xref: /dflybsd-src/sys/netinet/tcp_syncache.c (revision d83c779ab2c938232fa7b53777cd18cc9c4fc8e4)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * All advertising materials mentioning features or use of this software
36  * must display the following acknowledgement:
37  *   This product includes software developed by Jeffrey M. Hsu.
38  *
39  * Copyright (c) 2001 Networks Associates Technologies, Inc.
40  * All rights reserved.
41  *
42  * This software was developed for the FreeBSD Project by Jonathan Lemon
43  * and NAI Labs, the Security Research Division of Network Associates, Inc.
44  * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45  * DARPA CHATS research program.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. The name of the author may not be used to endorse or promote
56  *    products derived from this software without specific prior written
57  *    permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
72  * $DragonFly: src/sys/netinet/tcp_syncache.c,v 1.35 2008/11/22 11:03:35 sephe Exp $
73  */
74 
75 #include "opt_inet6.h"
76 #include "opt_ipsec.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/md5.h>
85 #include <sys/proc.h>		/* for proc0 declaration */
86 #include <sys/random.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/in_cksum.h>
90 
91 #include <sys/msgport2.h>
92 #include <net/netmsg2.h>
93 
94 #include <net/if.h>
95 #include <net/route.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/in_var.h>
101 #include <netinet/in_pcb.h>
102 #include <netinet/ip_var.h>
103 #include <netinet/ip6.h>
104 #ifdef INET6
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #endif
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
117 
118 #ifdef IPSEC
119 #include <netinet6/ipsec.h>
120 #ifdef INET6
121 #include <netinet6/ipsec6.h>
122 #endif
123 #include <netproto/key/key.h>
124 #endif /*IPSEC*/
125 
126 #ifdef FAST_IPSEC
127 #include <netproto/ipsec/ipsec.h>
128 #ifdef INET6
129 #include <netproto/ipsec/ipsec6.h>
130 #endif
131 #include <netproto/ipsec/key.h>
132 #define	IPSEC
133 #endif /*FAST_IPSEC*/
134 
135 static int tcp_syncookies = 1;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
137     &tcp_syncookies, 0,
138     "Use TCP SYN cookies if the syncache overflows");
139 
140 static void	 syncache_drop(struct syncache *, struct syncache_head *);
141 static void	 syncache_free(struct syncache *);
142 static void	 syncache_insert(struct syncache *, struct syncache_head *);
143 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
144 static int	 syncache_respond(struct syncache *, struct mbuf *);
145 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
146 		    struct mbuf *);
147 static void	 syncache_timer(void *);
148 static u_int32_t syncookie_generate(struct syncache *);
149 static struct syncache *syncookie_lookup(struct in_conninfo *,
150 		    struct tcphdr *, struct socket *);
151 
152 /*
153  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
154  * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
155  * the odds are that the user has given up attempting to connect by then.
156  */
157 #define SYNCACHE_MAXREXMTS		3
158 
159 /* Arbitrary values */
160 #define TCP_SYNCACHE_HASHSIZE		512
161 #define TCP_SYNCACHE_BUCKETLIMIT	30
162 
163 struct netmsg_sc_timer {
164 	struct netmsg nm_netmsg;
165 	struct msgrec *nm_mrec;		/* back pointer to containing msgrec */
166 };
167 
168 struct msgrec {
169 	struct netmsg_sc_timer msg;
170 	lwkt_port_t port;		/* constant after init */
171 	int slot;			/* constant after init */
172 };
173 
174 static void syncache_timer_handler(netmsg_t);
175 
176 struct tcp_syncache {
177 	u_int	hashsize;
178 	u_int	hashmask;
179 	u_int	bucket_limit;
180 	u_int	cache_limit;
181 	u_int	rexmt_limit;
182 	u_int	hash_secret;
183 };
184 static struct tcp_syncache tcp_syncache;
185 
186 struct tcp_syncache_percpu {
187 	struct syncache_head	*hashbase;
188 	u_int			cache_count;
189 	TAILQ_HEAD(, syncache)	timerq[SYNCACHE_MAXREXMTS + 1];
190 	struct callout		tt_timerq[SYNCACHE_MAXREXMTS + 1];
191 	struct msgrec		mrec[SYNCACHE_MAXREXMTS + 1];
192 };
193 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
194 
195 static struct lwkt_port syncache_null_rport;
196 
197 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
198 
199 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
200      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
201 
202 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
203      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
204 
205 /* XXX JH */
206 #if 0
207 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
208      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
209 #endif
210 
211 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
212      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
213 
214 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
215      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
216 
217 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
218 
219 #define SYNCACHE_HASH(inc, mask)					\
220 	((tcp_syncache.hash_secret ^					\
221 	  (inc)->inc_faddr.s_addr ^					\
222 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
223 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
224 
225 #define SYNCACHE_HASH6(inc, mask)					\
226 	((tcp_syncache.hash_secret ^					\
227 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
228 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
229 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
230 
231 #define ENDPTS_EQ(a, b) (						\
232 	(a)->ie_fport == (b)->ie_fport &&				\
233 	(a)->ie_lport == (b)->ie_lport &&				\
234 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
235 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
236 )
237 
238 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
239 
240 static __inline void
241 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
242 		 struct syncache *sc, int slot)
243 {
244 	sc->sc_rxtslot = slot;
245 	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot];
246 	crit_enter();
247 	TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
248 	if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
249 		callout_reset(&syncache_percpu->tt_timerq[slot],
250 			      TCPTV_RTOBASE * tcp_backoff[slot],
251 			      syncache_timer,
252 			      &syncache_percpu->mrec[slot]);
253 	}
254 	crit_exit();
255 }
256 
257 static void
258 syncache_free(struct syncache *sc)
259 {
260 	struct rtentry *rt;
261 #ifdef INET6
262 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
263 #else
264 	const boolean_t isipv6 = FALSE;
265 #endif
266 
267 	if (sc->sc_ipopts)
268 		m_free(sc->sc_ipopts);
269 
270 	rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
271 	if (rt != NULL) {
272 		/*
273 		 * If this is the only reference to a protocol-cloned
274 		 * route, remove it immediately.
275 		 */
276 		if ((rt->rt_flags & RTF_WASCLONED) && rt->rt_refcnt == 1)
277 			rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
278 				  rt_mask(rt), rt->rt_flags, NULL);
279 		RTFREE(rt);
280 	}
281 	kfree(sc, M_SYNCACHE);
282 }
283 
284 void
285 syncache_init(void)
286 {
287 	int i, cpu;
288 
289 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
290 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
291 	tcp_syncache.cache_limit =
292 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
293 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
294 	tcp_syncache.hash_secret = karc4random();
295 
296 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
297 	    &tcp_syncache.hashsize);
298 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
299 	    &tcp_syncache.cache_limit);
300 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
301 	    &tcp_syncache.bucket_limit);
302 	if (!powerof2(tcp_syncache.hashsize)) {
303 		kprintf("WARNING: syncache hash size is not a power of 2.\n");
304 		tcp_syncache.hashsize = 512;	/* safe default */
305 	}
306 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
307 
308 	lwkt_initport_replyonly_null(&syncache_null_rport);
309 
310 	for (cpu = 0; cpu < ncpus2; cpu++) {
311 		struct tcp_syncache_percpu *syncache_percpu;
312 
313 		syncache_percpu = &tcp_syncache_percpu[cpu];
314 		/* Allocate the hash table. */
315 		MALLOC(syncache_percpu->hashbase, struct syncache_head *,
316 		    tcp_syncache.hashsize * sizeof(struct syncache_head),
317 		    M_SYNCACHE, M_WAITOK);
318 
319 		/* Initialize the hash buckets. */
320 		for (i = 0; i < tcp_syncache.hashsize; i++) {
321 			struct syncache_head *bucket;
322 
323 			bucket = &syncache_percpu->hashbase[i];
324 			TAILQ_INIT(&bucket->sch_bucket);
325 			bucket->sch_length = 0;
326 		}
327 
328 		for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
329 			/* Initialize the timer queues. */
330 			TAILQ_INIT(&syncache_percpu->timerq[i]);
331 			callout_init(&syncache_percpu->tt_timerq[i]);
332 
333 			syncache_percpu->mrec[i].slot = i;
334 			syncache_percpu->mrec[i].port = tcp_cport(cpu);
335 			syncache_percpu->mrec[i].msg.nm_mrec =
336 			    &syncache_percpu->mrec[i];
337 			netmsg_init(&syncache_percpu->mrec[i].msg.nm_netmsg,
338 				    NULL, &syncache_null_rport,
339 				    0, syncache_timer_handler);
340 		}
341 	}
342 }
343 
344 static void
345 syncache_insert(struct syncache *sc, struct syncache_head *sch)
346 {
347 	struct tcp_syncache_percpu *syncache_percpu;
348 	struct syncache *sc2;
349 	int i;
350 
351 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
352 
353 	/*
354 	 * Make sure that we don't overflow the per-bucket
355 	 * limit or the total cache size limit.
356 	 */
357 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
358 		/*
359 		 * The bucket is full, toss the oldest element.
360 		 */
361 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
362 		sc2->sc_tp->ts_recent = ticks;
363 		syncache_drop(sc2, sch);
364 		tcpstat.tcps_sc_bucketoverflow++;
365 	} else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
366 		/*
367 		 * The cache is full.  Toss the oldest entry in the
368 		 * entire cache.  This is the front entry in the
369 		 * first non-empty timer queue with the largest
370 		 * timeout value.
371 		 */
372 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
373 			sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
374 			if (sc2 != NULL)
375 				break;
376 		}
377 		sc2->sc_tp->ts_recent = ticks;
378 		syncache_drop(sc2, NULL);
379 		tcpstat.tcps_sc_cacheoverflow++;
380 	}
381 
382 	/* Initialize the entry's timer. */
383 	syncache_timeout(syncache_percpu, sc, 0);
384 
385 	/* Put it into the bucket. */
386 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
387 	sch->sch_length++;
388 	syncache_percpu->cache_count++;
389 	tcpstat.tcps_sc_added++;
390 }
391 
392 void
393 syncache_destroy(struct tcpcb *tp)
394 {
395 	struct tcp_syncache_percpu *syncache_percpu;
396 	struct syncache_head *bucket;
397 	struct syncache *sc;
398 	int i;
399 
400 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
401 	sc = NULL;
402 	for (i = 0; i < tcp_syncache.hashsize; i++) {
403 		bucket = &syncache_percpu->hashbase[i];
404 		TAILQ_FOREACH(sc, &bucket->sch_bucket, sc_hash) {
405 			if (sc->sc_tp == tp) {
406 				sc->sc_tp = NULL;
407 				tp->t_flags &= ~TF_SYNCACHE;
408 				break;
409 			}
410 		}
411 	}
412 	kprintf("Warning: delete stale syncache for tp=%p, sc=%p\n", tp, sc);
413 }
414 
415 static void
416 syncache_drop(struct syncache *sc, struct syncache_head *sch)
417 {
418 	struct tcp_syncache_percpu *syncache_percpu;
419 #ifdef INET6
420 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
421 #else
422 	const boolean_t isipv6 = FALSE;
423 #endif
424 
425 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
426 
427 	if (sch == NULL) {
428 		if (isipv6) {
429 			sch = &syncache_percpu->hashbase[
430 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
431 		} else {
432 			sch = &syncache_percpu->hashbase[
433 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
434 		}
435 	}
436 
437 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
438 	sch->sch_length--;
439 	syncache_percpu->cache_count--;
440 
441 	/*
442 	 * Cleanup
443 	 */
444 	if (sc->sc_tp) {
445 		sc->sc_tp->t_flags &= ~TF_SYNCACHE;
446 		sc->sc_tp = NULL;
447 	}
448 
449 	/*
450 	 * Remove the entry from the syncache timer/timeout queue.  Note
451 	 * that we do not try to stop any running timer since we do not know
452 	 * whether the timer's message is in-transit or not.  Since timeouts
453 	 * are fairly long, taking an unneeded callout does not detrimentally
454 	 * effect performance.
455 	 */
456 	crit_enter();
457 	TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
458 	crit_exit();
459 
460 	syncache_free(sc);
461 }
462 
463 /*
464  * Place a timeout message on the TCP thread's message queue.
465  * This routine runs in soft interrupt context.
466  *
467  * An invariant is for this routine to be called, the callout must
468  * have been active.  Note that the callout is not deactivated until
469  * after the message has been processed in syncache_timer_handler() below.
470  */
471 static void
472 syncache_timer(void *p)
473 {
474 	struct netmsg_sc_timer *msg = p;
475 
476 	lwkt_sendmsg(msg->nm_mrec->port, &msg->nm_netmsg.nm_lmsg);
477 }
478 
479 /*
480  * Service a timer message queued by timer expiration.
481  * This routine runs in the TCP protocol thread.
482  *
483  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
484  * If we have retransmitted an entry the maximum number of times, expire it.
485  *
486  * When we finish processing timed-out entries, we restart the timer if there
487  * are any entries still on the queue and deactivate it otherwise.  Only after
488  * a timer has been deactivated here can it be restarted by syncache_timeout().
489  */
490 static void
491 syncache_timer_handler(netmsg_t netmsg)
492 {
493 	struct tcp_syncache_percpu *syncache_percpu;
494 	struct syncache *sc, *nsc;
495 	struct inpcb *inp;
496 	int slot;
497 
498 	slot = ((struct netmsg_sc_timer *)netmsg)->nm_mrec->slot;
499 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
500 
501 	crit_enter();
502 	nsc = TAILQ_FIRST(&syncache_percpu->timerq[slot]);
503 	while (nsc != NULL) {
504 		if (ticks < nsc->sc_rxttime)
505 			break;	/* finished because timerq sorted by time */
506 		sc = nsc;
507 		if (sc->sc_tp == NULL) {
508 			nsc = TAILQ_NEXT(sc, sc_timerq);
509 			syncache_drop(sc, NULL);
510 			tcpstat.tcps_sc_stale++;
511 			continue;
512 		}
513 		inp = sc->sc_tp->t_inpcb;
514 		if (slot == SYNCACHE_MAXREXMTS ||
515 		    slot >= tcp_syncache.rexmt_limit ||
516 		    inp->inp_gencnt != sc->sc_inp_gencnt) {
517 			nsc = TAILQ_NEXT(sc, sc_timerq);
518 			syncache_drop(sc, NULL);
519 			tcpstat.tcps_sc_stale++;
520 			continue;
521 		}
522 		/*
523 		 * syncache_respond() may call back into the syncache to
524 		 * to modify another entry, so do not obtain the next
525 		 * entry on the timer chain until it has completed.
526 		 */
527 		syncache_respond(sc, NULL);
528 		nsc = TAILQ_NEXT(sc, sc_timerq);
529 		tcpstat.tcps_sc_retransmitted++;
530 		TAILQ_REMOVE(&syncache_percpu->timerq[slot], sc, sc_timerq);
531 		syncache_timeout(syncache_percpu, sc, slot + 1);
532 	}
533 	if (nsc != NULL)
534 		callout_reset(&syncache_percpu->tt_timerq[slot],
535 		    nsc->sc_rxttime - ticks, syncache_timer,
536 		    &syncache_percpu->mrec[slot]);
537 	else
538 		callout_deactivate(&syncache_percpu->tt_timerq[slot]);
539 	crit_exit();
540 
541 	lwkt_replymsg(&netmsg->nm_lmsg, 0);
542 }
543 
544 /*
545  * Find an entry in the syncache.
546  */
547 struct syncache *
548 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
549 {
550 	struct tcp_syncache_percpu *syncache_percpu;
551 	struct syncache *sc;
552 	struct syncache_head *sch;
553 
554 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
555 #ifdef INET6
556 	if (inc->inc_isipv6) {
557 		sch = &syncache_percpu->hashbase[
558 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
559 		*schp = sch;
560 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
561 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
562 				return (sc);
563 	} else
564 #endif
565 	{
566 		sch = &syncache_percpu->hashbase[
567 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
568 		*schp = sch;
569 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
570 #ifdef INET6
571 			if (sc->sc_inc.inc_isipv6)
572 				continue;
573 #endif
574 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
575 				return (sc);
576 		}
577 	}
578 	return (NULL);
579 }
580 
581 /*
582  * This function is called when we get a RST for a
583  * non-existent connection, so that we can see if the
584  * connection is in the syn cache.  If it is, zap it.
585  */
586 void
587 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
588 {
589 	struct syncache *sc;
590 	struct syncache_head *sch;
591 
592 	sc = syncache_lookup(inc, &sch);
593 	if (sc == NULL)
594 		return;
595 	/*
596 	 * If the RST bit is set, check the sequence number to see
597 	 * if this is a valid reset segment.
598 	 * RFC 793 page 37:
599 	 *   In all states except SYN-SENT, all reset (RST) segments
600 	 *   are validated by checking their SEQ-fields.  A reset is
601 	 *   valid if its sequence number is in the window.
602 	 *
603 	 *   The sequence number in the reset segment is normally an
604 	 *   echo of our outgoing acknowlegement numbers, but some hosts
605 	 *   send a reset with the sequence number at the rightmost edge
606 	 *   of our receive window, and we have to handle this case.
607 	 */
608 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
609 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
610 		syncache_drop(sc, sch);
611 		tcpstat.tcps_sc_reset++;
612 	}
613 }
614 
615 void
616 syncache_badack(struct in_conninfo *inc)
617 {
618 	struct syncache *sc;
619 	struct syncache_head *sch;
620 
621 	sc = syncache_lookup(inc, &sch);
622 	if (sc != NULL) {
623 		syncache_drop(sc, sch);
624 		tcpstat.tcps_sc_badack++;
625 	}
626 }
627 
628 void
629 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
630 {
631 	struct syncache *sc;
632 	struct syncache_head *sch;
633 
634 	/* we are called at splnet() here */
635 	sc = syncache_lookup(inc, &sch);
636 	if (sc == NULL)
637 		return;
638 
639 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
640 	if (ntohl(th->th_seq) != sc->sc_iss)
641 		return;
642 
643 	/*
644 	 * If we've rertransmitted 3 times and this is our second error,
645 	 * we remove the entry.  Otherwise, we allow it to continue on.
646 	 * This prevents us from incorrectly nuking an entry during a
647 	 * spurious network outage.
648 	 *
649 	 * See tcp_notify().
650 	 */
651 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
652 		sc->sc_flags |= SCF_UNREACH;
653 		return;
654 	}
655 	syncache_drop(sc, sch);
656 	tcpstat.tcps_sc_unreach++;
657 }
658 
659 /*
660  * Build a new TCP socket structure from a syncache entry.
661  *
662  * This is called from the context of the SYN+ACK
663  */
664 static struct socket *
665 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
666 {
667 	struct inpcb *inp = NULL, *linp;
668 	struct socket *so;
669 	struct tcpcb *tp;
670 	lwkt_port_t port;
671 #ifdef INET6
672 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
673 #else
674 	const boolean_t isipv6 = FALSE;
675 #endif
676 
677 	/*
678 	 * Ok, create the full blown connection, and set things up
679 	 * as they would have been set up if we had created the
680 	 * connection when the SYN arrived.  If we can't create
681 	 * the connection, abort it.
682 	 */
683 	so = sonewconn(lso, SS_ISCONNECTED);
684 	if (so == NULL) {
685 		/*
686 		 * Drop the connection; we will send a RST if the peer
687 		 * retransmits the ACK,
688 		 */
689 		tcpstat.tcps_listendrop++;
690 		goto abort;
691 	}
692 
693 	/*
694 	 * Set the protocol processing port for the socket to the current
695 	 * port (that the connection came in on).
696 	 */
697 	sosetport(so, &curthread->td_msgport);
698 
699 	/*
700 	 * Insert new socket into hash list.
701 	 */
702 	inp = so->so_pcb;
703 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
704 	if (isipv6) {
705 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
706 	} else {
707 #ifdef INET6
708 		inp->inp_vflag &= ~INP_IPV6;
709 		inp->inp_vflag |= INP_IPV4;
710 		inp->inp_flags &= ~IN6P_IPV6_V6ONLY;
711 #endif
712 		inp->inp_laddr = sc->sc_inc.inc_laddr;
713 	}
714 	inp->inp_lport = sc->sc_inc.inc_lport;
715 	if (in_pcbinsporthash(inp) != 0) {
716 		/*
717 		 * Undo the assignments above if we failed to
718 		 * put the PCB on the hash lists.
719 		 */
720 		if (isipv6)
721 			inp->in6p_laddr = kin6addr_any;
722 		else
723 			inp->inp_laddr.s_addr = INADDR_ANY;
724 		inp->inp_lport = 0;
725 		goto abort;
726 	}
727 	linp = so->so_pcb;
728 #ifdef IPSEC
729 	/* copy old policy into new socket's */
730 	if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
731 		kprintf("syncache_expand: could not copy policy\n");
732 #endif
733 	if (isipv6) {
734 		struct in6_addr laddr6;
735 		struct sockaddr_in6 sin6;
736 		/*
737 		 * Inherit socket options from the listening socket.
738 		 * Note that in6p_inputopts are not (and should not be)
739 		 * copied, since it stores previously received options and is
740 		 * used to detect if each new option is different than the
741 		 * previous one and hence should be passed to a user.
742 		 * If we copied in6p_inputopts, a user would not be able to
743 		 * receive options just after calling the accept system call.
744 		 */
745 		inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
746 		if (linp->in6p_outputopts)
747 			inp->in6p_outputopts =
748 			    ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
749 		inp->in6p_route = sc->sc_route6;
750 		sc->sc_route6.ro_rt = NULL;
751 
752 		sin6.sin6_family = AF_INET6;
753 		sin6.sin6_len = sizeof sin6;
754 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
755 		sin6.sin6_port = sc->sc_inc.inc_fport;
756 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
757 		laddr6 = inp->in6p_laddr;
758 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
759 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
760 		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6, &thread0)) {
761 			inp->in6p_laddr = laddr6;
762 			goto abort;
763 		}
764 	} else {
765 		struct in_addr laddr;
766 		struct sockaddr_in sin;
767 
768 		inp->inp_options = ip_srcroute(m);
769 		if (inp->inp_options == NULL) {
770 			inp->inp_options = sc->sc_ipopts;
771 			sc->sc_ipopts = NULL;
772 		}
773 		inp->inp_route = sc->sc_route;
774 		sc->sc_route.ro_rt = NULL;
775 
776 		sin.sin_family = AF_INET;
777 		sin.sin_len = sizeof sin;
778 		sin.sin_addr = sc->sc_inc.inc_faddr;
779 		sin.sin_port = sc->sc_inc.inc_fport;
780 		bzero(sin.sin_zero, sizeof sin.sin_zero);
781 		laddr = inp->inp_laddr;
782 		if (inp->inp_laddr.s_addr == INADDR_ANY)
783 			inp->inp_laddr = sc->sc_inc.inc_laddr;
784 		if (in_pcbconnect(inp, (struct sockaddr *)&sin, &thread0)) {
785 			inp->inp_laddr = laddr;
786 			goto abort;
787 		}
788 	}
789 
790 	/*
791 	 * The current port should be in the context of the SYN+ACK and
792 	 * so should match the tcp address port.
793 	 *
794 	 * XXX we may be running on the netisr thread instead of a tcp
795 	 *     thread, in which case port will not match
796 	 *     curthread->td_msgport.
797 	 */
798 	if (isipv6) {
799 		port = tcp6_addrport();
800 	} else {
801 		port = tcp_addrport(inp->inp_faddr.s_addr, inp->inp_fport,
802 				    inp->inp_laddr.s_addr, inp->inp_lport);
803 	}
804 	/*KKASSERT(port == &curthread->td_msgport);*/
805 
806 	tp = intotcpcb(inp);
807 	tp->t_state = TCPS_SYN_RECEIVED;
808 	tp->iss = sc->sc_iss;
809 	tp->irs = sc->sc_irs;
810 	tcp_rcvseqinit(tp);
811 	tcp_sendseqinit(tp);
812 	tp->snd_wl1 = sc->sc_irs;
813 	tp->rcv_up = sc->sc_irs + 1;
814 	tp->rcv_wnd = sc->sc_wnd;
815 	tp->rcv_adv += tp->rcv_wnd;
816 
817 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
818 	if (sc->sc_flags & SCF_NOOPT)
819 		tp->t_flags |= TF_NOOPT;
820 	if (sc->sc_flags & SCF_WINSCALE) {
821 		tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
822 		tp->requested_s_scale = sc->sc_requested_s_scale;
823 		tp->request_r_scale = sc->sc_request_r_scale;
824 	}
825 	if (sc->sc_flags & SCF_TIMESTAMP) {
826 		tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
827 		tp->ts_recent = sc->sc_tsrecent;
828 		tp->ts_recent_age = ticks;
829 	}
830 	if (sc->sc_flags & SCF_SACK_PERMITTED)
831 		tp->t_flags |= TF_SACK_PERMITTED;
832 
833 	tcp_mss(tp, sc->sc_peer_mss);
834 
835 	/*
836 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
837 	 */
838 	if (sc->sc_rxtslot != 0)
839 		tp->snd_cwnd = tp->t_maxseg;
840 	tcp_create_timermsg(tp, port);
841 	tcp_callout_reset(tp, tp->tt_keep, tcp_keepinit, tcp_timer_keep);
842 
843 	tcpstat.tcps_accepts++;
844 	return (so);
845 
846 abort:
847 	if (so != NULL)
848 		soabort_oncpu(so);
849 	return (NULL);
850 }
851 
852 /*
853  * This function gets called when we receive an ACK for a
854  * socket in the LISTEN state.  We look up the connection
855  * in the syncache, and if its there, we pull it out of
856  * the cache and turn it into a full-blown connection in
857  * the SYN-RECEIVED state.
858  */
859 int
860 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop,
861 		struct mbuf *m)
862 {
863 	struct syncache *sc;
864 	struct syncache_head *sch;
865 	struct socket *so;
866 
867 	sc = syncache_lookup(inc, &sch);
868 	if (sc == NULL) {
869 		/*
870 		 * There is no syncache entry, so see if this ACK is
871 		 * a returning syncookie.  To do this, first:
872 		 *  A. See if this socket has had a syncache entry dropped in
873 		 *     the past.  We don't want to accept a bogus syncookie
874 		 *     if we've never received a SYN.
875 		 *  B. check that the syncookie is valid.  If it is, then
876 		 *     cobble up a fake syncache entry, and return.
877 		 */
878 		if (!tcp_syncookies)
879 			return (0);
880 		sc = syncookie_lookup(inc, th, *sop);
881 		if (sc == NULL)
882 			return (0);
883 		sch = NULL;
884 		tcpstat.tcps_sc_recvcookie++;
885 	}
886 
887 	/*
888 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
889 	 */
890 	if (th->th_ack != sc->sc_iss + 1)
891 		return (0);
892 
893 	so = syncache_socket(sc, *sop, m);
894 	if (so == NULL) {
895 #if 0
896 resetandabort:
897 		/* XXXjlemon check this - is this correct? */
898 		tcp_respond(NULL, m, m, th,
899 		    th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
900 #endif
901 		m_freem(m);			/* XXX only needed for above */
902 		tcpstat.tcps_sc_aborted++;
903 	} else {
904 		tcpstat.tcps_sc_completed++;
905 	}
906 	if (sch == NULL)
907 		syncache_free(sc);
908 	else
909 		syncache_drop(sc, sch);
910 	*sop = so;
911 	return (1);
912 }
913 
914 /*
915  * Given a LISTEN socket and an inbound SYN request, add
916  * this to the syn cache, and send back a segment:
917  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
918  * to the source.
919  *
920  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
921  * Doing so would require that we hold onto the data and deliver it
922  * to the application.  However, if we are the target of a SYN-flood
923  * DoS attack, an attacker could send data which would eventually
924  * consume all available buffer space if it were ACKed.  By not ACKing
925  * the data, we avoid this DoS scenario.
926  */
927 int
928 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
929 	     struct socket **sop, struct mbuf *m)
930 {
931 	struct tcp_syncache_percpu *syncache_percpu;
932 	struct tcpcb *tp;
933 	struct socket *so;
934 	struct syncache *sc = NULL;
935 	struct syncache_head *sch;
936 	struct mbuf *ipopts = NULL;
937 	int win;
938 
939 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
940 	so = *sop;
941 	tp = sototcpcb(so);
942 
943 	/*
944 	 * Remember the IP options, if any.
945 	 */
946 #ifdef INET6
947 	if (!inc->inc_isipv6)
948 #endif
949 		ipopts = ip_srcroute(m);
950 
951 	/*
952 	 * See if we already have an entry for this connection.
953 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
954 	 *
955 	 * XXX
956 	 * The syncache should be re-initialized with the contents
957 	 * of the new SYN which may have different options.
958 	 */
959 	sc = syncache_lookup(inc, &sch);
960 	if (sc != NULL) {
961 		tcpstat.tcps_sc_dupsyn++;
962 		if (ipopts) {
963 			/*
964 			 * If we were remembering a previous source route,
965 			 * forget it and use the new one we've been given.
966 			 */
967 			if (sc->sc_ipopts)
968 				m_free(sc->sc_ipopts);
969 			sc->sc_ipopts = ipopts;
970 		}
971 		/*
972 		 * Update timestamp if present.
973 		 */
974 		if (sc->sc_flags & SCF_TIMESTAMP)
975 			sc->sc_tsrecent = to->to_tsval;
976 
977 		/* Just update the TOF_SACK_PERMITTED for now. */
978 		if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
979 			sc->sc_flags |= SCF_SACK_PERMITTED;
980 		else
981 			sc->sc_flags &= ~SCF_SACK_PERMITTED;
982 
983 		/*
984 		 * PCB may have changed, pick up new values.
985 		 */
986 		if (sc->sc_tp) {
987 			sc->sc_tp->t_flags &= ~TF_SYNCACHE;
988 			tp->t_flags |= TF_SYNCACHE;
989 		}
990 		sc->sc_tp = tp;
991 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
992 		if (syncache_respond(sc, m) == 0) {
993 			crit_enter();
994 			TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
995 				     sc, sc_timerq);
996 			crit_exit();
997 			syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
998 			tcpstat.tcps_sndacks++;
999 			tcpstat.tcps_sndtotal++;
1000 		}
1001 		*sop = NULL;
1002 		return (1);
1003 	}
1004 
1005 	/*
1006 	 * Fill in the syncache values.
1007 	 */
1008 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1009 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1010 	sc->sc_ipopts = ipopts;
1011 	sc->sc_inc.inc_fport = inc->inc_fport;
1012 	sc->sc_inc.inc_lport = inc->inc_lport;
1013 	sc->sc_tp = tp;
1014 	tp->t_flags |= TF_SYNCACHE;
1015 #ifdef INET6
1016 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1017 	if (inc->inc_isipv6) {
1018 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1019 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1020 		sc->sc_route6.ro_rt = NULL;
1021 	} else
1022 #endif
1023 	{
1024 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1025 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1026 		sc->sc_route.ro_rt = NULL;
1027 	}
1028 	sc->sc_irs = th->th_seq;
1029 	sc->sc_flags = 0;
1030 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
1031 	if (tcp_syncookies)
1032 		sc->sc_iss = syncookie_generate(sc);
1033 	else
1034 		sc->sc_iss = karc4random();
1035 
1036 	/* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
1037 	win = ssb_space(&so->so_rcv);
1038 	win = imax(win, 0);
1039 	win = imin(win, TCP_MAXWIN);
1040 	sc->sc_wnd = win;
1041 
1042 	if (tcp_do_rfc1323) {
1043 		/*
1044 		 * A timestamp received in a SYN makes
1045 		 * it ok to send timestamp requests and replies.
1046 		 */
1047 		if (to->to_flags & TOF_TS) {
1048 			sc->sc_tsrecent = to->to_tsval;
1049 			sc->sc_flags |= SCF_TIMESTAMP;
1050 		}
1051 		if (to->to_flags & TOF_SCALE) {
1052 			int wscale = TCP_MIN_WINSHIFT;
1053 
1054 			/* Compute proper scaling value from buffer space */
1055 			while (wscale < TCP_MAX_WINSHIFT &&
1056 			    (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat) {
1057 				wscale++;
1058 			}
1059 			sc->sc_request_r_scale = wscale;
1060 			sc->sc_requested_s_scale = to->to_requested_s_scale;
1061 			sc->sc_flags |= SCF_WINSCALE;
1062 		}
1063 	}
1064 	if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1065 		sc->sc_flags |= SCF_SACK_PERMITTED;
1066 	if (tp->t_flags & TF_NOOPT)
1067 		sc->sc_flags = SCF_NOOPT;
1068 
1069 	if (syncache_respond(sc, m) == 0) {
1070 		syncache_insert(sc, sch);
1071 		tcpstat.tcps_sndacks++;
1072 		tcpstat.tcps_sndtotal++;
1073 	} else {
1074 		syncache_free(sc);
1075 		tcpstat.tcps_sc_dropped++;
1076 	}
1077 	*sop = NULL;
1078 	return (1);
1079 }
1080 
1081 static int
1082 syncache_respond(struct syncache *sc, struct mbuf *m)
1083 {
1084 	u_int8_t *optp;
1085 	int optlen, error;
1086 	u_int16_t tlen, hlen, mssopt;
1087 	struct ip *ip = NULL;
1088 	struct rtentry *rt;
1089 	struct tcphdr *th;
1090 	struct ip6_hdr *ip6 = NULL;
1091 #ifdef INET6
1092 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1093 #else
1094 	const boolean_t isipv6 = FALSE;
1095 #endif
1096 
1097 	if (isipv6) {
1098 		rt = tcp_rtlookup6(&sc->sc_inc);
1099 		if (rt != NULL)
1100 			mssopt = rt->rt_ifp->if_mtu -
1101 			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1102 		else
1103 			mssopt = tcp_v6mssdflt;
1104 		hlen = sizeof(struct ip6_hdr);
1105 	} else {
1106 		rt = tcp_rtlookup(&sc->sc_inc);
1107 		if (rt != NULL)
1108 			mssopt = rt->rt_ifp->if_mtu -
1109 			     (sizeof(struct ip) + sizeof(struct tcphdr));
1110 		else
1111 			mssopt = tcp_mssdflt;
1112 		hlen = sizeof(struct ip);
1113 	}
1114 
1115 	/* Compute the size of the TCP options. */
1116 	if (sc->sc_flags & SCF_NOOPT) {
1117 		optlen = 0;
1118 	} else {
1119 		optlen = TCPOLEN_MAXSEG +
1120 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1121 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1122 		    ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1123 			TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1124 	}
1125 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1126 
1127 	/*
1128 	 * XXX
1129 	 * assume that the entire packet will fit in a header mbuf
1130 	 */
1131 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1132 
1133 	/*
1134 	 * XXX shouldn't this reuse the mbuf if possible ?
1135 	 * Create the IP+TCP header from scratch.
1136 	 */
1137 	if (m)
1138 		m_freem(m);
1139 
1140 	m = m_gethdr(MB_DONTWAIT, MT_HEADER);
1141 	if (m == NULL)
1142 		return (ENOBUFS);
1143 	m->m_data += max_linkhdr;
1144 	m->m_len = tlen;
1145 	m->m_pkthdr.len = tlen;
1146 	m->m_pkthdr.rcvif = NULL;
1147 
1148 	if (isipv6) {
1149 		ip6 = mtod(m, struct ip6_hdr *);
1150 		ip6->ip6_vfc = IPV6_VERSION;
1151 		ip6->ip6_nxt = IPPROTO_TCP;
1152 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1153 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1154 		ip6->ip6_plen = htons(tlen - hlen);
1155 		/* ip6_hlim is set after checksum */
1156 		/* ip6_flow = ??? */
1157 
1158 		th = (struct tcphdr *)(ip6 + 1);
1159 	} else {
1160 		ip = mtod(m, struct ip *);
1161 		ip->ip_v = IPVERSION;
1162 		ip->ip_hl = sizeof(struct ip) >> 2;
1163 		ip->ip_len = tlen;
1164 		ip->ip_id = 0;
1165 		ip->ip_off = 0;
1166 		ip->ip_sum = 0;
1167 		ip->ip_p = IPPROTO_TCP;
1168 		ip->ip_src = sc->sc_inc.inc_laddr;
1169 		ip->ip_dst = sc->sc_inc.inc_faddr;
1170 		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1171 		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1172 
1173 		/*
1174 		 * See if we should do MTU discovery.  Route lookups are
1175 		 * expensive, so we will only unset the DF bit if:
1176 		 *
1177 		 *	1) path_mtu_discovery is disabled
1178 		 *	2) the SCF_UNREACH flag has been set
1179 		 */
1180 		if (path_mtu_discovery
1181 		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1182 		       ip->ip_off |= IP_DF;
1183 		}
1184 
1185 		th = (struct tcphdr *)(ip + 1);
1186 	}
1187 	th->th_sport = sc->sc_inc.inc_lport;
1188 	th->th_dport = sc->sc_inc.inc_fport;
1189 
1190 	th->th_seq = htonl(sc->sc_iss);
1191 	th->th_ack = htonl(sc->sc_irs + 1);
1192 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1193 	th->th_x2 = 0;
1194 	th->th_flags = TH_SYN | TH_ACK;
1195 	th->th_win = htons(sc->sc_wnd);
1196 	th->th_urp = 0;
1197 
1198 	/* Tack on the TCP options. */
1199 	if (optlen == 0)
1200 		goto no_options;
1201 	optp = (u_int8_t *)(th + 1);
1202 	*optp++ = TCPOPT_MAXSEG;
1203 	*optp++ = TCPOLEN_MAXSEG;
1204 	*optp++ = (mssopt >> 8) & 0xff;
1205 	*optp++ = mssopt & 0xff;
1206 
1207 	if (sc->sc_flags & SCF_WINSCALE) {
1208 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1209 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1210 		    sc->sc_request_r_scale);
1211 		optp += 4;
1212 	}
1213 
1214 	if (sc->sc_flags & SCF_TIMESTAMP) {
1215 		u_int32_t *lp = (u_int32_t *)(optp);
1216 
1217 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1218 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1219 		*lp++ = htonl(ticks);
1220 		*lp   = htonl(sc->sc_tsrecent);
1221 		optp += TCPOLEN_TSTAMP_APPA;
1222 	}
1223 
1224 	if (sc->sc_flags & SCF_SACK_PERMITTED) {
1225 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1226 		optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1227 	}
1228 
1229 no_options:
1230 	if (isipv6) {
1231 		struct route_in6 *ro6 = &sc->sc_route6;
1232 
1233 		th->th_sum = 0;
1234 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1235 		ip6->ip6_hlim = in6_selecthlim(NULL,
1236 		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1237 		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1238 				sc->sc_tp->t_inpcb);
1239 	} else {
1240 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1241 				       htons(tlen - hlen + IPPROTO_TCP));
1242 		m->m_pkthdr.csum_flags = CSUM_TCP;
1243 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1244 		error = ip_output(m, sc->sc_ipopts, &sc->sc_route,
1245 				  IP_DEBUGROUTE, NULL, sc->sc_tp->t_inpcb);
1246 	}
1247 	return (error);
1248 }
1249 
1250 /*
1251  * cookie layers:
1252  *
1253  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1254  *	| peer iss                                                      |
1255  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1256  *	|                     0                       |(A)|             |
1257  * (A): peer mss index
1258  */
1259 
1260 /*
1261  * The values below are chosen to minimize the size of the tcp_secret
1262  * table, as well as providing roughly a 16 second lifetime for the cookie.
1263  */
1264 
1265 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1266 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1267 
1268 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1269 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1270 #define SYNCOOKIE_TIMEOUT \
1271     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1272 #define SYNCOOKIE_DATAMASK	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1273 
1274 static struct {
1275 	u_int32_t	ts_secbits[4];
1276 	u_int		ts_expire;
1277 } tcp_secret[SYNCOOKIE_NSECRETS];
1278 
1279 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1280 
1281 static MD5_CTX syn_ctx;
1282 
1283 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1284 
1285 struct md5_add {
1286 	u_int32_t laddr, faddr;
1287 	u_int32_t secbits[4];
1288 	u_int16_t lport, fport;
1289 };
1290 
1291 #ifdef CTASSERT
1292 CTASSERT(sizeof(struct md5_add) == 28);
1293 #endif
1294 
1295 /*
1296  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1297  * original SYN was accepted, the connection is established.  The second
1298  * SYN is inflight, and if it arrives with an ISN that falls within the
1299  * receive window, the connection is killed.
1300  *
1301  * However, since cookies have other problems, this may not be worth
1302  * worrying about.
1303  */
1304 
1305 static u_int32_t
1306 syncookie_generate(struct syncache *sc)
1307 {
1308 	u_int32_t md5_buffer[4];
1309 	u_int32_t data;
1310 	int idx, i;
1311 	struct md5_add add;
1312 #ifdef INET6
1313 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1314 #else
1315 	const boolean_t isipv6 = FALSE;
1316 #endif
1317 
1318 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1319 	if (tcp_secret[idx].ts_expire < ticks) {
1320 		for (i = 0; i < 4; i++)
1321 			tcp_secret[idx].ts_secbits[i] = karc4random();
1322 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1323 	}
1324 	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1325 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1326 			break;
1327 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1328 	data ^= sc->sc_irs;				/* peer's iss */
1329 	MD5Init(&syn_ctx);
1330 	if (isipv6) {
1331 		MD5Add(sc->sc_inc.inc6_laddr);
1332 		MD5Add(sc->sc_inc.inc6_faddr);
1333 		add.laddr = 0;
1334 		add.faddr = 0;
1335 	} else {
1336 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1337 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1338 	}
1339 	add.lport = sc->sc_inc.inc_lport;
1340 	add.fport = sc->sc_inc.inc_fport;
1341 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1342 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1343 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1344 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1345 	MD5Add(add);
1346 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1347 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1348 	return (data);
1349 }
1350 
1351 static struct syncache *
1352 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so)
1353 {
1354 	u_int32_t md5_buffer[4];
1355 	struct syncache *sc;
1356 	u_int32_t data;
1357 	int wnd, idx;
1358 	struct md5_add add;
1359 
1360 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1361 	idx = data & SYNCOOKIE_WNDMASK;
1362 	if (tcp_secret[idx].ts_expire < ticks ||
1363 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1364 		return (NULL);
1365 	MD5Init(&syn_ctx);
1366 #ifdef INET6
1367 	if (inc->inc_isipv6) {
1368 		MD5Add(inc->inc6_laddr);
1369 		MD5Add(inc->inc6_faddr);
1370 		add.laddr = 0;
1371 		add.faddr = 0;
1372 	} else
1373 #endif
1374 	{
1375 		add.laddr = inc->inc_laddr.s_addr;
1376 		add.faddr = inc->inc_faddr.s_addr;
1377 	}
1378 	add.lport = inc->inc_lport;
1379 	add.fport = inc->inc_fport;
1380 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1381 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1382 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1383 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1384 	MD5Add(add);
1385 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1386 	data ^= md5_buffer[0];
1387 	if (data & ~SYNCOOKIE_DATAMASK)
1388 		return (NULL);
1389 	data = data >> SYNCOOKIE_WNDBITS;
1390 
1391 	/*
1392 	 * Fill in the syncache values.
1393 	 * XXX duplicate code from syncache_add
1394 	 */
1395 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1396 	sc->sc_ipopts = NULL;
1397 	sc->sc_inc.inc_fport = inc->inc_fport;
1398 	sc->sc_inc.inc_lport = inc->inc_lport;
1399 #ifdef INET6
1400 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1401 	if (inc->inc_isipv6) {
1402 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1403 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1404 		sc->sc_route6.ro_rt = NULL;
1405 	} else
1406 #endif
1407 	{
1408 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1409 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1410 		sc->sc_route.ro_rt = NULL;
1411 	}
1412 	sc->sc_irs = th->th_seq - 1;
1413 	sc->sc_iss = th->th_ack - 1;
1414 	wnd = ssb_space(&so->so_rcv);
1415 	wnd = imax(wnd, 0);
1416 	wnd = imin(wnd, TCP_MAXWIN);
1417 	sc->sc_wnd = wnd;
1418 	sc->sc_flags = 0;
1419 	sc->sc_rxtslot = 0;
1420 	sc->sc_peer_mss = tcp_msstab[data];
1421 	return (sc);
1422 }
1423