1841 r <<= 1; 1842 } 1843 break; 1844 } else 1845 match += 8; 1846 return match; 1847 } 1848 1849 /* XXX: to be scope conscious */ 1850 int 1851 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 1852 { 1853 int bytelen, bitlen; 1854 1855 /* sanity check */ 1856 if (0 > len || len > 128) { 1857 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1858 len); 1859 return(0); 1860 } 1861 1862 bytelen = len / 8; 1863 bitlen = len % 8; 1864 1865 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1866 return(0); 1867 if (p1->s6_addr[bytelen] >> (8 - bitlen) != 1868 p2->s6_addr[bytelen] >> (8 - bitlen)) 1869 return(0); 1870 1871 return(1); 1872 } 1873 1874 void 1875 in6_prefixlen2mask(struct in6_addr *maskp, int len) 1876 { 1877 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1878 int bytelen, bitlen, i; 1879 1880 /* sanity check */ 1881 if (0 > len || len > 128) { 1882 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1883 len); 1884 return; 1885 } 1886 1887 bzero(maskp, sizeof(*maskp)); 1888 bytelen = len / 8; 1889 bitlen = len % 8; 1890 for (i = 0; i < bytelen; i++) 1891 maskp->s6_addr[i] = 0xff; 1892 if (bitlen) 1893 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1894 } 1895 1896 /* 1897 * return the best address out of the same scope 1898 */ 1899 struct in6_ifaddr * 1900 in6_ifawithscope(struct ifnet *oifp, struct in6_addr *dst) 1901 { 1902 int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0; 1903 int blen = -1; 1904 struct ifaddr *ifa; 1905 struct ifnet *ifp; 1906 struct in6_ifaddr *ifa_best = NULL; 1907 1908 if (oifp == NULL) { 1909 #if 0 1910 printf("in6_ifawithscope: output interface is not specified\n"); 1911 #endif 1912 return(NULL); 1913 } 1914 1915 /* 1916 * We search for all addresses on all interfaces from the beginning. 1917 * Comparing an interface with the outgoing interface will be done 1918 * only at the final stage of tiebreaking. 1919 */ 1920 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 1921 { 1922 /* 1923 * We can never take an address that breaks the scope zone 1924 * of the destination. 1925 */ 1926 if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst)) 1927 continue; 1928 1929 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1930 { 1931 int tlen = -1, dscopecmp, bscopecmp, matchcmp; 1932 1933 if (ifa->ifa_addr->sa_family != AF_INET6) 1934 continue; 1935 1936 src_scope = in6_addrscope(IFA_IN6(ifa)); 1937 1938 /* 1939 * Don't use an address before completing DAD 1940 * nor a duplicated address. 1941 */ 1942 if (((struct in6_ifaddr *)ifa)->ia6_flags & 1943 IN6_IFF_NOTREADY) 1944 continue; 1945 1946 /* XXX: is there any case to allow anycasts? */ 1947 if (((struct in6_ifaddr *)ifa)->ia6_flags & 1948 IN6_IFF_ANYCAST) 1949 continue; 1950 1951 if (((struct in6_ifaddr *)ifa)->ia6_flags & 1952 IN6_IFF_DETACHED) 1953 continue; 1954 1955 /* 1956 * If this is the first address we find, 1957 * keep it anyway. 1958 */ 1959 if (ifa_best == NULL) 1960 goto replace; 1961 1962 /* 1963 * ifa_best is never NULL beyond this line except 1964 * within the block labeled "replace". 1965 */ 1966 1967 /* 1968 * If ifa_best has a smaller scope than dst and 1969 * the current address has a larger one than 1970 * (or equal to) dst, always replace ifa_best. 1971 * Also, if the current address has a smaller scope 1972 * than dst, ignore it unless ifa_best also has a 1973 * smaller scope. 1974 * Consequently, after the two if-clause below, 1975 * the followings must be satisfied: 1976 * (scope(src) < scope(dst) && 1977 * scope(best) < scope(dst)) 1978 * OR 1979 * (scope(best) >= scope(dst) && 1980 * scope(src) >= scope(dst)) 1981 */ 1982 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 && 1983 IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0) 1984 goto replace; /* (A) */ 1985 if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 && 1986 IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0) 1987 continue; /* (B) */ 1988 1989 /* 1990 * A deprecated address SHOULD NOT be used in new 1991 * communications if an alternate (non-deprecated) 1992 * address is available and has sufficient scope. 1993 * RFC 2462, Section 5.5.4. 1994 */ 1995 if (((struct in6_ifaddr *)ifa)->ia6_flags & 1996 IN6_IFF_DEPRECATED) { 1997 /* 1998 * Ignore any deprecated addresses if 1999 * specified by configuration. 2000 */ 2001 if (!ip6_use_deprecated) 2002 continue; 2003 2004 /* 2005 * If we have already found a non-deprecated 2006 * candidate, just ignore deprecated addresses. 2007 */ 2008 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) 2009 == 0) 2010 continue; 2011 } 2012 2013 /* 2014 * A non-deprecated address is always preferred 2015 * to a deprecated one regardless of scopes and 2016 * address matching (Note invariants ensured by the 2017 * conditions (A) and (B) above.) 2018 */ 2019 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) && 2020 (((struct in6_ifaddr *)ifa)->ia6_flags & 2021 IN6_IFF_DEPRECATED) == 0) 2022 goto replace; 2023 2024 /* 2025 * When we use temporary addresses described in 2026 * RFC 3041, we prefer temporary addresses to 2027 * public autoconf addresses. Again, note the 2028 * invariants from (A) and (B). Also note that we 2029 * don't have any preference between static addresses 2030 * and autoconf addresses (despite of whether or not 2031 * the latter is temporary or public.) 2032 */ 2033 if (ip6_use_tempaddr) { 2034 struct in6_ifaddr *ifat; 2035 2036 ifat = (struct in6_ifaddr *)ifa; 2037 if ((ifa_best->ia6_flags & 2038 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2039 == IN6_IFF_AUTOCONF && 2040 (ifat->ia6_flags & 2041 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2042 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) { 2043 goto replace; 2044 } 2045 if ((ifa_best->ia6_flags & 2046 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2047 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) && 2048 (ifat->ia6_flags & 2049 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2050 == IN6_IFF_AUTOCONF) { 2051 continue; 2052 } 2053 } 2054 2055 /* 2056 * At this point, we have two cases: 2057 * 1. we are looking at a non-deprecated address, 2058 * and ifa_best is also non-deprecated. 2059 * 2. we are looking at a deprecated address, 2060 * and ifa_best is also deprecated. 2061 * Also, we do not have to consider a case where 2062 * the scope of if_best is larger(smaller) than dst and 2063 * the scope of the current address is smaller(larger) 2064 * than dst. Such a case has already been covered. 2065 * Tiebreaking is done according to the following 2066 * items: 2067 * - the scope comparison between the address and 2068 * dst (dscopecmp) 2069 * - the scope comparison between the address and 2070 * ifa_best (bscopecmp) 2071 * - if the address match dst longer than ifa_best 2072 * (matchcmp) 2073 * - if the address is on the outgoing I/F (outI/F) 2074 * 2075 * Roughly speaking, the selection policy is 2076 * - the most important item is scope. The same scope 2077 * is best. Then search for a larger scope. 2078 * Smaller scopes are the last resort. 2079 * - A deprecated address is chosen only when we have 2080 * no address that has an enough scope, but is 2081 * prefered to any addresses of smaller scopes 2082 * (this must be already done above.) 2083 * - addresses on the outgoing I/F are preferred to 2084 * ones on other interfaces if none of above 2085 * tiebreaks. In the table below, the column "bI" 2086 * means if the best_ifa is on the outgoing 2087 * interface, and the column "sI" means if the ifa 2088 * is on the outgoing interface. 2089 * - If there is no other reasons to choose one, 2090 * longest address match against dst is considered. 2091 * 2092 * The precise decision table is as follows: 2093 * dscopecmp bscopecmp match bI oI | replace? 2094 * N/A equal N/A Y N | No (1) 2095 * N/A equal N/A N Y | Yes (2) 2096 * N/A equal larger N/A | Yes (3) 2097 * N/A equal !larger N/A | No (4) 2098 * larger larger N/A N/A | No (5) 2099 * larger smaller N/A N/A | Yes (6) 2100 * smaller larger N/A N/A | Yes (7) 2101 * smaller smaller N/A N/A | No (8) 2102 * equal smaller N/A N/A | Yes (9) 2103 * equal larger (already done at A above) 2104 */ 2105 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope); 2106 bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope); 2107 2108 if (bscopecmp == 0) { 2109 struct ifnet *bifp = ifa_best->ia_ifp; 2110 2111 if (bifp == oifp && ifp != oifp) /* (1) */ 2112 continue; 2113 if (bifp != oifp && ifp == oifp) /* (2) */ 2114 goto replace; 2115 2116 /* 2117 * Both bifp and ifp are on the outgoing 2118 * interface, or both two are on a different 2119 * interface from the outgoing I/F. 2120 * now we need address matching against dst 2121 * for tiebreaking. 2122 */ 2123 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2124 matchcmp = tlen - blen; 2125 if (matchcmp > 0) /* (3) */ 2126 goto replace; 2127 continue; /* (4) */ 2128 } 2129 if (dscopecmp > 0) { 2130 if (bscopecmp > 0) /* (5) */ 2131 continue; 2132 goto replace; /* (6) */ 2133 } 2134 if (dscopecmp < 0) { 2135 if (bscopecmp > 0) /* (7) */ 2136 goto replace; 2137 continue; /* (8) */ 2138 } 2139 2140 /* now dscopecmp must be 0 */ 2141 if (bscopecmp < 0) 2142 goto replace; /* (9) */ 2143 2144 replace: 2145 ifa_best = (struct in6_ifaddr *)ifa; 2146 blen = tlen >= 0 ? tlen : 2147 in6_matchlen(IFA_IN6(ifa), dst); 2148 best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr); 2149 } 2150 } 2151 2152 /* count statistics for future improvements */ 2153 if (ifa_best == NULL) 2154 ip6stat.ip6s_sources_none++; 2155 else { 2156 if (oifp == ifa_best->ia_ifp) 2157 ip6stat.ip6s_sources_sameif[best_scope]++; 2158 else 2159 ip6stat.ip6s_sources_otherif[best_scope]++; 2160 2161 if (best_scope == dst_scope) 2162 ip6stat.ip6s_sources_samescope[best_scope]++; 2163 else 2164 ip6stat.ip6s_sources_otherscope[best_scope]++; 2165 2166 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0) 2167 ip6stat.ip6s_sources_deprecated[best_scope]++; 2168 } 2169 2170 return(ifa_best); 2171 } 2172 2173 /* 2174 * return the best address out of the same scope. if no address was 2175 * found, return the first valid address from designated IF. 2176 */ 2177 struct in6_ifaddr * 2178 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 2179 { 2180 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2181 struct ifaddr *ifa; 2182 struct in6_ifaddr *besta = 0; 2183 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 2184 2185 dep[0] = dep[1] = NULL; 2186 2187 /* 2188 * We first look for addresses in the same scope. 2189 * If there is one, return it. 2190 * If two or more, return one which matches the dst longest. 2191 * If none, return one of global addresses assigned other ifs. 2192 */ 2193 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2194 { 2195 if (ifa->ifa_addr->sa_family != AF_INET6) 2196 continue; 2197 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2198 continue; /* XXX: is there any case to allow anycast? */ 2199 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2200 continue; /* don't use this interface */ 2201 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2202 continue; 2203 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2204 if (ip6_use_deprecated) 2205 dep[0] = (struct in6_ifaddr *)ifa; 2206 continue; 2207 } 2208 2209 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2210 /* 2211 * call in6_matchlen() as few as possible 2212 */ 2213 if (besta) { 2214 if (blen == -1) 2215 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2216 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2217 if (tlen > blen) { 2218 blen = tlen; 2219 besta = (struct in6_ifaddr *)ifa; 2220 } 2221 } else 2222 besta = (struct in6_ifaddr *)ifa; 2223 } 2224 } 2225 if (besta) 2226 return(besta); 2227 2228 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2229 { 2230 if (ifa->ifa_addr->sa_family != AF_INET6) 2231 continue; 2232 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2233 continue; /* XXX: is there any case to allow anycast? */ 2234 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2235 continue; /* don't use this interface */ 2236 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2237 continue; 2238 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2239 if (ip6_use_deprecated) 2240 dep[1] = (struct in6_ifaddr *)ifa; 2241 continue; 2242 } 2243 2244 return (struct in6_ifaddr *)ifa; 2245 } 2246 2247 /* use the last-resort values, that are, deprecated addresses */ 2248 if (dep[0]) 2249 return dep[0]; 2250 if (dep[1]) 2251 return dep[1]; 2252 2253 return NULL; 2254 } 2255 2256 /* 2257 * perform DAD when interface becomes IFF_UP. 2258 */ 2259 void 2260 in6_if_up(struct ifnet *ifp) 2261 { 2262 struct ifaddr *ifa; 2263 struct in6_ifaddr *ia; 2264 int dad_delay; /* delay ticks before DAD output */ 2265 2266 /* 2267 * special cases, like 6to4, are handled in in6_ifattach 2268 */ 2269 in6_ifattach(ifp, NULL); 2270 2271 dad_delay = 0; 2272 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2273 { 2274 if (ifa->ifa_addr->sa_family != AF_INET6) 2275 continue; 2276 ia = (struct in6_ifaddr *)ifa; 2277 if (ia->ia6_flags & IN6_IFF_TENTATIVE) 2278 nd6_dad_start(ifa, &dad_delay); 2279 } 2280 } 2281 2282 int 2283 in6if_do_dad(struct ifnet *ifp) 2284 { 2285 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2286 return(0); 2287 2288 switch (ifp->if_type) { 2289 #ifdef IFT_DUMMY 2290 case IFT_DUMMY: 2291 #endif 2292 case IFT_FAITH: 2293 /* 2294 * These interfaces do not have the IFF_LOOPBACK flag, 2295 * but loop packets back. We do not have to do DAD on such 2296 * interfaces. We should even omit it, because loop-backed 2297 * NS would confuse the DAD procedure. 2298 */ 2299 return(0); 2300 default: 2301 /* 2302 * Our DAD routine requires the interface up and running. 2303 * However, some interfaces can be up before the RUNNING 2304 * status. Additionaly, users may try to assign addresses 2305 * before the interface becomes up (or running). 2306 * We simply skip DAD in such a case as a work around. 2307 * XXX: we should rather mark "tentative" on such addresses, 2308 * and do DAD after the interface becomes ready. 2309 */ 2310 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 2311 (IFF_UP|IFF_RUNNING)) 2312 return(0); 2313 2314 return(1); 2315 } 2316 } 2317 2318 /* 2319 * Calculate max IPv6 MTU through all the interfaces and store it 2320 * to in6_maxmtu. 2321 */ 2322 void 2323 in6_setmaxmtu(void) 2324 { 2325 unsigned long maxmtu = 0; 2326 struct ifnet *ifp; 2327 2328 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 2329 { 2330 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2331 ND_IFINFO(ifp)->linkmtu > maxmtu) 2332 maxmtu = ND_IFINFO(ifp)->linkmtu; 2333 } 2334 if (maxmtu) /* update only when maxmtu is positive */ 2335 in6_maxmtu = maxmtu; 2336 } 2337 2338 void * 2339 in6_domifattach(struct ifnet *ifp) 2340 { 2341 struct in6_ifextra *ext; 2342 2343 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2344 bzero(ext, sizeof(*ext)); 2345 2346 ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat), 2347 M_IFADDR, M_WAITOK); 2348 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat)); 2349 2350 ext->icmp6_ifstat = 2351 (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat), 2352 M_IFADDR, M_WAITOK); 2353 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat)); 2354 2355 ext->nd_ifinfo = nd6_ifattach(ifp); 2356 ext->scope6_id = scope6_ifattach(ifp); 2357 return ext; 2358 } 2359 2360 void 2361 in6_domifdetach(struct ifnet *ifp, void *aux) 2362 { 2363 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2364 scope6_ifdetach(ext->scope6_id); 2365 nd6_ifdetach(ext->nd_ifinfo); 2366 free(ext->in6_ifstat, M_IFADDR); 2367 free(ext->icmp6_ifstat, M_IFADDR); 2368 free(ext, M_IFADDR); 2369 } 2370 2371 /* 2372 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2373 * v4 mapped addr or v4 compat addr 2374 */ 2375 void 2376 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2377 { 2378 bzero(sin, sizeof(*sin)); 2379 sin->sin_len = sizeof(struct sockaddr_in); 2380 sin->sin_family = AF_INET; 2381 sin->sin_port = sin6->sin6_port; 2382 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2383 } 2384 2385 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2386 void 2387 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2388 { 2389 bzero(sin6, sizeof(*sin6)); 2390 sin6->sin6_len = sizeof(struct sockaddr_in6); 2391 sin6->sin6_family = AF_INET6; 2392 sin6->sin6_port = sin->sin_port; 2393 sin6->sin6_addr.s6_addr32[0] = 0; 2394 sin6->sin6_addr.s6_addr32[1] = 0; 2395 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2396 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2397 } 2398 2399 /* Convert sockaddr_in6 into sockaddr_in. */ 2400 void 2401 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2402 { 2403 struct sockaddr_in *sin_p; 2404 struct sockaddr_in6 sin6; 2405 2406 /* 2407 * Save original sockaddr_in6 addr and convert it 2408 * to sockaddr_in. 2409 */ 2410 sin6 = *(struct sockaddr_in6 *)nam; 2411 sin_p = (struct sockaddr_in *)nam; 2412 in6_sin6_2_sin(sin_p, &sin6); 2413 } 2414 2415 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2416 void 2417 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2418 { 2419 struct sockaddr_in *sin_p; 2420 struct sockaddr_in6 *sin6_p; 2421 2422 MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME, 2423 M_WAITOK); 2424 sin_p = (struct sockaddr_in *)*nam; 2425 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2426 FREE(*nam, M_SONAME); 2427 *nam = (struct sockaddr *)sin6_p; 2428 } 2429