xref: /dflybsd-src/sys/netinet/tcp_syncache.c (revision bc49aa1be5400e3bdd801519c6936e8947d5d432)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * All advertising materials mentioning features or use of this software
53  * must display the following acknowledgement:
54  *   This product includes software developed by Jeffrey M. Hsu.
55  *
56  * Copyright (c) 2001 Networks Associates Technologies, Inc.
57  * All rights reserved.
58  *
59  * This software was developed for the FreeBSD Project by Jonathan Lemon
60  * and NAI Labs, the Security Research Division of Network Associates, Inc.
61  * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
62  * DARPA CHATS research program.
63  *
64  * Redistribution and use in source and binary forms, with or without
65  * modification, are permitted provided that the following conditions
66  * are met:
67  * 1. Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  * 2. Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in the
71  *    documentation and/or other materials provided with the distribution.
72  * 3. The name of the author may not be used to endorse or promote
73  *    products derived from this software without specific prior written
74  *    permission.
75  *
76  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
77  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
78  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
79  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
80  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
81  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
82  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
83  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
84  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
85  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
86  * SUCH DAMAGE.
87  *
88  * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
89  * $DragonFly: src/sys/netinet/tcp_syncache.c,v 1.15 2004/07/08 22:07:35 hsu Exp $
90  */
91 
92 #include "opt_inet6.h"
93 #include "opt_ipsec.h"
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/kernel.h>
98 #include <sys/sysctl.h>
99 #include <sys/malloc.h>
100 #include <sys/mbuf.h>
101 #include <sys/md5.h>
102 #include <sys/proc.h>		/* for proc0 declaration */
103 #include <sys/random.h>
104 #include <sys/socket.h>
105 #include <sys/socketvar.h>
106 #include <sys/in_cksum.h>
107 
108 #include <net/if.h>
109 #include <net/route.h>
110 
111 #include <netinet/in.h>
112 #include <netinet/in_systm.h>
113 #include <netinet/ip.h>
114 #include <netinet/in_var.h>
115 #include <netinet/in_pcb.h>
116 #include <netinet/ip_var.h>
117 #ifdef INET6
118 #include <netinet/ip6.h>
119 #include <netinet/icmp6.h>
120 #include <netinet6/nd6.h>
121 #include <netinet6/ip6_var.h>
122 #include <netinet6/in6_pcb.h>
123 #endif
124 #include <netinet/tcp.h>
125 #include <netinet/tcp_fsm.h>
126 #include <netinet/tcp_seq.h>
127 #include <netinet/tcp_timer.h>
128 #include <netinet/tcp_var.h>
129 #ifdef INET6
130 #include <netinet6/tcp6_var.h>
131 #endif
132 
133 #ifdef IPSEC
134 #include <netinet6/ipsec.h>
135 #ifdef INET6
136 #include <netinet6/ipsec6.h>
137 #endif
138 #include <netproto/key/key.h>
139 #endif /*IPSEC*/
140 
141 #ifdef FAST_IPSEC
142 #include <netipsec/ipsec.h>
143 #ifdef INET6
144 #include <netipsec/ipsec6.h>
145 #endif
146 #include <netipsec/key.h>
147 #define	IPSEC
148 #endif /*FAST_IPSEC*/
149 
150 #include <vm/vm_zone.h>
151 
152 static int tcp_syncookies = 1;
153 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
154     &tcp_syncookies, 0,
155     "Use TCP SYN cookies if the syncache overflows");
156 
157 static void	 syncache_drop(struct syncache *, struct syncache_head *);
158 static void	 syncache_free(struct syncache *);
159 static void	 syncache_insert(struct syncache *, struct syncache_head *);
160 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
161 static int	 syncache_respond(struct syncache *, struct mbuf *);
162 static struct 	 socket *syncache_socket(struct syncache *, struct socket *);
163 static void	 syncache_timer(void *);
164 static u_int32_t syncookie_generate(struct syncache *);
165 static struct syncache *syncookie_lookup(struct in_conninfo *,
166 		    struct tcphdr *, struct socket *);
167 
168 /*
169  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
170  * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
171  * the odds are that the user has given up attempting to connect by then.
172  */
173 #define SYNCACHE_MAXREXMTS		3
174 
175 /* Arbitrary values */
176 #define TCP_SYNCACHE_HASHSIZE		512
177 #define TCP_SYNCACHE_BUCKETLIMIT	30
178 
179 struct tcp_syncache {
180 	struct	syncache_head *hashbase;
181 	struct	vm_zone *zone;
182 	u_int	hashsize;
183 	u_int	hashmask;
184 	u_int	bucket_limit;
185 	u_int	cache_count;
186 	u_int	cache_limit;
187 	u_int	rexmt_limit;
188 	u_int	hash_secret;
189 	TAILQ_HEAD(, syncache) timerq[SYNCACHE_MAXREXMTS + 1];
190 	struct	callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
191 };
192 static struct tcp_syncache tcp_syncache;
193 
194 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
195 
196 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
197      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
198 
199 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
200      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
201 
202 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
203      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
204 
205 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
206      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
207 
208 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
209      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
210 
211 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
212 
213 #define SYNCACHE_HASH(inc, mask) 					\
214 	((tcp_syncache.hash_secret ^					\
215 	  (inc)->inc_faddr.s_addr ^					\
216 	  ((inc)->inc_faddr.s_addr >> 16) ^ 				\
217 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
218 
219 #define SYNCACHE_HASH6(inc, mask) 					\
220 	((tcp_syncache.hash_secret ^					\
221 	  (inc)->inc6_faddr.s6_addr32[0] ^ 				\
222 	  (inc)->inc6_faddr.s6_addr32[3] ^ 				\
223 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
224 
225 #define ENDPTS_EQ(a, b) (						\
226 	(a)->ie_fport == (b)->ie_fport &&				\
227 	(a)->ie_lport == (b)->ie_lport &&				\
228 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
229 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
230 )
231 
232 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
233 
234 #define SYNCACHE_TIMEOUT(sc, slot) do {					\
235 	sc->sc_rxtslot = slot;						\
236 	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot];	\
237 	TAILQ_INSERT_TAIL(&tcp_syncache.timerq[slot], sc, sc_timerq);	\
238 	if (!callout_active(&tcp_syncache.tt_timerq[slot]))		\
239 		callout_reset(&tcp_syncache.tt_timerq[slot],		\
240 		    TCPTV_RTOBASE * tcp_backoff[slot],			\
241 		    syncache_timer, (void *)((intptr_t)slot));		\
242 } while (0)
243 
244 static void
245 syncache_free(struct syncache *sc)
246 {
247 	struct rtentry *rt;
248 
249 	if (sc->sc_ipopts)
250 		(void) m_free(sc->sc_ipopts);
251 #ifdef INET6
252 	if (sc->sc_inc.inc_isipv6)
253 		rt = sc->sc_route6.ro_rt;
254 	else
255 #endif
256 		rt = sc->sc_route.ro_rt;
257 	if (rt != NULL) {
258 		/*
259 		 * If this is the only reference to a protocol cloned
260 		 * route, remove it immediately.
261 		 */
262 		if (rt->rt_flags & RTF_WASCLONED &&
263 		    (sc->sc_flags & SCF_KEEPROUTE) == 0 &&
264 		    rt->rt_refcnt == 1)
265 			rtrequest(RTM_DELETE, rt_key(rt),
266 			    rt->rt_gateway, rt_mask(rt),
267 			    rt->rt_flags, NULL);
268 		RTFREE(rt);
269 	}
270 	zfree(tcp_syncache.zone, sc);
271 }
272 
273 void
274 syncache_init(void)
275 {
276 	int i;
277 
278 	tcp_syncache.cache_count = 0;
279 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
280 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
281 	tcp_syncache.cache_limit =
282 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
283 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
284 	tcp_syncache.hash_secret = arc4random();
285 
286         TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
287 	    &tcp_syncache.hashsize);
288         TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
289 	    &tcp_syncache.cache_limit);
290         TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
291 	    &tcp_syncache.bucket_limit);
292 	if (!powerof2(tcp_syncache.hashsize)) {
293                 printf("WARNING: syncache hash size is not a power of 2.\n");
294 		tcp_syncache.hashsize = 512;	/* safe default */
295         }
296 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
297 
298 	/* Allocate the hash table. */
299 	MALLOC(tcp_syncache.hashbase, struct syncache_head *,
300 	    tcp_syncache.hashsize * sizeof(struct syncache_head),
301 	    M_SYNCACHE, M_WAITOK);
302 
303 	/* Initialize the hash buckets. */
304 	for (i = 0; i < tcp_syncache.hashsize; i++) {
305 		TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
306 		tcp_syncache.hashbase[i].sch_length = 0;
307 	}
308 
309 	/* Initialize the timer queues. */
310 	for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
311 		TAILQ_INIT(&tcp_syncache.timerq[i]);
312 		callout_init(&tcp_syncache.tt_timerq[i]);
313 	}
314 
315 	/*
316 	 * Allocate the syncache entries.  Allow the zone to allocate one
317 	 * more entry than cache limit, so a new entry can bump out an
318 	 * older one.
319 	 */
320 	tcp_syncache.zone = zinit("syncache", sizeof(struct syncache),
321 	    tcp_syncache.cache_limit, ZONE_INTERRUPT, 0);
322 	tcp_syncache.cache_limit -= 1;
323 }
324 
325 static void
326 syncache_insert(sc, sch)
327 	struct syncache *sc;
328 	struct syncache_head *sch;
329 {
330 	struct syncache *sc2;
331 	int i;
332 
333 	/*
334 	 * Make sure that we don't overflow the per-bucket
335 	 * limit or the total cache size limit.
336 	 */
337 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
338 		/*
339 		 * The bucket is full, toss the oldest element.
340 		 */
341 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
342 		sc2->sc_tp->ts_recent = ticks;
343 		syncache_drop(sc2, sch);
344 		tcpstat.tcps_sc_bucketoverflow++;
345 	} else if (tcp_syncache.cache_count >= tcp_syncache.cache_limit) {
346 		/*
347 		 * The cache is full.  Toss the oldest entry in the
348 		 * entire cache.  This is the front entry in the
349 		 * first non-empty timer queue with the largest
350 		 * timeout value.
351 		 */
352 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
353 			sc2 = TAILQ_FIRST(&tcp_syncache.timerq[i]);
354 			if (sc2 != NULL)
355 				break;
356 		}
357 		sc2->sc_tp->ts_recent = ticks;
358 		syncache_drop(sc2, NULL);
359 		tcpstat.tcps_sc_cacheoverflow++;
360 	}
361 
362 	/* Initialize the entry's timer. */
363 	SYNCACHE_TIMEOUT(sc, 0);
364 
365 	/* Put it into the bucket. */
366 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
367 	sch->sch_length++;
368 	tcp_syncache.cache_count++;
369 	tcpstat.tcps_sc_added++;
370 }
371 
372 static void
373 syncache_drop(sc, sch)
374 	struct syncache *sc;
375 	struct syncache_head *sch;
376 {
377 
378 	if (sch == NULL) {
379 #ifdef INET6
380 		if (sc->sc_inc.inc_isipv6) {
381 			sch = &tcp_syncache.hashbase[
382 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
383 		} else
384 #endif
385 		{
386 			sch = &tcp_syncache.hashbase[
387 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
388 		}
389 	}
390 
391 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
392 	sch->sch_length--;
393 	tcp_syncache.cache_count--;
394 
395 	TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot], sc, sc_timerq);
396 	if (TAILQ_EMPTY(&tcp_syncache.timerq[sc->sc_rxtslot]))
397 		callout_stop(&tcp_syncache.tt_timerq[sc->sc_rxtslot]);
398 
399 	syncache_free(sc);
400 }
401 
402 /*
403  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
404  * If we have retransmitted an entry the maximum number of times, expire it.
405  */
406 static void
407 syncache_timer(xslot)
408 	void *xslot;
409 {
410 	intptr_t slot = (intptr_t)xslot;
411 	struct syncache *sc, *nsc;
412 	struct inpcb *inp;
413 	int s;
414 
415 	s = splnet();
416         if (callout_pending(&tcp_syncache.tt_timerq[slot]) ||
417             !callout_active(&tcp_syncache.tt_timerq[slot])) {
418                 splx(s);
419                 return;
420         }
421         callout_deactivate(&tcp_syncache.tt_timerq[slot]);
422 
423         nsc = TAILQ_FIRST(&tcp_syncache.timerq[slot]);
424 	while (nsc != NULL) {
425 		if (ticks < nsc->sc_rxttime)
426 			break;
427 		sc = nsc;
428 		inp = sc->sc_tp->t_inpcb;
429 		if (slot == SYNCACHE_MAXREXMTS ||
430 		    slot >= tcp_syncache.rexmt_limit ||
431 		    inp->inp_gencnt != sc->sc_inp_gencnt) {
432 			nsc = TAILQ_NEXT(sc, sc_timerq);
433 			syncache_drop(sc, NULL);
434 			tcpstat.tcps_sc_stale++;
435 			continue;
436 		}
437 		/*
438 		 * syncache_respond() may call back into the syncache to
439 		 * to modify another entry, so do not obtain the next
440 		 * entry on the timer chain until it has completed.
441 		 */
442 		(void) syncache_respond(sc, NULL);
443 		nsc = TAILQ_NEXT(sc, sc_timerq);
444 		tcpstat.tcps_sc_retransmitted++;
445 		TAILQ_REMOVE(&tcp_syncache.timerq[slot], sc, sc_timerq);
446 		SYNCACHE_TIMEOUT(sc, slot + 1);
447 	}
448 	if (nsc != NULL)
449 		callout_reset(&tcp_syncache.tt_timerq[slot],
450 		    nsc->sc_rxttime - ticks, syncache_timer, (void *)(slot));
451 	splx(s);
452 }
453 
454 /*
455  * Find an entry in the syncache.
456  */
457 struct syncache *
458 syncache_lookup(inc, schp)
459 	struct in_conninfo *inc;
460 	struct syncache_head **schp;
461 {
462 	struct syncache *sc;
463 	struct syncache_head *sch;
464 
465 #ifdef INET6
466 	if (inc->inc_isipv6) {
467 		sch = &tcp_syncache.hashbase[
468 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
469 		*schp = sch;
470 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
471 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
472 				return (sc);
473 	} else
474 #endif
475 	{
476 		sch = &tcp_syncache.hashbase[
477 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
478 		*schp = sch;
479 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
480 #ifdef INET6
481 			if (sc->sc_inc.inc_isipv6)
482 				continue;
483 #endif
484 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
485 				return (sc);
486 		}
487 	}
488 	return (NULL);
489 }
490 
491 /*
492  * This function is called when we get a RST for a
493  * non-existent connection, so that we can see if the
494  * connection is in the syn cache.  If it is, zap it.
495  */
496 void
497 syncache_chkrst(inc, th)
498 	struct in_conninfo *inc;
499 	struct tcphdr *th;
500 {
501 	struct syncache *sc;
502 	struct syncache_head *sch;
503 
504 	sc = syncache_lookup(inc, &sch);
505 	if (sc == NULL)
506 		return;
507 	/*
508 	 * If the RST bit is set, check the sequence number to see
509 	 * if this is a valid reset segment.
510 	 * RFC 793 page 37:
511 	 *   In all states except SYN-SENT, all reset (RST) segments
512 	 *   are validated by checking their SEQ-fields.  A reset is
513 	 *   valid if its sequence number is in the window.
514 	 *
515 	 *   The sequence number in the reset segment is normally an
516 	 *   echo of our outgoing acknowlegement numbers, but some hosts
517 	 *   send a reset with the sequence number at the rightmost edge
518 	 *   of our receive window, and we have to handle this case.
519 	 */
520 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
521 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
522 		syncache_drop(sc, sch);
523 		tcpstat.tcps_sc_reset++;
524 	}
525 }
526 
527 void
528 syncache_badack(inc)
529 	struct in_conninfo *inc;
530 {
531 	struct syncache *sc;
532 	struct syncache_head *sch;
533 
534 	sc = syncache_lookup(inc, &sch);
535 	if (sc != NULL) {
536 		syncache_drop(sc, sch);
537 		tcpstat.tcps_sc_badack++;
538 	}
539 }
540 
541 void
542 syncache_unreach(inc, th)
543 	struct in_conninfo *inc;
544 	struct tcphdr *th;
545 {
546 	struct syncache *sc;
547 	struct syncache_head *sch;
548 
549 	/* we are called at splnet() here */
550 	sc = syncache_lookup(inc, &sch);
551 	if (sc == NULL)
552 		return;
553 
554 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
555 	if (ntohl(th->th_seq) != sc->sc_iss)
556 		return;
557 
558 	/*
559 	 * If we've rertransmitted 3 times and this is our second error,
560 	 * we remove the entry.  Otherwise, we allow it to continue on.
561 	 * This prevents us from incorrectly nuking an entry during a
562 	 * spurious network outage.
563 	 *
564 	 * See tcp_notify().
565 	 */
566 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
567 		sc->sc_flags |= SCF_UNREACH;
568 		return;
569 	}
570 	syncache_drop(sc, sch);
571 	tcpstat.tcps_sc_unreach++;
572 }
573 
574 /*
575  * Build a new TCP socket structure from a syncache entry.
576  */
577 static struct socket *
578 syncache_socket(sc, lso)
579 	struct syncache *sc;
580 	struct socket *lso;
581 {
582 	struct inpcb *inp = NULL;
583 	struct socket *so;
584 	struct tcpcb *tp;
585 
586 	/*
587 	 * Ok, create the full blown connection, and set things up
588 	 * as they would have been set up if we had created the
589 	 * connection when the SYN arrived.  If we can't create
590 	 * the connection, abort it.
591 	 */
592 	so = sonewconn(lso, SS_ISCONNECTED);
593 	if (so == NULL) {
594 		/*
595 		 * Drop the connection; we will send a RST if the peer
596 		 * retransmits the ACK,
597 		 */
598 		tcpstat.tcps_listendrop++;
599 		goto abort;
600 	}
601 
602 	inp = sotoinpcb(so);
603 
604 	/*
605 	 * Insert new socket into hash list.
606 	 */
607 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
608 #ifdef INET6
609 	if (sc->sc_inc.inc_isipv6) {
610 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
611 	} else {
612 		inp->inp_vflag &= ~INP_IPV6;
613 		inp->inp_vflag |= INP_IPV4;
614 #endif
615 		inp->inp_laddr = sc->sc_inc.inc_laddr;
616 #ifdef INET6
617 	}
618 #endif
619 	inp->inp_lport = sc->sc_inc.inc_lport;
620 	if (in_pcbinsporthash(inp) != 0) {
621 		/*
622 		 * Undo the assignments above if we failed to
623 		 * put the PCB on the hash lists.
624 		 */
625 #ifdef INET6
626 		if (sc->sc_inc.inc_isipv6)
627 			inp->in6p_laddr = in6addr_any;
628        		else
629 #endif
630 			inp->inp_laddr.s_addr = INADDR_ANY;
631 		inp->inp_lport = 0;
632 		goto abort;
633 	}
634 #ifdef IPSEC
635 	/* copy old policy into new socket's */
636 	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
637 		printf("syncache_expand: could not copy policy\n");
638 #endif
639 #ifdef INET6
640 	if (sc->sc_inc.inc_isipv6) {
641 		struct inpcb *oinp = sotoinpcb(lso);
642 		struct in6_addr laddr6;
643 		struct sockaddr_in6 sin6;
644 		/*
645 		 * Inherit socket options from the listening socket.
646 		 * Note that in6p_inputopts are not (and should not be)
647 		 * copied, since it stores previously received options and is
648 		 * used to detect if each new option is different than the
649 		 * previous one and hence should be passed to a user.
650                  * If we copied in6p_inputopts, a user would not be able to
651 		 * receive options just after calling the accept system call.
652 		 */
653 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
654 		if (oinp->in6p_outputopts)
655 			inp->in6p_outputopts =
656 			    ip6_copypktopts(oinp->in6p_outputopts, M_INTWAIT);
657 		inp->in6p_route = sc->sc_route6;
658 		sc->sc_route6.ro_rt = NULL;
659 
660 		sin6.sin6_family = AF_INET6;
661 		sin6.sin6_len = sizeof sin6;
662 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
663 		sin6.sin6_port = sc->sc_inc.inc_fport;
664 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
665 		laddr6 = inp->in6p_laddr;
666 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
667 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
668 		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6, &thread0)) {
669 			inp->in6p_laddr = laddr6;
670 			goto abort;
671 		}
672 	} else
673 #endif
674 	{
675 		struct in_addr laddr;
676 		struct sockaddr_in sin;
677 
678 		inp->inp_options = ip_srcroute();
679 		if (inp->inp_options == NULL) {
680 			inp->inp_options = sc->sc_ipopts;
681 			sc->sc_ipopts = NULL;
682 		}
683 		inp->inp_route = sc->sc_route;
684 		sc->sc_route.ro_rt = NULL;
685 
686 		sin.sin_family = AF_INET;
687 		sin.sin_len = sizeof sin;
688 		sin.sin_addr = sc->sc_inc.inc_faddr;
689 		sin.sin_port = sc->sc_inc.inc_fport;
690 		bzero(sin.sin_zero, sizeof sin.sin_zero);
691 		laddr = inp->inp_laddr;
692 		if (inp->inp_laddr.s_addr == INADDR_ANY)
693 			inp->inp_laddr = sc->sc_inc.inc_laddr;
694 		if (in_pcbconnect(inp, (struct sockaddr *)&sin, &thread0)) {
695 			inp->inp_laddr = laddr;
696 			goto abort;
697 		}
698 	}
699 
700 	tp = intotcpcb(inp);
701 	tp->t_state = TCPS_SYN_RECEIVED;
702 	tp->iss = sc->sc_iss;
703 	tp->irs = sc->sc_irs;
704 	tcp_rcvseqinit(tp);
705 	tcp_sendseqinit(tp);
706 	tp->snd_wl1 = sc->sc_irs;
707 	tp->rcv_up = sc->sc_irs + 1;
708 	tp->rcv_wnd = sc->sc_wnd;
709 	tp->rcv_adv += tp->rcv_wnd;
710 
711 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
712 	if (sc->sc_flags & SCF_NOOPT)
713 		tp->t_flags |= TF_NOOPT;
714 	if (sc->sc_flags & SCF_WINSCALE) {
715 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
716 		tp->requested_s_scale = sc->sc_requested_s_scale;
717 		tp->request_r_scale = sc->sc_request_r_scale;
718 	}
719 	if (sc->sc_flags & SCF_TIMESTAMP) {
720 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
721 		tp->ts_recent = sc->sc_tsrecent;
722 		tp->ts_recent_age = ticks;
723 	}
724 	if (sc->sc_flags & SCF_CC) {
725 		/*
726 		 * Initialization of the tcpcb for transaction;
727 		 *   set SND.WND = SEG.WND,
728 		 *   initialize CCsend and CCrecv.
729 		 */
730 		tp->t_flags |= TF_REQ_CC|TF_RCVD_CC;
731 		tp->cc_send = sc->sc_cc_send;
732 		tp->cc_recv = sc->sc_cc_recv;
733 	}
734 
735 	tcp_mss(tp, sc->sc_peer_mss);
736 
737 	/*
738 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
739 	 */
740 	if (sc->sc_rxtslot != 0)
741                 tp->snd_cwnd = tp->t_maxseg;
742 	callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
743 
744 	tcpstat.tcps_accepts++;
745 	return (so);
746 
747 abort:
748 	if (so != NULL)
749 		(void) soabort(so);
750 	return (NULL);
751 }
752 
753 /*
754  * This function gets called when we receive an ACK for a
755  * socket in the LISTEN state.  We look up the connection
756  * in the syncache, and if its there, we pull it out of
757  * the cache and turn it into a full-blown connection in
758  * the SYN-RECEIVED state.
759  */
760 int
761 syncache_expand(inc, th, sop, m)
762 	struct in_conninfo *inc;
763 	struct tcphdr *th;
764 	struct socket **sop;
765 	struct mbuf *m;
766 {
767 	struct syncache *sc;
768 	struct syncache_head *sch;
769 	struct socket *so;
770 
771 	sc = syncache_lookup(inc, &sch);
772 	if (sc == NULL) {
773 		/*
774 		 * There is no syncache entry, so see if this ACK is
775 		 * a returning syncookie.  To do this, first:
776 		 *  A. See if this socket has had a syncache entry dropped in
777 		 *     the past.  We don't want to accept a bogus syncookie
778  		 *     if we've never received a SYN.
779 		 *  B. check that the syncookie is valid.  If it is, then
780 		 *     cobble up a fake syncache entry, and return.
781 		 */
782 		if (!tcp_syncookies)
783 			return (0);
784 		sc = syncookie_lookup(inc, th, *sop);
785 		if (sc == NULL)
786 			return (0);
787 		sch = NULL;
788 		tcpstat.tcps_sc_recvcookie++;
789 	}
790 
791 	/*
792 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
793 	 */
794 	if (th->th_ack != sc->sc_iss + 1)
795 		return (0);
796 
797 	so = syncache_socket(sc, *sop);
798 	if (so == NULL) {
799 #if 0
800 resetandabort:
801 		/* XXXjlemon check this - is this correct? */
802 		(void) tcp_respond(NULL, m, m, th,
803 		    th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
804 #endif
805 		m_freem(m);			/* XXX only needed for above */
806 		tcpstat.tcps_sc_aborted++;
807 	} else {
808 		sc->sc_flags |= SCF_KEEPROUTE;
809 		tcpstat.tcps_sc_completed++;
810 	}
811 	if (sch == NULL)
812 		syncache_free(sc);
813 	else
814 		syncache_drop(sc, sch);
815 	*sop = so;
816 	return (1);
817 }
818 
819 /*
820  * Given a LISTEN socket and an inbound SYN request, add
821  * this to the syn cache, and send back a segment:
822  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
823  * to the source.
824  *
825  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
826  * Doing so would require that we hold onto the data and deliver it
827  * to the application.  However, if we are the target of a SYN-flood
828  * DoS attack, an attacker could send data which would eventually
829  * consume all available buffer space if it were ACKed.  By not ACKing
830  * the data, we avoid this DoS scenario.
831  */
832 int
833 syncache_add(inc, to, th, sop, m)
834 	struct in_conninfo *inc;
835 	struct tcpopt *to;
836 	struct tcphdr *th;
837 	struct socket **sop;
838 	struct mbuf *m;
839 {
840 	struct tcpcb *tp;
841 	struct socket *so;
842 	struct syncache *sc = NULL;
843 	struct syncache_head *sch;
844 	struct mbuf *ipopts = NULL;
845 	struct rmxp_tao *taop;
846 	int win;
847 
848 	so = *sop;
849 	tp = sototcpcb(so);
850 
851 	/*
852 	 * Remember the IP options, if any.
853 	 */
854 #ifdef INET6
855 	if (!inc->inc_isipv6)
856 #endif
857 		ipopts = ip_srcroute();
858 
859 	/*
860 	 * See if we already have an entry for this connection.
861 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
862 	 *
863 	 * XXX
864 	 * should the syncache be re-initialized with the contents
865 	 * of the new SYN here (which may have different options?)
866 	 */
867 	sc = syncache_lookup(inc, &sch);
868 	if (sc != NULL) {
869 		tcpstat.tcps_sc_dupsyn++;
870 		if (ipopts) {
871 			/*
872 			 * If we were remembering a previous source route,
873 			 * forget it and use the new one we've been given.
874 			 */
875 			if (sc->sc_ipopts)
876 				(void) m_free(sc->sc_ipopts);
877 			sc->sc_ipopts = ipopts;
878 		}
879 		/*
880 		 * Update timestamp if present.
881 		 */
882 		if (sc->sc_flags & SCF_TIMESTAMP)
883 			sc->sc_tsrecent = to->to_tsval;
884 		/*
885 		 * PCB may have changed, pick up new values.
886 		 */
887 		sc->sc_tp = tp;
888 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
889 		if (syncache_respond(sc, m) == 0) {
890 			TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot],
891 			    sc, sc_timerq);
892 			SYNCACHE_TIMEOUT(sc, sc->sc_rxtslot);
893 		 	tcpstat.tcps_sndacks++;
894 			tcpstat.tcps_sndtotal++;
895 		}
896 		*sop = NULL;
897 		return (1);
898 	}
899 
900 	/*
901 	 * This allocation is guaranteed to succeed because we
902 	 * preallocate one more syncache entry than cache_limit.
903 	 */
904 	sc = zalloc(tcp_syncache.zone);
905 
906 	/*
907 	 * Fill in the syncache values.
908 	 */
909 	sc->sc_tp = tp;
910 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
911 	sc->sc_ipopts = ipopts;
912 	sc->sc_inc.inc_fport = inc->inc_fport;
913 	sc->sc_inc.inc_lport = inc->inc_lport;
914 #ifdef INET6
915 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
916 	if (inc->inc_isipv6) {
917 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
918 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
919 		sc->sc_route6.ro_rt = NULL;
920 	} else
921 #endif
922 	{
923 		sc->sc_inc.inc_faddr = inc->inc_faddr;
924 		sc->sc_inc.inc_laddr = inc->inc_laddr;
925 		sc->sc_route.ro_rt = NULL;
926 	}
927 	sc->sc_irs = th->th_seq;
928 	sc->sc_flags = 0;
929 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
930 	if (tcp_syncookies)
931 		sc->sc_iss = syncookie_generate(sc);
932 	else
933 		sc->sc_iss = arc4random();
934 
935 	/* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */
936 	win = sbspace(&so->so_rcv);
937 	win = imax(win, 0);
938 	win = imin(win, TCP_MAXWIN);
939 	sc->sc_wnd = win;
940 
941 	if (tcp_do_rfc1323) {
942 		/*
943 		 * A timestamp received in a SYN makes
944 		 * it ok to send timestamp requests and replies.
945 		 */
946 		if (to->to_flags & TOF_TS) {
947 			sc->sc_tsrecent = to->to_tsval;
948 			sc->sc_flags |= SCF_TIMESTAMP;
949 		}
950 		if (to->to_flags & TOF_SCALE) {
951 			int wscale = 0;
952 
953 			/* Compute proper scaling value from buffer space */
954 			while (wscale < TCP_MAX_WINSHIFT &&
955 			    (TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat)
956 				wscale++;
957 			sc->sc_request_r_scale = wscale;
958 			sc->sc_requested_s_scale = to->to_requested_s_scale;
959 			sc->sc_flags |= SCF_WINSCALE;
960 		}
961 	}
962 	if (tcp_do_rfc1644) {
963 		/*
964 		 * A CC or CC.new option received in a SYN makes
965 		 * it ok to send CC in subsequent segments.
966 		 */
967 		if (to->to_flags & (TOF_CC|TOF_CCNEW)) {
968 			sc->sc_cc_recv = to->to_cc;
969 			sc->sc_cc_send = CC_INC(tcp_ccgen);
970 			sc->sc_flags |= SCF_CC;
971 		}
972 	}
973 	if (tp->t_flags & TF_NOOPT)
974 		sc->sc_flags = SCF_NOOPT;
975 
976 	/*
977 	 * XXX
978 	 * We have the option here of not doing TAO (even if the segment
979 	 * qualifies) and instead fall back to a normal 3WHS via the syncache.
980 	 * This allows us to apply synflood protection to TAO-qualifying SYNs
981 	 * also. However, there should be a hueristic to determine when to
982 	 * do this, and is not present at the moment.
983 	 */
984 
985 	/*
986 	 * Perform TAO test on incoming CC (SEG.CC) option, if any.
987 	 * - compare SEG.CC against cached CC from the same host, if any.
988 	 * - if SEG.CC > chached value, SYN must be new and is accepted
989 	 *	immediately: save new CC in the cache, mark the socket
990 	 *	connected, enter ESTABLISHED state, turn on flag to
991 	 *	send a SYN in the next segment.
992 	 *	A virtual advertised window is set in rcv_adv to
993 	 *	initialize SWS prevention.  Then enter normal segment
994 	 *	processing: drop SYN, process data and FIN.
995 	 * - otherwise do a normal 3-way handshake.
996 	 */
997 	taop = tcp_gettaocache(&sc->sc_inc);
998 	if ((to->to_flags & TOF_CC) != 0) {
999 		if (((tp->t_flags & TF_NOPUSH) != 0) &&
1000 		    sc->sc_flags & SCF_CC &&
1001 		    taop != NULL && taop->tao_cc != 0 &&
1002 		    CC_GT(to->to_cc, taop->tao_cc)) {
1003 			sc->sc_rxtslot = 0;
1004 			so = syncache_socket(sc, *sop);
1005 			if (so != NULL) {
1006 				sc->sc_flags |= SCF_KEEPROUTE;
1007 				taop->tao_cc = to->to_cc;
1008 				*sop = so;
1009 			}
1010 			syncache_free(sc);
1011 			return (so != NULL);
1012 		}
1013 	} else {
1014 		/*
1015 		 * No CC option, but maybe CC.NEW: invalidate cached value.
1016 		 */
1017 		if (taop != NULL)
1018 			taop->tao_cc = 0;
1019 	}
1020 	/*
1021 	 * TAO test failed or there was no CC option,
1022 	 *    do a standard 3-way handshake.
1023 	 */
1024 	if (syncache_respond(sc, m) == 0) {
1025 		syncache_insert(sc, sch);
1026 		tcpstat.tcps_sndacks++;
1027 		tcpstat.tcps_sndtotal++;
1028 	} else {
1029 		syncache_free(sc);
1030 		tcpstat.tcps_sc_dropped++;
1031 	}
1032 	*sop = NULL;
1033 	return (1);
1034 }
1035 
1036 static int
1037 syncache_respond(sc, m)
1038 	struct syncache *sc;
1039 	struct mbuf *m;
1040 {
1041 	u_int8_t *optp;
1042 	int optlen, error;
1043 	u_int16_t tlen, hlen, mssopt;
1044 	struct ip *ip = NULL;
1045 	struct rtentry *rt;
1046 	struct tcphdr *th;
1047 #ifdef INET6
1048 	struct ip6_hdr *ip6 = NULL;
1049 #endif
1050 
1051 #ifdef INET6
1052 	if (sc->sc_inc.inc_isipv6) {
1053 		rt = tcp_rtlookup6(&sc->sc_inc);
1054 		if (rt != NULL)
1055 			mssopt = rt->rt_ifp->if_mtu -
1056 			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1057 		else
1058 			mssopt = tcp_v6mssdflt;
1059 		hlen = sizeof(struct ip6_hdr);
1060 	} else
1061 #endif
1062 	{
1063 		rt = tcp_rtlookup(&sc->sc_inc);
1064 		if (rt != NULL)
1065 			mssopt = rt->rt_ifp->if_mtu -
1066 			     (sizeof(struct ip) + sizeof(struct tcphdr));
1067 		else
1068 			mssopt = tcp_mssdflt;
1069 		hlen = sizeof(struct ip);
1070 	}
1071 
1072 	/* Compute the size of the TCP options. */
1073 	if (sc->sc_flags & SCF_NOOPT) {
1074 		optlen = 0;
1075 	} else {
1076 		optlen = TCPOLEN_MAXSEG +
1077 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1078 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1079 		    ((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0);
1080 	}
1081 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1082 
1083 	/*
1084 	 * XXX
1085 	 * assume that the entire packet will fit in a header mbuf
1086 	 */
1087 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1088 
1089 	/*
1090 	 * XXX shouldn't this reuse the mbuf if possible ?
1091 	 * Create the IP+TCP header from scratch.
1092 	 */
1093 	if (m)
1094 		m_freem(m);
1095 
1096 	m = m_gethdr(MB_DONTWAIT, MT_HEADER);
1097 	if (m == NULL)
1098 		return (ENOBUFS);
1099 	m->m_data += max_linkhdr;
1100 	m->m_len = tlen;
1101 	m->m_pkthdr.len = tlen;
1102 	m->m_pkthdr.rcvif = NULL;
1103 
1104 #ifdef INET6
1105 	if (sc->sc_inc.inc_isipv6) {
1106 		ip6 = mtod(m, struct ip6_hdr *);
1107 		ip6->ip6_vfc = IPV6_VERSION;
1108 		ip6->ip6_nxt = IPPROTO_TCP;
1109 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1110 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1111 		ip6->ip6_plen = htons(tlen - hlen);
1112 		/* ip6_hlim is set after checksum */
1113 		/* ip6_flow = ??? */
1114 
1115 		th = (struct tcphdr *)(ip6 + 1);
1116 	} else
1117 #endif
1118 	{
1119 		ip = mtod(m, struct ip *);
1120 		ip->ip_v = IPVERSION;
1121 		ip->ip_hl = sizeof(struct ip) >> 2;
1122 		ip->ip_len = tlen;
1123 		ip->ip_id = 0;
1124 		ip->ip_off = 0;
1125 		ip->ip_sum = 0;
1126 		ip->ip_p = IPPROTO_TCP;
1127 		ip->ip_src = sc->sc_inc.inc_laddr;
1128 		ip->ip_dst = sc->sc_inc.inc_faddr;
1129 		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1130 		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1131 
1132 		/*
1133 		 * See if we should do MTU discovery.  Route lookups are expensive,
1134 		 * so we will only unset the DF bit if:
1135 		 *
1136 		 *	1) path_mtu_discovery is disabled
1137 		 *	2) the SCF_UNREACH flag has been set
1138 		 */
1139 		if (path_mtu_discovery
1140 		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1141 		       ip->ip_off |= IP_DF;
1142 		}
1143 
1144 		th = (struct tcphdr *)(ip + 1);
1145 	}
1146 	th->th_sport = sc->sc_inc.inc_lport;
1147 	th->th_dport = sc->sc_inc.inc_fport;
1148 
1149 	th->th_seq = htonl(sc->sc_iss);
1150 	th->th_ack = htonl(sc->sc_irs + 1);
1151 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1152 	th->th_x2 = 0;
1153 	th->th_flags = TH_SYN|TH_ACK;
1154 	th->th_win = htons(sc->sc_wnd);
1155 	th->th_urp = 0;
1156 
1157 	/* Tack on the TCP options. */
1158 	if (optlen == 0)
1159 		goto no_options;
1160 	optp = (u_int8_t *)(th + 1);
1161 	*optp++ = TCPOPT_MAXSEG;
1162 	*optp++ = TCPOLEN_MAXSEG;
1163 	*optp++ = (mssopt >> 8) & 0xff;
1164 	*optp++ = mssopt & 0xff;
1165 
1166 	if (sc->sc_flags & SCF_WINSCALE) {
1167 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1168 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1169 		    sc->sc_request_r_scale);
1170 		optp += 4;
1171 	}
1172 
1173 	if (sc->sc_flags & SCF_TIMESTAMP) {
1174 		u_int32_t *lp = (u_int32_t *)(optp);
1175 
1176 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1177 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1178 		*lp++ = htonl(ticks);
1179 		*lp   = htonl(sc->sc_tsrecent);
1180 		optp += TCPOLEN_TSTAMP_APPA;
1181 	}
1182 
1183 	/*
1184          * Send CC and CC.echo if we received CC from our peer.
1185          */
1186         if (sc->sc_flags & SCF_CC) {
1187 		u_int32_t *lp = (u_int32_t *)(optp);
1188 
1189 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1190 		*lp++ = htonl(sc->sc_cc_send);
1191 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO));
1192 		*lp   = htonl(sc->sc_cc_recv);
1193 		optp += TCPOLEN_CC_APPA * 2;
1194 	}
1195 no_options:
1196 
1197 #ifdef INET6
1198 	if (sc->sc_inc.inc_isipv6) {
1199 		struct route_in6 *ro6 = &sc->sc_route6;
1200 
1201 		th->th_sum = 0;
1202 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1203 		ip6->ip6_hlim = in6_selecthlim(NULL,
1204 		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1205 		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1206 				sc->sc_tp->t_inpcb);
1207 	} else
1208 #endif
1209 	{
1210         	th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1211 		    htons(tlen - hlen + IPPROTO_TCP));
1212 		m->m_pkthdr.csum_flags = CSUM_TCP;
1213 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1214 		error = ip_output(m, sc->sc_ipopts, &sc->sc_route, 0, NULL,
1215 				sc->sc_tp->t_inpcb);
1216 	}
1217 	return (error);
1218 }
1219 
1220 /*
1221  * cookie layers:
1222  *
1223  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1224  *	| peer iss                                                      |
1225  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1226  *	|                     0                       |(A)|             |
1227  * (A): peer mss index
1228  */
1229 
1230 /*
1231  * The values below are chosen to minimize the size of the tcp_secret
1232  * table, as well as providing roughly a 16 second lifetime for the cookie.
1233  */
1234 
1235 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1236 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1237 
1238 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1239 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1240 #define SYNCOOKIE_TIMEOUT \
1241     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1242 #define SYNCOOKIE_DATAMASK 	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1243 
1244 static struct {
1245 	u_int32_t	ts_secbits[4];
1246 	u_int		ts_expire;
1247 } tcp_secret[SYNCOOKIE_NSECRETS];
1248 
1249 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1250 
1251 static MD5_CTX syn_ctx;
1252 
1253 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1254 
1255 struct md5_add {
1256 	u_int32_t laddr, faddr;
1257 	u_int32_t secbits[4];
1258 	u_int16_t lport, fport;
1259 };
1260 
1261 #ifdef CTASSERT
1262 CTASSERT(sizeof(struct md5_add) == 28);
1263 #endif
1264 
1265 /*
1266  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1267  * original SYN was accepted, the connection is established.  The second
1268  * SYN is inflight, and if it arrives with an ISN that falls within the
1269  * receive window, the connection is killed.
1270  *
1271  * However, since cookies have other problems, this may not be worth
1272  * worrying about.
1273  */
1274 
1275 static u_int32_t
1276 syncookie_generate(struct syncache *sc)
1277 {
1278 	u_int32_t md5_buffer[4];
1279 	u_int32_t data;
1280 	int idx, i;
1281 	struct md5_add add;
1282 
1283 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1284 	if (tcp_secret[idx].ts_expire < ticks) {
1285 		for (i = 0; i < 4; i++)
1286 			tcp_secret[idx].ts_secbits[i] = arc4random();
1287 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1288 	}
1289 	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1290 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1291 			break;
1292 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1293 	data ^= sc->sc_irs;				/* peer's iss */
1294 	MD5Init(&syn_ctx);
1295 #ifdef INET6
1296 	if (sc->sc_inc.inc_isipv6) {
1297 		MD5Add(sc->sc_inc.inc6_laddr);
1298 		MD5Add(sc->sc_inc.inc6_faddr);
1299 		add.laddr = 0;
1300 		add.faddr = 0;
1301 	} else
1302 #endif
1303 	{
1304 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1305 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1306 	}
1307 	add.lport = sc->sc_inc.inc_lport;
1308 	add.fport = sc->sc_inc.inc_fport;
1309 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1310 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1311 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1312 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1313 	MD5Add(add);
1314 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1315 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1316 	return (data);
1317 }
1318 
1319 static struct syncache *
1320 syncookie_lookup(inc, th, so)
1321 	struct in_conninfo *inc;
1322 	struct tcphdr *th;
1323 	struct socket *so;
1324 {
1325 	u_int32_t md5_buffer[4];
1326 	struct syncache *sc;
1327 	u_int32_t data;
1328 	int wnd, idx;
1329 	struct md5_add add;
1330 
1331 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1332 	idx = data & SYNCOOKIE_WNDMASK;
1333 	if (tcp_secret[idx].ts_expire < ticks ||
1334 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1335 		return (NULL);
1336 	MD5Init(&syn_ctx);
1337 #ifdef INET6
1338 	if (inc->inc_isipv6) {
1339 		MD5Add(inc->inc6_laddr);
1340 		MD5Add(inc->inc6_faddr);
1341 		add.laddr = 0;
1342 		add.faddr = 0;
1343 	} else
1344 #endif
1345 	{
1346 		add.laddr = inc->inc_laddr.s_addr;
1347 		add.faddr = inc->inc_faddr.s_addr;
1348 	}
1349 	add.lport = inc->inc_lport;
1350 	add.fport = inc->inc_fport;
1351 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1352 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1353 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1354 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1355 	MD5Add(add);
1356 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1357 	data ^= md5_buffer[0];
1358 	if ((data & ~SYNCOOKIE_DATAMASK) != 0)
1359 		return (NULL);
1360 	data = data >> SYNCOOKIE_WNDBITS;
1361 
1362 	/*
1363 	 * This allocation is guaranteed to succeed because we
1364 	 * preallocate one more syncache entry than cache_limit.
1365 	 */
1366 	sc = zalloc(tcp_syncache.zone);
1367 
1368 	/*
1369 	 * Fill in the syncache values.
1370 	 * XXX duplicate code from syncache_add
1371 	 */
1372 	sc->sc_ipopts = NULL;
1373 	sc->sc_inc.inc_fport = inc->inc_fport;
1374 	sc->sc_inc.inc_lport = inc->inc_lport;
1375 #ifdef INET6
1376 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1377 	if (inc->inc_isipv6) {
1378 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1379 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1380 		sc->sc_route6.ro_rt = NULL;
1381 	} else
1382 #endif
1383 	{
1384 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1385 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1386 		sc->sc_route.ro_rt = NULL;
1387 	}
1388 	sc->sc_irs = th->th_seq - 1;
1389 	sc->sc_iss = th->th_ack - 1;
1390 	wnd = sbspace(&so->so_rcv);
1391 	wnd = imax(wnd, 0);
1392 	wnd = imin(wnd, TCP_MAXWIN);
1393 	sc->sc_wnd = wnd;
1394 	sc->sc_flags = 0;
1395 	sc->sc_rxtslot = 0;
1396 	sc->sc_peer_mss = tcp_msstab[data];
1397 	return (sc);
1398 }
1399