xref: /dflybsd-src/sys/netinet/tcp_syncache.c (revision 2702099d6065f293e5ed6ff3c0fa181879bc1a1d)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * All advertising materials mentioning features or use of this software
36  * must display the following acknowledgement:
37  *   This product includes software developed by Jeffrey M. Hsu.
38  *
39  * Copyright (c) 2001 Networks Associates Technologies, Inc.
40  * All rights reserved.
41  *
42  * This software was developed for the FreeBSD Project by Jonathan Lemon
43  * and NAI Labs, the Security Research Division of Network Associates, Inc.
44  * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45  * DARPA CHATS research program.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. The name of the author may not be used to endorse or promote
56  *    products derived from this software without specific prior written
57  *    permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
72  */
73 
74 #include "opt_inet.h"
75 #include "opt_inet6.h"
76 #include "opt_ipsec.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/md5.h>
85 #include <sys/proc.h>		/* for proc0 declaration */
86 #include <sys/random.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/in_cksum.h>
90 
91 #include <sys/msgport2.h>
92 #include <net/netmsg2.h>
93 #include <net/netisr2.h>
94 
95 #include <net/if.h>
96 #include <net/route.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/in_var.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/ip6.h>
105 #ifdef INET6
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #endif
109 #include <netinet6/ip6_var.h>
110 #include <netinet6/in6_pcb.h>
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
118 
119 #ifdef IPSEC
120 #include <netinet6/ipsec.h>
121 #ifdef INET6
122 #include <netinet6/ipsec6.h>
123 #endif
124 #include <netproto/key/key.h>
125 #endif /*IPSEC*/
126 
127 #ifdef FAST_IPSEC
128 #include <netproto/ipsec/ipsec.h>
129 #ifdef INET6
130 #include <netproto/ipsec/ipsec6.h>
131 #endif
132 #include <netproto/ipsec/key.h>
133 #define	IPSEC
134 #endif /*FAST_IPSEC*/
135 
136 static int tcp_syncookies = 1;
137 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
138     &tcp_syncookies, 0,
139     "Use TCP SYN cookies if the syncache overflows");
140 
141 static void	 syncache_drop(struct syncache *, struct syncache_head *);
142 static void	 syncache_free(struct syncache *);
143 static void	 syncache_insert(struct syncache *, struct syncache_head *);
144 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
145 static int	 syncache_respond(struct syncache *, struct mbuf *);
146 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
147 		    struct mbuf *);
148 static void	 syncache_timer(void *);
149 static u_int32_t syncookie_generate(struct syncache *);
150 static struct syncache *syncookie_lookup(struct in_conninfo *,
151 		    struct tcphdr *, struct socket *);
152 
153 /*
154  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
155  * 4 retransmits corresponds to a timeout of (3 + 3 + 3 + 3 + 3 == 15) seconds
156  * or (1 + 1 + 2 + 4 + 8 == 16) seconds if RFC6298 is used, the odds are that
157  * the user has given up attempting to connect by then.
158  */
159 #define SYNCACHE_MAXREXMTS		4
160 
161 /* Arbitrary values */
162 #define TCP_SYNCACHE_HASHSIZE		512
163 #define TCP_SYNCACHE_BUCKETLIMIT	30
164 
165 struct netmsg_sc_timer {
166 	struct netmsg_base base;
167 	struct msgrec *nm_mrec;		/* back pointer to containing msgrec */
168 };
169 
170 struct msgrec {
171 	struct netmsg_sc_timer msg;
172 	lwkt_port_t port;		/* constant after init */
173 	int slot;			/* constant after init */
174 };
175 
176 static void syncache_timer_handler(netmsg_t);
177 
178 struct tcp_syncache {
179 	u_int	hashsize;
180 	u_int	hashmask;
181 	u_int	bucket_limit;
182 	u_int	cache_limit;
183 	u_int	rexmt_limit;
184 	u_int	hash_secret;
185 };
186 static struct tcp_syncache tcp_syncache;
187 
188 TAILQ_HEAD(syncache_list, syncache);
189 
190 struct tcp_syncache_percpu {
191 	struct syncache_head	*hashbase;
192 	u_int			cache_count;
193 	struct syncache_list	timerq[SYNCACHE_MAXREXMTS + 1];
194 	struct callout		tt_timerq[SYNCACHE_MAXREXMTS + 1];
195 	struct msgrec		mrec[SYNCACHE_MAXREXMTS + 1];
196 };
197 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
198 
199 static struct lwkt_port syncache_null_rport;
200 
201 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
202 
203 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
204      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
205 
206 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
207      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
208 
209 /* XXX JH */
210 #if 0
211 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
212      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
213 #endif
214 
215 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
216      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
217 
218 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
219      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
220 
221 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
222 
223 #define SYNCACHE_HASH(inc, mask)					\
224 	((tcp_syncache.hash_secret ^					\
225 	  (inc)->inc_faddr.s_addr ^					\
226 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
227 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
228 
229 #define SYNCACHE_HASH6(inc, mask)					\
230 	((tcp_syncache.hash_secret ^					\
231 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
232 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
233 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
234 
235 #define ENDPTS_EQ(a, b) (						\
236 	(a)->ie_fport == (b)->ie_fport &&				\
237 	(a)->ie_lport == (b)->ie_lport &&				\
238 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
239 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
240 )
241 
242 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
243 
244 static __inline int
245 syncache_rto(int slot)
246 {
247 	if (tcp_low_rtobase)
248 		return (TCPTV_RTOBASE * tcp_syn_backoff_low[slot]);
249 	else
250 		return (TCPTV_RTOBASE * tcp_syn_backoff[slot]);
251 }
252 
253 static __inline void
254 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
255 		 struct syncache *sc, int slot)
256 {
257 	int rto;
258 
259 	if (slot > 0) {
260 		/*
261 		 * Record the time that we spent in SYN|ACK
262 		 * retransmition.
263 		 *
264 		 * Needed by RFC3390 and RFC6298.
265 		 */
266 		sc->sc_rxtused += syncache_rto(slot - 1);
267 	}
268 	sc->sc_rxtslot = slot;
269 
270 	rto = syncache_rto(slot);
271 	sc->sc_rxttime = ticks + rto;
272 
273 	TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
274 	if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
275 		callout_reset(&syncache_percpu->tt_timerq[slot], rto,
276 		    syncache_timer, &syncache_percpu->mrec[slot]);
277 	}
278 }
279 
280 static void
281 syncache_free(struct syncache *sc)
282 {
283 	struct rtentry *rt;
284 #ifdef INET6
285 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
286 #else
287 	const boolean_t isipv6 = FALSE;
288 #endif
289 
290 	if (sc->sc_ipopts)
291 		m_free(sc->sc_ipopts);
292 
293 	rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
294 	if (rt != NULL) {
295 		/*
296 		 * If this is the only reference to a protocol-cloned
297 		 * route, remove it immediately.
298 		 */
299 		if ((rt->rt_flags & RTF_WASCLONED) && rt->rt_refcnt == 1)
300 			rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
301 				  rt_mask(rt), rt->rt_flags, NULL);
302 		RTFREE(rt);
303 	}
304 	kfree(sc, M_SYNCACHE);
305 }
306 
307 void
308 syncache_init(void)
309 {
310 	int i, cpu;
311 
312 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
313 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
314 	tcp_syncache.cache_limit =
315 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
316 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
317 	tcp_syncache.hash_secret = karc4random();
318 
319 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
320 	    &tcp_syncache.hashsize);
321 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
322 	    &tcp_syncache.cache_limit);
323 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
324 	    &tcp_syncache.bucket_limit);
325 	if (!powerof2(tcp_syncache.hashsize)) {
326 		kprintf("WARNING: syncache hash size is not a power of 2.\n");
327 		tcp_syncache.hashsize = 512;	/* safe default */
328 	}
329 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
330 
331 	lwkt_initport_replyonly_null(&syncache_null_rport);
332 
333 	for (cpu = 0; cpu < ncpus2; cpu++) {
334 		struct tcp_syncache_percpu *syncache_percpu;
335 
336 		syncache_percpu = &tcp_syncache_percpu[cpu];
337 		/* Allocate the hash table. */
338 		syncache_percpu->hashbase = kmalloc(tcp_syncache.hashsize * sizeof(struct syncache_head),
339 						    M_SYNCACHE, M_WAITOK);
340 
341 		/* Initialize the hash buckets. */
342 		for (i = 0; i < tcp_syncache.hashsize; i++) {
343 			struct syncache_head *bucket;
344 
345 			bucket = &syncache_percpu->hashbase[i];
346 			TAILQ_INIT(&bucket->sch_bucket);
347 			bucket->sch_length = 0;
348 		}
349 
350 		for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
351 			/* Initialize the timer queues. */
352 			TAILQ_INIT(&syncache_percpu->timerq[i]);
353 			callout_init_mp(&syncache_percpu->tt_timerq[i]);
354 
355 			syncache_percpu->mrec[i].slot = i;
356 			syncache_percpu->mrec[i].port = netisr_cpuport(cpu);
357 			syncache_percpu->mrec[i].msg.nm_mrec =
358 				    &syncache_percpu->mrec[i];
359 			netmsg_init(&syncache_percpu->mrec[i].msg.base,
360 				    NULL, &syncache_null_rport,
361 				    0, syncache_timer_handler);
362 		}
363 	}
364 }
365 
366 static void
367 syncache_insert(struct syncache *sc, struct syncache_head *sch)
368 {
369 	struct tcp_syncache_percpu *syncache_percpu;
370 	struct syncache *sc2;
371 	int i;
372 
373 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
374 
375 	/*
376 	 * Make sure that we don't overflow the per-bucket
377 	 * limit or the total cache size limit.
378 	 */
379 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
380 		/*
381 		 * The bucket is full, toss the oldest element.
382 		 */
383 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
384 		sc2->sc_tp->ts_recent = ticks;
385 		syncache_drop(sc2, sch);
386 		tcpstat.tcps_sc_bucketoverflow++;
387 	} else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
388 		/*
389 		 * The cache is full.  Toss the oldest entry in the
390 		 * entire cache.  This is the front entry in the
391 		 * first non-empty timer queue with the largest
392 		 * timeout value.
393 		 */
394 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
395 			sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
396 			while (sc2 && (sc2->sc_flags & SCF_MARKER))
397 				sc2 = TAILQ_NEXT(sc2, sc_timerq);
398 			if (sc2 != NULL)
399 				break;
400 		}
401 		sc2->sc_tp->ts_recent = ticks;
402 		syncache_drop(sc2, NULL);
403 		tcpstat.tcps_sc_cacheoverflow++;
404 	}
405 
406 	/* Initialize the entry's timer. */
407 	syncache_timeout(syncache_percpu, sc, 0);
408 
409 	/* Put it into the bucket. */
410 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
411 	sch->sch_length++;
412 	syncache_percpu->cache_count++;
413 	tcpstat.tcps_sc_added++;
414 }
415 
416 void
417 syncache_destroy(struct tcpcb *tp)
418 {
419 	struct tcp_syncache_percpu *syncache_percpu;
420 	struct syncache_head *bucket;
421 	struct syncache *sc;
422 	int i;
423 
424 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
425 	sc = NULL;
426 
427 	for (i = 0; i < tcp_syncache.hashsize; i++) {
428 		bucket = &syncache_percpu->hashbase[i];
429 		TAILQ_FOREACH(sc, &bucket->sch_bucket, sc_hash) {
430 			if (sc->sc_tp == tp)
431 				sc->sc_tp = NULL;
432 		}
433 	}
434 }
435 
436 static void
437 syncache_drop(struct syncache *sc, struct syncache_head *sch)
438 {
439 	struct tcp_syncache_percpu *syncache_percpu;
440 #ifdef INET6
441 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
442 #else
443 	const boolean_t isipv6 = FALSE;
444 #endif
445 
446 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
447 
448 	if (sch == NULL) {
449 		if (isipv6) {
450 			sch = &syncache_percpu->hashbase[
451 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
452 		} else {
453 			sch = &syncache_percpu->hashbase[
454 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
455 		}
456 	}
457 
458 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
459 	sch->sch_length--;
460 	syncache_percpu->cache_count--;
461 
462 	/*
463 	 * Cleanup
464 	 */
465 	if (sc->sc_tp)
466 		sc->sc_tp = NULL;
467 
468 	/*
469 	 * Remove the entry from the syncache timer/timeout queue.  Note
470 	 * that we do not try to stop any running timer since we do not know
471 	 * whether the timer's message is in-transit or not.  Since timeouts
472 	 * are fairly long, taking an unneeded callout does not detrimentally
473 	 * effect performance.
474 	 */
475 	TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
476 
477 	syncache_free(sc);
478 }
479 
480 /*
481  * Place a timeout message on the TCP thread's message queue.
482  * This routine runs in soft interrupt context.
483  *
484  * An invariant is for this routine to be called, the callout must
485  * have been active.  Note that the callout is not deactivated until
486  * after the message has been processed in syncache_timer_handler() below.
487  */
488 static void
489 syncache_timer(void *p)
490 {
491 	struct netmsg_sc_timer *msg = p;
492 
493 	lwkt_sendmsg(msg->nm_mrec->port, &msg->base.lmsg);
494 }
495 
496 /*
497  * Service a timer message queued by timer expiration.
498  * This routine runs in the TCP protocol thread.
499  *
500  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
501  * If we have retransmitted an entry the maximum number of times, expire it.
502  *
503  * When we finish processing timed-out entries, we restart the timer if there
504  * are any entries still on the queue and deactivate it otherwise.  Only after
505  * a timer has been deactivated here can it be restarted by syncache_timeout().
506  */
507 static void
508 syncache_timer_handler(netmsg_t msg)
509 {
510 	struct tcp_syncache_percpu *syncache_percpu;
511 	struct syncache *sc;
512 	struct syncache marker;
513 	struct syncache_list *list;
514 	struct inpcb *inp;
515 	int slot;
516 
517 	slot = ((struct netmsg_sc_timer *)msg)->nm_mrec->slot;
518 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
519 
520 	list = &syncache_percpu->timerq[slot];
521 
522 	/*
523 	 * Use a marker to keep our place in the scan.  syncache_drop()
524 	 * can block and cause any next pointer we cache to become stale.
525 	 */
526 	marker.sc_flags = SCF_MARKER;
527 	TAILQ_INSERT_HEAD(list, &marker, sc_timerq);
528 
529 	while ((sc = TAILQ_NEXT(&marker, sc_timerq)) != NULL) {
530 		/*
531 		 * Move the marker.
532 		 */
533 		TAILQ_REMOVE(list, &marker, sc_timerq);
534 		TAILQ_INSERT_AFTER(list, sc, &marker, sc_timerq);
535 
536 		if (sc->sc_flags & SCF_MARKER)
537 			continue;
538 
539 		if (ticks < sc->sc_rxttime)
540 			break;	/* finished because timerq sorted by time */
541 		if (sc->sc_tp == NULL) {
542 			syncache_drop(sc, NULL);
543 			tcpstat.tcps_sc_stale++;
544 			continue;
545 		}
546 		inp = sc->sc_tp->t_inpcb;
547 		if (slot == SYNCACHE_MAXREXMTS ||
548 		    slot >= tcp_syncache.rexmt_limit ||
549 		    inp == NULL ||
550 		    inp->inp_gencnt != sc->sc_inp_gencnt) {
551 			syncache_drop(sc, NULL);
552 			tcpstat.tcps_sc_stale++;
553 			continue;
554 		}
555 		/*
556 		 * syncache_respond() may call back into the syncache to
557 		 * to modify another entry, so do not obtain the next
558 		 * entry on the timer chain until it has completed.
559 		 */
560 		syncache_respond(sc, NULL);
561 		tcpstat.tcps_sc_retransmitted++;
562 		TAILQ_REMOVE(list, sc, sc_timerq);
563 		syncache_timeout(syncache_percpu, sc, slot + 1);
564 	}
565 	TAILQ_REMOVE(list, &marker, sc_timerq);
566 
567 	if (sc != NULL) {
568 		callout_reset(&syncache_percpu->tt_timerq[slot],
569 			      sc->sc_rxttime - ticks, syncache_timer,
570 			      &syncache_percpu->mrec[slot]);
571 	} else {
572 		callout_deactivate(&syncache_percpu->tt_timerq[slot]);
573 	}
574 	lwkt_replymsg(&msg->base.lmsg, 0);
575 }
576 
577 /*
578  * Find an entry in the syncache.
579  */
580 struct syncache *
581 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
582 {
583 	struct tcp_syncache_percpu *syncache_percpu;
584 	struct syncache *sc;
585 	struct syncache_head *sch;
586 
587 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
588 #ifdef INET6
589 	if (inc->inc_isipv6) {
590 		sch = &syncache_percpu->hashbase[
591 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
592 		*schp = sch;
593 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
594 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
595 				return (sc);
596 	} else
597 #endif
598 	{
599 		sch = &syncache_percpu->hashbase[
600 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
601 		*schp = sch;
602 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
603 #ifdef INET6
604 			if (sc->sc_inc.inc_isipv6)
605 				continue;
606 #endif
607 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
608 				return (sc);
609 		}
610 	}
611 	return (NULL);
612 }
613 
614 /*
615  * This function is called when we get a RST for a
616  * non-existent connection, so that we can see if the
617  * connection is in the syn cache.  If it is, zap it.
618  */
619 void
620 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
621 {
622 	struct syncache *sc;
623 	struct syncache_head *sch;
624 
625 	sc = syncache_lookup(inc, &sch);
626 	if (sc == NULL) {
627 		return;
628 	}
629 	/*
630 	 * If the RST bit is set, check the sequence number to see
631 	 * if this is a valid reset segment.
632 	 * RFC 793 page 37:
633 	 *   In all states except SYN-SENT, all reset (RST) segments
634 	 *   are validated by checking their SEQ-fields.  A reset is
635 	 *   valid if its sequence number is in the window.
636 	 *
637 	 *   The sequence number in the reset segment is normally an
638 	 *   echo of our outgoing acknowlegement numbers, but some hosts
639 	 *   send a reset with the sequence number at the rightmost edge
640 	 *   of our receive window, and we have to handle this case.
641 	 */
642 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
643 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
644 		syncache_drop(sc, sch);
645 		tcpstat.tcps_sc_reset++;
646 	}
647 }
648 
649 void
650 syncache_badack(struct in_conninfo *inc)
651 {
652 	struct syncache *sc;
653 	struct syncache_head *sch;
654 
655 	sc = syncache_lookup(inc, &sch);
656 	if (sc != NULL) {
657 		syncache_drop(sc, sch);
658 		tcpstat.tcps_sc_badack++;
659 	}
660 }
661 
662 void
663 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
664 {
665 	struct syncache *sc;
666 	struct syncache_head *sch;
667 
668 	/* we are called at splnet() here */
669 	sc = syncache_lookup(inc, &sch);
670 	if (sc == NULL)
671 		return;
672 
673 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
674 	if (ntohl(th->th_seq) != sc->sc_iss)
675 		return;
676 
677 	/*
678 	 * If we've rertransmitted 3 times and this is our second error,
679 	 * we remove the entry.  Otherwise, we allow it to continue on.
680 	 * This prevents us from incorrectly nuking an entry during a
681 	 * spurious network outage.
682 	 *
683 	 * See tcp_notify().
684 	 */
685 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
686 		sc->sc_flags |= SCF_UNREACH;
687 		return;
688 	}
689 	syncache_drop(sc, sch);
690 	tcpstat.tcps_sc_unreach++;
691 }
692 
693 /*
694  * Build a new TCP socket structure from a syncache entry.
695  *
696  * This is called from the context of the SYN+ACK
697  */
698 static struct socket *
699 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
700 {
701 	struct inpcb *inp = NULL, *linp;
702 	struct socket *so;
703 	struct tcpcb *tp, *ltp;
704 	lwkt_port_t port;
705 #ifdef INET6
706 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
707 #else
708 	const boolean_t isipv6 = FALSE;
709 #endif
710 	struct sockaddr_in sin_faddr;
711 	struct sockaddr_in6 sin6_faddr;
712 	struct sockaddr *faddr;
713 
714 	if (isipv6) {
715 		faddr = (struct sockaddr *)&sin6_faddr;
716 		sin6_faddr.sin6_family = AF_INET6;
717 		sin6_faddr.sin6_len = sizeof(sin6_faddr);
718 		sin6_faddr.sin6_addr = sc->sc_inc.inc6_faddr;
719 		sin6_faddr.sin6_port = sc->sc_inc.inc_fport;
720 		sin6_faddr.sin6_flowinfo = sin6_faddr.sin6_scope_id = 0;
721 	} else {
722 		faddr = (struct sockaddr *)&sin_faddr;
723 		sin_faddr.sin_family = AF_INET;
724 		sin_faddr.sin_len = sizeof(sin_faddr);
725 		sin_faddr.sin_addr = sc->sc_inc.inc_faddr;
726 		sin_faddr.sin_port = sc->sc_inc.inc_fport;
727 		bzero(sin_faddr.sin_zero, sizeof(sin_faddr.sin_zero));
728 	}
729 
730 	/*
731 	 * Ok, create the full blown connection, and set things up
732 	 * as they would have been set up if we had created the
733 	 * connection when the SYN arrived.  If we can't create
734 	 * the connection, abort it.
735 	 *
736 	 * Set the protocol processing port for the socket to the current
737 	 * port (that the connection came in on).
738 	 */
739 	so = sonewconn_faddr(lso, SS_ISCONNECTED, faddr);
740 	if (so == NULL) {
741 		/*
742 		 * Drop the connection; we will send a RST if the peer
743 		 * retransmits the ACK,
744 		 */
745 		tcpstat.tcps_listendrop++;
746 		goto abort;
747 	}
748 
749 	/*
750 	 * Insert new socket into hash list.
751 	 */
752 	inp = so->so_pcb;
753 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
754 	if (isipv6) {
755 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
756 	} else {
757 #ifdef INET6
758 		inp->inp_vflag &= ~INP_IPV6;
759 		inp->inp_vflag |= INP_IPV4;
760 		inp->inp_flags &= ~IN6P_IPV6_V6ONLY;
761 #endif
762 		inp->inp_laddr = sc->sc_inc.inc_laddr;
763 	}
764 	inp->inp_lport = sc->sc_inc.inc_lport;
765 	if (in_pcbinsporthash(inp) != 0) {
766 		/*
767 		 * Undo the assignments above if we failed to
768 		 * put the PCB on the hash lists.
769 		 */
770 		if (isipv6)
771 			inp->in6p_laddr = kin6addr_any;
772 		else
773 			inp->inp_laddr.s_addr = INADDR_ANY;
774 		inp->inp_lport = 0;
775 		goto abort;
776 	}
777 	linp = lso->so_pcb;
778 #ifdef IPSEC
779 	/* copy old policy into new socket's */
780 	if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
781 		kprintf("syncache_expand: could not copy policy\n");
782 #endif
783 	if (isipv6) {
784 		struct in6_addr laddr6;
785 		/*
786 		 * Inherit socket options from the listening socket.
787 		 * Note that in6p_inputopts are not (and should not be)
788 		 * copied, since it stores previously received options and is
789 		 * used to detect if each new option is different than the
790 		 * previous one and hence should be passed to a user.
791 		 * If we copied in6p_inputopts, a user would not be able to
792 		 * receive options just after calling the accept system call.
793 		 */
794 		inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
795 		if (linp->in6p_outputopts)
796 			inp->in6p_outputopts =
797 			    ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
798 		inp->in6p_route = sc->sc_route6;
799 		sc->sc_route6.ro_rt = NULL;
800 
801 		laddr6 = inp->in6p_laddr;
802 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
803 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
804 		if (in6_pcbconnect(inp, faddr, &thread0)) {
805 			inp->in6p_laddr = laddr6;
806 			goto abort;
807 		}
808 	} else {
809 		struct in_addr laddr;
810 
811 		inp->inp_options = ip_srcroute(m);
812 		if (inp->inp_options == NULL) {
813 			inp->inp_options = sc->sc_ipopts;
814 			sc->sc_ipopts = NULL;
815 		}
816 		inp->inp_route = sc->sc_route;
817 		sc->sc_route.ro_rt = NULL;
818 
819 		laddr = inp->inp_laddr;
820 		if (inp->inp_laddr.s_addr == INADDR_ANY)
821 			inp->inp_laddr = sc->sc_inc.inc_laddr;
822 		if (in_pcbconnect(inp, faddr, &thread0)) {
823 			inp->inp_laddr = laddr;
824 			goto abort;
825 		}
826 	}
827 
828 	/*
829 	 * The current port should be in the context of the SYN+ACK and
830 	 * so should match the tcp address port.
831 	 *
832 	 * XXX we may be running on the netisr thread instead of a tcp
833 	 *     thread, in which case port will not match
834 	 *     curthread->td_msgport.
835 	 */
836 	if (isipv6) {
837 		port = tcp6_addrport();
838 	} else {
839 		port = tcp_addrport(inp->inp_faddr.s_addr, inp->inp_fport,
840 				    inp->inp_laddr.s_addr, inp->inp_lport);
841 	}
842 	if (port != &curthread->td_msgport) {
843 		print_backtrace(-1);
844 		kprintf("TCP PORT MISMATCH %p vs %p\n",
845 			port, &curthread->td_msgport);
846 	}
847 	/*KKASSERT(port == &curthread->td_msgport);*/
848 
849 	tp = intotcpcb(inp);
850 	tp->t_state = TCPS_SYN_RECEIVED;
851 	tp->iss = sc->sc_iss;
852 	tp->irs = sc->sc_irs;
853 	tcp_rcvseqinit(tp);
854 	tcp_sendseqinit(tp);
855 	tp->snd_wnd = sc->sc_sndwnd;
856 	tp->snd_wl1 = sc->sc_irs;
857 	tp->rcv_up = sc->sc_irs + 1;
858 	tp->rcv_wnd = sc->sc_wnd;
859 	tp->rcv_adv += tp->rcv_wnd;
860 
861 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
862 	if (sc->sc_flags & SCF_NOOPT)
863 		tp->t_flags |= TF_NOOPT;
864 	if (sc->sc_flags & SCF_WINSCALE) {
865 		tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
866 		tp->snd_scale = sc->sc_requested_s_scale;
867 		tp->request_r_scale = sc->sc_request_r_scale;
868 	}
869 	if (sc->sc_flags & SCF_TIMESTAMP) {
870 		tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
871 		tp->ts_recent = sc->sc_tsrecent;
872 		tp->ts_recent_age = ticks;
873 	}
874 	if (sc->sc_flags & SCF_SACK_PERMITTED)
875 		tp->t_flags |= TF_SACK_PERMITTED;
876 
877 #ifdef TCP_SIGNATURE
878 	if (sc->sc_flags & SCF_SIGNATURE)
879 		tp->t_flags |= TF_SIGNATURE;
880 #endif /* TCP_SIGNATURE */
881 
882 	tp->t_rxtsyn = sc->sc_rxtused;
883 	tcp_mss(tp, sc->sc_peer_mss);
884 
885 	/*
886 	 * Inherit some properties from the listen socket
887 	 */
888 	ltp = intotcpcb(linp);
889 	tp->t_keepinit = ltp->t_keepinit;
890 	tp->t_keepidle = ltp->t_keepidle;
891 	tp->t_keepintvl = ltp->t_keepintvl;
892 	tp->t_keepcnt = ltp->t_keepcnt;
893 	tp->t_maxidle = ltp->t_maxidle;
894 
895 	tcp_create_timermsg(tp, port);
896 	tcp_callout_reset(tp, tp->tt_keep, tp->t_keepinit, tcp_timer_keep);
897 
898 	tcpstat.tcps_accepts++;
899 	return (so);
900 
901 abort:
902 	if (so != NULL)
903 		soabort_oncpu(so);
904 	return (NULL);
905 }
906 
907 /*
908  * This function gets called when we receive an ACK for a
909  * socket in the LISTEN state.  We look up the connection
910  * in the syncache, and if its there, we pull it out of
911  * the cache and turn it into a full-blown connection in
912  * the SYN-RECEIVED state.
913  */
914 int
915 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop,
916 		struct mbuf *m)
917 {
918 	struct syncache *sc;
919 	struct syncache_head *sch;
920 	struct socket *so;
921 
922 	sc = syncache_lookup(inc, &sch);
923 	if (sc == NULL) {
924 		/*
925 		 * There is no syncache entry, so see if this ACK is
926 		 * a returning syncookie.  To do this, first:
927 		 *  A. See if this socket has had a syncache entry dropped in
928 		 *     the past.  We don't want to accept a bogus syncookie
929 		 *     if we've never received a SYN.
930 		 *  B. check that the syncookie is valid.  If it is, then
931 		 *     cobble up a fake syncache entry, and return.
932 		 */
933 		if (!tcp_syncookies)
934 			return (0);
935 		sc = syncookie_lookup(inc, th, *sop);
936 		if (sc == NULL)
937 			return (0);
938 		sch = NULL;
939 		tcpstat.tcps_sc_recvcookie++;
940 	}
941 
942 	/*
943 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
944 	 */
945 	if (th->th_ack != sc->sc_iss + 1)
946 		return (0);
947 
948 	so = syncache_socket(sc, *sop, m);
949 	if (so == NULL) {
950 #if 0
951 resetandabort:
952 		/* XXXjlemon check this - is this correct? */
953 		tcp_respond(NULL, m, m, th,
954 		    th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
955 #endif
956 		m_freem(m);			/* XXX only needed for above */
957 		tcpstat.tcps_sc_aborted++;
958 	} else {
959 		tcpstat.tcps_sc_completed++;
960 	}
961 	if (sch == NULL)
962 		syncache_free(sc);
963 	else
964 		syncache_drop(sc, sch);
965 	*sop = so;
966 	return (1);
967 }
968 
969 /*
970  * Given a LISTEN socket and an inbound SYN request, add
971  * this to the syn cache, and send back a segment:
972  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
973  * to the source.
974  *
975  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
976  * Doing so would require that we hold onto the data and deliver it
977  * to the application.  However, if we are the target of a SYN-flood
978  * DoS attack, an attacker could send data which would eventually
979  * consume all available buffer space if it were ACKed.  By not ACKing
980  * the data, we avoid this DoS scenario.
981  */
982 int
983 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
984 	     struct socket *so, struct mbuf *m)
985 {
986 	struct tcp_syncache_percpu *syncache_percpu;
987 	struct tcpcb *tp;
988 	struct syncache *sc = NULL;
989 	struct syncache_head *sch;
990 	struct mbuf *ipopts = NULL;
991 	int win;
992 
993 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
994 	tp = sototcpcb(so);
995 
996 	/*
997 	 * Remember the IP options, if any.
998 	 */
999 #ifdef INET6
1000 	if (!inc->inc_isipv6)
1001 #endif
1002 		ipopts = ip_srcroute(m);
1003 
1004 	/*
1005 	 * See if we already have an entry for this connection.
1006 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1007 	 *
1008 	 * XXX
1009 	 * The syncache should be re-initialized with the contents
1010 	 * of the new SYN which may have different options.
1011 	 */
1012 	sc = syncache_lookup(inc, &sch);
1013 	if (sc != NULL) {
1014 		tcpstat.tcps_sc_dupsyn++;
1015 		if (ipopts) {
1016 			/*
1017 			 * If we were remembering a previous source route,
1018 			 * forget it and use the new one we've been given.
1019 			 */
1020 			if (sc->sc_ipopts)
1021 				m_free(sc->sc_ipopts);
1022 			sc->sc_ipopts = ipopts;
1023 		}
1024 		/*
1025 		 * Update timestamp if present.
1026 		 */
1027 		if (sc->sc_flags & SCF_TIMESTAMP)
1028 			sc->sc_tsrecent = to->to_tsval;
1029 
1030 		/* Just update the TOF_SACK_PERMITTED for now. */
1031 		if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1032 			sc->sc_flags |= SCF_SACK_PERMITTED;
1033 		else
1034 			sc->sc_flags &= ~SCF_SACK_PERMITTED;
1035 
1036 		/* Update initial send window */
1037 		sc->sc_sndwnd = th->th_win;
1038 
1039 		/*
1040 		 * PCB may have changed, pick up new values.
1041 		 */
1042 		sc->sc_tp = tp;
1043 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1044 		if (syncache_respond(sc, m) == 0) {
1045 			TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
1046 				     sc, sc_timerq);
1047 			syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
1048 			tcpstat.tcps_sndacks++;
1049 			tcpstat.tcps_sndtotal++;
1050 		}
1051 		return (1);
1052 	}
1053 
1054 	/*
1055 	 * Fill in the syncache values.
1056 	 */
1057 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1058 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1059 	sc->sc_ipopts = ipopts;
1060 	sc->sc_inc.inc_fport = inc->inc_fport;
1061 	sc->sc_inc.inc_lport = inc->inc_lport;
1062 	sc->sc_tp = tp;
1063 #ifdef INET6
1064 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1065 	if (inc->inc_isipv6) {
1066 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1067 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1068 		sc->sc_route6.ro_rt = NULL;
1069 	} else
1070 #endif
1071 	{
1072 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1073 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1074 		sc->sc_route.ro_rt = NULL;
1075 	}
1076 	sc->sc_irs = th->th_seq;
1077 	sc->sc_flags = 0;
1078 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
1079 	if (tcp_syncookies)
1080 		sc->sc_iss = syncookie_generate(sc);
1081 	else
1082 		sc->sc_iss = karc4random();
1083 
1084 	/* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
1085 	win = ssb_space(&so->so_rcv);
1086 	win = imax(win, 0);
1087 	win = imin(win, TCP_MAXWIN);
1088 	sc->sc_wnd = win;
1089 
1090 	if (tcp_do_rfc1323) {
1091 		/*
1092 		 * A timestamp received in a SYN makes
1093 		 * it ok to send timestamp requests and replies.
1094 		 */
1095 		if (to->to_flags & TOF_TS) {
1096 			sc->sc_tsrecent = to->to_tsval;
1097 			sc->sc_flags |= SCF_TIMESTAMP;
1098 		}
1099 		if (to->to_flags & TOF_SCALE) {
1100 			int wscale = TCP_MIN_WINSHIFT;
1101 
1102 			/* Compute proper scaling value from buffer space */
1103 			while (wscale < TCP_MAX_WINSHIFT &&
1104 			    (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat) {
1105 				wscale++;
1106 			}
1107 			sc->sc_request_r_scale = wscale;
1108 			sc->sc_requested_s_scale = to->to_requested_s_scale;
1109 			sc->sc_flags |= SCF_WINSCALE;
1110 		}
1111 	}
1112 	if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1113 		sc->sc_flags |= SCF_SACK_PERMITTED;
1114 	if (tp->t_flags & TF_NOOPT)
1115 		sc->sc_flags = SCF_NOOPT;
1116 #ifdef TCP_SIGNATURE
1117 	/*
1118 	 * If listening socket requested TCP digests, and received SYN
1119 	 * contains the option, flag this in the syncache so that
1120 	 * syncache_respond() will do the right thing with the SYN+ACK.
1121 	 * XXX Currently we always record the option by default and will
1122 	 * attempt to use it in syncache_respond().
1123 	 */
1124 	if (to->to_flags & TOF_SIGNATURE)
1125 		sc->sc_flags = SCF_SIGNATURE;
1126 #endif /* TCP_SIGNATURE */
1127 	sc->sc_sndwnd = th->th_win;
1128 
1129 	if (syncache_respond(sc, m) == 0) {
1130 		syncache_insert(sc, sch);
1131 		tcpstat.tcps_sndacks++;
1132 		tcpstat.tcps_sndtotal++;
1133 	} else {
1134 		syncache_free(sc);
1135 		tcpstat.tcps_sc_dropped++;
1136 	}
1137 	return (1);
1138 }
1139 
1140 static int
1141 syncache_respond(struct syncache *sc, struct mbuf *m)
1142 {
1143 	u_int8_t *optp;
1144 	int optlen, error;
1145 	u_int16_t tlen, hlen, mssopt;
1146 	struct ip *ip = NULL;
1147 	struct rtentry *rt;
1148 	struct tcphdr *th;
1149 	struct ip6_hdr *ip6 = NULL;
1150 #ifdef INET6
1151 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1152 #else
1153 	const boolean_t isipv6 = FALSE;
1154 #endif
1155 
1156 	if (isipv6) {
1157 		rt = tcp_rtlookup6(&sc->sc_inc);
1158 		if (rt != NULL)
1159 			mssopt = rt->rt_ifp->if_mtu -
1160 			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1161 		else
1162 			mssopt = tcp_v6mssdflt;
1163 		hlen = sizeof(struct ip6_hdr);
1164 	} else {
1165 		rt = tcp_rtlookup(&sc->sc_inc);
1166 		if (rt != NULL)
1167 			mssopt = rt->rt_ifp->if_mtu -
1168 			     (sizeof(struct ip) + sizeof(struct tcphdr));
1169 		else
1170 			mssopt = tcp_mssdflt;
1171 		hlen = sizeof(struct ip);
1172 	}
1173 
1174 	/* Compute the size of the TCP options. */
1175 	if (sc->sc_flags & SCF_NOOPT) {
1176 		optlen = 0;
1177 	} else {
1178 		optlen = TCPOLEN_MAXSEG +
1179 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1180 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1181 		    ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1182 			TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1183 #ifdef TCP_SIGNATURE
1184 		optlen += ((sc->sc_flags & SCF_SIGNATURE) ?
1185 		    (TCPOLEN_SIGNATURE + 2) : 0);
1186 #endif /* TCP_SIGNATURE */
1187 	}
1188 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1189 
1190 	/*
1191 	 * XXX
1192 	 * assume that the entire packet will fit in a header mbuf
1193 	 */
1194 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1195 
1196 	/*
1197 	 * XXX shouldn't this reuse the mbuf if possible ?
1198 	 * Create the IP+TCP header from scratch.
1199 	 */
1200 	if (m)
1201 		m_freem(m);
1202 
1203 	m = m_gethdr(MB_DONTWAIT, MT_HEADER);
1204 	if (m == NULL)
1205 		return (ENOBUFS);
1206 	m->m_data += max_linkhdr;
1207 	m->m_len = tlen;
1208 	m->m_pkthdr.len = tlen;
1209 	m->m_pkthdr.rcvif = NULL;
1210 
1211 	if (isipv6) {
1212 		ip6 = mtod(m, struct ip6_hdr *);
1213 		ip6->ip6_vfc = IPV6_VERSION;
1214 		ip6->ip6_nxt = IPPROTO_TCP;
1215 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1216 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1217 		ip6->ip6_plen = htons(tlen - hlen);
1218 		/* ip6_hlim is set after checksum */
1219 		/* ip6_flow = ??? */
1220 
1221 		th = (struct tcphdr *)(ip6 + 1);
1222 	} else {
1223 		ip = mtod(m, struct ip *);
1224 		ip->ip_v = IPVERSION;
1225 		ip->ip_hl = sizeof(struct ip) >> 2;
1226 		ip->ip_len = tlen;
1227 		ip->ip_id = 0;
1228 		ip->ip_off = 0;
1229 		ip->ip_sum = 0;
1230 		ip->ip_p = IPPROTO_TCP;
1231 		ip->ip_src = sc->sc_inc.inc_laddr;
1232 		ip->ip_dst = sc->sc_inc.inc_faddr;
1233 		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1234 		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1235 
1236 		/*
1237 		 * See if we should do MTU discovery.  Route lookups are
1238 		 * expensive, so we will only unset the DF bit if:
1239 		 *
1240 		 *	1) path_mtu_discovery is disabled
1241 		 *	2) the SCF_UNREACH flag has been set
1242 		 */
1243 		if (path_mtu_discovery
1244 		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1245 		       ip->ip_off |= IP_DF;
1246 		}
1247 
1248 		th = (struct tcphdr *)(ip + 1);
1249 	}
1250 	th->th_sport = sc->sc_inc.inc_lport;
1251 	th->th_dport = sc->sc_inc.inc_fport;
1252 
1253 	th->th_seq = htonl(sc->sc_iss);
1254 	th->th_ack = htonl(sc->sc_irs + 1);
1255 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1256 	th->th_x2 = 0;
1257 	th->th_flags = TH_SYN | TH_ACK;
1258 	th->th_win = htons(sc->sc_wnd);
1259 	th->th_urp = 0;
1260 
1261 	/* Tack on the TCP options. */
1262 	if (optlen == 0)
1263 		goto no_options;
1264 	optp = (u_int8_t *)(th + 1);
1265 	*optp++ = TCPOPT_MAXSEG;
1266 	*optp++ = TCPOLEN_MAXSEG;
1267 	*optp++ = (mssopt >> 8) & 0xff;
1268 	*optp++ = mssopt & 0xff;
1269 
1270 	if (sc->sc_flags & SCF_WINSCALE) {
1271 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1272 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1273 		    sc->sc_request_r_scale);
1274 		optp += 4;
1275 	}
1276 
1277 	if (sc->sc_flags & SCF_TIMESTAMP) {
1278 		u_int32_t *lp = (u_int32_t *)(optp);
1279 
1280 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1281 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1282 		*lp++ = htonl(ticks);
1283 		*lp   = htonl(sc->sc_tsrecent);
1284 		optp += TCPOLEN_TSTAMP_APPA;
1285 	}
1286 
1287 #ifdef TCP_SIGNATURE
1288 	/*
1289 	 * Handle TCP-MD5 passive opener response.
1290 	 */
1291 	if (sc->sc_flags & SCF_SIGNATURE) {
1292 		u_int8_t *bp = optp;
1293 		int i;
1294 
1295 		*bp++ = TCPOPT_SIGNATURE;
1296 		*bp++ = TCPOLEN_SIGNATURE;
1297 		for (i = 0; i < TCP_SIGLEN; i++)
1298 			*bp++ = 0;
1299 		tcpsignature_compute(m, 0, optlen,
1300 				optp + 2, IPSEC_DIR_OUTBOUND);
1301 		*bp++ = TCPOPT_NOP;
1302 		*bp++ = TCPOPT_EOL;
1303 		optp += TCPOLEN_SIGNATURE + 2;
1304 	}
1305 #endif /* TCP_SIGNATURE */
1306 
1307 	if (sc->sc_flags & SCF_SACK_PERMITTED) {
1308 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1309 		optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1310 	}
1311 
1312 no_options:
1313 	if (isipv6) {
1314 		struct route_in6 *ro6 = &sc->sc_route6;
1315 
1316 		th->th_sum = 0;
1317 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1318 		ip6->ip6_hlim = in6_selecthlim(NULL,
1319 		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1320 		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1321 				sc->sc_tp->t_inpcb);
1322 	} else {
1323 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1324 				       htons(tlen - hlen + IPPROTO_TCP));
1325 		m->m_pkthdr.csum_flags = CSUM_TCP;
1326 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1327 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr) + optlen;
1328 		error = ip_output(m, sc->sc_ipopts, &sc->sc_route,
1329 				  IP_DEBUGROUTE, NULL, sc->sc_tp->t_inpcb);
1330 	}
1331 	return (error);
1332 }
1333 
1334 /*
1335  * cookie layers:
1336  *
1337  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1338  *	| peer iss                                                      |
1339  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1340  *	|                     0                       |(A)|             |
1341  * (A): peer mss index
1342  */
1343 
1344 /*
1345  * The values below are chosen to minimize the size of the tcp_secret
1346  * table, as well as providing roughly a 16 second lifetime for the cookie.
1347  */
1348 
1349 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1350 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1351 
1352 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1353 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1354 #define SYNCOOKIE_TIMEOUT \
1355     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1356 #define SYNCOOKIE_DATAMASK	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1357 
1358 static struct {
1359 	u_int32_t	ts_secbits[4];
1360 	u_int		ts_expire;
1361 } tcp_secret[SYNCOOKIE_NSECRETS];
1362 
1363 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1364 
1365 static MD5_CTX syn_ctx;
1366 
1367 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1368 
1369 struct md5_add {
1370 	u_int32_t laddr, faddr;
1371 	u_int32_t secbits[4];
1372 	u_int16_t lport, fport;
1373 };
1374 
1375 #ifdef CTASSERT
1376 CTASSERT(sizeof(struct md5_add) == 28);
1377 #endif
1378 
1379 /*
1380  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1381  * original SYN was accepted, the connection is established.  The second
1382  * SYN is inflight, and if it arrives with an ISN that falls within the
1383  * receive window, the connection is killed.
1384  *
1385  * However, since cookies have other problems, this may not be worth
1386  * worrying about.
1387  */
1388 
1389 static u_int32_t
1390 syncookie_generate(struct syncache *sc)
1391 {
1392 	u_int32_t md5_buffer[4];
1393 	u_int32_t data;
1394 	int idx, i;
1395 	struct md5_add add;
1396 #ifdef INET6
1397 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1398 #else
1399 	const boolean_t isipv6 = FALSE;
1400 #endif
1401 
1402 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1403 	if (tcp_secret[idx].ts_expire < ticks) {
1404 		for (i = 0; i < 4; i++)
1405 			tcp_secret[idx].ts_secbits[i] = karc4random();
1406 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1407 	}
1408 	for (data = NELEM(tcp_msstab) - 1; data > 0; data--)
1409 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1410 			break;
1411 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1412 	data ^= sc->sc_irs;				/* peer's iss */
1413 	MD5Init(&syn_ctx);
1414 	if (isipv6) {
1415 		MD5Add(sc->sc_inc.inc6_laddr);
1416 		MD5Add(sc->sc_inc.inc6_faddr);
1417 		add.laddr = 0;
1418 		add.faddr = 0;
1419 	} else {
1420 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1421 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1422 	}
1423 	add.lport = sc->sc_inc.inc_lport;
1424 	add.fport = sc->sc_inc.inc_fport;
1425 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1426 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1427 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1428 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1429 	MD5Add(add);
1430 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1431 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1432 	return (data);
1433 }
1434 
1435 static struct syncache *
1436 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so)
1437 {
1438 	u_int32_t md5_buffer[4];
1439 	struct syncache *sc;
1440 	u_int32_t data;
1441 	int wnd, idx;
1442 	struct md5_add add;
1443 
1444 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1445 	idx = data & SYNCOOKIE_WNDMASK;
1446 	if (tcp_secret[idx].ts_expire < ticks ||
1447 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1448 		return (NULL);
1449 	MD5Init(&syn_ctx);
1450 #ifdef INET6
1451 	if (inc->inc_isipv6) {
1452 		MD5Add(inc->inc6_laddr);
1453 		MD5Add(inc->inc6_faddr);
1454 		add.laddr = 0;
1455 		add.faddr = 0;
1456 	} else
1457 #endif
1458 	{
1459 		add.laddr = inc->inc_laddr.s_addr;
1460 		add.faddr = inc->inc_faddr.s_addr;
1461 	}
1462 	add.lport = inc->inc_lport;
1463 	add.fport = inc->inc_fport;
1464 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1465 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1466 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1467 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1468 	MD5Add(add);
1469 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1470 	data ^= md5_buffer[0];
1471 	if (data & ~SYNCOOKIE_DATAMASK)
1472 		return (NULL);
1473 	data = data >> SYNCOOKIE_WNDBITS;
1474 
1475 	/*
1476 	 * Fill in the syncache values.
1477 	 * XXX duplicate code from syncache_add
1478 	 */
1479 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1480 	sc->sc_ipopts = NULL;
1481 	sc->sc_inc.inc_fport = inc->inc_fport;
1482 	sc->sc_inc.inc_lport = inc->inc_lport;
1483 #ifdef INET6
1484 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1485 	if (inc->inc_isipv6) {
1486 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1487 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1488 		sc->sc_route6.ro_rt = NULL;
1489 	} else
1490 #endif
1491 	{
1492 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1493 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1494 		sc->sc_route.ro_rt = NULL;
1495 	}
1496 	sc->sc_irs = th->th_seq - 1;
1497 	sc->sc_iss = th->th_ack - 1;
1498 	wnd = ssb_space(&so->so_rcv);
1499 	wnd = imax(wnd, 0);
1500 	wnd = imin(wnd, TCP_MAXWIN);
1501 	sc->sc_wnd = wnd;
1502 	sc->sc_flags = 0;
1503 	sc->sc_rxtslot = 0;
1504 	sc->sc_peer_mss = tcp_msstab[data];
1505 	return (sc);
1506 }
1507