xref: /dflybsd-src/sys/netinet/tcp_syncache.c (revision 90ea502b8c5d21f908cedff6680ee2bc9e74ce74)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * All advertising materials mentioning features or use of this software
36  * must display the following acknowledgement:
37  *   This product includes software developed by Jeffrey M. Hsu.
38  *
39  * Copyright (c) 2001 Networks Associates Technologies, Inc.
40  * All rights reserved.
41  *
42  * This software was developed for the FreeBSD Project by Jonathan Lemon
43  * and NAI Labs, the Security Research Division of Network Associates, Inc.
44  * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45  * DARPA CHATS research program.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. The name of the author may not be used to endorse or promote
56  *    products derived from this software without specific prior written
57  *    permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
72  * $DragonFly: src/sys/netinet/tcp_syncache.c,v 1.35 2008/11/22 11:03:35 sephe Exp $
73  */
74 
75 #include "opt_inet6.h"
76 #include "opt_ipsec.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/md5.h>
85 #include <sys/proc.h>		/* for proc0 declaration */
86 #include <sys/random.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/in_cksum.h>
90 
91 #include <sys/msgport2.h>
92 #include <net/netmsg2.h>
93 
94 #include <net/if.h>
95 #include <net/route.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/in_var.h>
101 #include <netinet/in_pcb.h>
102 #include <netinet/ip_var.h>
103 #include <netinet/ip6.h>
104 #ifdef INET6
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #endif
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
117 
118 #ifdef IPSEC
119 #include <netinet6/ipsec.h>
120 #ifdef INET6
121 #include <netinet6/ipsec6.h>
122 #endif
123 #include <netproto/key/key.h>
124 #endif /*IPSEC*/
125 
126 #ifdef FAST_IPSEC
127 #include <netproto/ipsec/ipsec.h>
128 #ifdef INET6
129 #include <netproto/ipsec/ipsec6.h>
130 #endif
131 #include <netproto/ipsec/key.h>
132 #define	IPSEC
133 #endif /*FAST_IPSEC*/
134 
135 #include <vm/vm_zone.h>
136 
137 static int tcp_syncookies = 1;
138 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
139     &tcp_syncookies, 0,
140     "Use TCP SYN cookies if the syncache overflows");
141 
142 static void	 syncache_drop(struct syncache *, struct syncache_head *);
143 static void	 syncache_free(struct syncache *);
144 static void	 syncache_insert(struct syncache *, struct syncache_head *);
145 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
146 static int	 syncache_respond(struct syncache *, struct mbuf *);
147 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
148 		    struct mbuf *);
149 static void	 syncache_timer(void *);
150 static u_int32_t syncookie_generate(struct syncache *);
151 static struct syncache *syncookie_lookup(struct in_conninfo *,
152 		    struct tcphdr *, struct socket *);
153 
154 /*
155  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
156  * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
157  * the odds are that the user has given up attempting to connect by then.
158  */
159 #define SYNCACHE_MAXREXMTS		3
160 
161 /* Arbitrary values */
162 #define TCP_SYNCACHE_HASHSIZE		512
163 #define TCP_SYNCACHE_BUCKETLIMIT	30
164 
165 struct netmsg_sc_timer {
166 	struct netmsg nm_netmsg;
167 	struct msgrec *nm_mrec;		/* back pointer to containing msgrec */
168 };
169 
170 struct msgrec {
171 	struct netmsg_sc_timer msg;
172 	lwkt_port_t port;		/* constant after init */
173 	int slot;			/* constant after init */
174 };
175 
176 static void syncache_timer_handler(netmsg_t);
177 
178 struct tcp_syncache {
179 	struct	vm_zone *zone;
180 	u_int	hashsize;
181 	u_int	hashmask;
182 	u_int	bucket_limit;
183 	u_int	cache_limit;
184 	u_int	rexmt_limit;
185 	u_int	hash_secret;
186 };
187 static struct tcp_syncache tcp_syncache;
188 
189 struct tcp_syncache_percpu {
190 	struct syncache_head	*hashbase;
191 	u_int			cache_count;
192 	TAILQ_HEAD(, syncache)	timerq[SYNCACHE_MAXREXMTS + 1];
193 	struct callout		tt_timerq[SYNCACHE_MAXREXMTS + 1];
194 	struct msgrec		mrec[SYNCACHE_MAXREXMTS + 1];
195 };
196 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
197 
198 static struct lwkt_port syncache_null_rport;
199 
200 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
201 
202 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
203      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
204 
205 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
206      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
207 
208 /* XXX JH */
209 #if 0
210 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
211      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
212 #endif
213 
214 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
215      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
216 
217 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
218      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
219 
220 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
221 
222 #define SYNCACHE_HASH(inc, mask)					\
223 	((tcp_syncache.hash_secret ^					\
224 	  (inc)->inc_faddr.s_addr ^					\
225 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
226 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
227 
228 #define SYNCACHE_HASH6(inc, mask)					\
229 	((tcp_syncache.hash_secret ^					\
230 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
231 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
232 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
233 
234 #define ENDPTS_EQ(a, b) (						\
235 	(a)->ie_fport == (b)->ie_fport &&				\
236 	(a)->ie_lport == (b)->ie_lport &&				\
237 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
238 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
239 )
240 
241 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
242 
243 static __inline void
244 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
245 		 struct syncache *sc, int slot)
246 {
247 	sc->sc_rxtslot = slot;
248 	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot];
249 	TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
250 	if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
251 		callout_reset(&syncache_percpu->tt_timerq[slot],
252 			      TCPTV_RTOBASE * tcp_backoff[slot],
253 			      syncache_timer,
254 			      &syncache_percpu->mrec[slot]);
255 	}
256 }
257 
258 static void
259 syncache_free(struct syncache *sc)
260 {
261 	struct rtentry *rt;
262 #ifdef INET6
263 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
264 #else
265 	const boolean_t isipv6 = FALSE;
266 #endif
267 
268 	if (sc->sc_ipopts)
269 		m_free(sc->sc_ipopts);
270 
271 	rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
272 	if (rt != NULL) {
273 		/*
274 		 * If this is the only reference to a protocol-cloned
275 		 * route, remove it immediately.
276 		 */
277 		if ((rt->rt_flags & RTF_WASCLONED) && rt->rt_refcnt == 1)
278 			rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
279 				  rt_mask(rt), rt->rt_flags, NULL);
280 		RTFREE(rt);
281 	}
282 
283 	zfree(tcp_syncache.zone, sc);
284 }
285 
286 void
287 syncache_init(void)
288 {
289 	int i, cpu;
290 
291 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
292 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
293 	tcp_syncache.cache_limit =
294 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
295 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
296 	tcp_syncache.hash_secret = karc4random();
297 
298 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
299 	    &tcp_syncache.hashsize);
300 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
301 	    &tcp_syncache.cache_limit);
302 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
303 	    &tcp_syncache.bucket_limit);
304 	if (!powerof2(tcp_syncache.hashsize)) {
305 		kprintf("WARNING: syncache hash size is not a power of 2.\n");
306 		tcp_syncache.hashsize = 512;	/* safe default */
307 	}
308 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
309 
310 	lwkt_initport_replyonly_null(&syncache_null_rport);
311 
312 	for (cpu = 0; cpu < ncpus2; cpu++) {
313 		struct tcp_syncache_percpu *syncache_percpu;
314 
315 		syncache_percpu = &tcp_syncache_percpu[cpu];
316 		/* Allocate the hash table. */
317 		MALLOC(syncache_percpu->hashbase, struct syncache_head *,
318 		    tcp_syncache.hashsize * sizeof(struct syncache_head),
319 		    M_SYNCACHE, M_WAITOK);
320 
321 		/* Initialize the hash buckets. */
322 		for (i = 0; i < tcp_syncache.hashsize; i++) {
323 			struct syncache_head *bucket;
324 
325 			bucket = &syncache_percpu->hashbase[i];
326 			TAILQ_INIT(&bucket->sch_bucket);
327 			bucket->sch_length = 0;
328 		}
329 
330 		for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
331 			/* Initialize the timer queues. */
332 			TAILQ_INIT(&syncache_percpu->timerq[i]);
333 			callout_init(&syncache_percpu->tt_timerq[i]);
334 
335 			syncache_percpu->mrec[i].slot = i;
336 			syncache_percpu->mrec[i].port = tcp_cport(cpu);
337 			syncache_percpu->mrec[i].msg.nm_mrec =
338 			    &syncache_percpu->mrec[i];
339 			netmsg_init(&syncache_percpu->mrec[i].msg.nm_netmsg,
340 				    NULL, &syncache_null_rport,
341 				    0, syncache_timer_handler);
342 		}
343 	}
344 
345 	/*
346 	 * Allocate the syncache entries.  Allow the zone to allocate one
347 	 * more entry than cache limit, so a new entry can bump out an
348 	 * older one.
349 	 */
350 	tcp_syncache.zone = zinit("syncache", sizeof(struct syncache),
351 	    tcp_syncache.cache_limit * ncpus2, ZONE_INTERRUPT, 0);
352 	tcp_syncache.cache_limit -= 1;
353 }
354 
355 static void
356 syncache_insert(struct syncache *sc, struct syncache_head *sch)
357 {
358 	struct tcp_syncache_percpu *syncache_percpu;
359 	struct syncache *sc2;
360 	int i;
361 
362 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
363 
364 	/*
365 	 * Make sure that we don't overflow the per-bucket
366 	 * limit or the total cache size limit.
367 	 */
368 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
369 		/*
370 		 * The bucket is full, toss the oldest element.
371 		 */
372 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
373 		sc2->sc_tp->ts_recent = ticks;
374 		syncache_drop(sc2, sch);
375 		tcpstat.tcps_sc_bucketoverflow++;
376 	} else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
377 		/*
378 		 * The cache is full.  Toss the oldest entry in the
379 		 * entire cache.  This is the front entry in the
380 		 * first non-empty timer queue with the largest
381 		 * timeout value.
382 		 */
383 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
384 			sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
385 			if (sc2 != NULL)
386 				break;
387 		}
388 		sc2->sc_tp->ts_recent = ticks;
389 		syncache_drop(sc2, NULL);
390 		tcpstat.tcps_sc_cacheoverflow++;
391 	}
392 
393 	/* Initialize the entry's timer. */
394 	syncache_timeout(syncache_percpu, sc, 0);
395 
396 	/* Put it into the bucket. */
397 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
398 	sch->sch_length++;
399 	syncache_percpu->cache_count++;
400 	tcpstat.tcps_sc_added++;
401 }
402 
403 static void
404 syncache_drop(struct syncache *sc, struct syncache_head *sch)
405 {
406 	struct tcp_syncache_percpu *syncache_percpu;
407 #ifdef INET6
408 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
409 #else
410 	const boolean_t isipv6 = FALSE;
411 #endif
412 
413 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
414 
415 	if (sch == NULL) {
416 		if (isipv6) {
417 			sch = &syncache_percpu->hashbase[
418 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
419 		} else {
420 			sch = &syncache_percpu->hashbase[
421 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
422 		}
423 	}
424 
425 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
426 	sch->sch_length--;
427 	syncache_percpu->cache_count--;
428 
429 	/*
430 	 * Remove the entry from the syncache timer/timeout queue.  Note
431 	 * that we do not try to stop any running timer since we do not know
432 	 * whether the timer's message is in-transit or not.  Since timeouts
433 	 * are fairly long, taking an unneeded callout does not detrimentally
434 	 * effect performance.
435 	 */
436 	TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
437 
438 	syncache_free(sc);
439 }
440 
441 /*
442  * Place a timeout message on the TCP thread's message queue.
443  * This routine runs in soft interrupt context.
444  *
445  * An invariant is for this routine to be called, the callout must
446  * have been active.  Note that the callout is not deactivated until
447  * after the message has been processed in syncache_timer_handler() below.
448  */
449 static void
450 syncache_timer(void *p)
451 {
452 	struct netmsg_sc_timer *msg = p;
453 
454 	lwkt_sendmsg(msg->nm_mrec->port, &msg->nm_netmsg.nm_lmsg);
455 }
456 
457 /*
458  * Service a timer message queued by timer expiration.
459  * This routine runs in the TCP protocol thread.
460  *
461  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
462  * If we have retransmitted an entry the maximum number of times, expire it.
463  *
464  * When we finish processing timed-out entries, we restart the timer if there
465  * are any entries still on the queue and deactivate it otherwise.  Only after
466  * a timer has been deactivated here can it be restarted by syncache_timeout().
467  */
468 static void
469 syncache_timer_handler(netmsg_t netmsg)
470 {
471 	struct tcp_syncache_percpu *syncache_percpu;
472 	struct syncache *sc, *nsc;
473 	struct inpcb *inp;
474 	int slot;
475 
476 	slot = ((struct netmsg_sc_timer *)netmsg)->nm_mrec->slot;
477 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
478 
479 	nsc = TAILQ_FIRST(&syncache_percpu->timerq[slot]);
480 	while (nsc != NULL) {
481 		if (ticks < nsc->sc_rxttime)
482 			break;	/* finished because timerq sorted by time */
483 		sc = nsc;
484 		inp = sc->sc_tp->t_inpcb;
485 		if (slot == SYNCACHE_MAXREXMTS ||
486 		    slot >= tcp_syncache.rexmt_limit ||
487 		    inp->inp_gencnt != sc->sc_inp_gencnt) {
488 			nsc = TAILQ_NEXT(sc, sc_timerq);
489 			syncache_drop(sc, NULL);
490 			tcpstat.tcps_sc_stale++;
491 			continue;
492 		}
493 		/*
494 		 * syncache_respond() may call back into the syncache to
495 		 * to modify another entry, so do not obtain the next
496 		 * entry on the timer chain until it has completed.
497 		 */
498 		syncache_respond(sc, NULL);
499 		nsc = TAILQ_NEXT(sc, sc_timerq);
500 		tcpstat.tcps_sc_retransmitted++;
501 		TAILQ_REMOVE(&syncache_percpu->timerq[slot], sc, sc_timerq);
502 		syncache_timeout(syncache_percpu, sc, slot + 1);
503 	}
504 	if (nsc != NULL)
505 		callout_reset(&syncache_percpu->tt_timerq[slot],
506 		    nsc->sc_rxttime - ticks, syncache_timer,
507 		    &syncache_percpu->mrec[slot]);
508 	else
509 		callout_deactivate(&syncache_percpu->tt_timerq[slot]);
510 
511 	lwkt_replymsg(&netmsg->nm_lmsg, 0);
512 }
513 
514 /*
515  * Find an entry in the syncache.
516  */
517 struct syncache *
518 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
519 {
520 	struct tcp_syncache_percpu *syncache_percpu;
521 	struct syncache *sc;
522 	struct syncache_head *sch;
523 
524 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
525 #ifdef INET6
526 	if (inc->inc_isipv6) {
527 		sch = &syncache_percpu->hashbase[
528 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
529 		*schp = sch;
530 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
531 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
532 				return (sc);
533 	} else
534 #endif
535 	{
536 		sch = &syncache_percpu->hashbase[
537 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
538 		*schp = sch;
539 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
540 #ifdef INET6
541 			if (sc->sc_inc.inc_isipv6)
542 				continue;
543 #endif
544 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
545 				return (sc);
546 		}
547 	}
548 	return (NULL);
549 }
550 
551 /*
552  * This function is called when we get a RST for a
553  * non-existent connection, so that we can see if the
554  * connection is in the syn cache.  If it is, zap it.
555  */
556 void
557 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
558 {
559 	struct syncache *sc;
560 	struct syncache_head *sch;
561 
562 	sc = syncache_lookup(inc, &sch);
563 	if (sc == NULL)
564 		return;
565 	/*
566 	 * If the RST bit is set, check the sequence number to see
567 	 * if this is a valid reset segment.
568 	 * RFC 793 page 37:
569 	 *   In all states except SYN-SENT, all reset (RST) segments
570 	 *   are validated by checking their SEQ-fields.  A reset is
571 	 *   valid if its sequence number is in the window.
572 	 *
573 	 *   The sequence number in the reset segment is normally an
574 	 *   echo of our outgoing acknowlegement numbers, but some hosts
575 	 *   send a reset with the sequence number at the rightmost edge
576 	 *   of our receive window, and we have to handle this case.
577 	 */
578 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
579 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
580 		syncache_drop(sc, sch);
581 		tcpstat.tcps_sc_reset++;
582 	}
583 }
584 
585 void
586 syncache_badack(struct in_conninfo *inc)
587 {
588 	struct syncache *sc;
589 	struct syncache_head *sch;
590 
591 	sc = syncache_lookup(inc, &sch);
592 	if (sc != NULL) {
593 		syncache_drop(sc, sch);
594 		tcpstat.tcps_sc_badack++;
595 	}
596 }
597 
598 void
599 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
600 {
601 	struct syncache *sc;
602 	struct syncache_head *sch;
603 
604 	/* we are called at splnet() here */
605 	sc = syncache_lookup(inc, &sch);
606 	if (sc == NULL)
607 		return;
608 
609 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
610 	if (ntohl(th->th_seq) != sc->sc_iss)
611 		return;
612 
613 	/*
614 	 * If we've rertransmitted 3 times and this is our second error,
615 	 * we remove the entry.  Otherwise, we allow it to continue on.
616 	 * This prevents us from incorrectly nuking an entry during a
617 	 * spurious network outage.
618 	 *
619 	 * See tcp_notify().
620 	 */
621 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
622 		sc->sc_flags |= SCF_UNREACH;
623 		return;
624 	}
625 	syncache_drop(sc, sch);
626 	tcpstat.tcps_sc_unreach++;
627 }
628 
629 /*
630  * Build a new TCP socket structure from a syncache entry.
631  *
632  * This is called from the context of the SYN+ACK
633  */
634 static struct socket *
635 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
636 {
637 	struct inpcb *inp = NULL, *linp;
638 	struct socket *so;
639 	struct tcpcb *tp;
640 	lwkt_port_t port;
641 #ifdef INET6
642 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
643 #else
644 	const boolean_t isipv6 = FALSE;
645 #endif
646 
647 	/*
648 	 * Ok, create the full blown connection, and set things up
649 	 * as they would have been set up if we had created the
650 	 * connection when the SYN arrived.  If we can't create
651 	 * the connection, abort it.
652 	 */
653 	so = sonewconn(lso, SS_ISCONNECTED);
654 	if (so == NULL) {
655 		/*
656 		 * Drop the connection; we will send a RST if the peer
657 		 * retransmits the ACK,
658 		 */
659 		tcpstat.tcps_listendrop++;
660 		goto abort;
661 	}
662 
663 	/*
664 	 * Set the protocol processing port for the socket to the current
665 	 * port (that the connection came in on).
666 	 */
667 	sosetport(so, &curthread->td_msgport);
668 
669 	/*
670 	 * Insert new socket into hash list.
671 	 */
672 	inp = so->so_pcb;
673 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
674 	if (isipv6) {
675 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
676 	} else {
677 #ifdef INET6
678 		inp->inp_vflag &= ~INP_IPV6;
679 		inp->inp_vflag |= INP_IPV4;
680 		inp->inp_flags &= ~IN6P_IPV6_V6ONLY;
681 #endif
682 		inp->inp_laddr = sc->sc_inc.inc_laddr;
683 	}
684 	inp->inp_lport = sc->sc_inc.inc_lport;
685 	if (in_pcbinsporthash(inp) != 0) {
686 		/*
687 		 * Undo the assignments above if we failed to
688 		 * put the PCB on the hash lists.
689 		 */
690 		if (isipv6)
691 			inp->in6p_laddr = kin6addr_any;
692 		else
693 			inp->inp_laddr.s_addr = INADDR_ANY;
694 		inp->inp_lport = 0;
695 		goto abort;
696 	}
697 	linp = so->so_pcb;
698 #ifdef IPSEC
699 	/* copy old policy into new socket's */
700 	if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
701 		kprintf("syncache_expand: could not copy policy\n");
702 #endif
703 	if (isipv6) {
704 		struct in6_addr laddr6;
705 		struct sockaddr_in6 sin6;
706 		/*
707 		 * Inherit socket options from the listening socket.
708 		 * Note that in6p_inputopts are not (and should not be)
709 		 * copied, since it stores previously received options and is
710 		 * used to detect if each new option is different than the
711 		 * previous one and hence should be passed to a user.
712 		 * If we copied in6p_inputopts, a user would not be able to
713 		 * receive options just after calling the accept system call.
714 		 */
715 		inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
716 		if (linp->in6p_outputopts)
717 			inp->in6p_outputopts =
718 			    ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
719 		inp->in6p_route = sc->sc_route6;
720 		sc->sc_route6.ro_rt = NULL;
721 
722 		sin6.sin6_family = AF_INET6;
723 		sin6.sin6_len = sizeof sin6;
724 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
725 		sin6.sin6_port = sc->sc_inc.inc_fport;
726 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
727 		laddr6 = inp->in6p_laddr;
728 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
729 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
730 		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6, &thread0)) {
731 			inp->in6p_laddr = laddr6;
732 			goto abort;
733 		}
734 	} else {
735 		struct in_addr laddr;
736 		struct sockaddr_in sin;
737 
738 		inp->inp_options = ip_srcroute(m);
739 		if (inp->inp_options == NULL) {
740 			inp->inp_options = sc->sc_ipopts;
741 			sc->sc_ipopts = NULL;
742 		}
743 		inp->inp_route = sc->sc_route;
744 		sc->sc_route.ro_rt = NULL;
745 
746 		sin.sin_family = AF_INET;
747 		sin.sin_len = sizeof sin;
748 		sin.sin_addr = sc->sc_inc.inc_faddr;
749 		sin.sin_port = sc->sc_inc.inc_fport;
750 		bzero(sin.sin_zero, sizeof sin.sin_zero);
751 		laddr = inp->inp_laddr;
752 		if (inp->inp_laddr.s_addr == INADDR_ANY)
753 			inp->inp_laddr = sc->sc_inc.inc_laddr;
754 		if (in_pcbconnect(inp, (struct sockaddr *)&sin, &thread0)) {
755 			inp->inp_laddr = laddr;
756 			goto abort;
757 		}
758 	}
759 
760 	/*
761 	 * The current port should be in the context of the SYN+ACK and
762 	 * so should match the tcp address port.
763 	 *
764 	 * XXX we may be running on the netisr thread instead of a tcp
765 	 *     thread, in which case port will not match
766 	 *     curthread->td_msgport.
767 	 */
768 	if (isipv6) {
769 		port = tcp6_addrport();
770 	} else {
771 		port = tcp_addrport(inp->inp_faddr.s_addr, inp->inp_fport,
772 				    inp->inp_laddr.s_addr, inp->inp_lport);
773 	}
774 	/*KKASSERT(port == &curthread->td_msgport);*/
775 
776 	tp = intotcpcb(inp);
777 	tp->t_state = TCPS_SYN_RECEIVED;
778 	tp->iss = sc->sc_iss;
779 	tp->irs = sc->sc_irs;
780 	tcp_rcvseqinit(tp);
781 	tcp_sendseqinit(tp);
782 	tp->snd_wl1 = sc->sc_irs;
783 	tp->rcv_up = sc->sc_irs + 1;
784 	tp->rcv_wnd = sc->sc_wnd;
785 	tp->rcv_adv += tp->rcv_wnd;
786 
787 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
788 	if (sc->sc_flags & SCF_NOOPT)
789 		tp->t_flags |= TF_NOOPT;
790 	if (sc->sc_flags & SCF_WINSCALE) {
791 		tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
792 		tp->requested_s_scale = sc->sc_requested_s_scale;
793 		tp->request_r_scale = sc->sc_request_r_scale;
794 	}
795 	if (sc->sc_flags & SCF_TIMESTAMP) {
796 		tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
797 		tp->ts_recent = sc->sc_tsrecent;
798 		tp->ts_recent_age = ticks;
799 	}
800 	if (sc->sc_flags & SCF_SACK_PERMITTED)
801 		tp->t_flags |= TF_SACK_PERMITTED;
802 
803 	tcp_mss(tp, sc->sc_peer_mss);
804 
805 	/*
806 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
807 	 */
808 	if (sc->sc_rxtslot != 0)
809 		tp->snd_cwnd = tp->t_maxseg;
810 	tcp_create_timermsg(tp, port);
811 	tcp_callout_reset(tp, tp->tt_keep, tcp_keepinit, tcp_timer_keep);
812 
813 	tcpstat.tcps_accepts++;
814 	return (so);
815 
816 abort:
817 	if (so != NULL)
818 		soabort_oncpu(so);
819 	return (NULL);
820 }
821 
822 /*
823  * This function gets called when we receive an ACK for a
824  * socket in the LISTEN state.  We look up the connection
825  * in the syncache, and if its there, we pull it out of
826  * the cache and turn it into a full-blown connection in
827  * the SYN-RECEIVED state.
828  */
829 int
830 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop,
831 		struct mbuf *m)
832 {
833 	struct syncache *sc;
834 	struct syncache_head *sch;
835 	struct socket *so;
836 
837 	sc = syncache_lookup(inc, &sch);
838 	if (sc == NULL) {
839 		/*
840 		 * There is no syncache entry, so see if this ACK is
841 		 * a returning syncookie.  To do this, first:
842 		 *  A. See if this socket has had a syncache entry dropped in
843 		 *     the past.  We don't want to accept a bogus syncookie
844 		 *     if we've never received a SYN.
845 		 *  B. check that the syncookie is valid.  If it is, then
846 		 *     cobble up a fake syncache entry, and return.
847 		 */
848 		if (!tcp_syncookies)
849 			return (0);
850 		sc = syncookie_lookup(inc, th, *sop);
851 		if (sc == NULL)
852 			return (0);
853 		sch = NULL;
854 		tcpstat.tcps_sc_recvcookie++;
855 	}
856 
857 	/*
858 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
859 	 */
860 	if (th->th_ack != sc->sc_iss + 1)
861 		return (0);
862 
863 	so = syncache_socket(sc, *sop, m);
864 	if (so == NULL) {
865 #if 0
866 resetandabort:
867 		/* XXXjlemon check this - is this correct? */
868 		tcp_respond(NULL, m, m, th,
869 		    th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
870 #endif
871 		m_freem(m);			/* XXX only needed for above */
872 		tcpstat.tcps_sc_aborted++;
873 	} else {
874 		tcpstat.tcps_sc_completed++;
875 	}
876 	if (sch == NULL)
877 		syncache_free(sc);
878 	else
879 		syncache_drop(sc, sch);
880 	*sop = so;
881 	return (1);
882 }
883 
884 /*
885  * Given a LISTEN socket and an inbound SYN request, add
886  * this to the syn cache, and send back a segment:
887  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
888  * to the source.
889  *
890  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
891  * Doing so would require that we hold onto the data and deliver it
892  * to the application.  However, if we are the target of a SYN-flood
893  * DoS attack, an attacker could send data which would eventually
894  * consume all available buffer space if it were ACKed.  By not ACKing
895  * the data, we avoid this DoS scenario.
896  */
897 int
898 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
899 	     struct socket **sop, struct mbuf *m)
900 {
901 	struct tcp_syncache_percpu *syncache_percpu;
902 	struct tcpcb *tp;
903 	struct socket *so;
904 	struct syncache *sc = NULL;
905 	struct syncache_head *sch;
906 	struct mbuf *ipopts = NULL;
907 	int win;
908 
909 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
910 	so = *sop;
911 	tp = sototcpcb(so);
912 
913 	/*
914 	 * Remember the IP options, if any.
915 	 */
916 #ifdef INET6
917 	if (!inc->inc_isipv6)
918 #endif
919 		ipopts = ip_srcroute(m);
920 
921 	/*
922 	 * See if we already have an entry for this connection.
923 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
924 	 *
925 	 * XXX
926 	 * The syncache should be re-initialized with the contents
927 	 * of the new SYN which may have different options.
928 	 */
929 	sc = syncache_lookup(inc, &sch);
930 	if (sc != NULL) {
931 		tcpstat.tcps_sc_dupsyn++;
932 		if (ipopts) {
933 			/*
934 			 * If we were remembering a previous source route,
935 			 * forget it and use the new one we've been given.
936 			 */
937 			if (sc->sc_ipopts)
938 				m_free(sc->sc_ipopts);
939 			sc->sc_ipopts = ipopts;
940 		}
941 		/*
942 		 * Update timestamp if present.
943 		 */
944 		if (sc->sc_flags & SCF_TIMESTAMP)
945 			sc->sc_tsrecent = to->to_tsval;
946 
947 		/* Just update the TOF_SACK_PERMITTED for now. */
948 		if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
949 			sc->sc_flags |= SCF_SACK_PERMITTED;
950 		else
951 			sc->sc_flags &= ~SCF_SACK_PERMITTED;
952 
953 		/*
954 		 * PCB may have changed, pick up new values.
955 		 */
956 		sc->sc_tp = tp;
957 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
958 		if (syncache_respond(sc, m) == 0) {
959 			TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
960 			    sc, sc_timerq);
961 			syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
962 			tcpstat.tcps_sndacks++;
963 			tcpstat.tcps_sndtotal++;
964 		}
965 		*sop = NULL;
966 		return (1);
967 	}
968 
969 	/*
970 	 * This allocation is guaranteed to succeed because we
971 	 * preallocate one more syncache entry than cache_limit.
972 	 */
973 	sc = zalloc(tcp_syncache.zone);
974 
975 	/*
976 	 * Fill in the syncache values.
977 	 */
978 	sc->sc_tp = tp;
979 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
980 	sc->sc_ipopts = ipopts;
981 	sc->sc_inc.inc_fport = inc->inc_fport;
982 	sc->sc_inc.inc_lport = inc->inc_lport;
983 #ifdef INET6
984 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
985 	if (inc->inc_isipv6) {
986 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
987 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
988 		sc->sc_route6.ro_rt = NULL;
989 	} else
990 #endif
991 	{
992 		sc->sc_inc.inc_faddr = inc->inc_faddr;
993 		sc->sc_inc.inc_laddr = inc->inc_laddr;
994 		sc->sc_route.ro_rt = NULL;
995 	}
996 	sc->sc_irs = th->th_seq;
997 	sc->sc_flags = 0;
998 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
999 	if (tcp_syncookies)
1000 		sc->sc_iss = syncookie_generate(sc);
1001 	else
1002 		sc->sc_iss = karc4random();
1003 
1004 	/* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
1005 	win = ssb_space(&so->so_rcv);
1006 	win = imax(win, 0);
1007 	win = imin(win, TCP_MAXWIN);
1008 	sc->sc_wnd = win;
1009 
1010 	if (tcp_do_rfc1323) {
1011 		/*
1012 		 * A timestamp received in a SYN makes
1013 		 * it ok to send timestamp requests and replies.
1014 		 */
1015 		if (to->to_flags & TOF_TS) {
1016 			sc->sc_tsrecent = to->to_tsval;
1017 			sc->sc_flags |= SCF_TIMESTAMP;
1018 		}
1019 		if (to->to_flags & TOF_SCALE) {
1020 			int wscale = TCP_MIN_WINSHIFT;
1021 
1022 			/* Compute proper scaling value from buffer space */
1023 			while (wscale < TCP_MAX_WINSHIFT &&
1024 			    (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat) {
1025 				wscale++;
1026 			}
1027 			sc->sc_request_r_scale = wscale;
1028 			sc->sc_requested_s_scale = to->to_requested_s_scale;
1029 			sc->sc_flags |= SCF_WINSCALE;
1030 		}
1031 	}
1032 	if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1033 		sc->sc_flags |= SCF_SACK_PERMITTED;
1034 	if (tp->t_flags & TF_NOOPT)
1035 		sc->sc_flags = SCF_NOOPT;
1036 
1037 	if (syncache_respond(sc, m) == 0) {
1038 		syncache_insert(sc, sch);
1039 		tcpstat.tcps_sndacks++;
1040 		tcpstat.tcps_sndtotal++;
1041 	} else {
1042 		syncache_free(sc);
1043 		tcpstat.tcps_sc_dropped++;
1044 	}
1045 	*sop = NULL;
1046 	return (1);
1047 }
1048 
1049 static int
1050 syncache_respond(struct syncache *sc, struct mbuf *m)
1051 {
1052 	u_int8_t *optp;
1053 	int optlen, error;
1054 	u_int16_t tlen, hlen, mssopt;
1055 	struct ip *ip = NULL;
1056 	struct rtentry *rt;
1057 	struct tcphdr *th;
1058 	struct ip6_hdr *ip6 = NULL;
1059 #ifdef INET6
1060 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1061 #else
1062 	const boolean_t isipv6 = FALSE;
1063 #endif
1064 
1065 	if (isipv6) {
1066 		rt = tcp_rtlookup6(&sc->sc_inc);
1067 		if (rt != NULL)
1068 			mssopt = rt->rt_ifp->if_mtu -
1069 			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1070 		else
1071 			mssopt = tcp_v6mssdflt;
1072 		hlen = sizeof(struct ip6_hdr);
1073 	} else {
1074 		rt = tcp_rtlookup(&sc->sc_inc);
1075 		if (rt != NULL)
1076 			mssopt = rt->rt_ifp->if_mtu -
1077 			     (sizeof(struct ip) + sizeof(struct tcphdr));
1078 		else
1079 			mssopt = tcp_mssdflt;
1080 		hlen = sizeof(struct ip);
1081 	}
1082 
1083 	/* Compute the size of the TCP options. */
1084 	if (sc->sc_flags & SCF_NOOPT) {
1085 		optlen = 0;
1086 	} else {
1087 		optlen = TCPOLEN_MAXSEG +
1088 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1089 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1090 		    ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1091 			TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1092 	}
1093 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1094 
1095 	/*
1096 	 * XXX
1097 	 * assume that the entire packet will fit in a header mbuf
1098 	 */
1099 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1100 
1101 	/*
1102 	 * XXX shouldn't this reuse the mbuf if possible ?
1103 	 * Create the IP+TCP header from scratch.
1104 	 */
1105 	if (m)
1106 		m_freem(m);
1107 
1108 	m = m_gethdr(MB_DONTWAIT, MT_HEADER);
1109 	if (m == NULL)
1110 		return (ENOBUFS);
1111 	m->m_data += max_linkhdr;
1112 	m->m_len = tlen;
1113 	m->m_pkthdr.len = tlen;
1114 	m->m_pkthdr.rcvif = NULL;
1115 
1116 	if (isipv6) {
1117 		ip6 = mtod(m, struct ip6_hdr *);
1118 		ip6->ip6_vfc = IPV6_VERSION;
1119 		ip6->ip6_nxt = IPPROTO_TCP;
1120 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1121 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1122 		ip6->ip6_plen = htons(tlen - hlen);
1123 		/* ip6_hlim is set after checksum */
1124 		/* ip6_flow = ??? */
1125 
1126 		th = (struct tcphdr *)(ip6 + 1);
1127 	} else {
1128 		ip = mtod(m, struct ip *);
1129 		ip->ip_v = IPVERSION;
1130 		ip->ip_hl = sizeof(struct ip) >> 2;
1131 		ip->ip_len = tlen;
1132 		ip->ip_id = 0;
1133 		ip->ip_off = 0;
1134 		ip->ip_sum = 0;
1135 		ip->ip_p = IPPROTO_TCP;
1136 		ip->ip_src = sc->sc_inc.inc_laddr;
1137 		ip->ip_dst = sc->sc_inc.inc_faddr;
1138 		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1139 		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1140 
1141 		/*
1142 		 * See if we should do MTU discovery.  Route lookups are
1143 		 * expensive, so we will only unset the DF bit if:
1144 		 *
1145 		 *	1) path_mtu_discovery is disabled
1146 		 *	2) the SCF_UNREACH flag has been set
1147 		 */
1148 		if (path_mtu_discovery
1149 		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1150 		       ip->ip_off |= IP_DF;
1151 		}
1152 
1153 		th = (struct tcphdr *)(ip + 1);
1154 	}
1155 	th->th_sport = sc->sc_inc.inc_lport;
1156 	th->th_dport = sc->sc_inc.inc_fport;
1157 
1158 	th->th_seq = htonl(sc->sc_iss);
1159 	th->th_ack = htonl(sc->sc_irs + 1);
1160 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1161 	th->th_x2 = 0;
1162 	th->th_flags = TH_SYN | TH_ACK;
1163 	th->th_win = htons(sc->sc_wnd);
1164 	th->th_urp = 0;
1165 
1166 	/* Tack on the TCP options. */
1167 	if (optlen == 0)
1168 		goto no_options;
1169 	optp = (u_int8_t *)(th + 1);
1170 	*optp++ = TCPOPT_MAXSEG;
1171 	*optp++ = TCPOLEN_MAXSEG;
1172 	*optp++ = (mssopt >> 8) & 0xff;
1173 	*optp++ = mssopt & 0xff;
1174 
1175 	if (sc->sc_flags & SCF_WINSCALE) {
1176 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1177 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1178 		    sc->sc_request_r_scale);
1179 		optp += 4;
1180 	}
1181 
1182 	if (sc->sc_flags & SCF_TIMESTAMP) {
1183 		u_int32_t *lp = (u_int32_t *)(optp);
1184 
1185 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1186 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1187 		*lp++ = htonl(ticks);
1188 		*lp   = htonl(sc->sc_tsrecent);
1189 		optp += TCPOLEN_TSTAMP_APPA;
1190 	}
1191 
1192 	if (sc->sc_flags & SCF_SACK_PERMITTED) {
1193 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1194 		optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1195 	}
1196 
1197 no_options:
1198 	if (isipv6) {
1199 		struct route_in6 *ro6 = &sc->sc_route6;
1200 
1201 		th->th_sum = 0;
1202 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1203 		ip6->ip6_hlim = in6_selecthlim(NULL,
1204 		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1205 		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1206 				sc->sc_tp->t_inpcb);
1207 	} else {
1208 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1209 				       htons(tlen - hlen + IPPROTO_TCP));
1210 		m->m_pkthdr.csum_flags = CSUM_TCP;
1211 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1212 		error = ip_output(m, sc->sc_ipopts, &sc->sc_route,
1213 				  IP_DEBUGROUTE, NULL, sc->sc_tp->t_inpcb);
1214 	}
1215 	return (error);
1216 }
1217 
1218 /*
1219  * cookie layers:
1220  *
1221  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1222  *	| peer iss                                                      |
1223  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1224  *	|                     0                       |(A)|             |
1225  * (A): peer mss index
1226  */
1227 
1228 /*
1229  * The values below are chosen to minimize the size of the tcp_secret
1230  * table, as well as providing roughly a 16 second lifetime for the cookie.
1231  */
1232 
1233 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1234 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1235 
1236 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1237 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1238 #define SYNCOOKIE_TIMEOUT \
1239     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1240 #define SYNCOOKIE_DATAMASK	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1241 
1242 static struct {
1243 	u_int32_t	ts_secbits[4];
1244 	u_int		ts_expire;
1245 } tcp_secret[SYNCOOKIE_NSECRETS];
1246 
1247 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1248 
1249 static MD5_CTX syn_ctx;
1250 
1251 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1252 
1253 struct md5_add {
1254 	u_int32_t laddr, faddr;
1255 	u_int32_t secbits[4];
1256 	u_int16_t lport, fport;
1257 };
1258 
1259 #ifdef CTASSERT
1260 CTASSERT(sizeof(struct md5_add) == 28);
1261 #endif
1262 
1263 /*
1264  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1265  * original SYN was accepted, the connection is established.  The second
1266  * SYN is inflight, and if it arrives with an ISN that falls within the
1267  * receive window, the connection is killed.
1268  *
1269  * However, since cookies have other problems, this may not be worth
1270  * worrying about.
1271  */
1272 
1273 static u_int32_t
1274 syncookie_generate(struct syncache *sc)
1275 {
1276 	u_int32_t md5_buffer[4];
1277 	u_int32_t data;
1278 	int idx, i;
1279 	struct md5_add add;
1280 #ifdef INET6
1281 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1282 #else
1283 	const boolean_t isipv6 = FALSE;
1284 #endif
1285 
1286 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1287 	if (tcp_secret[idx].ts_expire < ticks) {
1288 		for (i = 0; i < 4; i++)
1289 			tcp_secret[idx].ts_secbits[i] = karc4random();
1290 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1291 	}
1292 	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1293 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1294 			break;
1295 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1296 	data ^= sc->sc_irs;				/* peer's iss */
1297 	MD5Init(&syn_ctx);
1298 	if (isipv6) {
1299 		MD5Add(sc->sc_inc.inc6_laddr);
1300 		MD5Add(sc->sc_inc.inc6_faddr);
1301 		add.laddr = 0;
1302 		add.faddr = 0;
1303 	} else {
1304 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1305 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1306 	}
1307 	add.lport = sc->sc_inc.inc_lport;
1308 	add.fport = sc->sc_inc.inc_fport;
1309 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1310 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1311 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1312 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1313 	MD5Add(add);
1314 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1315 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1316 	return (data);
1317 }
1318 
1319 static struct syncache *
1320 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so)
1321 {
1322 	u_int32_t md5_buffer[4];
1323 	struct syncache *sc;
1324 	u_int32_t data;
1325 	int wnd, idx;
1326 	struct md5_add add;
1327 
1328 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1329 	idx = data & SYNCOOKIE_WNDMASK;
1330 	if (tcp_secret[idx].ts_expire < ticks ||
1331 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1332 		return (NULL);
1333 	MD5Init(&syn_ctx);
1334 #ifdef INET6
1335 	if (inc->inc_isipv6) {
1336 		MD5Add(inc->inc6_laddr);
1337 		MD5Add(inc->inc6_faddr);
1338 		add.laddr = 0;
1339 		add.faddr = 0;
1340 	} else
1341 #endif
1342 	{
1343 		add.laddr = inc->inc_laddr.s_addr;
1344 		add.faddr = inc->inc_faddr.s_addr;
1345 	}
1346 	add.lport = inc->inc_lport;
1347 	add.fport = inc->inc_fport;
1348 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1349 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1350 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1351 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1352 	MD5Add(add);
1353 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1354 	data ^= md5_buffer[0];
1355 	if (data & ~SYNCOOKIE_DATAMASK)
1356 		return (NULL);
1357 	data = data >> SYNCOOKIE_WNDBITS;
1358 
1359 	/*
1360 	 * This allocation is guaranteed to succeed because we
1361 	 * preallocate one more syncache entry than cache_limit.
1362 	 */
1363 	sc = zalloc(tcp_syncache.zone);
1364 
1365 	/*
1366 	 * Fill in the syncache values.
1367 	 * XXX duplicate code from syncache_add
1368 	 */
1369 	sc->sc_ipopts = NULL;
1370 	sc->sc_inc.inc_fport = inc->inc_fport;
1371 	sc->sc_inc.inc_lport = inc->inc_lport;
1372 #ifdef INET6
1373 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1374 	if (inc->inc_isipv6) {
1375 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1376 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1377 		sc->sc_route6.ro_rt = NULL;
1378 	} else
1379 #endif
1380 	{
1381 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1382 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1383 		sc->sc_route.ro_rt = NULL;
1384 	}
1385 	sc->sc_irs = th->th_seq - 1;
1386 	sc->sc_iss = th->th_ack - 1;
1387 	wnd = ssb_space(&so->so_rcv);
1388 	wnd = imax(wnd, 0);
1389 	wnd = imin(wnd, TCP_MAXWIN);
1390 	sc->sc_wnd = wnd;
1391 	sc->sc_flags = 0;
1392 	sc->sc_rxtslot = 0;
1393 	sc->sc_peer_mss = tcp_msstab[data];
1394 	return (sc);
1395 }
1396