1 /* 2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved. 3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved. 4 * 5 * This code is derived from software contributed to The DragonFly Project 6 * by Jeffrey M. Hsu. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of The DragonFly Project nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific, prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* 35 * Copyright (c) 1982, 1986, 1988, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. All advertising materials mentioning features or use of this software 47 * must display the following acknowledgement: 48 * This product includes software developed by the University of 49 * California, Berkeley and its contributors. 50 * 4. Neither the name of the University nor the names of its contributors 51 * may be used to endorse or promote products derived from this software 52 * without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 64 * SUCH DAMAGE. 65 * 66 * From: @(#)tcp_usrreq.c 8.2 (Berkeley) 1/3/94 67 * $FreeBSD: src/sys/netinet/tcp_usrreq.c,v 1.51.2.17 2002/10/11 11:46:44 ume Exp $ 68 * $DragonFly: src/sys/netinet/tcp_usrreq.c,v 1.51 2008/09/29 20:52:23 dillon Exp $ 69 */ 70 71 #include "opt_ipsec.h" 72 #include "opt_inet.h" 73 #include "opt_inet6.h" 74 #include "opt_tcpdebug.h" 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/kernel.h> 79 #include <sys/malloc.h> 80 #include <sys/sysctl.h> 81 #include <sys/globaldata.h> 82 #include <sys/thread.h> 83 84 #include <sys/mbuf.h> 85 #ifdef INET6 86 #include <sys/domain.h> 87 #endif /* INET6 */ 88 #include <sys/socket.h> 89 #include <sys/socketvar.h> 90 #include <sys/protosw.h> 91 92 #include <sys/thread2.h> 93 #include <sys/msgport2.h> 94 #include <sys/socketvar2.h> 95 96 #include <net/if.h> 97 #include <net/netisr.h> 98 #include <net/route.h> 99 100 #include <net/netmsg2.h> 101 102 #include <netinet/in.h> 103 #include <netinet/in_systm.h> 104 #ifdef INET6 105 #include <netinet/ip6.h> 106 #endif 107 #include <netinet/in_pcb.h> 108 #ifdef INET6 109 #include <netinet6/in6_pcb.h> 110 #endif 111 #include <netinet/in_var.h> 112 #include <netinet/ip_var.h> 113 #ifdef INET6 114 #include <netinet6/ip6_var.h> 115 #include <netinet6/tcp6_var.h> 116 #endif 117 #include <netinet/tcp.h> 118 #include <netinet/tcp_fsm.h> 119 #include <netinet/tcp_seq.h> 120 #include <netinet/tcp_timer.h> 121 #include <netinet/tcp_timer2.h> 122 #include <netinet/tcp_var.h> 123 #include <netinet/tcpip.h> 124 #ifdef TCPDEBUG 125 #include <netinet/tcp_debug.h> 126 #endif 127 128 #ifdef IPSEC 129 #include <netinet6/ipsec.h> 130 #endif /*IPSEC*/ 131 132 /* 133 * TCP protocol interface to socket abstraction. 134 */ 135 extern char *tcpstates[]; /* XXX ??? */ 136 137 static int tcp_attach (struct socket *, struct pru_attach_info *); 138 static int tcp_connect (struct tcpcb *, int flags, struct mbuf *m, 139 struct sockaddr *, struct thread *); 140 #ifdef INET6 141 static int tcp6_connect (struct tcpcb *, int flags, struct mbuf *m, 142 struct sockaddr *, struct thread *); 143 static int tcp6_connect_oncpu(struct tcpcb *tp, int flags, struct mbuf *m, 144 struct sockaddr_in6 *sin6, 145 struct in6_addr *addr6); 146 #endif /* INET6 */ 147 static struct tcpcb * 148 tcp_disconnect (struct tcpcb *); 149 static struct tcpcb * 150 tcp_usrclosed (struct tcpcb *); 151 152 #ifdef TCPDEBUG 153 #define TCPDEBUG0 int ostate = 0 154 #define TCPDEBUG1() ostate = tp ? tp->t_state : 0 155 #define TCPDEBUG2(req) if (tp && (so->so_options & SO_DEBUG)) \ 156 tcp_trace(TA_USER, ostate, tp, 0, 0, req) 157 #else 158 #define TCPDEBUG0 159 #define TCPDEBUG1() 160 #define TCPDEBUG2(req) 161 #endif 162 163 /* 164 * TCP attaches to socket via pru_attach(), reserving space, 165 * and an internet control block. 166 */ 167 static int 168 tcp_usr_attach(struct socket *so, int proto, struct pru_attach_info *ai) 169 { 170 int error; 171 struct inpcb *inp; 172 struct tcpcb *tp = 0; 173 TCPDEBUG0; 174 175 soreference(so); 176 inp = so->so_pcb; 177 TCPDEBUG1(); 178 if (inp) { 179 error = EISCONN; 180 goto out; 181 } 182 183 error = tcp_attach(so, ai); 184 if (error) 185 goto out; 186 187 if ((so->so_options & SO_LINGER) && so->so_linger == 0) 188 so->so_linger = TCP_LINGERTIME; 189 tp = sototcpcb(so); 190 out: 191 sofree(so); /* from ref above */ 192 TCPDEBUG2(PRU_ATTACH); 193 return error; 194 } 195 196 /* 197 * pru_detach() detaches the TCP protocol from the socket. 198 * If the protocol state is non-embryonic, then can't 199 * do this directly: have to initiate a pru_disconnect(), 200 * which may finish later; embryonic TCB's can just 201 * be discarded here. 202 */ 203 static int 204 tcp_usr_detach(struct socket *so) 205 { 206 int error = 0; 207 struct inpcb *inp; 208 struct tcpcb *tp; 209 TCPDEBUG0; 210 211 inp = so->so_pcb; 212 213 /* 214 * If the inp is already detached it may have been due to an async 215 * close. Just return as if no error occured. 216 */ 217 if (inp == NULL) 218 return 0; 219 220 /* 221 * It's possible for the tcpcb (tp) to disconnect from the inp due 222 * to tcp_drop()->tcp_close() being called. This may occur *after* 223 * the detach message has been queued so we may find a NULL tp here. 224 */ 225 if ((tp = intotcpcb(inp)) != NULL) { 226 TCPDEBUG1(); 227 tp = tcp_disconnect(tp); 228 TCPDEBUG2(PRU_DETACH); 229 } 230 return error; 231 } 232 233 /* 234 * Note: ignore_error is non-zero for certain disconnection races 235 * which we want to silently allow, otherwise close() may return 236 * an unexpected error. 237 */ 238 #define COMMON_START(so, inp, ignore_error) \ 239 TCPDEBUG0; \ 240 \ 241 inp = so->so_pcb; \ 242 do { \ 243 if (inp == NULL) { \ 244 return (ignore_error ? 0 : EINVAL); \ 245 } \ 246 tp = intotcpcb(inp); \ 247 TCPDEBUG1(); \ 248 } while(0) 249 250 #define COMMON_END(req) out: TCPDEBUG2(req); return error; goto out 251 252 /* 253 * Give the socket an address. 254 */ 255 static int 256 tcp_usr_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 257 { 258 int error = 0; 259 struct inpcb *inp; 260 struct tcpcb *tp; 261 struct sockaddr_in *sinp; 262 263 COMMON_START(so, inp, 0); 264 265 /* 266 * Must check for multicast addresses and disallow binding 267 * to them. 268 */ 269 sinp = (struct sockaddr_in *)nam; 270 if (sinp->sin_family == AF_INET && 271 IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) { 272 error = EAFNOSUPPORT; 273 goto out; 274 } 275 error = in_pcbbind(inp, nam, td); 276 if (error) 277 goto out; 278 COMMON_END(PRU_BIND); 279 280 } 281 282 #ifdef INET6 283 static int 284 tcp6_usr_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 285 { 286 int error = 0; 287 struct inpcb *inp; 288 struct tcpcb *tp; 289 struct sockaddr_in6 *sin6p; 290 291 COMMON_START(so, inp, 0); 292 293 /* 294 * Must check for multicast addresses and disallow binding 295 * to them. 296 */ 297 sin6p = (struct sockaddr_in6 *)nam; 298 if (sin6p->sin6_family == AF_INET6 && 299 IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr)) { 300 error = EAFNOSUPPORT; 301 goto out; 302 } 303 inp->inp_vflag &= ~INP_IPV4; 304 inp->inp_vflag |= INP_IPV6; 305 if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { 306 if (IN6_IS_ADDR_UNSPECIFIED(&sin6p->sin6_addr)) 307 inp->inp_vflag |= INP_IPV4; 308 else if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) { 309 struct sockaddr_in sin; 310 311 in6_sin6_2_sin(&sin, sin6p); 312 inp->inp_vflag |= INP_IPV4; 313 inp->inp_vflag &= ~INP_IPV6; 314 error = in_pcbbind(inp, (struct sockaddr *)&sin, td); 315 goto out; 316 } 317 } 318 error = in6_pcbbind(inp, nam, td); 319 if (error) 320 goto out; 321 COMMON_END(PRU_BIND); 322 } 323 #endif /* INET6 */ 324 325 #ifdef SMP 326 struct netmsg_inswildcard { 327 struct netmsg nm_netmsg; 328 struct inpcb *nm_inp; 329 struct inpcbinfo *nm_pcbinfo; 330 }; 331 332 static void 333 in_pcbinswildcardhash_handler(struct netmsg *msg0) 334 { 335 struct netmsg_inswildcard *msg = (struct netmsg_inswildcard *)msg0; 336 337 in_pcbinswildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo); 338 lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0); 339 } 340 #endif 341 342 /* 343 * Prepare to accept connections. 344 */ 345 static int 346 tcp_usr_listen(struct socket *so, struct thread *td) 347 { 348 int error = 0; 349 struct inpcb *inp; 350 struct tcpcb *tp; 351 #ifdef SMP 352 int cpu; 353 #endif 354 355 COMMON_START(so, inp, 0); 356 if (inp->inp_lport == 0) { 357 error = in_pcbbind(inp, NULL, td); 358 if (error != 0) 359 goto out; 360 } 361 362 tp->t_state = TCPS_LISTEN; 363 tp->tt_msg = NULL; /* Catch any invalid timer usage */ 364 #ifdef SMP 365 /* 366 * We have to set the flag because we can't have other cpus 367 * messing with our inp's flags. 368 */ 369 inp->inp_flags |= INP_WILDCARD_MP; 370 for (cpu = 0; cpu < ncpus2; cpu++) { 371 struct netmsg_inswildcard *msg; 372 373 if (cpu == mycpu->gd_cpuid) { 374 in_pcbinswildcardhash(inp); 375 continue; 376 } 377 378 msg = kmalloc(sizeof(struct netmsg_inswildcard), M_LWKTMSG, 379 M_INTWAIT); 380 netmsg_init(&msg->nm_netmsg, NULL, &netisr_afree_rport, 381 0, in_pcbinswildcardhash_handler); 382 msg->nm_inp = inp; 383 msg->nm_pcbinfo = &tcbinfo[cpu]; 384 lwkt_sendmsg(cpu_portfn(cpu), &msg->nm_netmsg.nm_lmsg); 385 } 386 #else 387 in_pcbinswildcardhash(inp); 388 #endif 389 COMMON_END(PRU_LISTEN); 390 } 391 392 #ifdef INET6 393 static int 394 tcp6_usr_listen(struct socket *so, struct thread *td) 395 { 396 int error = 0; 397 struct inpcb *inp; 398 struct tcpcb *tp; 399 #ifdef SMP 400 int cpu; 401 #endif 402 403 COMMON_START(so, inp, 0); 404 if (inp->inp_lport == 0) { 405 if (!(inp->inp_flags & IN6P_IPV6_V6ONLY)) 406 inp->inp_vflag |= INP_IPV4; 407 else 408 inp->inp_vflag &= ~INP_IPV4; 409 error = in6_pcbbind(inp, NULL, td); 410 } 411 if (error == 0) 412 tp->t_state = TCPS_LISTEN; 413 #ifdef SMP 414 /* 415 * We have to set the flag because we can't have other cpus 416 * messing with our inp's flags. 417 */ 418 inp->inp_flags |= INP_WILDCARD_MP; 419 for (cpu = 0; cpu < ncpus2; cpu++) { 420 struct netmsg_inswildcard *msg; 421 422 if (cpu == mycpu->gd_cpuid) { 423 in_pcbinswildcardhash(inp); 424 continue; 425 } 426 427 msg = kmalloc(sizeof(struct netmsg_inswildcard), M_LWKTMSG, 428 M_INTWAIT); 429 netmsg_init(&msg->nm_netmsg, NULL, &netisr_afree_rport, 430 0, in_pcbinswildcardhash_handler); 431 msg->nm_inp = inp; 432 msg->nm_pcbinfo = &tcbinfo[cpu]; 433 lwkt_sendmsg(cpu_portfn(cpu), &msg->nm_netmsg.nm_lmsg); 434 } 435 #else 436 in_pcbinswildcardhash(inp); 437 #endif 438 COMMON_END(PRU_LISTEN); 439 } 440 #endif /* INET6 */ 441 442 /* 443 * Initiate connection to peer. 444 * Create a template for use in transmissions on this connection. 445 * Enter SYN_SENT state, and mark socket as connecting. 446 * Start keep-alive timer, and seed output sequence space. 447 * Send initial segment on connection. 448 */ 449 static int 450 tcp_usr_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 451 { 452 int error = 0; 453 struct inpcb *inp; 454 struct tcpcb *tp; 455 struct sockaddr_in *sinp; 456 457 COMMON_START(so, inp, 0); 458 459 /* 460 * Must disallow TCP ``connections'' to multicast addresses. 461 */ 462 sinp = (struct sockaddr_in *)nam; 463 if (sinp->sin_family == AF_INET 464 && IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) { 465 error = EAFNOSUPPORT; 466 goto out; 467 } 468 469 if (!prison_remote_ip(td, (struct sockaddr*)sinp)) { 470 error = EAFNOSUPPORT; /* IPv6 only jail */ 471 goto out; 472 } 473 474 if ((error = tcp_connect(tp, 0, NULL, nam, td)) != 0) 475 goto out; 476 COMMON_END(PRU_CONNECT); 477 } 478 479 #ifdef INET6 480 static int 481 tcp6_usr_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 482 { 483 int error = 0; 484 struct inpcb *inp; 485 struct tcpcb *tp; 486 struct sockaddr_in6 *sin6p; 487 488 COMMON_START(so, inp, 0); 489 490 /* 491 * Must disallow TCP ``connections'' to multicast addresses. 492 */ 493 sin6p = (struct sockaddr_in6 *)nam; 494 if (sin6p->sin6_family == AF_INET6 495 && IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr)) { 496 error = EAFNOSUPPORT; 497 goto out; 498 } 499 500 if (!prison_remote_ip(td, nam)) { 501 error = EAFNOSUPPORT; /* IPv4 only jail */ 502 goto out; 503 } 504 505 if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) { 506 struct sockaddr_in sin; 507 508 if ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0) { 509 error = EINVAL; 510 goto out; 511 } 512 513 in6_sin6_2_sin(&sin, sin6p); 514 inp->inp_vflag |= INP_IPV4; 515 inp->inp_vflag &= ~INP_IPV6; 516 error = tcp_connect(tp, 0, NULL, (struct sockaddr *)&sin, td); 517 if (error) 518 goto out; 519 goto out; 520 } 521 inp->inp_vflag &= ~INP_IPV4; 522 inp->inp_vflag |= INP_IPV6; 523 inp->inp_inc.inc_isipv6 = 1; 524 if ((error = tcp6_connect(tp, 0, NULL, nam, td)) != 0) 525 goto out; 526 error = tcp_output(tp); 527 COMMON_END(PRU_CONNECT); 528 } 529 #endif /* INET6 */ 530 531 /* 532 * Initiate disconnect from peer. 533 * If connection never passed embryonic stage, just drop; 534 * else if don't need to let data drain, then can just drop anyways, 535 * else have to begin TCP shutdown process: mark socket disconnecting, 536 * drain unread data, state switch to reflect user close, and 537 * send segment (e.g. FIN) to peer. Socket will be really disconnected 538 * when peer sends FIN and acks ours. 539 * 540 * SHOULD IMPLEMENT LATER PRU_CONNECT VIA REALLOC TCPCB. 541 */ 542 static int 543 tcp_usr_disconnect(struct socket *so) 544 { 545 int error = 0; 546 struct inpcb *inp; 547 struct tcpcb *tp; 548 549 COMMON_START(so, inp, 1); 550 tp = tcp_disconnect(tp); 551 COMMON_END(PRU_DISCONNECT); 552 } 553 554 /* 555 * Accept a connection. Essentially all the work is 556 * done at higher levels; just return the address 557 * of the peer, storing through addr. 558 */ 559 static int 560 tcp_usr_accept(struct socket *so, struct sockaddr **nam) 561 { 562 int error = 0; 563 struct inpcb *inp; 564 struct tcpcb *tp = NULL; 565 TCPDEBUG0; 566 567 inp = so->so_pcb; 568 if (so->so_state & SS_ISDISCONNECTED) { 569 error = ECONNABORTED; 570 goto out; 571 } 572 if (inp == 0) 573 return (EINVAL); 574 575 tp = intotcpcb(inp); 576 TCPDEBUG1(); 577 in_setpeeraddr(so, nam); 578 COMMON_END(PRU_ACCEPT); 579 } 580 581 #ifdef INET6 582 static int 583 tcp6_usr_accept(struct socket *so, struct sockaddr **nam) 584 { 585 int error = 0; 586 struct inpcb *inp; 587 struct tcpcb *tp = NULL; 588 TCPDEBUG0; 589 590 inp = so->so_pcb; 591 592 if (so->so_state & SS_ISDISCONNECTED) { 593 error = ECONNABORTED; 594 goto out; 595 } 596 if (inp == 0) 597 return (EINVAL); 598 tp = intotcpcb(inp); 599 TCPDEBUG1(); 600 in6_mapped_peeraddr(so, nam); 601 COMMON_END(PRU_ACCEPT); 602 } 603 #endif /* INET6 */ 604 /* 605 * Mark the connection as being incapable of further output. 606 */ 607 static int 608 tcp_usr_shutdown(struct socket *so) 609 { 610 int error = 0; 611 struct inpcb *inp; 612 struct tcpcb *tp; 613 614 COMMON_START(so, inp, 0); 615 socantsendmore(so); 616 tp = tcp_usrclosed(tp); 617 if (tp) 618 error = tcp_output(tp); 619 COMMON_END(PRU_SHUTDOWN); 620 } 621 622 /* 623 * After a receive, possibly send window update to peer. 624 */ 625 static int 626 tcp_usr_rcvd(struct socket *so, int flags) 627 { 628 int error = 0; 629 struct inpcb *inp; 630 struct tcpcb *tp; 631 632 COMMON_START(so, inp, 0); 633 tcp_output(tp); 634 COMMON_END(PRU_RCVD); 635 } 636 637 /* 638 * Do a send by putting data in output queue and updating urgent 639 * marker if URG set. Possibly send more data. Unlike the other 640 * pru_*() routines, the mbuf chains are our responsibility. We 641 * must either enqueue them or free them. The other pru_* routines 642 * generally are caller-frees. 643 */ 644 static int 645 tcp_usr_send(struct socket *so, int flags, struct mbuf *m, 646 struct sockaddr *nam, struct mbuf *control, struct thread *td) 647 { 648 int error = 0; 649 struct inpcb *inp; 650 struct tcpcb *tp; 651 #ifdef INET6 652 int isipv6; 653 #endif 654 TCPDEBUG0; 655 656 inp = so->so_pcb; 657 658 if (inp == NULL) { 659 /* 660 * OOPS! we lost a race, the TCP session got reset after 661 * we checked SS_CANTSENDMORE, eg: while doing uiomove or a 662 * network interrupt in the non-critical section of sosend(). 663 */ 664 m_freem(m); 665 if (control) 666 m_freem(control); 667 error = ECONNRESET; /* XXX EPIPE? */ 668 tp = NULL; 669 TCPDEBUG1(); 670 goto out; 671 } 672 #ifdef INET6 673 isipv6 = nam && nam->sa_family == AF_INET6; 674 #endif /* INET6 */ 675 tp = intotcpcb(inp); 676 TCPDEBUG1(); 677 if (control) { 678 /* TCP doesn't do control messages (rights, creds, etc) */ 679 if (control->m_len) { 680 m_freem(control); 681 m_freem(m); 682 error = EINVAL; 683 goto out; 684 } 685 m_freem(control); /* empty control, just free it */ 686 } 687 688 /* 689 * Don't let too much OOB data build up 690 */ 691 if (flags & PRUS_OOB) { 692 if (ssb_space(&so->so_snd) < -512) { 693 m_freem(m); 694 error = ENOBUFS; 695 goto out; 696 } 697 } 698 699 /* 700 * Do implied connect if not yet connected. Any data sent 701 * with the connect is handled by tcp_connect() and friends. 702 * 703 * NOTE! PROTOCOL THREAD MAY BE CHANGED BY THE CONNECT! 704 */ 705 if (nam && tp->t_state < TCPS_SYN_SENT) { 706 #ifdef INET6 707 if (isipv6) 708 error = tcp6_connect(tp, flags, m, nam, td); 709 else 710 #endif /* INET6 */ 711 error = tcp_connect(tp, flags, m, nam, td); 712 #if 0 713 /* WTF is this doing here? */ 714 tp->snd_wnd = TTCP_CLIENT_SND_WND; 715 tcp_mss(tp, -1); 716 #endif 717 goto out; 718 } 719 720 /* 721 * Pump the data into the socket. 722 */ 723 if (m) 724 ssb_appendstream(&so->so_snd, m); 725 if (flags & PRUS_OOB) { 726 /* 727 * According to RFC961 (Assigned Protocols), 728 * the urgent pointer points to the last octet 729 * of urgent data. We continue, however, 730 * to consider it to indicate the first octet 731 * of data past the urgent section. 732 * Otherwise, snd_up should be one lower. 733 */ 734 tp->snd_up = tp->snd_una + so->so_snd.ssb_cc; 735 tp->t_flags |= TF_FORCE; 736 error = tcp_output(tp); 737 tp->t_flags &= ~TF_FORCE; 738 } else { 739 if (flags & PRUS_EOF) { 740 /* 741 * Close the send side of the connection after 742 * the data is sent. 743 */ 744 socantsendmore(so); 745 tp = tcp_usrclosed(tp); 746 } 747 if (tp != NULL) { 748 if (flags & PRUS_MORETOCOME) 749 tp->t_flags |= TF_MORETOCOME; 750 error = tcp_output(tp); 751 if (flags & PRUS_MORETOCOME) 752 tp->t_flags &= ~TF_MORETOCOME; 753 } 754 } 755 COMMON_END((flags & PRUS_OOB) ? PRU_SENDOOB : 756 ((flags & PRUS_EOF) ? PRU_SEND_EOF : PRU_SEND)); 757 } 758 759 /* 760 * NOTE: (so) is referenced from soabort*() and netmsg_pru_abort() 761 * will sofree() it when we return. 762 */ 763 static int 764 tcp_usr_abort(struct socket *so) 765 { 766 int error = 0; 767 struct inpcb *inp; 768 struct tcpcb *tp; 769 770 COMMON_START(so, inp, 1); 771 tp = tcp_drop(tp, ECONNABORTED); 772 COMMON_END(PRU_ABORT); 773 } 774 775 /* 776 * Receive out-of-band data. 777 */ 778 static int 779 tcp_usr_rcvoob(struct socket *so, struct mbuf *m, int flags) 780 { 781 int error = 0; 782 struct inpcb *inp; 783 struct tcpcb *tp; 784 785 COMMON_START(so, inp, 0); 786 if ((so->so_oobmark == 0 && 787 (so->so_state & SS_RCVATMARK) == 0) || 788 so->so_options & SO_OOBINLINE || 789 tp->t_oobflags & TCPOOB_HADDATA) { 790 error = EINVAL; 791 goto out; 792 } 793 if ((tp->t_oobflags & TCPOOB_HAVEDATA) == 0) { 794 error = EWOULDBLOCK; 795 goto out; 796 } 797 m->m_len = 1; 798 *mtod(m, caddr_t) = tp->t_iobc; 799 if ((flags & MSG_PEEK) == 0) 800 tp->t_oobflags ^= (TCPOOB_HAVEDATA | TCPOOB_HADDATA); 801 COMMON_END(PRU_RCVOOB); 802 } 803 804 /* xxx - should be const */ 805 struct pr_usrreqs tcp_usrreqs = { 806 .pru_abort = tcp_usr_abort, 807 .pru_accept = tcp_usr_accept, 808 .pru_attach = tcp_usr_attach, 809 .pru_bind = tcp_usr_bind, 810 .pru_connect = tcp_usr_connect, 811 .pru_connect2 = pru_connect2_notsupp, 812 .pru_control = in_control, 813 .pru_detach = tcp_usr_detach, 814 .pru_disconnect = tcp_usr_disconnect, 815 .pru_listen = tcp_usr_listen, 816 .pru_peeraddr = in_setpeeraddr, 817 .pru_rcvd = tcp_usr_rcvd, 818 .pru_rcvoob = tcp_usr_rcvoob, 819 .pru_send = tcp_usr_send, 820 .pru_sense = pru_sense_null, 821 .pru_shutdown = tcp_usr_shutdown, 822 .pru_sockaddr = in_setsockaddr, 823 .pru_sosend = sosend, 824 .pru_soreceive = soreceive 825 }; 826 827 #ifdef INET6 828 struct pr_usrreqs tcp6_usrreqs = { 829 .pru_abort = tcp_usr_abort, 830 .pru_accept = tcp6_usr_accept, 831 .pru_attach = tcp_usr_attach, 832 .pru_bind = tcp6_usr_bind, 833 .pru_connect = tcp6_usr_connect, 834 .pru_connect2 = pru_connect2_notsupp, 835 .pru_control = in6_control, 836 .pru_detach = tcp_usr_detach, 837 .pru_disconnect = tcp_usr_disconnect, 838 .pru_listen = tcp6_usr_listen, 839 .pru_peeraddr = in6_mapped_peeraddr, 840 .pru_rcvd = tcp_usr_rcvd, 841 .pru_rcvoob = tcp_usr_rcvoob, 842 .pru_send = tcp_usr_send, 843 .pru_sense = pru_sense_null, 844 .pru_shutdown = tcp_usr_shutdown, 845 .pru_sockaddr = in6_mapped_sockaddr, 846 .pru_sosend = sosend, 847 .pru_soreceive = soreceive 848 }; 849 #endif /* INET6 */ 850 851 static int 852 tcp_connect_oncpu(struct tcpcb *tp, int flags, struct mbuf *m, 853 struct sockaddr_in *sin, struct sockaddr_in *if_sin) 854 { 855 struct inpcb *inp = tp->t_inpcb, *oinp; 856 struct socket *so = inp->inp_socket; 857 struct route *ro = &inp->inp_route; 858 859 oinp = in_pcblookup_hash(&tcbinfo[mycpu->gd_cpuid], 860 sin->sin_addr, sin->sin_port, 861 inp->inp_laddr.s_addr != INADDR_ANY ? 862 inp->inp_laddr : if_sin->sin_addr, 863 inp->inp_lport, 0, NULL); 864 if (oinp != NULL) { 865 m_freem(m); 866 return (EADDRINUSE); 867 } 868 if (inp->inp_laddr.s_addr == INADDR_ANY) 869 inp->inp_laddr = if_sin->sin_addr; 870 inp->inp_faddr = sin->sin_addr; 871 inp->inp_fport = sin->sin_port; 872 inp->inp_cpcbinfo = &tcbinfo[mycpu->gd_cpuid]; 873 in_pcbinsconnhash(inp); 874 875 /* 876 * We are now on the inpcb's owner CPU, if the cached route was 877 * freed because the rtentry's owner CPU is not the current CPU 878 * (e.g. in tcp_connect()), then we try to reallocate it here with 879 * the hope that a rtentry may be cloned from a RTF_PRCLONING 880 * rtentry. 881 */ 882 if (!(inp->inp_socket->so_options & SO_DONTROUTE) && /*XXX*/ 883 ro->ro_rt == NULL) { 884 bzero(&ro->ro_dst, sizeof(struct sockaddr_in)); 885 ro->ro_dst.sa_family = AF_INET; 886 ro->ro_dst.sa_len = sizeof(struct sockaddr_in); 887 ((struct sockaddr_in *)&ro->ro_dst)->sin_addr = 888 sin->sin_addr; 889 rtalloc(ro); 890 } 891 892 /* 893 * Now that no more errors can occur, change the protocol processing 894 * port to the current thread (which is the correct thread). 895 * 896 * Create TCP timer message now; we are on the tcpcb's owner 897 * CPU/thread. 898 */ 899 sosetport(so, &curthread->td_msgport); 900 tcp_create_timermsg(tp, &curthread->td_msgport); 901 902 /* 903 * Compute window scaling to request. Use a larger scaling then 904 * needed for the initial receive buffer in case the receive buffer 905 * gets expanded. 906 */ 907 if (tp->request_r_scale < TCP_MIN_WINSHIFT) 908 tp->request_r_scale = TCP_MIN_WINSHIFT; 909 while (tp->request_r_scale < TCP_MAX_WINSHIFT && 910 (TCP_MAXWIN << tp->request_r_scale) < so->so_rcv.ssb_hiwat 911 ) { 912 tp->request_r_scale++; 913 } 914 915 soisconnecting(so); 916 tcpstat.tcps_connattempt++; 917 tp->t_state = TCPS_SYN_SENT; 918 tcp_callout_reset(tp, tp->tt_keep, tcp_keepinit, tcp_timer_keep); 919 tp->iss = tcp_new_isn(tp); 920 tcp_sendseqinit(tp); 921 if (m) { 922 ssb_appendstream(&so->so_snd, m); 923 m = NULL; 924 if (flags & PRUS_OOB) 925 tp->snd_up = tp->snd_una + so->so_snd.ssb_cc; 926 } 927 928 /* 929 * Close the send side of the connection after 930 * the data is sent if flagged. 931 */ 932 if ((flags & (PRUS_OOB|PRUS_EOF)) == PRUS_EOF) { 933 socantsendmore(so); 934 tp = tcp_usrclosed(tp); 935 } 936 return (tcp_output(tp)); 937 } 938 939 #ifdef SMP 940 941 struct netmsg_tcp_connect { 942 struct netmsg nm_netmsg; 943 struct tcpcb *nm_tp; 944 struct sockaddr_in *nm_sin; 945 struct sockaddr_in *nm_ifsin; 946 int nm_flags; 947 struct mbuf *nm_m; 948 }; 949 950 static void 951 tcp_connect_handler(netmsg_t netmsg) 952 { 953 struct netmsg_tcp_connect *msg = (void *)netmsg; 954 int error; 955 956 error = tcp_connect_oncpu(msg->nm_tp, msg->nm_flags, msg->nm_m, 957 msg->nm_sin, msg->nm_ifsin); 958 lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, error); 959 } 960 961 struct netmsg_tcp6_connect { 962 struct netmsg nm_netmsg; 963 struct tcpcb *nm_tp; 964 struct sockaddr_in6 *nm_sin6; 965 struct in6_addr *nm_addr6; 966 int nm_flags; 967 struct mbuf *nm_m; 968 }; 969 970 #ifdef INET6 971 static void 972 tcp6_connect_handler(netmsg_t netmsg) 973 { 974 struct netmsg_tcp6_connect *msg = (void *)netmsg; 975 int error; 976 977 error = tcp6_connect_oncpu(msg->nm_tp, msg->nm_flags, msg->nm_m, 978 msg->nm_sin6, msg->nm_addr6); 979 lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, error); 980 } 981 #endif 982 983 #endif /* SMP */ 984 985 /* 986 * Common subroutine to open a TCP connection to remote host specified 987 * by struct sockaddr_in in mbuf *nam. Call in_pcbbind to assign a local 988 * port number if needed. Call in_pcbladdr to do the routing and to choose 989 * a local host address (interface). 990 * Initialize connection parameters and enter SYN-SENT state. 991 */ 992 static int 993 tcp_connect(struct tcpcb *tp, int flags, struct mbuf *m, 994 struct sockaddr *nam, struct thread *td) 995 { 996 struct inpcb *inp = tp->t_inpcb; 997 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 998 struct sockaddr_in *if_sin; 999 int error; 1000 #ifdef SMP 1001 lwkt_port_t port; 1002 #endif 1003 1004 /* 1005 * Bind if we have to 1006 */ 1007 if (inp->inp_lport == 0) { 1008 error = in_pcbbind(inp, NULL, td); 1009 if (error) { 1010 m_freem(m); 1011 return (error); 1012 } 1013 } 1014 1015 /* 1016 * Calculate the correct protocol processing thread. The connect 1017 * operation must run there. 1018 */ 1019 error = in_pcbladdr(inp, nam, &if_sin, td); 1020 if (error) { 1021 m_freem(m); 1022 return (error); 1023 } 1024 1025 #ifdef SMP 1026 port = tcp_addrport(sin->sin_addr.s_addr, sin->sin_port, 1027 inp->inp_laddr.s_addr ? 1028 inp->inp_laddr.s_addr : if_sin->sin_addr.s_addr, 1029 inp->inp_lport); 1030 1031 if (port != &curthread->td_msgport) { 1032 struct netmsg_tcp_connect msg; 1033 struct route *ro = &inp->inp_route; 1034 1035 /* 1036 * in_pcbladdr() may have allocated a route entry for us 1037 * on the current CPU, but we need a route entry on the 1038 * inpcb's owner CPU, so free it here. 1039 */ 1040 if (ro->ro_rt != NULL) 1041 RTFREE(ro->ro_rt); 1042 bzero(ro, sizeof(*ro)); 1043 1044 /* 1045 * NOTE: We haven't set so->so_port yet do not pass so 1046 * to netmsg_init() or it will be improperly forwarded. 1047 */ 1048 netmsg_init(&msg.nm_netmsg, NULL, &curthread->td_msgport, 1049 0, tcp_connect_handler); 1050 msg.nm_tp = tp; 1051 msg.nm_sin = sin; 1052 msg.nm_ifsin = if_sin; 1053 msg.nm_flags = flags; 1054 msg.nm_m = m; 1055 error = lwkt_domsg(port, &msg.nm_netmsg.nm_lmsg, 0); 1056 } else { 1057 error = tcp_connect_oncpu(tp, flags, m, sin, if_sin); 1058 } 1059 #else 1060 error = tcp_connect_oncpu(tp, flags, m, sin, if_sin); 1061 #endif 1062 return (error); 1063 } 1064 1065 #ifdef INET6 1066 1067 static int 1068 tcp6_connect(struct tcpcb *tp, int flags, struct mbuf *m, 1069 struct sockaddr *nam, struct thread *td) 1070 { 1071 struct inpcb *inp = tp->t_inpcb; 1072 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam; 1073 struct in6_addr *addr6; 1074 #ifdef SMP 1075 lwkt_port_t port; 1076 #endif 1077 int error; 1078 1079 if (inp->inp_lport == 0) { 1080 error = in6_pcbbind(inp, NULL, td); 1081 if (error) { 1082 m_freem(m); 1083 return (error); 1084 } 1085 } 1086 1087 /* 1088 * Cannot simply call in_pcbconnect, because there might be an 1089 * earlier incarnation of this same connection still in 1090 * TIME_WAIT state, creating an ADDRINUSE error. 1091 */ 1092 error = in6_pcbladdr(inp, nam, &addr6, td); 1093 if (error) { 1094 m_freem(m); 1095 return (error); 1096 } 1097 1098 #ifdef SMP 1099 port = tcp6_addrport(); /* XXX hack for now, always cpu0 */ 1100 1101 if (port != &curthread->td_msgport) { 1102 struct netmsg_tcp6_connect msg; 1103 struct route *ro = &inp->inp_route; 1104 1105 /* 1106 * in_pcbladdr() may have allocated a route entry for us 1107 * on the current CPU, but we need a route entry on the 1108 * inpcb's owner CPU, so free it here. 1109 */ 1110 if (ro->ro_rt != NULL) 1111 RTFREE(ro->ro_rt); 1112 bzero(ro, sizeof(*ro)); 1113 1114 netmsg_init(&msg.nm_netmsg, NULL, &curthread->td_msgport, 1115 0, tcp6_connect_handler); 1116 msg.nm_tp = tp; 1117 msg.nm_sin6 = sin6; 1118 msg.nm_addr6 = addr6; 1119 msg.nm_flags = flags; 1120 msg.nm_m = m; 1121 error = lwkt_domsg(port, &msg.nm_netmsg.nm_lmsg, 0); 1122 } else { 1123 error = tcp6_connect_oncpu(tp, flags, m, sin6, addr6); 1124 } 1125 #else 1126 error = tcp6_connect_oncpu(tp, flags, m, sin6, addr6); 1127 #endif 1128 return (error); 1129 } 1130 1131 static int 1132 tcp6_connect_oncpu(struct tcpcb *tp, int flags, struct mbuf *m, 1133 struct sockaddr_in6 *sin6, struct in6_addr *addr6) 1134 { 1135 struct inpcb *inp = tp->t_inpcb; 1136 struct socket *so = inp->inp_socket; 1137 struct inpcb *oinp; 1138 1139 /* 1140 * Cannot simply call in_pcbconnect, because there might be an 1141 * earlier incarnation of this same connection still in 1142 * TIME_WAIT state, creating an ADDRINUSE error. 1143 */ 1144 oinp = in6_pcblookup_hash(inp->inp_cpcbinfo, 1145 &sin6->sin6_addr, sin6->sin6_port, 1146 IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ? 1147 addr6 : &inp->in6p_laddr, 1148 inp->inp_lport, 0, NULL); 1149 if (oinp) { 1150 m_freem(m); 1151 return (EADDRINUSE); 1152 } 1153 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) 1154 inp->in6p_laddr = *addr6; 1155 inp->in6p_faddr = sin6->sin6_addr; 1156 inp->inp_fport = sin6->sin6_port; 1157 if ((sin6->sin6_flowinfo & IPV6_FLOWINFO_MASK) != 0) 1158 inp->in6p_flowinfo = sin6->sin6_flowinfo; 1159 in_pcbinsconnhash(inp); 1160 1161 /* 1162 * Now that no more errors can occur, change the protocol processing 1163 * port to the current thread (which is the correct thread). 1164 * 1165 * Create TCP timer message now; we are on the tcpcb's owner 1166 * CPU/thread. 1167 */ 1168 sosetport(so, &curthread->td_msgport); 1169 tcp_create_timermsg(tp, &curthread->td_msgport); 1170 1171 /* Compute window scaling to request. */ 1172 if (tp->request_r_scale < TCP_MIN_WINSHIFT) 1173 tp->request_r_scale = TCP_MIN_WINSHIFT; 1174 while (tp->request_r_scale < TCP_MAX_WINSHIFT && 1175 (TCP_MAXWIN << tp->request_r_scale) < so->so_rcv.ssb_hiwat) { 1176 tp->request_r_scale++; 1177 } 1178 1179 soisconnecting(so); 1180 tcpstat.tcps_connattempt++; 1181 tp->t_state = TCPS_SYN_SENT; 1182 tcp_callout_reset(tp, tp->tt_keep, tcp_keepinit, tcp_timer_keep); 1183 tp->iss = tcp_new_isn(tp); 1184 tcp_sendseqinit(tp); 1185 if (m) { 1186 ssb_appendstream(&so->so_snd, m); 1187 m = NULL; 1188 if (flags & PRUS_OOB) 1189 tp->snd_up = tp->snd_una + so->so_snd.ssb_cc; 1190 } 1191 1192 /* 1193 * Close the send side of the connection after 1194 * the data is sent if flagged. 1195 */ 1196 if ((flags & (PRUS_OOB|PRUS_EOF)) == PRUS_EOF) { 1197 socantsendmore(so); 1198 tp = tcp_usrclosed(tp); 1199 } 1200 return (tcp_output(tp)); 1201 } 1202 1203 #endif /* INET6 */ 1204 1205 /* 1206 * The new sockopt interface makes it possible for us to block in the 1207 * copyin/out step (if we take a page fault). Taking a page fault while 1208 * in a critical section is probably a Bad Thing. (Since sockets and pcbs 1209 * both now use TSM, there probably isn't any need for this function to 1210 * run in a critical section any more. This needs more examination.) 1211 */ 1212 int 1213 tcp_ctloutput(struct socket *so, struct sockopt *sopt) 1214 { 1215 int error, opt, optval; 1216 struct inpcb *inp; 1217 struct tcpcb *tp; 1218 1219 error = 0; 1220 inp = so->so_pcb; 1221 if (inp == NULL) 1222 return (ECONNRESET); 1223 1224 if (sopt->sopt_level != IPPROTO_TCP) { 1225 #ifdef INET6 1226 if (INP_CHECK_SOCKAF(so, AF_INET6)) 1227 error = ip6_ctloutput(so, sopt); 1228 else 1229 #endif /* INET6 */ 1230 error = ip_ctloutput(so, sopt); 1231 return (error); 1232 } 1233 tp = intotcpcb(inp); 1234 1235 switch (sopt->sopt_dir) { 1236 case SOPT_SET: 1237 error = soopt_to_kbuf(sopt, &optval, sizeof optval, 1238 sizeof optval); 1239 if (error) 1240 break; 1241 switch (sopt->sopt_name) { 1242 #ifdef TCP_SIGNATURE 1243 case TCP_SIGNATURE_ENABLE: 1244 if (optval > 0) 1245 tp->t_flags |= TF_SIGNATURE; 1246 else 1247 tp->t_flags &= ~TF_SIGNATURE; 1248 break; 1249 #endif /* TCP_SIGNATURE */ 1250 case TCP_NODELAY: 1251 case TCP_NOOPT: 1252 switch (sopt->sopt_name) { 1253 case TCP_NODELAY: 1254 opt = TF_NODELAY; 1255 break; 1256 case TCP_NOOPT: 1257 opt = TF_NOOPT; 1258 break; 1259 default: 1260 opt = 0; /* dead code to fool gcc */ 1261 break; 1262 } 1263 1264 if (optval) 1265 tp->t_flags |= opt; 1266 else 1267 tp->t_flags &= ~opt; 1268 break; 1269 1270 case TCP_NOPUSH: 1271 if (optval) 1272 tp->t_flags |= TF_NOPUSH; 1273 else { 1274 tp->t_flags &= ~TF_NOPUSH; 1275 error = tcp_output(tp); 1276 } 1277 break; 1278 1279 case TCP_MAXSEG: 1280 /* 1281 * Must be between 0 and maxseg. If the requested 1282 * maxseg is too small to satisfy the desired minmss, 1283 * pump it up (silently so sysctl modifications of 1284 * minmss do not create unexpected program failures). 1285 * Handle degenerate cases. 1286 */ 1287 if (optval > 0 && optval <= tp->t_maxseg) { 1288 if (optval + 40 < tcp_minmss) { 1289 optval = tcp_minmss - 40; 1290 if (optval < 0) 1291 optval = 1; 1292 } 1293 tp->t_maxseg = optval; 1294 } else { 1295 error = EINVAL; 1296 } 1297 break; 1298 1299 default: 1300 error = ENOPROTOOPT; 1301 break; 1302 } 1303 break; 1304 1305 case SOPT_GET: 1306 switch (sopt->sopt_name) { 1307 #ifdef TCP_SIGNATURE 1308 case TCP_SIGNATURE_ENABLE: 1309 optval = (tp->t_flags & TF_SIGNATURE) ? 1 : 0; 1310 break; 1311 #endif /* TCP_SIGNATURE */ 1312 case TCP_NODELAY: 1313 optval = tp->t_flags & TF_NODELAY; 1314 break; 1315 case TCP_MAXSEG: 1316 optval = tp->t_maxseg; 1317 break; 1318 case TCP_NOOPT: 1319 optval = tp->t_flags & TF_NOOPT; 1320 break; 1321 case TCP_NOPUSH: 1322 optval = tp->t_flags & TF_NOPUSH; 1323 break; 1324 default: 1325 error = ENOPROTOOPT; 1326 break; 1327 } 1328 if (error == 0) 1329 soopt_from_kbuf(sopt, &optval, sizeof optval); 1330 break; 1331 } 1332 return (error); 1333 } 1334 1335 /* 1336 * tcp_sendspace and tcp_recvspace are the default send and receive window 1337 * sizes, respectively. These are obsolescent (this information should 1338 * be set by the route). 1339 * 1340 * Use a default that does not require tcp window scaling to be turned 1341 * on. Individual programs or the administrator can increase the default. 1342 */ 1343 u_long tcp_sendspace = 57344; /* largest multiple of PAGE_SIZE < 64k */ 1344 SYSCTL_INT(_net_inet_tcp, TCPCTL_SENDSPACE, sendspace, CTLFLAG_RW, 1345 &tcp_sendspace , 0, "Maximum outgoing TCP datagram size"); 1346 u_long tcp_recvspace = 57344; /* largest multiple of PAGE_SIZE < 64k */ 1347 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 1348 &tcp_recvspace , 0, "Maximum incoming TCP datagram size"); 1349 1350 /* 1351 * Attach TCP protocol to socket, allocating 1352 * internet protocol control block, tcp control block, 1353 * bufer space, and entering LISTEN state if to accept connections. 1354 */ 1355 static int 1356 tcp_attach(struct socket *so, struct pru_attach_info *ai) 1357 { 1358 struct tcpcb *tp; 1359 struct inpcb *inp; 1360 int error; 1361 int cpu; 1362 #ifdef INET6 1363 int isipv6 = INP_CHECK_SOCKAF(so, AF_INET6) != 0; 1364 #endif 1365 1366 if (so->so_snd.ssb_hiwat == 0 || so->so_rcv.ssb_hiwat == 0) { 1367 lwkt_gettoken(&so->so_rcv.ssb_token); 1368 error = soreserve(so, tcp_sendspace, tcp_recvspace, 1369 ai->sb_rlimit); 1370 lwkt_reltoken(&so->so_rcv.ssb_token); 1371 if (error) 1372 return (error); 1373 } 1374 atomic_set_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE); 1375 atomic_set_int(&so->so_snd.ssb_flags, SSB_AUTOSIZE); 1376 cpu = mycpu->gd_cpuid; 1377 error = in_pcballoc(so, &tcbinfo[cpu]); 1378 if (error) 1379 return (error); 1380 inp = so->so_pcb; 1381 #ifdef INET6 1382 if (isipv6) { 1383 inp->inp_vflag |= INP_IPV6; 1384 inp->in6p_hops = -1; /* use kernel default */ 1385 } 1386 else 1387 #endif 1388 inp->inp_vflag |= INP_IPV4; 1389 tp = tcp_newtcpcb(inp); 1390 if (tp == NULL) { 1391 /* 1392 * Make sure the socket is destroyed by the pcbdetach. 1393 */ 1394 soreference(so); 1395 #ifdef INET6 1396 if (isipv6) 1397 in6_pcbdetach(inp); 1398 else 1399 #endif 1400 in_pcbdetach(inp); 1401 sofree(so); /* from ref above */ 1402 return (ENOBUFS); 1403 } 1404 tp->t_state = TCPS_CLOSED; 1405 so->so_port = tcp_soport_attach(so); 1406 return (0); 1407 } 1408 1409 /* 1410 * Initiate (or continue) disconnect. 1411 * If embryonic state, just send reset (once). 1412 * If in ``let data drain'' option and linger null, just drop. 1413 * Otherwise (hard), mark socket disconnecting and drop 1414 * current input data; switch states based on user close, and 1415 * send segment to peer (with FIN). 1416 */ 1417 static struct tcpcb * 1418 tcp_disconnect(struct tcpcb *tp) 1419 { 1420 struct socket *so = tp->t_inpcb->inp_socket; 1421 1422 if (tp->t_state < TCPS_ESTABLISHED) { 1423 tp = tcp_close(tp); 1424 } else if ((so->so_options & SO_LINGER) && so->so_linger == 0) { 1425 tp = tcp_drop(tp, 0); 1426 } else { 1427 lwkt_gettoken(&so->so_rcv.ssb_token); 1428 soisdisconnecting(so); 1429 sbflush(&so->so_rcv.sb); 1430 tp = tcp_usrclosed(tp); 1431 if (tp) 1432 tcp_output(tp); 1433 lwkt_reltoken(&so->so_rcv.ssb_token); 1434 } 1435 return (tp); 1436 } 1437 1438 /* 1439 * User issued close, and wish to trail through shutdown states: 1440 * if never received SYN, just forget it. If got a SYN from peer, 1441 * but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN. 1442 * If already got a FIN from peer, then almost done; go to LAST_ACK 1443 * state. In all other cases, have already sent FIN to peer (e.g. 1444 * after PRU_SHUTDOWN), and just have to play tedious game waiting 1445 * for peer to send FIN or not respond to keep-alives, etc. 1446 * We can let the user exit from the close as soon as the FIN is acked. 1447 */ 1448 static struct tcpcb * 1449 tcp_usrclosed(struct tcpcb *tp) 1450 { 1451 1452 switch (tp->t_state) { 1453 1454 case TCPS_CLOSED: 1455 case TCPS_LISTEN: 1456 tp->t_state = TCPS_CLOSED; 1457 tp = tcp_close(tp); 1458 break; 1459 1460 case TCPS_SYN_SENT: 1461 case TCPS_SYN_RECEIVED: 1462 tp->t_flags |= TF_NEEDFIN; 1463 break; 1464 1465 case TCPS_ESTABLISHED: 1466 tp->t_state = TCPS_FIN_WAIT_1; 1467 break; 1468 1469 case TCPS_CLOSE_WAIT: 1470 tp->t_state = TCPS_LAST_ACK; 1471 break; 1472 } 1473 if (tp && tp->t_state >= TCPS_FIN_WAIT_2) { 1474 soisdisconnected(tp->t_inpcb->inp_socket); 1475 /* To prevent the connection hanging in FIN_WAIT_2 forever. */ 1476 if (tp->t_state == TCPS_FIN_WAIT_2) { 1477 tcp_callout_reset(tp, tp->tt_2msl, tcp_maxidle, 1478 tcp_timer_2msl); 1479 } 1480 } 1481 return (tp); 1482 } 1483