xref: /dflybsd-src/sys/netinet/tcp_syncache.c (revision 48d201a5a8c1dab4aa7166b0812594c101fc43c3)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * All advertising materials mentioning features or use of this software
53  * must display the following acknowledgement:
54  *   This product includes software developed by Jeffrey M. Hsu.
55  *
56  * Copyright (c) 2001 Networks Associates Technologies, Inc.
57  * All rights reserved.
58  *
59  * This software was developed for the FreeBSD Project by Jonathan Lemon
60  * and NAI Labs, the Security Research Division of Network Associates, Inc.
61  * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
62  * DARPA CHATS research program.
63  *
64  * Redistribution and use in source and binary forms, with or without
65  * modification, are permitted provided that the following conditions
66  * are met:
67  * 1. Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  * 2. Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in the
71  *    documentation and/or other materials provided with the distribution.
72  * 3. The name of the author may not be used to endorse or promote
73  *    products derived from this software without specific prior written
74  *    permission.
75  *
76  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
77  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
78  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
79  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
80  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
81  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
82  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
83  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
84  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
85  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
86  * SUCH DAMAGE.
87  *
88  * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
89  * $DragonFly: src/sys/netinet/tcp_syncache.c,v 1.17 2004/09/13 19:01:50 hsu Exp $
90  */
91 
92 #include "opt_inet6.h"
93 #include "opt_ipsec.h"
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/kernel.h>
98 #include <sys/sysctl.h>
99 #include <sys/malloc.h>
100 #include <sys/mbuf.h>
101 #include <sys/md5.h>
102 #include <sys/proc.h>		/* for proc0 declaration */
103 #include <sys/random.h>
104 #include <sys/socket.h>
105 #include <sys/socketvar.h>
106 #include <sys/in_cksum.h>
107 
108 #include <sys/msgport2.h>
109 
110 #include <net/if.h>
111 #include <net/route.h>
112 
113 #include <netinet/in.h>
114 #include <netinet/in_systm.h>
115 #include <netinet/ip.h>
116 #include <netinet/in_var.h>
117 #include <netinet/in_pcb.h>
118 #include <netinet/ip_var.h>
119 #include <netinet/ip6.h>
120 #ifdef INET6
121 #include <netinet/icmp6.h>
122 #include <netinet6/nd6.h>
123 #endif
124 #include <netinet6/ip6_var.h>
125 #include <netinet6/in6_pcb.h>
126 #include <netinet/tcp.h>
127 #include <netinet/tcp_fsm.h>
128 #include <netinet/tcp_seq.h>
129 #include <netinet/tcp_timer.h>
130 #include <netinet/tcp_var.h>
131 #include <netinet6/tcp6_var.h>
132 
133 #ifdef IPSEC
134 #include <netinet6/ipsec.h>
135 #ifdef INET6
136 #include <netinet6/ipsec6.h>
137 #endif
138 #include <netproto/key/key.h>
139 #endif /*IPSEC*/
140 
141 #ifdef FAST_IPSEC
142 #include <netipsec/ipsec.h>
143 #ifdef INET6
144 #include <netipsec/ipsec6.h>
145 #endif
146 #include <netipsec/key.h>
147 #define	IPSEC
148 #endif /*FAST_IPSEC*/
149 
150 #include <vm/vm_zone.h>
151 
152 static int tcp_syncookies = 1;
153 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
154     &tcp_syncookies, 0,
155     "Use TCP SYN cookies if the syncache overflows");
156 
157 static void	 syncache_drop(struct syncache *, struct syncache_head *);
158 static void	 syncache_free(struct syncache *);
159 static void	 syncache_insert(struct syncache *, struct syncache_head *);
160 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
161 static int	 syncache_respond(struct syncache *, struct mbuf *);
162 static struct 	 socket *syncache_socket(struct syncache *, struct socket *);
163 static void	 syncache_timer(void *);
164 static u_int32_t syncookie_generate(struct syncache *);
165 static struct syncache *syncookie_lookup(struct in_conninfo *,
166 		    struct tcphdr *, struct socket *);
167 
168 /*
169  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
170  * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
171  * the odds are that the user has given up attempting to connect by then.
172  */
173 #define SYNCACHE_MAXREXMTS		3
174 
175 /* Arbitrary values */
176 #define TCP_SYNCACHE_HASHSIZE		512
177 #define TCP_SYNCACHE_BUCKETLIMIT	30
178 
179 struct netmsg_sc_timer {
180 	struct lwkt_msg nm_lmsg;
181 	struct msgrec *nm_mrec;		/* back pointer to containing msgrec */
182 };
183 
184 struct msgrec {
185 	struct netmsg_sc_timer msg;
186 	lwkt_port_t port;		/* constant after init */
187 	int slot;			/* constant after init */
188 };
189 
190 static int syncache_timer_handler(lwkt_msg_t);
191 
192 struct tcp_syncache {
193 	struct	vm_zone *zone;
194 	u_int	hashsize;
195 	u_int	hashmask;
196 	u_int	bucket_limit;
197 	u_int	cache_limit;
198 	u_int	rexmt_limit;
199 	u_int	hash_secret;
200 };
201 static struct tcp_syncache tcp_syncache;
202 
203 struct tcp_syncache_percpu {
204 	struct syncache_head	*hashbase;
205 	u_int			cache_count;
206 	TAILQ_HEAD(, syncache)	timerq[SYNCACHE_MAXREXMTS + 1];
207 	struct callout		tt_timerq[SYNCACHE_MAXREXMTS + 1];
208 	struct msgrec		mrec[SYNCACHE_MAXREXMTS + 1];
209 };
210 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
211 
212 static struct lwkt_port syncache_null_rport;
213 
214 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
215 
216 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
217      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
218 
219 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
220      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
221 
222 /* XXX JH */
223 #if 0
224 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
225      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
226 #endif
227 
228 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
229      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
230 
231 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
232      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
233 
234 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
235 
236 #define SYNCACHE_HASH(inc, mask) 					\
237 	((tcp_syncache.hash_secret ^					\
238 	  (inc)->inc_faddr.s_addr ^					\
239 	  ((inc)->inc_faddr.s_addr >> 16) ^ 				\
240 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
241 
242 #define SYNCACHE_HASH6(inc, mask) 					\
243 	((tcp_syncache.hash_secret ^					\
244 	  (inc)->inc6_faddr.s6_addr32[0] ^ 				\
245 	  (inc)->inc6_faddr.s6_addr32[3] ^ 				\
246 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
247 
248 #define ENDPTS_EQ(a, b) (						\
249 	(a)->ie_fport == (b)->ie_fport &&				\
250 	(a)->ie_lport == (b)->ie_lport &&				\
251 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
252 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
253 )
254 
255 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
256 
257 static __inline void
258 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
259 		 struct syncache *sc, int slot)
260 {
261 	sc->sc_rxtslot = slot;
262 	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot];
263 	TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
264 	if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
265 		callout_reset(&syncache_percpu->tt_timerq[slot],
266 			      TCPTV_RTOBASE * tcp_backoff[slot],
267 			      syncache_timer,
268 			      &syncache_percpu->mrec[slot]);
269 	}
270 }
271 
272 static void
273 syncache_free(struct syncache *sc)
274 {
275 	struct rtentry *rt;
276 #ifdef INET6
277 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
278 #else
279 	const boolean_t isipv6 = FALSE;
280 #endif
281 
282 	if (sc->sc_ipopts)
283 		(void) m_free(sc->sc_ipopts);
284 	if (isipv6)
285 		rt = sc->sc_route6.ro_rt;
286 	else
287 		rt = sc->sc_route.ro_rt;
288 	if (rt != NULL) {
289 		/*
290 		 * If this is the only reference to a protocol cloned
291 		 * route, remove it immediately.
292 		 */
293 		if (rt->rt_flags & RTF_WASCLONED &&
294 		    (sc->sc_flags & SCF_KEEPROUTE) == 0 &&
295 		    rt->rt_refcnt == 1) {
296 			rtrequest(RTM_DELETE, rt_key(rt),
297 			    rt->rt_gateway, rt_mask(rt),
298 			    rt->rt_flags, NULL);
299 		}
300 		RTFREE(rt);
301 	}
302 	zfree(tcp_syncache.zone, sc);
303 }
304 
305 void
306 syncache_init(void)
307 {
308 	int i, cpu;
309 
310 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
311 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
312 	tcp_syncache.cache_limit =
313 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
314 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
315 	tcp_syncache.hash_secret = arc4random();
316 
317         TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
318 	    &tcp_syncache.hashsize);
319         TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
320 	    &tcp_syncache.cache_limit);
321         TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
322 	    &tcp_syncache.bucket_limit);
323 	if (!powerof2(tcp_syncache.hashsize)) {
324                 printf("WARNING: syncache hash size is not a power of 2.\n");
325 		tcp_syncache.hashsize = 512;	/* safe default */
326         }
327 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
328 
329 	lwkt_initport_null_rport(&syncache_null_rport, NULL);
330 
331 	for (cpu = 0; cpu < ncpus2; cpu++) {
332 		struct tcp_syncache_percpu *syncache_percpu;
333 
334 		syncache_percpu = &tcp_syncache_percpu[cpu];
335 		/* Allocate the hash table. */
336 		MALLOC(syncache_percpu->hashbase, struct syncache_head *,
337 		    tcp_syncache.hashsize * sizeof(struct syncache_head),
338 		    M_SYNCACHE, M_WAITOK);
339 
340 		/* Initialize the hash buckets. */
341 		for (i = 0; i < tcp_syncache.hashsize; i++) {
342 			struct syncache_head *bucket;
343 
344 			bucket = &syncache_percpu->hashbase[i];
345 			TAILQ_INIT(&bucket->sch_bucket);
346 			bucket->sch_length = 0;
347 		}
348 
349 		for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
350 			/* Initialize the timer queues. */
351 			TAILQ_INIT(&syncache_percpu->timerq[i]);
352 			callout_init(&syncache_percpu->tt_timerq[i]);
353 
354 			syncache_percpu->mrec[i].slot = i;
355 			syncache_percpu->mrec[i].port = tcp_cport(cpu);
356 			syncache_percpu->mrec[i].msg.nm_mrec =
357 			    &syncache_percpu->mrec[i];
358 			lwkt_initmsg(&syncache_percpu->mrec[i].msg.nm_lmsg,
359 			    &syncache_null_rport, 0,
360 			    lwkt_cmd_func(syncache_timer_handler),
361 			    lwkt_cmd_op_none);
362 		}
363 	}
364 
365 	/*
366 	 * Allocate the syncache entries.  Allow the zone to allocate one
367 	 * more entry than cache limit, so a new entry can bump out an
368 	 * older one.
369 	 */
370 	tcp_syncache.zone = zinit("syncache", sizeof(struct syncache),
371 	    tcp_syncache.cache_limit, ZONE_INTERRUPT, 0);
372 	tcp_syncache.cache_limit -= 1;
373 }
374 
375 static void
376 syncache_insert(sc, sch)
377 	struct syncache *sc;
378 	struct syncache_head *sch;
379 {
380 	struct tcp_syncache_percpu *syncache_percpu;
381 	struct syncache *sc2;
382 	int i;
383 
384 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
385 
386 	/*
387 	 * Make sure that we don't overflow the per-bucket
388 	 * limit or the total cache size limit.
389 	 */
390 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
391 		/*
392 		 * The bucket is full, toss the oldest element.
393 		 */
394 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
395 		sc2->sc_tp->ts_recent = ticks;
396 		syncache_drop(sc2, sch);
397 		tcpstat.tcps_sc_bucketoverflow++;
398 	} else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
399 		/*
400 		 * The cache is full.  Toss the oldest entry in the
401 		 * entire cache.  This is the front entry in the
402 		 * first non-empty timer queue with the largest
403 		 * timeout value.
404 		 */
405 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
406 			sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
407 			if (sc2 != NULL)
408 				break;
409 		}
410 		sc2->sc_tp->ts_recent = ticks;
411 		syncache_drop(sc2, NULL);
412 		tcpstat.tcps_sc_cacheoverflow++;
413 	}
414 
415 	/* Initialize the entry's timer. */
416 	syncache_timeout(syncache_percpu, sc, 0);
417 
418 	/* Put it into the bucket. */
419 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
420 	sch->sch_length++;
421 	syncache_percpu->cache_count++;
422 	tcpstat.tcps_sc_added++;
423 }
424 
425 static void
426 syncache_drop(sc, sch)
427 	struct syncache *sc;
428 	struct syncache_head *sch;
429 {
430 	struct tcp_syncache_percpu *syncache_percpu;
431 #ifdef INET6
432 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
433 #else
434 	const boolean_t isipv6 = FALSE;
435 #endif
436 
437 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
438 
439 	if (sch == NULL) {
440 		if (isipv6) {
441 			sch = &syncache_percpu->hashbase[
442 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
443 		} else {
444 			sch = &syncache_percpu->hashbase[
445 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
446 		}
447 	}
448 
449 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
450 	sch->sch_length--;
451 	syncache_percpu->cache_count--;
452 
453 	/*
454 	 * Remove the entry from the syncache timer/timeout queue.  Note
455 	 * that we do not try to stop any running timer since we do not know
456 	 * whether the timer's message is in-transit or not.  Since timeouts
457 	 * are fairly long, taking an unneeded callout does not detrimentally
458 	 * effect performance.
459 	 */
460 	TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
461 
462 	syncache_free(sc);
463 }
464 
465 /*
466  * Place a timeout message on the TCP thread's message queue.
467  * This routine runs in soft interrupt context.
468  *
469  * An invariant is for this routine to be called, the callout must
470  * have been active.  Note that the callout is not deactivated until
471  * after the message has been processed in syncache_timer_handler() below.
472  */
473 static void
474 syncache_timer(void *p)
475 {
476 	struct netmsg_sc_timer *msg = p;
477 
478 	lwkt_sendmsg(msg->nm_mrec->port, &msg->nm_lmsg);
479 }
480 
481 /*
482  * Service a timer message queued by timer expiration.
483  * This routine runs in the TCP protocol thread.
484  *
485  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
486  * If we have retransmitted an entry the maximum number of times, expire it.
487  *
488  * When we finish processing timed-out entries, we restart the timer if there
489  * are any entries still on the queue and deactivate it otherwise.  Only after
490  * a timer has been deactivated here can it be restarted by syncache_timeout().
491  */
492 static int
493 syncache_timer_handler(lwkt_msg_t msg)
494 {
495 	struct tcp_syncache_percpu *syncache_percpu;
496 	struct syncache *sc, *nsc;
497 	struct inpcb *inp;
498 	int slot;
499 
500 	slot = ((struct netmsg_sc_timer *)msg)->nm_mrec->slot;
501 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
502 
503         nsc = TAILQ_FIRST(&syncache_percpu->timerq[slot]);
504 	while (nsc != NULL) {
505 		if (ticks < nsc->sc_rxttime)
506 			break;	/* finished because timerq sorted by time */
507 		sc = nsc;
508 		inp = sc->sc_tp->t_inpcb;
509 		if (slot == SYNCACHE_MAXREXMTS ||
510 		    slot >= tcp_syncache.rexmt_limit ||
511 		    inp->inp_gencnt != sc->sc_inp_gencnt) {
512 			nsc = TAILQ_NEXT(sc, sc_timerq);
513 			syncache_drop(sc, NULL);
514 			tcpstat.tcps_sc_stale++;
515 			continue;
516 		}
517 		/*
518 		 * syncache_respond() may call back into the syncache to
519 		 * to modify another entry, so do not obtain the next
520 		 * entry on the timer chain until it has completed.
521 		 */
522 		(void) syncache_respond(sc, NULL);
523 		nsc = TAILQ_NEXT(sc, sc_timerq);
524 		tcpstat.tcps_sc_retransmitted++;
525 		TAILQ_REMOVE(&syncache_percpu->timerq[slot], sc, sc_timerq);
526 		syncache_timeout(syncache_percpu, sc, slot + 1);
527 	}
528 	if (nsc != NULL)
529 		callout_reset(&syncache_percpu->tt_timerq[slot],
530 		    nsc->sc_rxttime - ticks, syncache_timer,
531 		    &syncache_percpu->mrec[slot]);
532 	else
533 		callout_deactivate(&syncache_percpu->tt_timerq[slot]);
534 
535 	lwkt_replymsg(msg, 0);
536 	return (EASYNC);
537 }
538 
539 /*
540  * Find an entry in the syncache.
541  */
542 struct syncache *
543 syncache_lookup(inc, schp)
544 	struct in_conninfo *inc;
545 	struct syncache_head **schp;
546 {
547 	struct tcp_syncache_percpu *syncache_percpu;
548 	struct syncache *sc;
549 	struct syncache_head *sch;
550 
551 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
552 #ifdef INET6
553 	if (inc->inc_isipv6) {
554 		sch = &syncache_percpu->hashbase[
555 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
556 		*schp = sch;
557 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
558 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
559 				return (sc);
560 	} else
561 #endif
562 	{
563 		sch = &syncache_percpu->hashbase[
564 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
565 		*schp = sch;
566 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
567 #ifdef INET6
568 			if (sc->sc_inc.inc_isipv6)
569 				continue;
570 #endif
571 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
572 				return (sc);
573 		}
574 	}
575 	return (NULL);
576 }
577 
578 /*
579  * This function is called when we get a RST for a
580  * non-existent connection, so that we can see if the
581  * connection is in the syn cache.  If it is, zap it.
582  */
583 void
584 syncache_chkrst(inc, th)
585 	struct in_conninfo *inc;
586 	struct tcphdr *th;
587 {
588 	struct syncache *sc;
589 	struct syncache_head *sch;
590 
591 	sc = syncache_lookup(inc, &sch);
592 	if (sc == NULL)
593 		return;
594 	/*
595 	 * If the RST bit is set, check the sequence number to see
596 	 * if this is a valid reset segment.
597 	 * RFC 793 page 37:
598 	 *   In all states except SYN-SENT, all reset (RST) segments
599 	 *   are validated by checking their SEQ-fields.  A reset is
600 	 *   valid if its sequence number is in the window.
601 	 *
602 	 *   The sequence number in the reset segment is normally an
603 	 *   echo of our outgoing acknowlegement numbers, but some hosts
604 	 *   send a reset with the sequence number at the rightmost edge
605 	 *   of our receive window, and we have to handle this case.
606 	 */
607 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
608 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
609 		syncache_drop(sc, sch);
610 		tcpstat.tcps_sc_reset++;
611 	}
612 }
613 
614 void
615 syncache_badack(inc)
616 	struct in_conninfo *inc;
617 {
618 	struct syncache *sc;
619 	struct syncache_head *sch;
620 
621 	sc = syncache_lookup(inc, &sch);
622 	if (sc != NULL) {
623 		syncache_drop(sc, sch);
624 		tcpstat.tcps_sc_badack++;
625 	}
626 }
627 
628 void
629 syncache_unreach(inc, th)
630 	struct in_conninfo *inc;
631 	struct tcphdr *th;
632 {
633 	struct syncache *sc;
634 	struct syncache_head *sch;
635 
636 	/* we are called at splnet() here */
637 	sc = syncache_lookup(inc, &sch);
638 	if (sc == NULL)
639 		return;
640 
641 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
642 	if (ntohl(th->th_seq) != sc->sc_iss)
643 		return;
644 
645 	/*
646 	 * If we've rertransmitted 3 times and this is our second error,
647 	 * we remove the entry.  Otherwise, we allow it to continue on.
648 	 * This prevents us from incorrectly nuking an entry during a
649 	 * spurious network outage.
650 	 *
651 	 * See tcp_notify().
652 	 */
653 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
654 		sc->sc_flags |= SCF_UNREACH;
655 		return;
656 	}
657 	syncache_drop(sc, sch);
658 	tcpstat.tcps_sc_unreach++;
659 }
660 
661 /*
662  * Build a new TCP socket structure from a syncache entry.
663  */
664 static struct socket *
665 syncache_socket(sc, lso)
666 	struct syncache *sc;
667 	struct socket *lso;
668 {
669 	struct inpcb *inp = NULL;
670 	struct socket *so;
671 	struct tcpcb *tp;
672 #ifdef INET6
673 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
674 #else
675 	const boolean_t isipv6 = FALSE;
676 #endif
677 
678 	/*
679 	 * Ok, create the full blown connection, and set things up
680 	 * as they would have been set up if we had created the
681 	 * connection when the SYN arrived.  If we can't create
682 	 * the connection, abort it.
683 	 */
684 	so = sonewconn(lso, SS_ISCONNECTED);
685 	if (so == NULL) {
686 		/*
687 		 * Drop the connection; we will send a RST if the peer
688 		 * retransmits the ACK,
689 		 */
690 		tcpstat.tcps_listendrop++;
691 		goto abort;
692 	}
693 
694 	inp = sotoinpcb(so);
695 
696 	/*
697 	 * Insert new socket into hash list.
698 	 */
699 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
700 	if (isipv6) {
701 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
702 	} else {
703 #ifdef INET6
704 		inp->inp_vflag &= ~INP_IPV6;
705 		inp->inp_vflag |= INP_IPV4;
706 #endif
707 		inp->inp_laddr = sc->sc_inc.inc_laddr;
708 	}
709 	inp->inp_lport = sc->sc_inc.inc_lport;
710 	if (in_pcbinsporthash(inp) != 0) {
711 		/*
712 		 * Undo the assignments above if we failed to
713 		 * put the PCB on the hash lists.
714 		 */
715 		if (isipv6)
716 			inp->in6p_laddr = in6addr_any;
717        		else
718 			inp->inp_laddr.s_addr = INADDR_ANY;
719 		inp->inp_lport = 0;
720 		goto abort;
721 	}
722 #ifdef IPSEC
723 	/* copy old policy into new socket's */
724 	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
725 		printf("syncache_expand: could not copy policy\n");
726 #endif
727 	if (isipv6) {
728 		struct inpcb *oinp = sotoinpcb(lso);
729 		struct in6_addr laddr6;
730 		struct sockaddr_in6 sin6;
731 		/*
732 		 * Inherit socket options from the listening socket.
733 		 * Note that in6p_inputopts are not (and should not be)
734 		 * copied, since it stores previously received options and is
735 		 * used to detect if each new option is different than the
736 		 * previous one and hence should be passed to a user.
737                  * If we copied in6p_inputopts, a user would not be able to
738 		 * receive options just after calling the accept system call.
739 		 */
740 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
741 		if (oinp->in6p_outputopts)
742 			inp->in6p_outputopts =
743 			    ip6_copypktopts(oinp->in6p_outputopts, M_INTWAIT);
744 		inp->in6p_route = sc->sc_route6;
745 		sc->sc_route6.ro_rt = NULL;
746 
747 		sin6.sin6_family = AF_INET6;
748 		sin6.sin6_len = sizeof sin6;
749 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
750 		sin6.sin6_port = sc->sc_inc.inc_fport;
751 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
752 		laddr6 = inp->in6p_laddr;
753 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
754 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
755 		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6, &thread0)) {
756 			inp->in6p_laddr = laddr6;
757 			goto abort;
758 		}
759 	} else {
760 		struct in_addr laddr;
761 		struct sockaddr_in sin;
762 
763 		inp->inp_options = ip_srcroute();
764 		if (inp->inp_options == NULL) {
765 			inp->inp_options = sc->sc_ipopts;
766 			sc->sc_ipopts = NULL;
767 		}
768 		inp->inp_route = sc->sc_route;
769 		sc->sc_route.ro_rt = NULL;
770 
771 		sin.sin_family = AF_INET;
772 		sin.sin_len = sizeof sin;
773 		sin.sin_addr = sc->sc_inc.inc_faddr;
774 		sin.sin_port = sc->sc_inc.inc_fport;
775 		bzero(sin.sin_zero, sizeof sin.sin_zero);
776 		laddr = inp->inp_laddr;
777 		if (inp->inp_laddr.s_addr == INADDR_ANY)
778 			inp->inp_laddr = sc->sc_inc.inc_laddr;
779 		if (in_pcbconnect(inp, (struct sockaddr *)&sin, &thread0)) {
780 			inp->inp_laddr = laddr;
781 			goto abort;
782 		}
783 	}
784 
785 	tp = intotcpcb(inp);
786 	tp->t_state = TCPS_SYN_RECEIVED;
787 	tp->iss = sc->sc_iss;
788 	tp->irs = sc->sc_irs;
789 	tcp_rcvseqinit(tp);
790 	tcp_sendseqinit(tp);
791 	tp->snd_wl1 = sc->sc_irs;
792 	tp->rcv_up = sc->sc_irs + 1;
793 	tp->rcv_wnd = sc->sc_wnd;
794 	tp->rcv_adv += tp->rcv_wnd;
795 
796 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
797 	if (sc->sc_flags & SCF_NOOPT)
798 		tp->t_flags |= TF_NOOPT;
799 	if (sc->sc_flags & SCF_WINSCALE) {
800 		tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
801 		tp->requested_s_scale = sc->sc_requested_s_scale;
802 		tp->request_r_scale = sc->sc_request_r_scale;
803 	}
804 	if (sc->sc_flags & SCF_TIMESTAMP) {
805 		tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
806 		tp->ts_recent = sc->sc_tsrecent;
807 		tp->ts_recent_age = ticks;
808 	}
809 	if (sc->sc_flags & SCF_CC) {
810 		/*
811 		 * Initialization of the tcpcb for transaction;
812 		 *   set SND.WND = SEG.WND,
813 		 *   initialize CCsend and CCrecv.
814 		 */
815 		tp->t_flags |= TF_REQ_CC | TF_RCVD_CC;
816 		tp->cc_send = sc->sc_cc_send;
817 		tp->cc_recv = sc->sc_cc_recv;
818 	}
819 
820 	tcp_mss(tp, sc->sc_peer_mss);
821 
822 	/*
823 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
824 	 */
825 	if (sc->sc_rxtslot != 0)
826                 tp->snd_cwnd = tp->t_maxseg;
827 	callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
828 
829 	tcpstat.tcps_accepts++;
830 	return (so);
831 
832 abort:
833 	if (so != NULL)
834 		(void) soabort(so);
835 	return (NULL);
836 }
837 
838 /*
839  * This function gets called when we receive an ACK for a
840  * socket in the LISTEN state.  We look up the connection
841  * in the syncache, and if its there, we pull it out of
842  * the cache and turn it into a full-blown connection in
843  * the SYN-RECEIVED state.
844  */
845 int
846 syncache_expand(inc, th, sop, m)
847 	struct in_conninfo *inc;
848 	struct tcphdr *th;
849 	struct socket **sop;
850 	struct mbuf *m;
851 {
852 	struct syncache *sc;
853 	struct syncache_head *sch;
854 	struct socket *so;
855 
856 	sc = syncache_lookup(inc, &sch);
857 	if (sc == NULL) {
858 		/*
859 		 * There is no syncache entry, so see if this ACK is
860 		 * a returning syncookie.  To do this, first:
861 		 *  A. See if this socket has had a syncache entry dropped in
862 		 *     the past.  We don't want to accept a bogus syncookie
863  		 *     if we've never received a SYN.
864 		 *  B. check that the syncookie is valid.  If it is, then
865 		 *     cobble up a fake syncache entry, and return.
866 		 */
867 		if (!tcp_syncookies)
868 			return (0);
869 		sc = syncookie_lookup(inc, th, *sop);
870 		if (sc == NULL)
871 			return (0);
872 		sch = NULL;
873 		tcpstat.tcps_sc_recvcookie++;
874 	}
875 
876 	/*
877 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
878 	 */
879 	if (th->th_ack != sc->sc_iss + 1)
880 		return (0);
881 
882 	so = syncache_socket(sc, *sop);
883 	if (so == NULL) {
884 #if 0
885 resetandabort:
886 		/* XXXjlemon check this - is this correct? */
887 		(void) tcp_respond(NULL, m, m, th,
888 		    th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
889 #endif
890 		m_freem(m);			/* XXX only needed for above */
891 		tcpstat.tcps_sc_aborted++;
892 	} else {
893 		sc->sc_flags |= SCF_KEEPROUTE;
894 		tcpstat.tcps_sc_completed++;
895 	}
896 	if (sch == NULL)
897 		syncache_free(sc);
898 	else
899 		syncache_drop(sc, sch);
900 	*sop = so;
901 	return (1);
902 }
903 
904 /*
905  * Given a LISTEN socket and an inbound SYN request, add
906  * this to the syn cache, and send back a segment:
907  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
908  * to the source.
909  *
910  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
911  * Doing so would require that we hold onto the data and deliver it
912  * to the application.  However, if we are the target of a SYN-flood
913  * DoS attack, an attacker could send data which would eventually
914  * consume all available buffer space if it were ACKed.  By not ACKing
915  * the data, we avoid this DoS scenario.
916  */
917 int
918 syncache_add(inc, to, th, sop, m)
919 	struct in_conninfo *inc;
920 	struct tcpopt *to;
921 	struct tcphdr *th;
922 	struct socket **sop;
923 	struct mbuf *m;
924 {
925 	struct tcp_syncache_percpu *syncache_percpu;
926 	struct tcpcb *tp;
927 	struct socket *so;
928 	struct syncache *sc = NULL;
929 	struct syncache_head *sch;
930 	struct mbuf *ipopts = NULL;
931 	struct rmxp_tao *taop;
932 	int win;
933 
934 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
935 	so = *sop;
936 	tp = sototcpcb(so);
937 
938 	/*
939 	 * Remember the IP options, if any.
940 	 */
941 #ifdef INET6
942 	if (!inc->inc_isipv6)
943 #endif
944 		ipopts = ip_srcroute();
945 
946 	/*
947 	 * See if we already have an entry for this connection.
948 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
949 	 *
950 	 * XXX
951 	 * should the syncache be re-initialized with the contents
952 	 * of the new SYN here (which may have different options?)
953 	 */
954 	sc = syncache_lookup(inc, &sch);
955 	if (sc != NULL) {
956 		tcpstat.tcps_sc_dupsyn++;
957 		if (ipopts) {
958 			/*
959 			 * If we were remembering a previous source route,
960 			 * forget it and use the new one we've been given.
961 			 */
962 			if (sc->sc_ipopts)
963 				(void) m_free(sc->sc_ipopts);
964 			sc->sc_ipopts = ipopts;
965 		}
966 		/*
967 		 * Update timestamp if present.
968 		 */
969 		if (sc->sc_flags & SCF_TIMESTAMP)
970 			sc->sc_tsrecent = to->to_tsval;
971 		/*
972 		 * PCB may have changed, pick up new values.
973 		 */
974 		sc->sc_tp = tp;
975 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
976 		if (syncache_respond(sc, m) == 0) {
977 			TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
978 			    sc, sc_timerq);
979 			syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
980 		 	tcpstat.tcps_sndacks++;
981 			tcpstat.tcps_sndtotal++;
982 		}
983 		*sop = NULL;
984 		return (1);
985 	}
986 
987 	/*
988 	 * This allocation is guaranteed to succeed because we
989 	 * preallocate one more syncache entry than cache_limit.
990 	 */
991 	sc = zalloc(tcp_syncache.zone);
992 
993 	/*
994 	 * Fill in the syncache values.
995 	 */
996 	sc->sc_tp = tp;
997 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
998 	sc->sc_ipopts = ipopts;
999 	sc->sc_inc.inc_fport = inc->inc_fport;
1000 	sc->sc_inc.inc_lport = inc->inc_lport;
1001 #ifdef INET6
1002 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1003 	if (inc->inc_isipv6) {
1004 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1005 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1006 		sc->sc_route6.ro_rt = NULL;
1007 	} else
1008 #endif
1009 	{
1010 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1011 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1012 		sc->sc_route.ro_rt = NULL;
1013 	}
1014 	sc->sc_irs = th->th_seq;
1015 	sc->sc_flags = 0;
1016 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
1017 	if (tcp_syncookies)
1018 		sc->sc_iss = syncookie_generate(sc);
1019 	else
1020 		sc->sc_iss = arc4random();
1021 
1022 	/* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */
1023 	win = sbspace(&so->so_rcv);
1024 	win = imax(win, 0);
1025 	win = imin(win, TCP_MAXWIN);
1026 	sc->sc_wnd = win;
1027 
1028 	if (tcp_do_rfc1323) {
1029 		/*
1030 		 * A timestamp received in a SYN makes
1031 		 * it ok to send timestamp requests and replies.
1032 		 */
1033 		if (to->to_flags & TOF_TS) {
1034 			sc->sc_tsrecent = to->to_tsval;
1035 			sc->sc_flags |= SCF_TIMESTAMP;
1036 		}
1037 		if (to->to_flags & TOF_SCALE) {
1038 			int wscale = 0;
1039 
1040 			/* Compute proper scaling value from buffer space */
1041 			while (wscale < TCP_MAX_WINSHIFT &&
1042 			    (TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat)
1043 				wscale++;
1044 			sc->sc_request_r_scale = wscale;
1045 			sc->sc_requested_s_scale = to->to_requested_s_scale;
1046 			sc->sc_flags |= SCF_WINSCALE;
1047 		}
1048 	}
1049 	if (tcp_do_rfc1644) {
1050 		/*
1051 		 * A CC or CC.new option received in a SYN makes
1052 		 * it ok to send CC in subsequent segments.
1053 		 */
1054 		if (to->to_flags & (TOF_CC | TOF_CCNEW)) {
1055 			sc->sc_cc_recv = to->to_cc;
1056 			sc->sc_cc_send = CC_INC(tcp_ccgen);
1057 			sc->sc_flags |= SCF_CC;
1058 		}
1059 	}
1060 	if (tp->t_flags & TF_NOOPT)
1061 		sc->sc_flags = SCF_NOOPT;
1062 
1063 	/*
1064 	 * XXX
1065 	 * We have the option here of not doing TAO (even if the segment
1066 	 * qualifies) and instead fall back to a normal 3WHS via the syncache.
1067 	 * This allows us to apply synflood protection to TAO-qualifying SYNs
1068 	 * also. However, there should be a hueristic to determine when to
1069 	 * do this, and is not present at the moment.
1070 	 */
1071 
1072 	/*
1073 	 * Perform TAO test on incoming CC (SEG.CC) option, if any.
1074 	 * - compare SEG.CC against cached CC from the same host, if any.
1075 	 * - if SEG.CC > chached value, SYN must be new and is accepted
1076 	 *	immediately: save new CC in the cache, mark the socket
1077 	 *	connected, enter ESTABLISHED state, turn on flag to
1078 	 *	send a SYN in the next segment.
1079 	 *	A virtual advertised window is set in rcv_adv to
1080 	 *	initialize SWS prevention.  Then enter normal segment
1081 	 *	processing: drop SYN, process data and FIN.
1082 	 * - otherwise do a normal 3-way handshake.
1083 	 */
1084 	taop = tcp_gettaocache(&sc->sc_inc);
1085 	if ((to->to_flags & TOF_CC) != 0) {
1086 		if (((tp->t_flags & TF_NOPUSH) != 0) &&
1087 		    sc->sc_flags & SCF_CC &&
1088 		    taop != NULL && taop->tao_cc != 0 &&
1089 		    CC_GT(to->to_cc, taop->tao_cc)) {
1090 			sc->sc_rxtslot = 0;
1091 			so = syncache_socket(sc, *sop);
1092 			if (so != NULL) {
1093 				sc->sc_flags |= SCF_KEEPROUTE;
1094 				taop->tao_cc = to->to_cc;
1095 				*sop = so;
1096 			}
1097 			syncache_free(sc);
1098 			return (so != NULL);
1099 		}
1100 	} else {
1101 		/*
1102 		 * No CC option, but maybe CC.NEW: invalidate cached value.
1103 		 */
1104 		if (taop != NULL)
1105 			taop->tao_cc = 0;
1106 	}
1107 	/*
1108 	 * TAO test failed or there was no CC option,
1109 	 *    do a standard 3-way handshake.
1110 	 */
1111 	if (syncache_respond(sc, m) == 0) {
1112 		syncache_insert(sc, sch);
1113 		tcpstat.tcps_sndacks++;
1114 		tcpstat.tcps_sndtotal++;
1115 	} else {
1116 		syncache_free(sc);
1117 		tcpstat.tcps_sc_dropped++;
1118 	}
1119 	*sop = NULL;
1120 	return (1);
1121 }
1122 
1123 static int
1124 syncache_respond(sc, m)
1125 	struct syncache *sc;
1126 	struct mbuf *m;
1127 {
1128 	u_int8_t *optp;
1129 	int optlen, error;
1130 	u_int16_t tlen, hlen, mssopt;
1131 	struct ip *ip = NULL;
1132 	struct rtentry *rt;
1133 	struct tcphdr *th;
1134 	struct ip6_hdr *ip6 = NULL;
1135 #ifdef INET6
1136 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1137 #else
1138 	const boolean_t isipv6 = FALSE;
1139 #endif
1140 
1141 	if (isipv6) {
1142 		rt = tcp_rtlookup6(&sc->sc_inc);
1143 		if (rt != NULL)
1144 			mssopt = rt->rt_ifp->if_mtu -
1145 			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1146 		else
1147 			mssopt = tcp_v6mssdflt;
1148 		hlen = sizeof(struct ip6_hdr);
1149 	} else {
1150 		rt = tcp_rtlookup(&sc->sc_inc);
1151 		if (rt != NULL)
1152 			mssopt = rt->rt_ifp->if_mtu -
1153 			     (sizeof(struct ip) + sizeof(struct tcphdr));
1154 		else
1155 			mssopt = tcp_mssdflt;
1156 		hlen = sizeof(struct ip);
1157 	}
1158 
1159 	/* Compute the size of the TCP options. */
1160 	if (sc->sc_flags & SCF_NOOPT) {
1161 		optlen = 0;
1162 	} else {
1163 		optlen = TCPOLEN_MAXSEG +
1164 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1165 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1166 		    ((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0);
1167 	}
1168 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1169 
1170 	/*
1171 	 * XXX
1172 	 * assume that the entire packet will fit in a header mbuf
1173 	 */
1174 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1175 
1176 	/*
1177 	 * XXX shouldn't this reuse the mbuf if possible ?
1178 	 * Create the IP+TCP header from scratch.
1179 	 */
1180 	if (m)
1181 		m_freem(m);
1182 
1183 	m = m_gethdr(MB_DONTWAIT, MT_HEADER);
1184 	if (m == NULL)
1185 		return (ENOBUFS);
1186 	m->m_data += max_linkhdr;
1187 	m->m_len = tlen;
1188 	m->m_pkthdr.len = tlen;
1189 	m->m_pkthdr.rcvif = NULL;
1190 
1191 	if (isipv6) {
1192 		ip6 = mtod(m, struct ip6_hdr *);
1193 		ip6->ip6_vfc = IPV6_VERSION;
1194 		ip6->ip6_nxt = IPPROTO_TCP;
1195 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1196 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1197 		ip6->ip6_plen = htons(tlen - hlen);
1198 		/* ip6_hlim is set after checksum */
1199 		/* ip6_flow = ??? */
1200 
1201 		th = (struct tcphdr *)(ip6 + 1);
1202 	} else {
1203 		ip = mtod(m, struct ip *);
1204 		ip->ip_v = IPVERSION;
1205 		ip->ip_hl = sizeof(struct ip) >> 2;
1206 		ip->ip_len = tlen;
1207 		ip->ip_id = 0;
1208 		ip->ip_off = 0;
1209 		ip->ip_sum = 0;
1210 		ip->ip_p = IPPROTO_TCP;
1211 		ip->ip_src = sc->sc_inc.inc_laddr;
1212 		ip->ip_dst = sc->sc_inc.inc_faddr;
1213 		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1214 		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1215 
1216 		/*
1217 		 * See if we should do MTU discovery.  Route lookups are
1218 		 * expensive, so we will only unset the DF bit if:
1219 		 *
1220 		 *	1) path_mtu_discovery is disabled
1221 		 *	2) the SCF_UNREACH flag has been set
1222 		 */
1223 		if (path_mtu_discovery
1224 		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1225 		       ip->ip_off |= IP_DF;
1226 		}
1227 
1228 		th = (struct tcphdr *)(ip + 1);
1229 	}
1230 	th->th_sport = sc->sc_inc.inc_lport;
1231 	th->th_dport = sc->sc_inc.inc_fport;
1232 
1233 	th->th_seq = htonl(sc->sc_iss);
1234 	th->th_ack = htonl(sc->sc_irs + 1);
1235 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1236 	th->th_x2 = 0;
1237 	th->th_flags = TH_SYN | TH_ACK;
1238 	th->th_win = htons(sc->sc_wnd);
1239 	th->th_urp = 0;
1240 
1241 	/* Tack on the TCP options. */
1242 	if (optlen == 0)
1243 		goto no_options;
1244 	optp = (u_int8_t *)(th + 1);
1245 	*optp++ = TCPOPT_MAXSEG;
1246 	*optp++ = TCPOLEN_MAXSEG;
1247 	*optp++ = (mssopt >> 8) & 0xff;
1248 	*optp++ = mssopt & 0xff;
1249 
1250 	if (sc->sc_flags & SCF_WINSCALE) {
1251 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1252 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1253 		    sc->sc_request_r_scale);
1254 		optp += 4;
1255 	}
1256 
1257 	if (sc->sc_flags & SCF_TIMESTAMP) {
1258 		u_int32_t *lp = (u_int32_t *)(optp);
1259 
1260 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1261 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1262 		*lp++ = htonl(ticks);
1263 		*lp   = htonl(sc->sc_tsrecent);
1264 		optp += TCPOLEN_TSTAMP_APPA;
1265 	}
1266 
1267 	/*
1268          * Send CC and CC.echo if we received CC from our peer.
1269          */
1270         if (sc->sc_flags & SCF_CC) {
1271 		u_int32_t *lp = (u_int32_t *)(optp);
1272 
1273 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1274 		*lp++ = htonl(sc->sc_cc_send);
1275 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO));
1276 		*lp   = htonl(sc->sc_cc_recv);
1277 		optp += TCPOLEN_CC_APPA * 2;
1278 	}
1279 
1280 no_options:
1281 	if (isipv6) {
1282 		struct route_in6 *ro6 = &sc->sc_route6;
1283 
1284 		th->th_sum = 0;
1285 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1286 		ip6->ip6_hlim = in6_selecthlim(NULL,
1287 		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1288 		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1289 				sc->sc_tp->t_inpcb);
1290 	} else {
1291         	th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1292 		    htons(tlen - hlen + IPPROTO_TCP));
1293 		m->m_pkthdr.csum_flags = CSUM_TCP;
1294 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1295 		error = ip_output(m, sc->sc_ipopts, &sc->sc_route, 0, NULL,
1296 				sc->sc_tp->t_inpcb);
1297 	}
1298 	return (error);
1299 }
1300 
1301 /*
1302  * cookie layers:
1303  *
1304  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1305  *	| peer iss                                                      |
1306  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1307  *	|                     0                       |(A)|             |
1308  * (A): peer mss index
1309  */
1310 
1311 /*
1312  * The values below are chosen to minimize the size of the tcp_secret
1313  * table, as well as providing roughly a 16 second lifetime for the cookie.
1314  */
1315 
1316 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1317 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1318 
1319 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1320 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1321 #define SYNCOOKIE_TIMEOUT \
1322     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1323 #define SYNCOOKIE_DATAMASK 	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1324 
1325 static struct {
1326 	u_int32_t	ts_secbits[4];
1327 	u_int		ts_expire;
1328 } tcp_secret[SYNCOOKIE_NSECRETS];
1329 
1330 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1331 
1332 static MD5_CTX syn_ctx;
1333 
1334 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1335 
1336 struct md5_add {
1337 	u_int32_t laddr, faddr;
1338 	u_int32_t secbits[4];
1339 	u_int16_t lport, fport;
1340 };
1341 
1342 #ifdef CTASSERT
1343 CTASSERT(sizeof(struct md5_add) == 28);
1344 #endif
1345 
1346 /*
1347  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1348  * original SYN was accepted, the connection is established.  The second
1349  * SYN is inflight, and if it arrives with an ISN that falls within the
1350  * receive window, the connection is killed.
1351  *
1352  * However, since cookies have other problems, this may not be worth
1353  * worrying about.
1354  */
1355 
1356 static u_int32_t
1357 syncookie_generate(struct syncache *sc)
1358 {
1359 	u_int32_t md5_buffer[4];
1360 	u_int32_t data;
1361 	int idx, i;
1362 	struct md5_add add;
1363 #ifdef INET6
1364 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1365 #else
1366 	const boolean_t isipv6 = FALSE;
1367 #endif
1368 
1369 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1370 	if (tcp_secret[idx].ts_expire < ticks) {
1371 		for (i = 0; i < 4; i++)
1372 			tcp_secret[idx].ts_secbits[i] = arc4random();
1373 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1374 	}
1375 	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1376 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1377 			break;
1378 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1379 	data ^= sc->sc_irs;				/* peer's iss */
1380 	MD5Init(&syn_ctx);
1381 	if (isipv6) {
1382 		MD5Add(sc->sc_inc.inc6_laddr);
1383 		MD5Add(sc->sc_inc.inc6_faddr);
1384 		add.laddr = 0;
1385 		add.faddr = 0;
1386 	} else {
1387 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1388 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1389 	}
1390 	add.lport = sc->sc_inc.inc_lport;
1391 	add.fport = sc->sc_inc.inc_fport;
1392 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1393 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1394 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1395 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1396 	MD5Add(add);
1397 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1398 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1399 	return (data);
1400 }
1401 
1402 static struct syncache *
1403 syncookie_lookup(inc, th, so)
1404 	struct in_conninfo *inc;
1405 	struct tcphdr *th;
1406 	struct socket *so;
1407 {
1408 	u_int32_t md5_buffer[4];
1409 	struct syncache *sc;
1410 	u_int32_t data;
1411 	int wnd, idx;
1412 	struct md5_add add;
1413 
1414 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1415 	idx = data & SYNCOOKIE_WNDMASK;
1416 	if (tcp_secret[idx].ts_expire < ticks ||
1417 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1418 		return (NULL);
1419 	MD5Init(&syn_ctx);
1420 #ifdef INET6
1421 	if (inc->inc_isipv6) {
1422 		MD5Add(inc->inc6_laddr);
1423 		MD5Add(inc->inc6_faddr);
1424 		add.laddr = 0;
1425 		add.faddr = 0;
1426 	} else
1427 #endif
1428 	{
1429 		add.laddr = inc->inc_laddr.s_addr;
1430 		add.faddr = inc->inc_faddr.s_addr;
1431 	}
1432 	add.lport = inc->inc_lport;
1433 	add.fport = inc->inc_fport;
1434 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1435 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1436 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1437 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1438 	MD5Add(add);
1439 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1440 	data ^= md5_buffer[0];
1441 	if ((data & ~SYNCOOKIE_DATAMASK) != 0)
1442 		return (NULL);
1443 	data = data >> SYNCOOKIE_WNDBITS;
1444 
1445 	/*
1446 	 * This allocation is guaranteed to succeed because we
1447 	 * preallocate one more syncache entry than cache_limit.
1448 	 */
1449 	sc = zalloc(tcp_syncache.zone);
1450 
1451 	/*
1452 	 * Fill in the syncache values.
1453 	 * XXX duplicate code from syncache_add
1454 	 */
1455 	sc->sc_ipopts = NULL;
1456 	sc->sc_inc.inc_fport = inc->inc_fport;
1457 	sc->sc_inc.inc_lport = inc->inc_lport;
1458 #ifdef INET6
1459 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1460 	if (inc->inc_isipv6) {
1461 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1462 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1463 		sc->sc_route6.ro_rt = NULL;
1464 	} else
1465 #endif
1466 	{
1467 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1468 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1469 		sc->sc_route.ro_rt = NULL;
1470 	}
1471 	sc->sc_irs = th->th_seq - 1;
1472 	sc->sc_iss = th->th_ack - 1;
1473 	wnd = sbspace(&so->so_rcv);
1474 	wnd = imax(wnd, 0);
1475 	wnd = imin(wnd, TCP_MAXWIN);
1476 	sc->sc_wnd = wnd;
1477 	sc->sc_flags = 0;
1478 	sc->sc_rxtslot = 0;
1479 	sc->sc_peer_mss = tcp_msstab[data];
1480 	return (sc);
1481 }
1482