1 /* $FreeBSD: src/sys/netinet6/in6.c,v 1.7.2.9 2002/04/28 05:40:26 suz Exp $ */ 2 /* $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)in.c 8.2 (Berkeley) 11/15/93 62 */ 63 64 #include "opt_inet.h" 65 #include "opt_inet6.h" 66 67 #include <sys/param.h> 68 #include <sys/errno.h> 69 #include <sys/malloc.h> 70 #include <sys/socket.h> 71 #include <sys/socketvar.h> 72 #include <sys/sockio.h> 73 #include <sys/systm.h> 74 #include <sys/proc.h> 75 #include <sys/priv.h> 76 #include <sys/time.h> 77 #include <sys/kernel.h> 78 #include <sys/syslog.h> 79 80 #include <sys/thread2.h> 81 #include <sys/msgport2.h> 82 83 #include <net/if.h> 84 #include <net/if_types.h> 85 #include <net/route.h> 86 #include <net/if_dl.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/if_ether.h> 91 #include <netinet/in_systm.h> 92 #include <netinet/ip.h> 93 #include <netinet/in_pcb.h> 94 95 #include <netinet/ip6.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/nd6.h> 98 #include <netinet6/mld6_var.h> 99 #include <netinet6/ip6_mroute.h> 100 #include <netinet6/in6_ifattach.h> 101 #include <netinet6/scope6_var.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_var.h> 104 105 #include <net/net_osdep.h> 106 107 /* 108 * Definitions of some costant IP6 addresses. 109 */ 110 const struct in6_addr kin6addr_any = IN6ADDR_ANY_INIT; 111 const struct in6_addr kin6addr_loopback = IN6ADDR_LOOPBACK_INIT; 112 const struct in6_addr kin6addr_nodelocal_allnodes = 113 IN6ADDR_NODELOCAL_ALLNODES_INIT; 114 const struct in6_addr kin6addr_linklocal_allnodes = 115 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 116 const struct in6_addr kin6addr_linklocal_allrouters = 117 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 118 119 const struct in6_addr in6mask0 = IN6MASK0; 120 const struct in6_addr in6mask32 = IN6MASK32; 121 const struct in6_addr in6mask64 = IN6MASK64; 122 const struct in6_addr in6mask96 = IN6MASK96; 123 const struct in6_addr in6mask128 = IN6MASK128; 124 125 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6, 126 0, 0, IN6ADDR_ANY_INIT, 0}; 127 128 static int in6_lifaddr_ioctl (struct socket *, u_long, caddr_t, 129 struct ifnet *, struct thread *); 130 static int in6_ifinit (struct ifnet *, struct in6_ifaddr *, 131 struct sockaddr_in6 *, int); 132 static void in6_unlink_ifa (struct in6_ifaddr *, struct ifnet *); 133 static void in6_ifloop_request_callback(int, int, struct rt_addrinfo *, struct rtentry *, void *); 134 135 struct in6_multihead in6_multihead; /* XXX BSS initialization */ 136 137 int (*faithprefix_p)(struct in6_addr *); 138 139 /* 140 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 141 * This routine does actual work. 142 */ 143 static void 144 in6_ifloop_request(int cmd, struct ifaddr *ifa) 145 { 146 struct sockaddr_in6 all1_sa; 147 struct rt_addrinfo rtinfo; 148 int error; 149 150 bzero(&all1_sa, sizeof(all1_sa)); 151 all1_sa.sin6_family = AF_INET6; 152 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 153 all1_sa.sin6_addr = in6mask128; 154 155 /* 156 * We specify the address itself as the gateway, and set the 157 * RTF_LLINFO flag, so that the corresponding host route would have 158 * the flag, and thus applications that assume traditional behavior 159 * would be happy. Note that we assume the caller of the function 160 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 161 * which changes the outgoing interface to the loopback interface. 162 */ 163 bzero(&rtinfo, sizeof(struct rt_addrinfo)); 164 rtinfo.rti_info[RTAX_DST] = ifa->ifa_addr; 165 rtinfo.rti_info[RTAX_GATEWAY] = ifa->ifa_addr; 166 rtinfo.rti_info[RTAX_NETMASK] = (struct sockaddr *)&all1_sa; 167 rtinfo.rti_flags = RTF_UP|RTF_HOST|RTF_LLINFO; 168 169 error = rtrequest1_global(cmd, &rtinfo, 170 in6_ifloop_request_callback, ifa, RTREQ_PRIO_NORM); 171 if (error != 0) { 172 log(LOG_ERR, "in6_ifloop_request: " 173 "%s operation failed for %s (errno=%d)\n", 174 cmd == RTM_ADD ? "ADD" : "DELETE", 175 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), 176 error); 177 } 178 } 179 180 static void 181 in6_ifloop_request_callback(int cmd, int error, struct rt_addrinfo *rtinfo, 182 struct rtentry *rt, void *arg) 183 { 184 struct ifaddr *ifa = arg; 185 186 if (error) 187 goto done; 188 189 /* 190 * Make sure rt_ifa be equal to IFA, the second argument of the 191 * function. 192 * We need this because when we refer to rt_ifa->ia6_flags in 193 * ip6_input, we assume that the rt_ifa points to the address instead 194 * of the loopback address. 195 */ 196 if (cmd == RTM_ADD && rt && ifa != rt->rt_ifa) { 197 ++rt->rt_refcnt; 198 IFAFREE(rt->rt_ifa); 199 IFAREF(ifa); 200 rt->rt_ifa = ifa; 201 --rt->rt_refcnt; 202 } 203 204 /* 205 * Report the addition/removal of the address to the routing socket. 206 * XXX: since we called rtinit for a p2p interface with a destination, 207 * we end up reporting twice in such a case. Should we rather 208 * omit the second report? 209 */ 210 if (rt) { 211 if (mycpuid == 0) 212 rt_newaddrmsg(cmd, ifa, error, rt); 213 if (cmd == RTM_DELETE) { 214 if (rt->rt_refcnt == 0) { 215 ++rt->rt_refcnt; 216 rtfree(rt); 217 } 218 } 219 } 220 done: 221 /* no way to return any new error */ 222 ; 223 } 224 225 /* 226 * Add ownaddr as loopback rtentry. We previously add the route only if 227 * necessary (ex. on a p2p link). However, since we now manage addresses 228 * separately from prefixes, we should always add the route. We can't 229 * rely on the cloning mechanism from the corresponding interface route 230 * any more. 231 */ 232 void 233 in6_ifaddloop(struct ifaddr *ifa) 234 { 235 struct rtentry *rt; 236 237 /* If there is no loopback entry, allocate one. */ 238 rt = rtpurelookup(ifa->ifa_addr); 239 if (rt == NULL || !(rt->rt_flags & RTF_HOST) || 240 !(rt->rt_ifp->if_flags & IFF_LOOPBACK)) 241 in6_ifloop_request(RTM_ADD, ifa); 242 if (rt != NULL) 243 rt->rt_refcnt--; 244 } 245 246 /* 247 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 248 * if it exists. 249 */ 250 void 251 in6_ifremloop(struct ifaddr *ifa) 252 { 253 struct in6_ifaddr *ia; 254 struct rtentry *rt; 255 int ia_count = 0; 256 257 /* 258 * Some of BSD variants do not remove cloned routes 259 * from an interface direct route, when removing the direct route 260 * (see comments in net/net_osdep.h). Even for variants that do remove 261 * cloned routes, they could fail to remove the cloned routes when 262 * we handle multple addresses that share a common prefix. 263 * So, we should remove the route corresponding to the deleted address 264 * regardless of the result of in6_is_ifloop_auto(). 265 */ 266 267 /* 268 * Delete the entry only if exact one ifa exists. More than one ifa 269 * can exist if we assign a same single address to multiple 270 * (probably p2p) interfaces. 271 * XXX: we should avoid such a configuration in IPv6... 272 */ 273 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 274 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { 275 ia_count++; 276 if (ia_count > 1) 277 break; 278 } 279 } 280 281 if (ia_count == 1) { 282 /* 283 * Before deleting, check if a corresponding loopbacked host 284 * route surely exists. With this check, we can avoid to 285 * delete an interface direct route whose destination is same 286 * as the address being removed. This can happen when remofing 287 * a subnet-router anycast address on an interface attahced 288 * to a shared medium. 289 */ 290 rt = rtpurelookup(ifa->ifa_addr); 291 if (rt != NULL && (rt->rt_flags & RTF_HOST) && 292 (rt->rt_ifp->if_flags & IFF_LOOPBACK)) { 293 rt->rt_refcnt--; 294 in6_ifloop_request(RTM_DELETE, ifa); 295 } 296 } 297 } 298 299 int 300 in6_ifindex2scopeid(int idx) 301 { 302 struct ifnet *ifp; 303 struct sockaddr_in6 *sin6; 304 struct ifaddr_container *ifac; 305 306 if (idx < 0 || if_index < idx) 307 return -1; 308 ifp = ifindex2ifnet[idx]; 309 310 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) 311 { 312 struct ifaddr *ifa = ifac->ifa; 313 314 if (ifa->ifa_addr->sa_family != AF_INET6) 315 continue; 316 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 317 if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) 318 return sin6->sin6_scope_id & 0xffff; 319 } 320 321 return -1; 322 } 323 324 int 325 in6_mask2len(struct in6_addr *mask, u_char *lim0) 326 { 327 int x = 0, y; 328 u_char *lim = lim0, *p; 329 330 if (lim0 == NULL || 331 lim0 - (u_char *)mask > sizeof(*mask)) /* ignore the scope_id part */ 332 lim = (u_char *)mask + sizeof(*mask); 333 for (p = (u_char *)mask; p < lim; x++, p++) { 334 if (*p != 0xff) 335 break; 336 } 337 y = 0; 338 if (p < lim) { 339 for (y = 0; y < 8; y++) { 340 if ((*p & (0x80 >> y)) == 0) 341 break; 342 } 343 } 344 345 /* 346 * when the limit pointer is given, do a stricter check on the 347 * remaining bits. 348 */ 349 if (p < lim) { 350 if (y != 0 && (*p & (0x00ff >> y)) != 0) 351 return (-1); 352 for (p = p + 1; p < lim; p++) 353 if (*p != 0) 354 return (-1); 355 } 356 357 return x * 8 + y; 358 } 359 360 void 361 in6_len2mask(struct in6_addr *mask, int len) 362 { 363 int i; 364 365 bzero(mask, sizeof(*mask)); 366 for (i = 0; i < len / 8; i++) 367 mask->s6_addr8[i] = 0xff; 368 if (len % 8) 369 mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff; 370 } 371 372 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 373 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 374 375 void 376 in6_control_dispatch(netmsg_t msg) 377 { 378 int error; 379 380 error = in6_control(msg->control.base.nm_so, 381 msg->control.nm_cmd, 382 msg->control.nm_data, 383 msg->control.nm_ifp, 384 msg->control.nm_td); 385 lwkt_replymsg(&msg->control.base.lmsg, error); 386 } 387 388 int 389 in6_control(struct socket *so, u_long cmd, caddr_t data, 390 struct ifnet *ifp, struct thread *td) 391 { 392 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 393 struct in6_ifaddr *ia = NULL; 394 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 395 int privileged; 396 int error; 397 398 privileged = 0; 399 if (priv_check(td, PRIV_ROOT) == 0) 400 privileged++; 401 402 switch (cmd) { 403 case SIOCGETSGCNT_IN6: 404 case SIOCGETMIFCNT_IN6: 405 return (mrt6_ioctl(cmd, data)); 406 } 407 408 switch(cmd) { 409 case SIOCAADDRCTL_POLICY: 410 case SIOCDADDRCTL_POLICY: 411 if (!privileged) 412 return (EPERM); 413 return (in6_src_ioctl(cmd, data)); 414 } 415 416 if (ifp == NULL) 417 return (EOPNOTSUPP); 418 419 switch (cmd) { 420 case SIOCSNDFLUSH_IN6: 421 case SIOCSPFXFLUSH_IN6: 422 case SIOCSRTRFLUSH_IN6: 423 case SIOCSDEFIFACE_IN6: 424 case SIOCSIFINFO_FLAGS: 425 if (!privileged) 426 return (EPERM); 427 /* fall through */ 428 case OSIOCGIFINFO_IN6: 429 case SIOCGIFINFO_IN6: 430 case SIOCGDRLST_IN6: 431 case SIOCGPRLST_IN6: 432 case SIOCGNBRINFO_IN6: 433 case SIOCGDEFIFACE_IN6: 434 return (nd6_ioctl(cmd, data, ifp)); 435 } 436 437 switch (cmd) { 438 case SIOCSIFPREFIX_IN6: 439 case SIOCDIFPREFIX_IN6: 440 case SIOCAIFPREFIX_IN6: 441 case SIOCCIFPREFIX_IN6: 442 case SIOCSGIFPREFIX_IN6: 443 case SIOCGIFPREFIX_IN6: 444 log(LOG_NOTICE, 445 "prefix ioctls are now invalidated. " 446 "please use ifconfig.\n"); 447 return (EOPNOTSUPP); 448 } 449 450 switch (cmd) { 451 case SIOCSSCOPE6: 452 if (!privileged) 453 return (EPERM); 454 return (scope6_set(ifp, 455 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 456 break; 457 case SIOCGSCOPE6: 458 return (scope6_get(ifp, 459 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 460 break; 461 case SIOCGSCOPE6DEF: 462 return (scope6_get_default((struct scope6_id *) 463 ifr->ifr_ifru.ifru_scope_id)); 464 break; 465 } 466 467 switch (cmd) { 468 case SIOCALIFADDR: 469 case SIOCDLIFADDR: 470 if (!privileged) 471 return (EPERM); 472 /* fall through */ 473 case SIOCGLIFADDR: 474 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 475 } 476 477 /* 478 * Find address for this interface, if it exists. 479 */ 480 if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */ 481 struct sockaddr_in6 *sa6 = 482 (struct sockaddr_in6 *)&ifra->ifra_addr; 483 484 if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) { 485 if (sa6->sin6_addr.s6_addr16[1] == 0) { 486 /* link ID is not embedded by the user */ 487 sa6->sin6_addr.s6_addr16[1] = 488 htons(ifp->if_index); 489 } else if (sa6->sin6_addr.s6_addr16[1] != 490 htons(ifp->if_index)) { 491 return (EINVAL); /* link ID contradicts */ 492 } 493 if (sa6->sin6_scope_id) { 494 if (sa6->sin6_scope_id != 495 (u_int32_t)ifp->if_index) 496 return (EINVAL); 497 sa6->sin6_scope_id = 0; /* XXX: good way? */ 498 } 499 } 500 ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr); 501 } 502 503 switch (cmd) { 504 case SIOCSIFADDR_IN6: 505 case SIOCSIFDSTADDR_IN6: 506 case SIOCSIFNETMASK_IN6: 507 /* 508 * Since IPv6 allows a node to assign multiple addresses 509 * on a single interface, SIOCSIFxxx ioctls are not suitable 510 * and should be unused. 511 */ 512 /* we decided to obsolete this command (20000704) */ 513 return (EINVAL); 514 515 case SIOCDIFADDR_IN6: 516 /* 517 * for IPv4, we look for existing in_ifaddr here to allow 518 * "ifconfig if0 delete" to remove first IPv4 address on the 519 * interface. For IPv6, as the spec allow multiple interface 520 * address from the day one, we consider "remove the first one" 521 * semantics to be not preferable. 522 */ 523 if (ia == NULL) 524 return (EADDRNOTAVAIL); 525 /* FALLTHROUGH */ 526 case SIOCAIFADDR_IN6: 527 /* 528 * We always require users to specify a valid IPv6 address for 529 * the corresponding operation. 530 */ 531 if (ifra->ifra_addr.sin6_family != AF_INET6 || 532 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 533 return (EAFNOSUPPORT); 534 if (!privileged) 535 return (EPERM); 536 537 break; 538 539 case SIOCGIFADDR_IN6: 540 /* This interface is basically deprecated. use SIOCGIFCONF. */ 541 /* fall through */ 542 case SIOCGIFAFLAG_IN6: 543 case SIOCGIFNETMASK_IN6: 544 case SIOCGIFDSTADDR_IN6: 545 case SIOCGIFALIFETIME_IN6: 546 /* must think again about its semantics */ 547 if (ia == NULL) 548 return (EADDRNOTAVAIL); 549 break; 550 case SIOCSIFALIFETIME_IN6: 551 { 552 struct in6_addrlifetime *lt; 553 554 if (!privileged) 555 return (EPERM); 556 if (ia == NULL) 557 return (EADDRNOTAVAIL); 558 /* sanity for overflow - beware unsigned */ 559 lt = &ifr->ifr_ifru.ifru_lifetime; 560 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 561 && lt->ia6t_vltime + time_uptime < time_uptime) { 562 return EINVAL; 563 } 564 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 565 && lt->ia6t_pltime + time_uptime < time_uptime) { 566 return EINVAL; 567 } 568 break; 569 } 570 } 571 572 switch (cmd) { 573 574 case SIOCGIFADDR_IN6: 575 ifr->ifr_addr = ia->ia_addr; 576 break; 577 578 case SIOCGIFDSTADDR_IN6: 579 if (!(ifp->if_flags & IFF_POINTOPOINT)) 580 return (EINVAL); 581 /* 582 * XXX: should we check if ifa_dstaddr is NULL and return 583 * an error? 584 */ 585 ifr->ifr_dstaddr = ia->ia_dstaddr; 586 break; 587 588 case SIOCGIFNETMASK_IN6: 589 ifr->ifr_addr = ia->ia_prefixmask; 590 break; 591 592 case SIOCGIFAFLAG_IN6: 593 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 594 break; 595 596 case SIOCGIFSTAT_IN6: 597 if (ifp == NULL) 598 return EINVAL; 599 bzero(&ifr->ifr_ifru.ifru_stat, 600 sizeof(ifr->ifr_ifru.ifru_stat)); 601 ifr->ifr_ifru.ifru_stat = 602 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat; 603 break; 604 605 case SIOCGIFSTAT_ICMP6: 606 bzero(&ifr->ifr_ifru.ifru_stat, 607 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 608 ifr->ifr_ifru.ifru_icmp6stat = 609 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat; 610 break; 611 612 case SIOCSIFADDR: 613 case SIOCSIFDSTADDR: 614 case SIOCSIFBRDADDR: 615 case SIOCSIFNETMASK: 616 /* 617 * Do not pass those ioctl to driver handler since they are not 618 * properly setup. Instead just error out. 619 */ 620 return (EOPNOTSUPP); 621 622 case SIOCGIFALIFETIME_IN6: 623 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 624 break; 625 626 case SIOCSIFALIFETIME_IN6: 627 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 628 /* for sanity */ 629 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 630 ia->ia6_lifetime.ia6t_expire = 631 time_uptime + ia->ia6_lifetime.ia6t_vltime; 632 } else 633 ia->ia6_lifetime.ia6t_expire = 0; 634 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 635 ia->ia6_lifetime.ia6t_preferred = 636 time_uptime + ia->ia6_lifetime.ia6t_pltime; 637 } else 638 ia->ia6_lifetime.ia6t_preferred = 0; 639 break; 640 641 case SIOCAIFADDR_IN6: 642 { 643 int i, error = 0, iaIsNew; 644 struct nd_prefix pr0, *pr; 645 646 if (ia != NULL) 647 iaIsNew = 0; 648 else 649 iaIsNew = 1; 650 651 /* 652 * first, make or update the interface address structure, 653 * and link it to the list. 654 */ 655 if ((error = in6_update_ifa(ifp, ifra, ia)) != 0) 656 return (error); 657 658 /* 659 * then, make the prefix on-link on the interface. 660 * XXX: we'd rather create the prefix before the address, but 661 * we need at least one address to install the corresponding 662 * interface route, so we configure the address first. 663 */ 664 665 /* 666 * convert mask to prefix length (prefixmask has already 667 * been validated in in6_update_ifa(). 668 */ 669 bzero(&pr0, sizeof(pr0)); 670 pr0.ndpr_ifp = ifp; 671 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 672 NULL); 673 if (pr0.ndpr_plen == 128) 674 break; /* we don't need to install a host route. */ 675 pr0.ndpr_prefix = ifra->ifra_addr; 676 pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr; 677 /* apply the mask for safety. */ 678 for (i = 0; i < 4; i++) { 679 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 680 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 681 } 682 /* 683 * XXX: since we don't have an API to set prefix (not address) 684 * lifetimes, we just use the same lifetimes as addresses. 685 * The (temporarily) installed lifetimes can be overridden by 686 * later advertised RAs (when accept_rtadv is non 0), which is 687 * an intended behavior. 688 */ 689 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 690 pr0.ndpr_raf_auto = 691 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 692 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 693 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 694 695 /* add the prefix if there's one. */ 696 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 697 /* 698 * nd6_prelist_add will install the corresponding 699 * interface route. 700 */ 701 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 702 return (error); 703 if (pr == NULL) { 704 log(LOG_ERR, "nd6_prelist_add succeeded but " 705 "no prefix\n"); 706 return (EINVAL); /* XXX panic here? */ 707 } 708 } 709 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 710 == NULL) { 711 /* XXX: this should not happen! */ 712 log(LOG_ERR, "in6_control: addition succeeded, but" 713 " no ifaddr\n"); 714 } else { 715 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 716 ia->ia6_ndpr == NULL) { /* new autoconfed addr */ 717 ia->ia6_ndpr = pr; 718 pr->ndpr_refcnt++; 719 720 /* 721 * If this is the first autoconf address from 722 * the prefix, create a temporary address 723 * as well (when specified). 724 */ 725 if (ip6_use_tempaddr && 726 pr->ndpr_refcnt == 1) { 727 int e; 728 if ((e = in6_tmpifadd(ia, 1)) != 0) { 729 log(LOG_NOTICE, "in6_control: " 730 "failed to create a " 731 "temporary address, " 732 "errno=%d\n", 733 e); 734 } 735 } 736 } 737 738 /* 739 * this might affect the status of autoconfigured 740 * addresses, that is, this address might make 741 * other addresses detached. 742 */ 743 pfxlist_onlink_check(); 744 } 745 if (error == 0 && ia) { 746 EVENTHANDLER_INVOKE(ifaddr_event, ifp, 747 iaIsNew ? IFADDR_EVENT_ADD : IFADDR_EVENT_CHANGE, 748 &ia->ia_ifa); 749 } 750 break; 751 } 752 753 case SIOCDIFADDR_IN6: 754 { 755 int i = 0; 756 struct nd_prefix pr0, *pr; 757 758 /* 759 * If the address being deleted is the only one that owns 760 * the corresponding prefix, expire the prefix as well. 761 * XXX: theoretically, we don't have to warry about such 762 * relationship, since we separate the address management 763 * and the prefix management. We do this, however, to provide 764 * as much backward compatibility as possible in terms of 765 * the ioctl operation. 766 */ 767 bzero(&pr0, sizeof(pr0)); 768 pr0.ndpr_ifp = ifp; 769 pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, 770 NULL); 771 if (pr0.ndpr_plen == 128) 772 goto purgeaddr; 773 pr0.ndpr_prefix = ia->ia_addr; 774 pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr; 775 for (i = 0; i < 4; i++) { 776 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 777 ia->ia_prefixmask.sin6_addr.s6_addr32[i]; 778 } 779 /* 780 * The logic of the following condition is a bit complicated. 781 * We expire the prefix when 782 * 1. the address obeys autoconfiguration and it is the 783 * only owner of the associated prefix, or 784 * 2. the address does not obey autoconf and there is no 785 * other owner of the prefix. 786 */ 787 if ((pr = nd6_prefix_lookup(&pr0)) != NULL && 788 (((ia->ia6_flags & IN6_IFF_AUTOCONF) && 789 pr->ndpr_refcnt == 1) || 790 (!(ia->ia6_flags & IN6_IFF_AUTOCONF) && 791 pr->ndpr_refcnt == 0))) { 792 pr->ndpr_expire = 1; /* XXX: just for expiration */ 793 } 794 795 purgeaddr: 796 EVENTHANDLER_INVOKE(ifaddr_event, ifp, IFADDR_EVENT_DELETE, 797 &ia->ia_ifa); 798 in6_purgeaddr(&ia->ia_ifa); 799 break; 800 } 801 802 default: 803 if (ifp == NULL || ifp->if_ioctl == NULL) 804 return (EOPNOTSUPP); 805 ifnet_serialize_all(ifp); 806 error = ifp->if_ioctl(ifp, cmd, data, td->td_proc->p_ucred); 807 ifnet_deserialize_all(ifp); 808 return (error); 809 } 810 811 return (0); 812 } 813 814 /* 815 * Update parameters of an IPv6 interface address. 816 * If necessary, a new entry is created and linked into address chains. 817 * This function is separated from in6_control(). 818 * XXX: should this be performed under splnet()? 819 */ 820 int 821 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 822 struct in6_ifaddr *ia) 823 { 824 int error = 0, hostIsNew = 0, plen = -1; 825 struct in6_ifaddr *oia; 826 struct sockaddr_in6 dst6; 827 struct in6_addrlifetime *lt; 828 829 /* Validate parameters */ 830 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 831 return (EINVAL); 832 833 /* 834 * The destination address for a p2p link must have a family 835 * of AF_UNSPEC or AF_INET6. 836 */ 837 if ((ifp->if_flags & IFF_POINTOPOINT) && 838 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 839 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 840 return (EAFNOSUPPORT); 841 /* 842 * validate ifra_prefixmask. don't check sin6_family, netmask 843 * does not carry fields other than sin6_len. 844 */ 845 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 846 return (EINVAL); 847 /* 848 * Because the IPv6 address architecture is classless, we require 849 * users to specify a (non 0) prefix length (mask) for a new address. 850 * We also require the prefix (when specified) mask is valid, and thus 851 * reject a non-consecutive mask. 852 */ 853 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 854 return (EINVAL); 855 if (ifra->ifra_prefixmask.sin6_len != 0) { 856 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 857 (u_char *)&ifra->ifra_prefixmask + 858 ifra->ifra_prefixmask.sin6_len); 859 if (plen <= 0) 860 return (EINVAL); 861 } 862 else { 863 /* 864 * In this case, ia must not be NULL. We just use its prefix 865 * length. 866 */ 867 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 868 } 869 /* 870 * If the destination address on a p2p interface is specified, 871 * and the address is a scoped one, validate/set the scope 872 * zone identifier. 873 */ 874 dst6 = ifra->ifra_dstaddr; 875 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) && 876 (dst6.sin6_family == AF_INET6)) { 877 int scopeid; 878 879 if ((error = in6_recoverscope(&dst6, 880 &ifra->ifra_dstaddr.sin6_addr, 881 ifp)) != 0) 882 return (error); 883 scopeid = in6_addr2scopeid(ifp, &dst6.sin6_addr); 884 if (dst6.sin6_scope_id == 0) /* user omit to specify the ID. */ 885 dst6.sin6_scope_id = scopeid; 886 else if (dst6.sin6_scope_id != scopeid) 887 return (EINVAL); /* scope ID mismatch. */ 888 if ((error = in6_embedscope(&dst6.sin6_addr, &dst6, NULL, NULL)) 889 != 0) 890 return (error); 891 dst6.sin6_scope_id = 0; /* XXX */ 892 } 893 /* 894 * The destination address can be specified only for a p2p or a 895 * loopback interface. If specified, the corresponding prefix length 896 * must be 128. 897 */ 898 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 899 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 900 /* XXX: noisy message */ 901 log(LOG_INFO, "in6_update_ifa: a destination can be " 902 "specified for a p2p or a loopback IF only\n"); 903 return (EINVAL); 904 } 905 if (plen != 128) { 906 /* 907 * The following message seems noisy, but we dare to 908 * add it for diagnosis. 909 */ 910 log(LOG_INFO, "in6_update_ifa: prefixlen must be 128 " 911 "when dstaddr is specified\n"); 912 return (EINVAL); 913 } 914 } 915 /* lifetime consistency check */ 916 lt = &ifra->ifra_lifetime; 917 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 918 && lt->ia6t_vltime + time_uptime < time_uptime) { 919 return EINVAL; 920 } 921 if (lt->ia6t_vltime == 0) { 922 /* 923 * the following log might be noisy, but this is a typical 924 * configuration mistake or a tool's bug. 925 */ 926 log(LOG_INFO, 927 "in6_update_ifa: valid lifetime is 0 for %s\n", 928 ip6_sprintf(&ifra->ifra_addr.sin6_addr)); 929 } 930 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 931 && lt->ia6t_pltime + time_uptime < time_uptime) { 932 return EINVAL; 933 } 934 935 /* 936 * If this is a new address, allocate a new ifaddr and link it 937 * into chains. 938 */ 939 if (ia == NULL) { 940 hostIsNew = 1; 941 /* 942 * When in6_update_ifa() is called in a process of a received 943 * RA, it is called under splnet(). So, we should call malloc 944 * with M_NOWAIT. 945 */ 946 ia = ifa_create(sizeof(*ia), M_NOWAIT); 947 if (ia == NULL) 948 return (ENOBUFS); 949 /* Initialize the address and masks */ 950 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 951 ia->ia_addr.sin6_family = AF_INET6; 952 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 953 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 954 /* 955 * XXX: some functions expect that ifa_dstaddr is not 956 * NULL for p2p interfaces. 957 */ 958 ia->ia_ifa.ifa_dstaddr 959 = (struct sockaddr *)&ia->ia_dstaddr; 960 } else { 961 ia->ia_ifa.ifa_dstaddr = NULL; 962 } 963 ia->ia_ifa.ifa_netmask 964 = (struct sockaddr *)&ia->ia_prefixmask; 965 966 ia->ia_ifp = ifp; 967 if ((oia = in6_ifaddr) != NULL) { 968 for ( ; oia->ia_next; oia = oia->ia_next) 969 continue; 970 oia->ia_next = ia; 971 } else 972 in6_ifaddr = ia; 973 974 ifa_iflink(&ia->ia_ifa, ifp, 1); 975 } 976 977 /* set prefix mask */ 978 if (ifra->ifra_prefixmask.sin6_len) { 979 /* 980 * We prohibit changing the prefix length of an existing 981 * address, because 982 * + such an operation should be rare in IPv6, and 983 * + the operation would confuse prefix management. 984 */ 985 if (ia->ia_prefixmask.sin6_len && 986 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 987 log(LOG_INFO, "in6_update_ifa: the prefix length of an" 988 " existing (%s) address should not be changed\n", 989 ip6_sprintf(&ia->ia_addr.sin6_addr)); 990 error = EINVAL; 991 goto unlink; 992 } 993 ia->ia_prefixmask = ifra->ifra_prefixmask; 994 } 995 996 /* 997 * If a new destination address is specified, scrub the old one and 998 * install the new destination. Note that the interface must be 999 * p2p or loopback (see the check above.) 1000 */ 1001 if (dst6.sin6_family == AF_INET6 && 1002 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, 1003 &ia->ia_dstaddr.sin6_addr)) { 1004 int e; 1005 1006 if ((ia->ia_flags & IFA_ROUTE) && 1007 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1008 != 0) { 1009 log(LOG_ERR, "in6_update_ifa: failed to remove " 1010 "a route to the old destination: %s\n", 1011 ip6_sprintf(&ia->ia_addr.sin6_addr)); 1012 /* proceed anyway... */ 1013 } 1014 else 1015 ia->ia_flags &= ~IFA_ROUTE; 1016 ia->ia_dstaddr = dst6; 1017 } 1018 1019 /* reset the interface and routing table appropriately. */ 1020 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 1021 goto unlink; 1022 1023 /* 1024 * Beyond this point, we should call in6_purgeaddr upon an error, 1025 * not just go to unlink. 1026 */ 1027 1028 #if 0 /* disable this mechanism for now */ 1029 /* update prefix list */ 1030 if (hostIsNew && 1031 (ifra->ifra_flags & IN6_IFF_NOPFX) == 0) { /* XXX */ 1032 int iilen; 1033 1034 iilen = (sizeof(ia->ia_prefixmask.sin6_addr) << 3) - plen; 1035 if ((error = in6_prefix_add_ifid(iilen, ia)) != 0) { 1036 in6_purgeaddr((struct ifaddr *)ia); 1037 return (error); 1038 } 1039 } 1040 #endif 1041 1042 if (ifp->if_flags & IFF_MULTICAST) { 1043 struct sockaddr_in6 mltaddr, mltmask; 1044 struct in6_multi *in6m; 1045 1046 if (hostIsNew) { 1047 /* 1048 * join solicited multicast addr for new host id 1049 */ 1050 struct in6_addr llsol; 1051 bzero(&llsol, sizeof(struct in6_addr)); 1052 llsol.s6_addr16[0] = htons(0xff02); 1053 llsol.s6_addr16[1] = htons(ifp->if_index); 1054 llsol.s6_addr32[1] = 0; 1055 llsol.s6_addr32[2] = htonl(1); 1056 llsol.s6_addr32[3] = 1057 ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1058 llsol.s6_addr8[12] = 0xff; 1059 in6_addmulti(&llsol, ifp, &error); 1060 if (error != 0) { 1061 log(LOG_WARNING, 1062 "in6_update_ifa: addmulti failed for " 1063 "%s on %s (errno=%d)\n", 1064 ip6_sprintf(&llsol), if_name(ifp), 1065 error); 1066 in6_purgeaddr((struct ifaddr *)ia); 1067 return (error); 1068 } 1069 } 1070 1071 bzero(&mltmask, sizeof(mltmask)); 1072 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1073 mltmask.sin6_family = AF_INET6; 1074 mltmask.sin6_addr = in6mask32; 1075 1076 /* 1077 * join link-local all-nodes address 1078 */ 1079 bzero(&mltaddr, sizeof(mltaddr)); 1080 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1081 mltaddr.sin6_family = AF_INET6; 1082 mltaddr.sin6_addr = kin6addr_linklocal_allnodes; 1083 mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 1084 1085 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1086 if (in6m == NULL) { 1087 rtrequest_global(RTM_ADD, 1088 (struct sockaddr *)&mltaddr, 1089 (struct sockaddr *)&ia->ia_addr, 1090 (struct sockaddr *)&mltmask, 1091 RTF_UP|RTF_CLONING); /* xxx */ 1092 in6_addmulti(&mltaddr.sin6_addr, ifp, &error); 1093 if (error != 0) { 1094 log(LOG_WARNING, 1095 "in6_update_ifa: addmulti failed for " 1096 "%s on %s (errno=%d)\n", 1097 ip6_sprintf(&mltaddr.sin6_addr), 1098 if_name(ifp), error); 1099 } 1100 } 1101 1102 /* 1103 * join node information group address 1104 */ 1105 #define hostnamelen strlen(hostname) 1106 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr) 1107 == 0) { 1108 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1109 if (in6m == NULL && ia != NULL) { 1110 in6_addmulti(&mltaddr.sin6_addr, ifp, &error); 1111 if (error != 0) { 1112 log(LOG_WARNING, "in6_update_ifa: " 1113 "addmulti failed for " 1114 "%s on %s (errno=%d)\n", 1115 ip6_sprintf(&mltaddr.sin6_addr), 1116 if_name(ifp), error); 1117 } 1118 } 1119 } 1120 #undef hostnamelen 1121 1122 /* 1123 * join node-local all-nodes address, on loopback. 1124 * XXX: since "node-local" is obsoleted by interface-local, 1125 * we have to join the group on every interface with 1126 * some interface-boundary restriction. 1127 */ 1128 if (ifp->if_flags & IFF_LOOPBACK) { 1129 struct in6_ifaddr *ia_loop; 1130 1131 struct in6_addr loop6 = kin6addr_loopback; 1132 ia_loop = in6ifa_ifpwithaddr(ifp, &loop6); 1133 1134 mltaddr.sin6_addr = kin6addr_nodelocal_allnodes; 1135 1136 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1137 if (in6m == NULL && ia_loop != NULL) { 1138 rtrequest_global(RTM_ADD, 1139 (struct sockaddr *)&mltaddr, 1140 (struct sockaddr *)&ia_loop->ia_addr, 1141 (struct sockaddr *)&mltmask, 1142 RTF_UP); 1143 in6_addmulti(&mltaddr.sin6_addr, ifp, &error); 1144 if (error != 0) { 1145 log(LOG_WARNING, "in6_update_ifa: " 1146 "addmulti failed for %s on %s " 1147 "(errno=%d)\n", 1148 ip6_sprintf(&mltaddr.sin6_addr), 1149 if_name(ifp), error); 1150 } 1151 } 1152 } 1153 } 1154 1155 ia->ia6_flags = ifra->ifra_flags; 1156 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /*safety*/ 1157 ia->ia6_flags &= ~IN6_IFF_NODAD; /* Mobile IPv6 */ 1158 1159 ia->ia6_lifetime = ifra->ifra_lifetime; 1160 /* for sanity */ 1161 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1162 ia->ia6_lifetime.ia6t_expire = 1163 time_uptime + ia->ia6_lifetime.ia6t_vltime; 1164 } else 1165 ia->ia6_lifetime.ia6t_expire = 0; 1166 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1167 ia->ia6_lifetime.ia6t_preferred = 1168 time_uptime + ia->ia6_lifetime.ia6t_pltime; 1169 } else 1170 ia->ia6_lifetime.ia6t_preferred = 0; 1171 1172 /* 1173 * Perform DAD, if needed. 1174 * XXX It may be of use, if we can administratively 1175 * disable DAD. 1176 */ 1177 if (in6if_do_dad(ifp) && !(ifra->ifra_flags & IN6_IFF_NODAD)) { 1178 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1179 nd6_dad_start((struct ifaddr *)ia, NULL); 1180 } 1181 1182 return (error); 1183 1184 unlink: 1185 /* 1186 * XXX: if a change of an existing address failed, keep the entry 1187 * anyway. 1188 */ 1189 if (hostIsNew) 1190 in6_unlink_ifa(ia, ifp); 1191 return (error); 1192 } 1193 1194 void 1195 in6_purgeaddr(struct ifaddr *ifa) 1196 { 1197 struct ifnet *ifp = ifa->ifa_ifp; 1198 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1199 1200 /* stop DAD processing */ 1201 nd6_dad_stop(ifa); 1202 1203 /* 1204 * delete route to the destination of the address being purged. 1205 * The interface must be p2p or loopback in this case. 1206 */ 1207 if ((ia->ia_flags & IFA_ROUTE) && ia->ia_dstaddr.sin6_len != 0) { 1208 int e; 1209 1210 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1211 != 0) { 1212 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1213 "a route to the p2p destination: %s on %s, " 1214 "errno=%d\n", 1215 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp), 1216 e); 1217 /* proceed anyway... */ 1218 } 1219 else 1220 ia->ia_flags &= ~IFA_ROUTE; 1221 } 1222 1223 /* Remove ownaddr's loopback rtentry, if it exists. */ 1224 in6_ifremloop(&(ia->ia_ifa)); 1225 1226 if (ifp->if_flags & IFF_MULTICAST) { 1227 /* 1228 * delete solicited multicast addr for deleting host id 1229 */ 1230 struct in6_multi *in6m; 1231 struct in6_addr llsol; 1232 bzero(&llsol, sizeof(struct in6_addr)); 1233 llsol.s6_addr16[0] = htons(0xff02); 1234 llsol.s6_addr16[1] = htons(ifp->if_index); 1235 llsol.s6_addr32[1] = 0; 1236 llsol.s6_addr32[2] = htonl(1); 1237 llsol.s6_addr32[3] = 1238 ia->ia_addr.sin6_addr.s6_addr32[3]; 1239 llsol.s6_addr8[12] = 0xff; 1240 1241 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1242 if (in6m) 1243 in6_delmulti(in6m); 1244 } 1245 1246 in6_unlink_ifa(ia, ifp); 1247 } 1248 1249 static void 1250 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1251 { 1252 int plen, iilen; 1253 struct in6_ifaddr *oia; 1254 1255 crit_enter(); 1256 1257 ifa_ifunlink(&ia->ia_ifa, ifp); 1258 1259 oia = ia; 1260 if (oia == (ia = in6_ifaddr)) 1261 in6_ifaddr = ia->ia_next; 1262 else { 1263 while (ia->ia_next && (ia->ia_next != oia)) 1264 ia = ia->ia_next; 1265 if (ia->ia_next) 1266 ia->ia_next = oia->ia_next; 1267 else { 1268 /* search failed */ 1269 kprintf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1270 } 1271 } 1272 1273 if (oia->ia6_ifpr) { /* check for safety */ 1274 plen = in6_mask2len(&oia->ia_prefixmask.sin6_addr, NULL); 1275 iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) - plen; 1276 in6_prefix_remove_ifid(iilen, oia); 1277 } 1278 1279 /* 1280 * When an autoconfigured address is being removed, release the 1281 * reference to the base prefix. Also, since the release might 1282 * affect the status of other (detached) addresses, call 1283 * pfxlist_onlink_check(). 1284 */ 1285 if (oia->ia6_flags & IN6_IFF_AUTOCONF) { 1286 if (oia->ia6_ndpr == NULL) { 1287 log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address " 1288 "%p has no prefix\n", oia); 1289 } else { 1290 oia->ia6_ndpr->ndpr_refcnt--; 1291 oia->ia6_flags &= ~IN6_IFF_AUTOCONF; 1292 oia->ia6_ndpr = NULL; 1293 } 1294 1295 pfxlist_onlink_check(); 1296 } 1297 1298 /* 1299 * release another refcnt for the link from in6_ifaddr. 1300 * Note that we should decrement the refcnt at least once for all *BSD. 1301 */ 1302 ifa_destroy(&oia->ia_ifa); 1303 1304 crit_exit(); 1305 } 1306 1307 void 1308 in6_purgeif(struct ifnet *ifp) 1309 { 1310 struct ifaddr_container *ifac, *next; 1311 1312 TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid], 1313 ifa_link, next) { 1314 if (ifac->ifa->ifa_addr->sa_family != AF_INET6) 1315 continue; 1316 in6_purgeaddr(ifac->ifa); 1317 } 1318 1319 in6_ifdetach(ifp); 1320 } 1321 1322 /* 1323 * SIOC[GAD]LIFADDR. 1324 * SIOCGLIFADDR: get first address. (?) 1325 * SIOCGLIFADDR with IFLR_PREFIX: 1326 * get first address that matches the specified prefix. 1327 * SIOCALIFADDR: add the specified address. 1328 * SIOCALIFADDR with IFLR_PREFIX: 1329 * add the specified prefix, filling hostid part from 1330 * the first link-local address. prefixlen must be <= 64. 1331 * SIOCDLIFADDR: delete the specified address. 1332 * SIOCDLIFADDR with IFLR_PREFIX: 1333 * delete the first address that matches the specified prefix. 1334 * return values: 1335 * EINVAL on invalid parameters 1336 * EADDRNOTAVAIL on prefix match failed/specified address not found 1337 * other values may be returned from in6_ioctl() 1338 * 1339 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1340 * this is to accomodate address naming scheme other than RFC2374, 1341 * in the future. 1342 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1343 * address encoding scheme. (see figure on page 8) 1344 */ 1345 static int 1346 in6_lifaddr_ioctl(struct socket *so, u_long cmd, caddr_t data, 1347 struct ifnet *ifp, struct thread *td) 1348 { 1349 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1350 struct sockaddr *sa; 1351 1352 /* sanity checks */ 1353 if (!data || !ifp) { 1354 panic("invalid argument to in6_lifaddr_ioctl"); 1355 /*NOTRECHED*/ 1356 } 1357 1358 switch (cmd) { 1359 case SIOCGLIFADDR: 1360 /* address must be specified on GET with IFLR_PREFIX */ 1361 if (!(iflr->flags & IFLR_PREFIX)) 1362 break; 1363 /* FALLTHROUGH */ 1364 case SIOCALIFADDR: 1365 case SIOCDLIFADDR: 1366 /* address must be specified on ADD and DELETE */ 1367 sa = (struct sockaddr *)&iflr->addr; 1368 if (sa->sa_family != AF_INET6) 1369 return EINVAL; 1370 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1371 return EINVAL; 1372 /* XXX need improvement */ 1373 sa = (struct sockaddr *)&iflr->dstaddr; 1374 if (sa->sa_family && sa->sa_family != AF_INET6) 1375 return EINVAL; 1376 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1377 return EINVAL; 1378 break; 1379 default: /* shouldn't happen */ 1380 #if 0 1381 panic("invalid cmd to in6_lifaddr_ioctl"); 1382 /* NOTREACHED */ 1383 #else 1384 return EOPNOTSUPP; 1385 #endif 1386 } 1387 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1388 return EINVAL; 1389 1390 switch (cmd) { 1391 case SIOCALIFADDR: 1392 { 1393 struct in6_aliasreq ifra; 1394 struct in6_addr *hostid = NULL; 1395 int prefixlen; 1396 1397 if (iflr->flags & IFLR_PREFIX) { 1398 struct ifaddr *ifa; 1399 struct sockaddr_in6 *sin6; 1400 1401 /* 1402 * hostid is to fill in the hostid part of the 1403 * address. hostid points to the first link-local 1404 * address attached to the interface. 1405 */ 1406 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1407 if (!ifa) 1408 return EADDRNOTAVAIL; 1409 hostid = IFA_IN6(ifa); 1410 1411 /* prefixlen must be <= 64. */ 1412 if (64 < iflr->prefixlen) 1413 return EINVAL; 1414 prefixlen = iflr->prefixlen; 1415 1416 /* hostid part must be zero. */ 1417 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1418 if (sin6->sin6_addr.s6_addr32[2] != 0 1419 || sin6->sin6_addr.s6_addr32[3] != 0) { 1420 return EINVAL; 1421 } 1422 } else 1423 prefixlen = iflr->prefixlen; 1424 1425 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1426 bzero(&ifra, sizeof(ifra)); 1427 bcopy(iflr->iflr_name, ifra.ifra_name, 1428 sizeof(ifra.ifra_name)); 1429 1430 bcopy(&iflr->addr, &ifra.ifra_addr, 1431 ((struct sockaddr *)&iflr->addr)->sa_len); 1432 if (hostid) { 1433 /* fill in hostid part */ 1434 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1435 hostid->s6_addr32[2]; 1436 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1437 hostid->s6_addr32[3]; 1438 } 1439 1440 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/ 1441 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1442 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1443 if (hostid) { 1444 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1445 hostid->s6_addr32[2]; 1446 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1447 hostid->s6_addr32[3]; 1448 } 1449 } 1450 1451 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1452 in6_len2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1453 1454 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1455 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td); 1456 } 1457 case SIOCGLIFADDR: 1458 case SIOCDLIFADDR: 1459 { 1460 struct ifaddr_container *ifac; 1461 struct in6_ifaddr *ia; 1462 struct in6_addr mask, candidate, match; 1463 struct sockaddr_in6 *sin6; 1464 int cmp; 1465 1466 bzero(&mask, sizeof(mask)); 1467 if (iflr->flags & IFLR_PREFIX) { 1468 /* lookup a prefix rather than address. */ 1469 in6_len2mask(&mask, iflr->prefixlen); 1470 1471 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1472 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1473 match.s6_addr32[0] &= mask.s6_addr32[0]; 1474 match.s6_addr32[1] &= mask.s6_addr32[1]; 1475 match.s6_addr32[2] &= mask.s6_addr32[2]; 1476 match.s6_addr32[3] &= mask.s6_addr32[3]; 1477 1478 /* if you set extra bits, that's wrong */ 1479 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1480 return EINVAL; 1481 1482 cmp = 1; 1483 } else { 1484 if (cmd == SIOCGLIFADDR) { 1485 /* on getting an address, take the 1st match */ 1486 cmp = 0; /* XXX */ 1487 } else { 1488 /* on deleting an address, do exact match */ 1489 in6_len2mask(&mask, 128); 1490 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1491 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1492 1493 cmp = 1; 1494 } 1495 } 1496 1497 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1498 struct ifaddr *ifa = ifac->ifa; 1499 1500 if (ifa->ifa_addr->sa_family != AF_INET6) 1501 continue; 1502 if (!cmp) 1503 break; 1504 1505 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1506 /* 1507 * XXX: this is adhoc, but is necessary to allow 1508 * a user to specify fe80::/64 (not /10) for a 1509 * link-local address. 1510 */ 1511 if (IN6_IS_ADDR_LINKLOCAL(&candidate)) 1512 candidate.s6_addr16[1] = 0; 1513 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1514 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1515 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1516 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1517 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1518 break; 1519 } 1520 if (ifac == NULL) 1521 return EADDRNOTAVAIL; 1522 ia = ifa2ia6(ifac->ifa); 1523 1524 if (cmd == SIOCGLIFADDR) { 1525 struct sockaddr_in6 *s6; 1526 1527 /* fill in the if_laddrreq structure */ 1528 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1529 s6 = (struct sockaddr_in6 *)&iflr->addr; 1530 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1531 s6->sin6_addr.s6_addr16[1] = 0; 1532 s6->sin6_scope_id = 1533 in6_addr2scopeid(ifp, &s6->sin6_addr); 1534 } 1535 if (ifp->if_flags & IFF_POINTOPOINT) { 1536 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1537 ia->ia_dstaddr.sin6_len); 1538 s6 = (struct sockaddr_in6 *)&iflr->dstaddr; 1539 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1540 s6->sin6_addr.s6_addr16[1] = 0; 1541 s6->sin6_scope_id = 1542 in6_addr2scopeid(ifp, 1543 &s6->sin6_addr); 1544 } 1545 } else 1546 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1547 1548 iflr->prefixlen = 1549 in6_mask2len(&ia->ia_prefixmask.sin6_addr, 1550 NULL); 1551 1552 iflr->flags = ia->ia6_flags; /* XXX */ 1553 1554 return 0; 1555 } else { 1556 struct in6_aliasreq ifra; 1557 1558 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1559 bzero(&ifra, sizeof(ifra)); 1560 bcopy(iflr->iflr_name, ifra.ifra_name, 1561 sizeof(ifra.ifra_name)); 1562 1563 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1564 ia->ia_addr.sin6_len); 1565 if (ifp->if_flags & IFF_POINTOPOINT) 1566 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1567 ia->ia_dstaddr.sin6_len); 1568 else 1569 bzero(&ifra.ifra_dstaddr, 1570 sizeof(ifra.ifra_dstaddr)); 1571 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1572 ia->ia_prefixmask.sin6_len); 1573 1574 ifra.ifra_flags = ia->ia6_flags; 1575 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1576 ifp, td); 1577 } 1578 } 1579 } 1580 1581 return EOPNOTSUPP; /* just for safety */ 1582 } 1583 1584 /* 1585 * Initialize an interface's intetnet6 address 1586 * and routing table entry. 1587 */ 1588 static int 1589 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, struct sockaddr_in6 *sin6, 1590 int newhost) 1591 { 1592 int error = 0, plen, ifacount = 0; 1593 struct ifaddr_container *ifac; 1594 1595 /* 1596 * Give the interface a chance to initialize 1597 * if this is its first address, 1598 * and to validate the address if necessary. 1599 */ 1600 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1601 if (ifac->ifa->ifa_addr == NULL) 1602 continue; /* just for safety */ 1603 if (ifac->ifa->ifa_addr->sa_family != AF_INET6) 1604 continue; 1605 ifacount++; 1606 } 1607 1608 ifnet_serialize_all(ifp); 1609 1610 ia->ia_addr = *sin6; 1611 1612 if (ifacount <= 1 && ifp->if_ioctl && 1613 (error = ifp->if_ioctl(ifp, SIOCSIFADDR, (caddr_t)ia, NULL))) { 1614 ifnet_deserialize_all(ifp); 1615 return (error); 1616 } 1617 1618 ifnet_deserialize_all(ifp); 1619 1620 ia->ia_ifa.ifa_metric = ifp->if_metric; 1621 1622 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1623 1624 /* 1625 * Special case: 1626 * If the destination address is specified for a point-to-point 1627 * interface, install a route to the destination as an interface 1628 * direct route. 1629 */ 1630 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1631 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) { 1632 if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD, 1633 RTF_UP | RTF_HOST)) != 0) 1634 return (error); 1635 ia->ia_flags |= IFA_ROUTE; 1636 } 1637 if (plen < 128) { 1638 /* 1639 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). 1640 */ 1641 ia->ia_ifa.ifa_flags |= RTF_CLONING; 1642 } 1643 1644 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ 1645 if (newhost) { 1646 /* set the rtrequest function to create llinfo */ 1647 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1648 in6_ifaddloop(&(ia->ia_ifa)); 1649 } 1650 1651 return (error); 1652 } 1653 1654 struct in6_multi_mship * 1655 in6_joingroup(struct ifnet *ifp, struct in6_addr *addr, int *errorp) 1656 { 1657 struct in6_multi_mship *imm; 1658 1659 imm = kmalloc(sizeof(*imm), M_IPMADDR, M_NOWAIT); 1660 if (!imm) { 1661 *errorp = ENOBUFS; 1662 return NULL; 1663 } 1664 imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp); 1665 if (!imm->i6mm_maddr) { 1666 /* *errorp is alrady set */ 1667 kfree(imm, M_IPMADDR); 1668 return NULL; 1669 } 1670 return imm; 1671 } 1672 1673 int 1674 in6_leavegroup(struct in6_multi_mship *imm) 1675 { 1676 1677 if (imm->i6mm_maddr) 1678 in6_delmulti(imm->i6mm_maddr); 1679 kfree(imm, M_IPMADDR); 1680 return 0; 1681 } 1682 1683 /* 1684 * Add an address to the list of IP6 multicast addresses for a 1685 * given interface. 1686 */ 1687 struct in6_multi * 1688 in6_addmulti(struct in6_addr *maddr6, struct ifnet *ifp, int *errorp) 1689 { 1690 struct in6_multi *in6m; 1691 struct sockaddr_in6 sin6; 1692 struct ifmultiaddr *ifma; 1693 1694 *errorp = 0; 1695 1696 crit_enter(); 1697 1698 /* 1699 * Call generic routine to add membership or increment 1700 * refcount. It wants addresses in the form of a sockaddr, 1701 * so we build one here (being careful to zero the unused bytes). 1702 */ 1703 bzero(&sin6, sizeof sin6); 1704 sin6.sin6_family = AF_INET6; 1705 sin6.sin6_len = sizeof sin6; 1706 sin6.sin6_addr = *maddr6; 1707 *errorp = if_addmulti(ifp, (struct sockaddr *)&sin6, &ifma); 1708 if (*errorp) { 1709 crit_exit(); 1710 return 0; 1711 } 1712 1713 /* 1714 * If ifma->ifma_protospec is null, then if_addmulti() created 1715 * a new record. Otherwise, we are done. 1716 */ 1717 if (ifma->ifma_protospec != NULL) { 1718 crit_exit(); 1719 return ifma->ifma_protospec; 1720 } 1721 1722 /* XXX - if_addmulti uses M_WAITOK. Can this really be called 1723 at interrupt time? If so, need to fix if_addmulti. XXX */ 1724 in6m = (struct in6_multi *)kmalloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT); 1725 if (in6m == NULL) { 1726 crit_exit(); 1727 return (NULL); 1728 } 1729 1730 bzero(in6m, sizeof *in6m); 1731 in6m->in6m_addr = *maddr6; 1732 in6m->in6m_ifp = ifp; 1733 in6m->in6m_ifma = ifma; 1734 ifma->ifma_protospec = in6m; 1735 LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry); 1736 1737 /* 1738 * Let MLD6 know that we have joined a new IP6 multicast 1739 * group. 1740 */ 1741 mld6_start_listening(in6m); 1742 crit_exit(); 1743 return (in6m); 1744 } 1745 1746 /* 1747 * Delete a multicast address record. 1748 */ 1749 void 1750 in6_delmulti(struct in6_multi *in6m) 1751 { 1752 struct ifmultiaddr *ifma = in6m->in6m_ifma; 1753 1754 crit_enter(); 1755 1756 if (ifma->ifma_refcount == 1) { 1757 /* 1758 * No remaining claims to this record; let MLD6 know 1759 * that we are leaving the multicast group. 1760 */ 1761 mld6_stop_listening(in6m); 1762 ifma->ifma_protospec = NULL; 1763 LIST_REMOVE(in6m, in6m_entry); 1764 kfree(in6m, M_IPMADDR); 1765 } 1766 /* XXX - should be separate API for when we have an ifma? */ 1767 if_delmulti(ifma->ifma_ifp, ifma->ifma_addr); 1768 crit_exit(); 1769 } 1770 1771 /* 1772 * Find an IPv6 interface link-local address specific to an interface. 1773 */ 1774 struct in6_ifaddr * 1775 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1776 { 1777 struct ifaddr_container *ifac; 1778 1779 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1780 struct ifaddr *ifa = ifac->ifa; 1781 1782 if (ifa->ifa_addr == NULL) 1783 continue; /* just for safety */ 1784 if (ifa->ifa_addr->sa_family != AF_INET6) 1785 continue; 1786 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1787 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1788 ignoreflags) != 0) 1789 continue; 1790 break; 1791 } 1792 } 1793 if (ifac != NULL) 1794 return ((struct in6_ifaddr *)(ifac->ifa)); 1795 else 1796 return (NULL); 1797 } 1798 1799 1800 /* 1801 * find the internet address corresponding to a given interface and address. 1802 */ 1803 struct in6_ifaddr * 1804 in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr) 1805 { 1806 struct ifaddr_container *ifac; 1807 1808 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1809 struct ifaddr *ifa = ifac->ifa; 1810 1811 if (ifa->ifa_addr == NULL) 1812 continue; /* just for safety */ 1813 if (ifa->ifa_addr->sa_family != AF_INET6) 1814 continue; 1815 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1816 break; 1817 } 1818 if (ifac != NULL) 1819 return ((struct in6_ifaddr *)(ifac->ifa)); 1820 else 1821 return (NULL); 1822 } 1823 1824 /* 1825 * find the internet address on a given interface corresponding to a neighbor's 1826 * address. 1827 */ 1828 struct in6_ifaddr * 1829 in6ifa_ifplocaladdr(const struct ifnet *ifp, const struct in6_addr *addr) 1830 { 1831 struct ifaddr *ifa; 1832 struct in6_ifaddr *ia; 1833 struct ifaddr_container *ifac; 1834 1835 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1836 ifa = ifac->ifa; 1837 1838 if (ifa->ifa_addr == NULL) 1839 continue; /* just for safety */ 1840 if (ifa->ifa_addr->sa_family != AF_INET6) 1841 continue; 1842 ia = (struct in6_ifaddr *)ifa; 1843 if (IN6_ARE_MASKED_ADDR_EQUAL(addr, 1844 &ia->ia_addr.sin6_addr, 1845 &ia->ia_prefixmask.sin6_addr)) 1846 return ia; 1847 } 1848 1849 return NULL; 1850 } 1851 1852 /* 1853 * Convert IP6 address to printable (loggable) representation. 1854 */ 1855 static char digits[] = "0123456789abcdef"; 1856 static int ip6round = 0; 1857 char * 1858 ip6_sprintf(const struct in6_addr *addr) 1859 { 1860 static char ip6buf[8][48]; 1861 int i; 1862 char *cp; 1863 const u_short *a = (const u_short *)addr; 1864 const u_char *d; 1865 int dcolon = 0; 1866 1867 ip6round = (ip6round + 1) & 7; 1868 cp = ip6buf[ip6round]; 1869 1870 for (i = 0; i < 8; i++) { 1871 if (dcolon == 1) { 1872 if (*a == 0) { 1873 if (i == 7) 1874 *cp++ = ':'; 1875 a++; 1876 continue; 1877 } else 1878 dcolon = 2; 1879 } 1880 if (*a == 0) { 1881 if (dcolon == 0 && *(a + 1) == 0) { 1882 if (i == 0) 1883 *cp++ = ':'; 1884 *cp++ = ':'; 1885 dcolon = 1; 1886 } else { 1887 *cp++ = '0'; 1888 *cp++ = ':'; 1889 } 1890 a++; 1891 continue; 1892 } 1893 d = (const u_char *)a; 1894 *cp++ = digits[*d >> 4]; 1895 *cp++ = digits[*d++ & 0xf]; 1896 *cp++ = digits[*d >> 4]; 1897 *cp++ = digits[*d & 0xf]; 1898 *cp++ = ':'; 1899 a++; 1900 } 1901 *--cp = 0; 1902 return (ip6buf[ip6round]); 1903 } 1904 1905 int 1906 in6_localaddr(struct in6_addr *in6) 1907 { 1908 struct in6_ifaddr *ia; 1909 1910 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1911 return 1; 1912 1913 for (ia = in6_ifaddr; ia; ia = ia->ia_next) 1914 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1915 &ia->ia_prefixmask.sin6_addr)) 1916 return 1; 1917 1918 return (0); 1919 } 1920 1921 int 1922 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1923 { 1924 struct in6_ifaddr *ia; 1925 1926 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1927 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1928 &sa6->sin6_addr) && 1929 (ia->ia6_flags & IN6_IFF_DEPRECATED)) 1930 return (1); /* true */ 1931 1932 /* XXX: do we still have to go thru the rest of the list? */ 1933 } 1934 1935 return (0); /* false */ 1936 } 1937 1938 /* 1939 * return length of part which dst and src are equal 1940 * hard coding... 1941 */ 1942 int 1943 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 1944 { 1945 int match = 0; 1946 u_char *s = (u_char *)src, *d = (u_char *)dst; 1947 u_char *lim = s + 16, r; 1948 1949 while (s < lim) 1950 if ((r = (*d++ ^ *s++)) != 0) { 1951 while (r < 128) { 1952 match++; 1953 r <<= 1; 1954 } 1955 break; 1956 } else 1957 match += 8; 1958 return match; 1959 } 1960 1961 /* XXX: to be scope conscious */ 1962 int 1963 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 1964 { 1965 int bytelen, bitlen; 1966 1967 /* sanity check */ 1968 if (0 > len || len > 128) { 1969 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1970 len); 1971 return (0); 1972 } 1973 1974 bytelen = len / 8; 1975 bitlen = len % 8; 1976 1977 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1978 return (0); 1979 if (p1->s6_addr[bytelen] >> (8 - bitlen) != 1980 p2->s6_addr[bytelen] >> (8 - bitlen)) 1981 return (0); 1982 1983 return (1); 1984 } 1985 1986 void 1987 in6_prefixlen2mask(struct in6_addr *maskp, int len) 1988 { 1989 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1990 int bytelen, bitlen, i; 1991 1992 /* sanity check */ 1993 if (0 > len || len > 128) { 1994 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1995 len); 1996 return; 1997 } 1998 1999 bzero(maskp, sizeof(*maskp)); 2000 bytelen = len / 8; 2001 bitlen = len % 8; 2002 for (i = 0; i < bytelen; i++) 2003 maskp->s6_addr[i] = 0xff; 2004 if (bitlen) 2005 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 2006 } 2007 2008 /* 2009 * return the best address out of the same scope 2010 */ 2011 struct in6_ifaddr * 2012 in6_ifawithscope(struct ifnet *oifp, struct in6_addr *dst) 2013 { 2014 int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0; 2015 int blen = -1; 2016 struct ifnet *ifp; 2017 struct in6_ifaddr *ifa_best = NULL; 2018 2019 if (oifp == NULL) { 2020 #if 0 2021 kprintf("in6_ifawithscope: output interface is not specified\n"); 2022 #endif 2023 return (NULL); 2024 } 2025 2026 /* 2027 * We search for all addresses on all interfaces from the beginning. 2028 * Comparing an interface with the outgoing interface will be done 2029 * only at the final stage of tiebreaking. 2030 */ 2031 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 2032 { 2033 struct ifaddr_container *ifac; 2034 2035 /* 2036 * We can never take an address that breaks the scope zone 2037 * of the destination. 2038 */ 2039 if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst)) 2040 continue; 2041 2042 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2043 int tlen = -1, dscopecmp, bscopecmp, matchcmp; 2044 struct ifaddr *ifa = ifac->ifa; 2045 2046 if (ifa->ifa_addr->sa_family != AF_INET6) 2047 continue; 2048 2049 src_scope = in6_addrscope(IFA_IN6(ifa)); 2050 2051 /* 2052 * Don't use an address before completing DAD 2053 * nor a duplicated address. 2054 */ 2055 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2056 IN6_IFF_NOTREADY) 2057 continue; 2058 2059 /* XXX: is there any case to allow anycasts? */ 2060 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2061 IN6_IFF_ANYCAST) 2062 continue; 2063 2064 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2065 IN6_IFF_DETACHED) 2066 continue; 2067 2068 /* 2069 * If this is the first address we find, 2070 * keep it anyway. 2071 */ 2072 if (ifa_best == NULL) 2073 goto replace; 2074 2075 /* 2076 * ifa_best is never NULL beyond this line except 2077 * within the block labeled "replace". 2078 */ 2079 2080 /* 2081 * If ifa_best has a smaller scope than dst and 2082 * the current address has a larger one than 2083 * (or equal to) dst, always replace ifa_best. 2084 * Also, if the current address has a smaller scope 2085 * than dst, ignore it unless ifa_best also has a 2086 * smaller scope. 2087 * Consequently, after the two if-clause below, 2088 * the followings must be satisfied: 2089 * (scope(src) < scope(dst) && 2090 * scope(best) < scope(dst)) 2091 * OR 2092 * (scope(best) >= scope(dst) && 2093 * scope(src) >= scope(dst)) 2094 */ 2095 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 && 2096 IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0) 2097 goto replace; /* (A) */ 2098 if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 && 2099 IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0) 2100 continue; /* (B) */ 2101 2102 /* 2103 * A deprecated address SHOULD NOT be used in new 2104 * communications if an alternate (non-deprecated) 2105 * address is available and has sufficient scope. 2106 * RFC 2462, Section 5.5.4. 2107 */ 2108 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2109 IN6_IFF_DEPRECATED) { 2110 /* 2111 * Ignore any deprecated addresses if 2112 * specified by configuration. 2113 */ 2114 if (!ip6_use_deprecated) 2115 continue; 2116 2117 /* 2118 * If we have already found a non-deprecated 2119 * candidate, just ignore deprecated addresses. 2120 */ 2121 if (!(ifa_best->ia6_flags & IN6_IFF_DEPRECATED)) 2122 continue; 2123 } 2124 2125 /* 2126 * A non-deprecated address is always preferred 2127 * to a deprecated one regardless of scopes and 2128 * address matching (Note invariants ensured by the 2129 * conditions (A) and (B) above.) 2130 */ 2131 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) && 2132 !(((struct in6_ifaddr *)ifa)->ia6_flags & 2133 IN6_IFF_DEPRECATED)) 2134 goto replace; 2135 2136 /* 2137 * When we use temporary addresses described in 2138 * RFC 3041, we prefer temporary addresses to 2139 * public autoconf addresses. Again, note the 2140 * invariants from (A) and (B). Also note that we 2141 * don't have any preference between static addresses 2142 * and autoconf addresses (despite of whether or not 2143 * the latter is temporary or public.) 2144 */ 2145 if (ip6_use_tempaddr) { 2146 struct in6_ifaddr *ifat; 2147 2148 ifat = (struct in6_ifaddr *)ifa; 2149 if ((ifa_best->ia6_flags & 2150 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2151 == IN6_IFF_AUTOCONF && 2152 (ifat->ia6_flags & 2153 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2154 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) { 2155 goto replace; 2156 } 2157 if ((ifa_best->ia6_flags & 2158 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2159 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) && 2160 (ifat->ia6_flags & 2161 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2162 == IN6_IFF_AUTOCONF) { 2163 continue; 2164 } 2165 } 2166 2167 /* 2168 * At this point, we have two cases: 2169 * 1. we are looking at a non-deprecated address, 2170 * and ifa_best is also non-deprecated. 2171 * 2. we are looking at a deprecated address, 2172 * and ifa_best is also deprecated. 2173 * Also, we do not have to consider a case where 2174 * the scope of if_best is larger(smaller) than dst and 2175 * the scope of the current address is smaller(larger) 2176 * than dst. Such a case has already been covered. 2177 * Tiebreaking is done according to the following 2178 * items: 2179 * - the scope comparison between the address and 2180 * dst (dscopecmp) 2181 * - the scope comparison between the address and 2182 * ifa_best (bscopecmp) 2183 * - if the address match dst longer than ifa_best 2184 * (matchcmp) 2185 * - if the address is on the outgoing I/F (outI/F) 2186 * 2187 * Roughly speaking, the selection policy is 2188 * - the most important item is scope. The same scope 2189 * is best. Then search for a larger scope. 2190 * Smaller scopes are the last resort. 2191 * - A deprecated address is chosen only when we have 2192 * no address that has an enough scope, but is 2193 * prefered to any addresses of smaller scopes 2194 * (this must be already done above.) 2195 * - addresses on the outgoing I/F are preferred to 2196 * ones on other interfaces if none of above 2197 * tiebreaks. In the table below, the column "bI" 2198 * means if the best_ifa is on the outgoing 2199 * interface, and the column "sI" means if the ifa 2200 * is on the outgoing interface. 2201 * - If there is no other reasons to choose one, 2202 * longest address match against dst is considered. 2203 * 2204 * The precise decision table is as follows: 2205 * dscopecmp bscopecmp match bI oI | replace? 2206 * N/A equal N/A Y N | No (1) 2207 * N/A equal N/A N Y | Yes (2) 2208 * N/A equal larger N/A | Yes (3) 2209 * N/A equal !larger N/A | No (4) 2210 * larger larger N/A N/A | No (5) 2211 * larger smaller N/A N/A | Yes (6) 2212 * smaller larger N/A N/A | Yes (7) 2213 * smaller smaller N/A N/A | No (8) 2214 * equal smaller N/A N/A | Yes (9) 2215 * equal larger (already done at A above) 2216 */ 2217 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope); 2218 bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope); 2219 2220 if (bscopecmp == 0) { 2221 struct ifnet *bifp = ifa_best->ia_ifp; 2222 2223 if (bifp == oifp && ifp != oifp) /* (1) */ 2224 continue; 2225 if (bifp != oifp && ifp == oifp) /* (2) */ 2226 goto replace; 2227 2228 /* 2229 * Both bifp and ifp are on the outgoing 2230 * interface, or both two are on a different 2231 * interface from the outgoing I/F. 2232 * now we need address matching against dst 2233 * for tiebreaking. 2234 */ 2235 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2236 matchcmp = tlen - blen; 2237 if (matchcmp > 0) /* (3) */ 2238 goto replace; 2239 continue; /* (4) */ 2240 } 2241 if (dscopecmp > 0) { 2242 if (bscopecmp > 0) /* (5) */ 2243 continue; 2244 goto replace; /* (6) */ 2245 } 2246 if (dscopecmp < 0) { 2247 if (bscopecmp > 0) /* (7) */ 2248 goto replace; 2249 continue; /* (8) */ 2250 } 2251 2252 /* now dscopecmp must be 0 */ 2253 if (bscopecmp < 0) 2254 goto replace; /* (9) */ 2255 2256 replace: 2257 ifa_best = (struct in6_ifaddr *)ifa; 2258 blen = tlen >= 0 ? tlen : 2259 in6_matchlen(IFA_IN6(ifa), dst); 2260 best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr); 2261 } 2262 } 2263 2264 /* count statistics for future improvements */ 2265 if (ifa_best == NULL) 2266 ip6stat.ip6s_sources_none++; 2267 else { 2268 if (oifp == ifa_best->ia_ifp) 2269 ip6stat.ip6s_sources_sameif[best_scope]++; 2270 else 2271 ip6stat.ip6s_sources_otherif[best_scope]++; 2272 2273 if (best_scope == dst_scope) 2274 ip6stat.ip6s_sources_samescope[best_scope]++; 2275 else 2276 ip6stat.ip6s_sources_otherscope[best_scope]++; 2277 2278 if (ifa_best->ia6_flags & IN6_IFF_DEPRECATED) 2279 ip6stat.ip6s_sources_deprecated[best_scope]++; 2280 } 2281 2282 return (ifa_best); 2283 } 2284 2285 /* 2286 * return the best address out of the same scope. if no address was 2287 * found, return the first valid address from designated IF. 2288 */ 2289 struct in6_ifaddr * 2290 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 2291 { 2292 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2293 struct ifaddr_container *ifac; 2294 struct in6_ifaddr *besta = NULL; 2295 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 2296 2297 dep[0] = dep[1] = NULL; 2298 2299 /* 2300 * We first look for addresses in the same scope. 2301 * If there is one, return it. 2302 * If two or more, return one which matches the dst longest. 2303 * If none, return one of global addresses assigned other ifs. 2304 */ 2305 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2306 struct ifaddr *ifa = ifac->ifa; 2307 2308 if (ifa->ifa_addr->sa_family != AF_INET6) 2309 continue; 2310 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2311 continue; /* XXX: is there any case to allow anycast? */ 2312 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2313 continue; /* don't use this interface */ 2314 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2315 continue; 2316 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2317 if (ip6_use_deprecated) 2318 dep[0] = (struct in6_ifaddr *)ifa; 2319 continue; 2320 } 2321 2322 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2323 /* 2324 * call in6_matchlen() as few as possible 2325 */ 2326 if (besta) { 2327 if (blen == -1) 2328 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2329 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2330 if (tlen > blen) { 2331 blen = tlen; 2332 besta = (struct in6_ifaddr *)ifa; 2333 } 2334 } else 2335 besta = (struct in6_ifaddr *)ifa; 2336 } 2337 } 2338 if (besta) 2339 return (besta); 2340 2341 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2342 struct ifaddr *ifa = ifac->ifa; 2343 2344 if (ifa->ifa_addr->sa_family != AF_INET6) 2345 continue; 2346 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2347 continue; /* XXX: is there any case to allow anycast? */ 2348 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2349 continue; /* don't use this interface */ 2350 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2351 continue; 2352 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2353 if (ip6_use_deprecated) 2354 dep[1] = (struct in6_ifaddr *)ifa; 2355 continue; 2356 } 2357 2358 return (struct in6_ifaddr *)ifa; 2359 } 2360 2361 /* use the last-resort values, that are, deprecated addresses */ 2362 if (dep[0]) 2363 return dep[0]; 2364 if (dep[1]) 2365 return dep[1]; 2366 2367 return NULL; 2368 } 2369 2370 /* 2371 * perform DAD when interface becomes IFF_UP. 2372 */ 2373 void 2374 in6_if_up(struct ifnet *ifp) 2375 { 2376 struct ifaddr_container *ifac; 2377 struct in6_ifaddr *ia; 2378 int dad_delay; /* delay ticks before DAD output */ 2379 2380 /* 2381 * special cases, like 6to4, are handled in in6_ifattach 2382 */ 2383 in6_ifattach(ifp, NULL); 2384 2385 dad_delay = 0; 2386 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2387 struct ifaddr *ifa = ifac->ifa; 2388 2389 if (ifa->ifa_addr->sa_family != AF_INET6) 2390 continue; 2391 ia = (struct in6_ifaddr *)ifa; 2392 if (ia->ia6_flags & IN6_IFF_TENTATIVE) 2393 nd6_dad_start(ifa, &dad_delay); 2394 } 2395 } 2396 2397 int 2398 in6if_do_dad(struct ifnet *ifp) 2399 { 2400 if (ifp->if_flags & IFF_LOOPBACK) 2401 return (0); 2402 2403 switch (ifp->if_type) { 2404 #ifdef IFT_DUMMY 2405 case IFT_DUMMY: 2406 #endif 2407 case IFT_FAITH: 2408 /* 2409 * These interfaces do not have the IFF_LOOPBACK flag, 2410 * but loop packets back. We do not have to do DAD on such 2411 * interfaces. We should even omit it, because loop-backed 2412 * NS would confuse the DAD procedure. 2413 */ 2414 return (0); 2415 default: 2416 /* 2417 * Our DAD routine requires the interface up and running. 2418 * However, some interfaces can be up before the RUNNING 2419 * status. Additionaly, users may try to assign addresses 2420 * before the interface becomes up (or running). 2421 * We simply skip DAD in such a case as a work around. 2422 * XXX: we should rather mark "tentative" on such addresses, 2423 * and do DAD after the interface becomes ready. 2424 */ 2425 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 2426 (IFF_UP|IFF_RUNNING)) 2427 return (0); 2428 2429 return (1); 2430 } 2431 } 2432 2433 /* 2434 * Calculate max IPv6 MTU through all the interfaces and store it 2435 * to in6_maxmtu. 2436 */ 2437 void 2438 in6_setmaxmtu(void) 2439 { 2440 unsigned long maxmtu = 0; 2441 struct ifnet *ifp; 2442 2443 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 2444 { 2445 /* this function can be called during ifnet initialization */ 2446 if (!ifp->if_afdata[AF_INET6]) 2447 continue; 2448 if (!(ifp->if_flags & IFF_LOOPBACK) && 2449 ND_IFINFO(ifp)->linkmtu > maxmtu) 2450 maxmtu = ND_IFINFO(ifp)->linkmtu; 2451 } 2452 if (maxmtu) /* update only when maxmtu is positive */ 2453 in6_maxmtu = maxmtu; 2454 } 2455 2456 void * 2457 in6_domifattach(struct ifnet *ifp) 2458 { 2459 struct in6_ifextra *ext; 2460 2461 ext = (struct in6_ifextra *)kmalloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2462 bzero(ext, sizeof(*ext)); 2463 2464 ext->in6_ifstat = (struct in6_ifstat *)kmalloc(sizeof(struct in6_ifstat), 2465 M_IFADDR, M_WAITOK); 2466 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat)); 2467 2468 ext->icmp6_ifstat = 2469 (struct icmp6_ifstat *)kmalloc(sizeof(struct icmp6_ifstat), 2470 M_IFADDR, M_WAITOK); 2471 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat)); 2472 2473 ext->nd_ifinfo = nd6_ifattach(ifp); 2474 ext->scope6_id = scope6_ifattach(ifp); 2475 return ext; 2476 } 2477 2478 void 2479 in6_domifdetach(struct ifnet *ifp, void *aux) 2480 { 2481 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2482 scope6_ifdetach(ext->scope6_id); 2483 nd6_ifdetach(ext->nd_ifinfo); 2484 kfree(ext->in6_ifstat, M_IFADDR); 2485 kfree(ext->icmp6_ifstat, M_IFADDR); 2486 kfree(ext, M_IFADDR); 2487 } 2488 2489 /* 2490 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2491 * v4 mapped addr or v4 compat addr 2492 */ 2493 void 2494 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2495 { 2496 bzero(sin, sizeof(*sin)); 2497 sin->sin_len = sizeof(struct sockaddr_in); 2498 sin->sin_family = AF_INET; 2499 sin->sin_port = sin6->sin6_port; 2500 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2501 } 2502 2503 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2504 void 2505 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2506 { 2507 bzero(sin6, sizeof(*sin6)); 2508 sin6->sin6_len = sizeof(struct sockaddr_in6); 2509 sin6->sin6_family = AF_INET6; 2510 sin6->sin6_port = sin->sin_port; 2511 sin6->sin6_addr.s6_addr32[0] = 0; 2512 sin6->sin6_addr.s6_addr32[1] = 0; 2513 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2514 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2515 } 2516 2517 /* Convert sockaddr_in6 into sockaddr_in. */ 2518 void 2519 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2520 { 2521 struct sockaddr_in *sin_p; 2522 struct sockaddr_in6 sin6; 2523 2524 /* 2525 * Save original sockaddr_in6 addr and convert it 2526 * to sockaddr_in. 2527 */ 2528 sin6 = *(struct sockaddr_in6 *)nam; 2529 sin_p = (struct sockaddr_in *)nam; 2530 in6_sin6_2_sin(sin_p, &sin6); 2531 } 2532 2533 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2534 void 2535 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2536 { 2537 struct sockaddr_in *sin_p; 2538 struct sockaddr_in6 *sin6_p; 2539 2540 sin6_p = kmalloc(sizeof *sin6_p, M_SONAME, M_WAITOK); 2541 sin_p = (struct sockaddr_in *)*nam; 2542 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2543 kfree(*nam, M_SONAME); 2544 *nam = (struct sockaddr *)sin6_p; 2545 } 2546