xref: /dflybsd-src/sys/netinet/tcp_subr.c (revision fc7e83fa167ace550636f25b513c873f2f3135ff)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
63  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
64  */
65 
66 #include "opt_compat.h"
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 #include "opt_tcpdebug.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/malloc.h>
78 #include <sys/mpipe.h>
79 #include <sys/mbuf.h>
80 #ifdef INET6
81 #include <sys/domain.h>
82 #endif
83 #include <sys/proc.h>
84 #include <sys/priv.h>
85 #include <sys/socket.h>
86 #include <sys/socketops.h>
87 #include <sys/socketvar.h>
88 #include <sys/protosw.h>
89 #include <sys/random.h>
90 #include <sys/in_cksum.h>
91 #include <sys/ktr.h>
92 
93 #include <net/route.h>
94 #include <net/if.h>
95 #include <net/netisr2.h>
96 
97 #define	_IP_VHL
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/ip6.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet6/in6_pcb.h>
104 #include <netinet/in_var.h>
105 #include <netinet/ip_var.h>
106 #include <netinet6/ip6_var.h>
107 #include <netinet/ip_icmp.h>
108 #ifdef INET6
109 #include <netinet/icmp6.h>
110 #endif
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
118 #include <netinet/tcpip.h>
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 #endif
122 #include <netinet6/ip6protosw.h>
123 
124 #ifdef IPSEC
125 #include <netinet6/ipsec.h>
126 #include <netproto/key/key.h>
127 #ifdef INET6
128 #include <netinet6/ipsec6.h>
129 #endif
130 #endif
131 
132 #ifdef FAST_IPSEC
133 #include <netproto/ipsec/ipsec.h>
134 #ifdef INET6
135 #include <netproto/ipsec/ipsec6.h>
136 #endif
137 #define	IPSEC
138 #endif
139 
140 #include <sys/md5.h>
141 #include <machine/smp.h>
142 
143 #include <sys/msgport2.h>
144 #include <sys/mplock2.h>
145 #include <net/netmsg2.h>
146 
147 #if !defined(KTR_TCP)
148 #define KTR_TCP		KTR_ALL
149 #endif
150 /*
151 KTR_INFO_MASTER(tcp);
152 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
153 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
154 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
155 #define logtcp(name)	KTR_LOG(tcp_ ## name)
156 */
157 
158 #define TCP_IW_MAXSEGS_DFLT	4
159 #define TCP_IW_CAPSEGS_DFLT	3
160 
161 struct inpcbinfo tcbinfo[MAXCPU];
162 struct tcpcbackqhead tcpcbackq[MAXCPU];
163 
164 int tcp_mssdflt = TCP_MSS;
165 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
166     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
167 
168 #ifdef INET6
169 int tcp_v6mssdflt = TCP6_MSS;
170 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
171     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
172 #endif
173 
174 /*
175  * Minimum MSS we accept and use. This prevents DoS attacks where
176  * we are forced to a ridiculous low MSS like 20 and send hundreds
177  * of packets instead of one. The effect scales with the available
178  * bandwidth and quickly saturates the CPU and network interface
179  * with packet generation and sending. Set to zero to disable MINMSS
180  * checking. This setting prevents us from sending too small packets.
181  */
182 int tcp_minmss = TCP_MINMSS;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
184     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
185 
186 #if 0
187 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
188 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
189     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
190 #endif
191 
192 int tcp_do_rfc1323 = 1;
193 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
194     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
195 
196 static int tcp_tcbhashsize = 0;
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
198      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
199 
200 static int do_tcpdrain = 1;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
202      "Enable tcp_drain routine for extra help when low on mbufs");
203 
204 static int icmp_may_rst = 1;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
206     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
207 
208 static int tcp_isn_reseed_interval = 0;
209 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
210     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
211 
212 /*
213  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
214  * by default, but with generous values which should allow maximal
215  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
216  *
217  * The reason for doing this is that the limiter is the only mechanism we
218  * have which seems to do a really good job preventing receiver RX rings
219  * on network interfaces from getting blown out.  Even though GigE/10GigE
220  * is supposed to flow control it looks like either it doesn't actually
221  * do it or Open Source drivers do not properly enable it.
222  *
223  * People using the limiter to reduce bottlenecks on slower WAN connections
224  * should set the slop to 20 (2 packets).
225  */
226 static int tcp_inflight_enable = 1;
227 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
228     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
229 
230 static int tcp_inflight_debug = 0;
231 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
232     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
233 
234 static int tcp_inflight_min = 6144;
235 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
236     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
237 
238 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
239 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
240     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
241 
242 static int tcp_inflight_stab = 50;
243 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
244     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
245 
246 static int tcp_do_rfc3390 = 1;
247 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
248     &tcp_do_rfc3390, 0,
249     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
250 
251 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
252 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
253     &tcp_iw_maxsegs, 0, "TCP IW segments max");
254 
255 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
256 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
257     &tcp_iw_capsegs, 0, "TCP IW segments");
258 
259 int tcp_low_rtobase = 1;
260 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
261     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
262 
263 static int tcp_do_ncr = 1;
264 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
265     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
266 
267 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
268 static struct malloc_pipe tcptemp_mpipe;
269 
270 static void tcp_willblock(void);
271 static void tcp_notify (struct inpcb *, int);
272 
273 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
274 
275 static int
276 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
277 {
278 	int cpu, error = 0;
279 
280 	for (cpu = 0; cpu < ncpus; ++cpu) {
281 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
282 					sizeof(struct tcp_stats))))
283 			break;
284 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
285 				       sizeof(struct tcp_stats))))
286 			break;
287 	}
288 
289 	return (error);
290 }
291 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
292     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
293 
294 /*
295  * Target size of TCP PCB hash tables. Must be a power of two.
296  *
297  * Note that this can be overridden by the kernel environment
298  * variable net.inet.tcp.tcbhashsize
299  */
300 #ifndef TCBHASHSIZE
301 #define	TCBHASHSIZE	512
302 #endif
303 
304 /*
305  * This is the actual shape of what we allocate using the zone
306  * allocator.  Doing it this way allows us to protect both structures
307  * using the same generation count, and also eliminates the overhead
308  * of allocating tcpcbs separately.  By hiding the structure here,
309  * we avoid changing most of the rest of the code (although it needs
310  * to be changed, eventually, for greater efficiency).
311  */
312 #define	ALIGNMENT	32
313 #define	ALIGNM1		(ALIGNMENT - 1)
314 struct	inp_tp {
315 	union {
316 		struct	inpcb inp;
317 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
318 	} inp_tp_u;
319 	struct	tcpcb tcb;
320 	struct	tcp_callout inp_tp_rexmt;
321 	struct	tcp_callout inp_tp_persist;
322 	struct	tcp_callout inp_tp_keep;
323 	struct	tcp_callout inp_tp_2msl;
324 	struct	tcp_callout inp_tp_delack;
325 	struct	netmsg_tcp_timer inp_tp_timermsg;
326 	struct	netmsg_base inp_tp_sndmore;
327 };
328 #undef ALIGNMENT
329 #undef ALIGNM1
330 
331 /*
332  * Tcp initialization
333  */
334 void
335 tcp_init(void)
336 {
337 	struct inpcbportinfo *portinfo;
338 	struct inpcbinfo *ticb;
339 	int hashsize = TCBHASHSIZE;
340 	int cpu;
341 
342 	/*
343 	 * note: tcptemp is used for keepalives, and it is ok for an
344 	 * allocation to fail so do not specify MPF_INT.
345 	 */
346 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
347 		    25, -1, 0, NULL, NULL, NULL);
348 
349 	tcp_delacktime = TCPTV_DELACK;
350 	tcp_keepinit = TCPTV_KEEP_INIT;
351 	tcp_keepidle = TCPTV_KEEP_IDLE;
352 	tcp_keepintvl = TCPTV_KEEPINTVL;
353 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
354 	tcp_msl = TCPTV_MSL;
355 	tcp_rexmit_min = TCPTV_MIN;
356 	tcp_rexmit_slop = TCPTV_CPU_VAR;
357 
358 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
359 	if (!powerof2(hashsize)) {
360 		kprintf("WARNING: TCB hash size not a power of 2\n");
361 		hashsize = 512; /* safe default */
362 	}
363 	tcp_tcbhashsize = hashsize;
364 
365 	portinfo = kmalloc_cachealign(sizeof(*portinfo), M_PCB, M_WAITOK);
366 	in_pcbportinfo_init(portinfo, hashsize, TRUE);
367 
368 	for (cpu = 0; cpu < ncpus2; cpu++) {
369 		ticb = &tcbinfo[cpu];
370 		in_pcbinfo_init(ticb);
371 		ticb->cpu = cpu;
372 		ticb->hashbase = hashinit(hashsize, M_PCB,
373 					  &ticb->hashmask);
374 		ticb->portinfo = portinfo;
375 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
376 						  &ticb->wildcardhashmask);
377 		ticb->localgrphashbase = hashinit(hashsize, M_PCB,
378 						  &ticb->localgrphashmask);
379 		ticb->ipi_size = sizeof(struct inp_tp);
380 		TAILQ_INIT(&tcpcbackq[cpu]);
381 	}
382 
383 	tcp_reass_maxseg = nmbclusters / 16;
384 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
385 
386 #ifdef INET6
387 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
388 #else
389 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
390 #endif
391 	if (max_protohdr < TCP_MINPROTOHDR)
392 		max_protohdr = TCP_MINPROTOHDR;
393 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
394 		panic("tcp_init");
395 #undef TCP_MINPROTOHDR
396 
397 	/*
398 	 * Initialize TCP statistics counters for each CPU.
399 	 */
400 	for (cpu = 0; cpu < ncpus; ++cpu) {
401 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
402 	}
403 
404 	syncache_init();
405 	netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
406 }
407 
408 static void
409 tcp_willblock(void)
410 {
411 	struct tcpcb *tp;
412 	int cpu = mycpu->gd_cpuid;
413 
414 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
415 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
416 		tp->t_flags &= ~TF_ONOUTPUTQ;
417 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
418 		tcp_output(tp);
419 	}
420 }
421 
422 /*
423  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
424  * tcp_template used to store this data in mbufs, but we now recopy it out
425  * of the tcpcb each time to conserve mbufs.
426  */
427 void
428 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
429 {
430 	struct inpcb *inp = tp->t_inpcb;
431 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
432 
433 #ifdef INET6
434 	if (inp->inp_vflag & INP_IPV6) {
435 		struct ip6_hdr *ip6;
436 
437 		ip6 = (struct ip6_hdr *)ip_ptr;
438 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
439 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
440 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
441 			(IPV6_VERSION & IPV6_VERSION_MASK);
442 		ip6->ip6_nxt = IPPROTO_TCP;
443 		ip6->ip6_plen = sizeof(struct tcphdr);
444 		ip6->ip6_src = inp->in6p_laddr;
445 		ip6->ip6_dst = inp->in6p_faddr;
446 		tcp_hdr->th_sum = 0;
447 	} else
448 #endif
449 	{
450 		struct ip *ip = (struct ip *) ip_ptr;
451 		u_int plen;
452 
453 		ip->ip_vhl = IP_VHL_BORING;
454 		ip->ip_tos = 0;
455 		ip->ip_len = 0;
456 		ip->ip_id = 0;
457 		ip->ip_off = 0;
458 		ip->ip_ttl = 0;
459 		ip->ip_sum = 0;
460 		ip->ip_p = IPPROTO_TCP;
461 		ip->ip_src = inp->inp_laddr;
462 		ip->ip_dst = inp->inp_faddr;
463 
464 		if (tso)
465 			plen = htons(IPPROTO_TCP);
466 		else
467 			plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
468 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
469 		    ip->ip_dst.s_addr, plen);
470 	}
471 
472 	tcp_hdr->th_sport = inp->inp_lport;
473 	tcp_hdr->th_dport = inp->inp_fport;
474 	tcp_hdr->th_seq = 0;
475 	tcp_hdr->th_ack = 0;
476 	tcp_hdr->th_x2 = 0;
477 	tcp_hdr->th_off = 5;
478 	tcp_hdr->th_flags = 0;
479 	tcp_hdr->th_win = 0;
480 	tcp_hdr->th_urp = 0;
481 }
482 
483 /*
484  * Create template to be used to send tcp packets on a connection.
485  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
486  * use for this function is in keepalives, which use tcp_respond.
487  */
488 struct tcptemp *
489 tcp_maketemplate(struct tcpcb *tp)
490 {
491 	struct tcptemp *tmp;
492 
493 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
494 		return (NULL);
495 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
496 	return (tmp);
497 }
498 
499 void
500 tcp_freetemplate(struct tcptemp *tmp)
501 {
502 	mpipe_free(&tcptemp_mpipe, tmp);
503 }
504 
505 /*
506  * Send a single message to the TCP at address specified by
507  * the given TCP/IP header.  If m == NULL, then we make a copy
508  * of the tcpiphdr at ti and send directly to the addressed host.
509  * This is used to force keep alive messages out using the TCP
510  * template for a connection.  If flags are given then we send
511  * a message back to the TCP which originated the * segment ti,
512  * and discard the mbuf containing it and any other attached mbufs.
513  *
514  * In any case the ack and sequence number of the transmitted
515  * segment are as specified by the parameters.
516  *
517  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
518  */
519 void
520 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
521 	    tcp_seq ack, tcp_seq seq, int flags)
522 {
523 	int tlen;
524 	int win = 0;
525 	struct route *ro = NULL;
526 	struct route sro;
527 	struct ip *ip = ipgen;
528 	struct tcphdr *nth;
529 	int ipflags = 0;
530 	struct route_in6 *ro6 = NULL;
531 	struct route_in6 sro6;
532 	struct ip6_hdr *ip6 = ipgen;
533 	boolean_t use_tmpro = TRUE;
534 #ifdef INET6
535 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
536 #else
537 	const boolean_t isipv6 = FALSE;
538 #endif
539 
540 	if (tp != NULL) {
541 		if (!(flags & TH_RST)) {
542 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
543 			if (win < 0)
544 				win = 0;
545 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
546 				win = (long)TCP_MAXWIN << tp->rcv_scale;
547 		}
548 		/*
549 		 * Don't use the route cache of a listen socket,
550 		 * it is not MPSAFE; use temporary route cache.
551 		 */
552 		if (tp->t_state != TCPS_LISTEN) {
553 			if (isipv6)
554 				ro6 = &tp->t_inpcb->in6p_route;
555 			else
556 				ro = &tp->t_inpcb->inp_route;
557 			use_tmpro = FALSE;
558 		}
559 	}
560 	if (use_tmpro) {
561 		if (isipv6) {
562 			ro6 = &sro6;
563 			bzero(ro6, sizeof *ro6);
564 		} else {
565 			ro = &sro;
566 			bzero(ro, sizeof *ro);
567 		}
568 	}
569 	if (m == NULL) {
570 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
571 		if (m == NULL)
572 			return;
573 		tlen = 0;
574 		m->m_data += max_linkhdr;
575 		if (isipv6) {
576 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
577 			ip6 = mtod(m, struct ip6_hdr *);
578 			nth = (struct tcphdr *)(ip6 + 1);
579 		} else {
580 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
581 			ip = mtod(m, struct ip *);
582 			nth = (struct tcphdr *)(ip + 1);
583 		}
584 		bcopy(th, nth, sizeof(struct tcphdr));
585 		flags = TH_ACK;
586 	} else {
587 		m_freem(m->m_next);
588 		m->m_next = NULL;
589 		m->m_data = (caddr_t)ipgen;
590 		/* m_len is set later */
591 		tlen = 0;
592 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
593 		if (isipv6) {
594 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
595 			nth = (struct tcphdr *)(ip6 + 1);
596 		} else {
597 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
598 			nth = (struct tcphdr *)(ip + 1);
599 		}
600 		if (th != nth) {
601 			/*
602 			 * this is usually a case when an extension header
603 			 * exists between the IPv6 header and the
604 			 * TCP header.
605 			 */
606 			nth->th_sport = th->th_sport;
607 			nth->th_dport = th->th_dport;
608 		}
609 		xchg(nth->th_dport, nth->th_sport, n_short);
610 #undef xchg
611 	}
612 	if (isipv6) {
613 		ip6->ip6_flow = 0;
614 		ip6->ip6_vfc = IPV6_VERSION;
615 		ip6->ip6_nxt = IPPROTO_TCP;
616 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
617 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
618 	} else {
619 		tlen += sizeof(struct tcpiphdr);
620 		ip->ip_len = tlen;
621 		ip->ip_ttl = ip_defttl;
622 	}
623 	m->m_len = tlen;
624 	m->m_pkthdr.len = tlen;
625 	m->m_pkthdr.rcvif = NULL;
626 	nth->th_seq = htonl(seq);
627 	nth->th_ack = htonl(ack);
628 	nth->th_x2 = 0;
629 	nth->th_off = sizeof(struct tcphdr) >> 2;
630 	nth->th_flags = flags;
631 	if (tp != NULL)
632 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
633 	else
634 		nth->th_win = htons((u_short)win);
635 	nth->th_urp = 0;
636 	if (isipv6) {
637 		nth->th_sum = 0;
638 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
639 					sizeof(struct ip6_hdr),
640 					tlen - sizeof(struct ip6_hdr));
641 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
642 					       (ro6 && ro6->ro_rt) ?
643 						ro6->ro_rt->rt_ifp : NULL);
644 	} else {
645 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
646 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
647 		m->m_pkthdr.csum_flags = CSUM_TCP;
648 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
649 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
650 	}
651 #ifdef TCPDEBUG
652 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
653 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
654 #endif
655 	if (isipv6) {
656 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
657 			   tp ? tp->t_inpcb : NULL);
658 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
659 			RTFREE(ro6->ro_rt);
660 			ro6->ro_rt = NULL;
661 		}
662 	} else {
663 		ipflags |= IP_DEBUGROUTE;
664 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
665 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
666 			RTFREE(ro->ro_rt);
667 			ro->ro_rt = NULL;
668 		}
669 	}
670 }
671 
672 /*
673  * Create a new TCP control block, making an
674  * empty reassembly queue and hooking it to the argument
675  * protocol control block.  The `inp' parameter must have
676  * come from the zone allocator set up in tcp_init().
677  */
678 struct tcpcb *
679 tcp_newtcpcb(struct inpcb *inp)
680 {
681 	struct inp_tp *it;
682 	struct tcpcb *tp;
683 #ifdef INET6
684 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
685 #else
686 	const boolean_t isipv6 = FALSE;
687 #endif
688 
689 	it = (struct inp_tp *)inp;
690 	tp = &it->tcb;
691 	bzero(tp, sizeof(struct tcpcb));
692 	TAILQ_INIT(&tp->t_segq);
693 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
694 	tp->t_rxtthresh = tcprexmtthresh;
695 
696 	/* Set up our timeouts. */
697 	tp->tt_rexmt = &it->inp_tp_rexmt;
698 	tp->tt_persist = &it->inp_tp_persist;
699 	tp->tt_keep = &it->inp_tp_keep;
700 	tp->tt_2msl = &it->inp_tp_2msl;
701 	tp->tt_delack = &it->inp_tp_delack;
702 	tcp_inittimers(tp);
703 
704 	/*
705 	 * Zero out timer message.  We don't create it here,
706 	 * since the current CPU may not be the owner of this
707 	 * inpcb.
708 	 */
709 	tp->tt_msg = &it->inp_tp_timermsg;
710 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
711 
712 	tp->t_keepinit = tcp_keepinit;
713 	tp->t_keepidle = tcp_keepidle;
714 	tp->t_keepintvl = tcp_keepintvl;
715 	tp->t_keepcnt = tcp_keepcnt;
716 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
717 
718 	if (tcp_do_ncr)
719 		tp->t_flags |= TF_NCR;
720 	if (tcp_do_rfc1323)
721 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
722 
723 	tp->t_inpcb = inp;	/* XXX */
724 	tp->t_state = TCPS_CLOSED;
725 	/*
726 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
727 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
728 	 * reasonable initial retransmit time.
729 	 */
730 	tp->t_srtt = TCPTV_SRTTBASE;
731 	tp->t_rttvar =
732 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
733 	tp->t_rttmin = tcp_rexmit_min;
734 	tp->t_rxtcur = TCPTV_RTOBASE;
735 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
736 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
737 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
738 	tp->snd_last = ticks;
739 	tp->t_rcvtime = ticks;
740 	/*
741 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
742 	 * because the socket may be bound to an IPv6 wildcard address,
743 	 * which may match an IPv4-mapped IPv6 address.
744 	 */
745 	inp->inp_ip_ttl = ip_defttl;
746 	inp->inp_ppcb = tp;
747 	tcp_sack_tcpcb_init(tp);
748 
749 	tp->tt_sndmore = &it->inp_tp_sndmore;
750 	tcp_output_init(tp);
751 
752 	return (tp);		/* XXX */
753 }
754 
755 /*
756  * Drop a TCP connection, reporting the specified error.
757  * If connection is synchronized, then send a RST to peer.
758  */
759 struct tcpcb *
760 tcp_drop(struct tcpcb *tp, int error)
761 {
762 	struct socket *so = tp->t_inpcb->inp_socket;
763 
764 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
765 		tp->t_state = TCPS_CLOSED;
766 		tcp_output(tp);
767 		tcpstat.tcps_drops++;
768 	} else
769 		tcpstat.tcps_conndrops++;
770 	if (error == ETIMEDOUT && tp->t_softerror)
771 		error = tp->t_softerror;
772 	so->so_error = error;
773 	return (tcp_close(tp));
774 }
775 
776 struct netmsg_listen_detach {
777 	struct netmsg_base	base;
778 	struct tcpcb		*nm_tp;
779 	struct tcpcb		*nm_tp_inh;
780 };
781 
782 static void
783 tcp_listen_detach_handler(netmsg_t msg)
784 {
785 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
786 	struct tcpcb *tp = nmsg->nm_tp;
787 	int cpu = mycpuid, nextcpu;
788 
789 	if (tp->t_flags & TF_LISTEN)
790 		syncache_destroy(tp, nmsg->nm_tp_inh);
791 
792 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
793 
794 	nextcpu = cpu + 1;
795 	if (nextcpu < ncpus2)
796 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
797 	else
798 		lwkt_replymsg(&nmsg->base.lmsg, 0);
799 }
800 
801 /*
802  * Close a TCP control block:
803  *	discard all space held by the tcp
804  *	discard internet protocol block
805  *	wake up any sleepers
806  */
807 struct tcpcb *
808 tcp_close(struct tcpcb *tp)
809 {
810 	struct tseg_qent *q;
811 	struct inpcb *inp = tp->t_inpcb;
812 	struct inpcb *inp_inh = NULL;
813 	struct tcpcb *tp_inh = NULL;
814 	struct socket *so = inp->inp_socket;
815 	struct rtentry *rt;
816 	boolean_t dosavessthresh;
817 #ifdef INET6
818 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
819 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
820 #else
821 	const boolean_t isipv6 = FALSE;
822 #endif
823 
824 	if (tp->t_flags & TF_LISTEN) {
825 		/*
826 		 * Pending socket/syncache inheritance
827 		 *
828 		 * If this is a listen(2) socket, find another listen(2)
829 		 * socket in the same local group, which could inherit
830 		 * the syncache and sockets pending on the completion
831 		 * and incompletion queues.
832 		 *
833 		 * NOTE:
834 		 * Currently the inheritance could only happen on the
835 		 * listen(2) sockets w/ SO_REUSEPORT set.
836 		 */
837 		KASSERT(&curthread->td_msgport == netisr_cpuport(0),
838 		    ("listen socket close not in netisr0"));
839 		inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
840 		if (inp_inh != NULL)
841 			tp_inh = intotcpcb(inp_inh);
842 	}
843 
844 	/*
845 	 * INP_WILDCARD_MP indicates that listen(2) has been called on
846 	 * this socket.  This implies:
847 	 * - A wildcard inp's hash is replicated for each protocol thread.
848 	 * - Syncache for this inp grows independently in each protocol
849 	 *   thread.
850 	 * - There is more than one cpu
851 	 *
852 	 * We have to chain a message to the rest of the protocol threads
853 	 * to cleanup the wildcard hash and the syncache.  The cleanup
854 	 * in the current protocol thread is defered till the end of this
855 	 * function.
856 	 *
857 	 * NOTE:
858 	 * After cleanup the inp's hash and syncache entries, this inp will
859 	 * no longer be available to the rest of the protocol threads, so we
860 	 * are safe to whack the inp in the following code.
861 	 */
862 	if (inp->inp_flags & INP_WILDCARD_MP) {
863 		struct netmsg_listen_detach nmsg;
864 
865 		KKASSERT(so->so_port == netisr_cpuport(0));
866 		KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
867 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
868 
869 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
870 			    MSGF_PRIORITY, tcp_listen_detach_handler);
871 		nmsg.nm_tp = tp;
872 		nmsg.nm_tp_inh = tp_inh;
873 		lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
874 
875 		inp->inp_flags &= ~INP_WILDCARD_MP;
876 	}
877 
878 	KKASSERT(tp->t_state != TCPS_TERMINATING);
879 	tp->t_state = TCPS_TERMINATING;
880 
881 	/*
882 	 * Make sure that all of our timers are stopped before we
883 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
884 	 * timers are never used.  If timer message is never created
885 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
886 	 */
887 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
888 		tcp_callout_stop(tp, tp->tt_rexmt);
889 		tcp_callout_stop(tp, tp->tt_persist);
890 		tcp_callout_stop(tp, tp->tt_keep);
891 		tcp_callout_stop(tp, tp->tt_2msl);
892 		tcp_callout_stop(tp, tp->tt_delack);
893 	}
894 
895 	if (tp->t_flags & TF_ONOUTPUTQ) {
896 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
897 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
898 		tp->t_flags &= ~TF_ONOUTPUTQ;
899 	}
900 
901 	/*
902 	 * If we got enough samples through the srtt filter,
903 	 * save the rtt and rttvar in the routing entry.
904 	 * 'Enough' is arbitrarily defined as the 16 samples.
905 	 * 16 samples is enough for the srtt filter to converge
906 	 * to within 5% of the correct value; fewer samples and
907 	 * we could save a very bogus rtt.
908 	 *
909 	 * Don't update the default route's characteristics and don't
910 	 * update anything that the user "locked".
911 	 */
912 	if (tp->t_rttupdated >= 16) {
913 		u_long i = 0;
914 
915 		if (isipv6) {
916 			struct sockaddr_in6 *sin6;
917 
918 			if ((rt = inp->in6p_route.ro_rt) == NULL)
919 				goto no_valid_rt;
920 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
921 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
922 				goto no_valid_rt;
923 		} else
924 			if ((rt = inp->inp_route.ro_rt) == NULL ||
925 			    ((struct sockaddr_in *)rt_key(rt))->
926 			     sin_addr.s_addr == INADDR_ANY)
927 				goto no_valid_rt;
928 
929 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
930 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
931 			if (rt->rt_rmx.rmx_rtt && i)
932 				/*
933 				 * filter this update to half the old & half
934 				 * the new values, converting scale.
935 				 * See route.h and tcp_var.h for a
936 				 * description of the scaling constants.
937 				 */
938 				rt->rt_rmx.rmx_rtt =
939 				    (rt->rt_rmx.rmx_rtt + i) / 2;
940 			else
941 				rt->rt_rmx.rmx_rtt = i;
942 			tcpstat.tcps_cachedrtt++;
943 		}
944 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
945 			i = tp->t_rttvar *
946 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
947 			if (rt->rt_rmx.rmx_rttvar && i)
948 				rt->rt_rmx.rmx_rttvar =
949 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
950 			else
951 				rt->rt_rmx.rmx_rttvar = i;
952 			tcpstat.tcps_cachedrttvar++;
953 		}
954 		/*
955 		 * The old comment here said:
956 		 * update the pipelimit (ssthresh) if it has been updated
957 		 * already or if a pipesize was specified & the threshhold
958 		 * got below half the pipesize.  I.e., wait for bad news
959 		 * before we start updating, then update on both good
960 		 * and bad news.
961 		 *
962 		 * But we want to save the ssthresh even if no pipesize is
963 		 * specified explicitly in the route, because such
964 		 * connections still have an implicit pipesize specified
965 		 * by the global tcp_sendspace.  In the absence of a reliable
966 		 * way to calculate the pipesize, it will have to do.
967 		 */
968 		i = tp->snd_ssthresh;
969 		if (rt->rt_rmx.rmx_sendpipe != 0)
970 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
971 		else
972 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
973 		if (dosavessthresh ||
974 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
975 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
976 			/*
977 			 * convert the limit from user data bytes to
978 			 * packets then to packet data bytes.
979 			 */
980 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
981 			if (i < 2)
982 				i = 2;
983 			i *= tp->t_maxseg +
984 			     (isipv6 ?
985 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
986 			      sizeof(struct tcpiphdr));
987 			if (rt->rt_rmx.rmx_ssthresh)
988 				rt->rt_rmx.rmx_ssthresh =
989 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
990 			else
991 				rt->rt_rmx.rmx_ssthresh = i;
992 			tcpstat.tcps_cachedssthresh++;
993 		}
994 	}
995 
996 no_valid_rt:
997 	/* free the reassembly queue, if any */
998 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
999 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
1000 		m_freem(q->tqe_m);
1001 		kfree(q, M_TSEGQ);
1002 		atomic_add_int(&tcp_reass_qsize, -1);
1003 	}
1004 	/* throw away SACK blocks in scoreboard*/
1005 	if (TCP_DO_SACK(tp))
1006 		tcp_sack_destroy(&tp->scb);
1007 
1008 	inp->inp_ppcb = NULL;
1009 	soisdisconnected(so);
1010 	/* note: pcb detached later on */
1011 
1012 	tcp_destroy_timermsg(tp);
1013 	tcp_output_cancel(tp);
1014 
1015 	if (tp->t_flags & TF_LISTEN) {
1016 		syncache_destroy(tp, tp_inh);
1017 		if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
1018 			/*
1019 			 * Pending sockets inheritance only needs
1020 			 * to be done once in the current thread,
1021 			 * i.e. netisr0.
1022 			 */
1023 			soinherit(so, inp_inh->inp_socket);
1024 		}
1025 	}
1026 
1027 	so_async_rcvd_drop(so);
1028 	/* Drop the reference for the asynchronized pru_rcvd */
1029 	sofree(so);
1030 
1031 	/*
1032 	 * NOTE:
1033 	 * pcbdetach removes any wildcard hash entry on the current CPU.
1034 	 */
1035 #ifdef INET6
1036 	if (isafinet6)
1037 		in6_pcbdetach(inp);
1038 	else
1039 #endif
1040 		in_pcbdetach(inp);
1041 
1042 	tcpstat.tcps_closed++;
1043 	return (NULL);
1044 }
1045 
1046 static __inline void
1047 tcp_drain_oncpu(struct inpcbhead *head)
1048 {
1049 	struct inpcb *marker;
1050 	struct inpcb *inpb;
1051 	struct tcpcb *tcpb;
1052 	struct tseg_qent *te;
1053 
1054 	/*
1055 	 * Allows us to block while running the list
1056 	 */
1057 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1058 	marker->inp_flags |= INP_PLACEMARKER;
1059 	LIST_INSERT_HEAD(head, marker, inp_list);
1060 
1061 	while ((inpb = LIST_NEXT(marker, inp_list)) != NULL) {
1062 		if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1063 		    (tcpb = intotcpcb(inpb)) != NULL &&
1064 		    (te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1065 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1066 			if (te->tqe_th->th_flags & TH_FIN)
1067 				tcpb->t_flags &= ~TF_QUEDFIN;
1068 			m_freem(te->tqe_m);
1069 			kfree(te, M_TSEGQ);
1070 			atomic_add_int(&tcp_reass_qsize, -1);
1071 			/* retry */
1072 		} else {
1073 			LIST_REMOVE(marker, inp_list);
1074 			LIST_INSERT_AFTER(inpb, marker, inp_list);
1075 		}
1076 	}
1077 	LIST_REMOVE(marker, inp_list);
1078 	kfree(marker, M_TEMP);
1079 }
1080 
1081 struct netmsg_tcp_drain {
1082 	struct netmsg_base	base;
1083 	struct inpcbhead	*nm_head;
1084 };
1085 
1086 static void
1087 tcp_drain_handler(netmsg_t msg)
1088 {
1089 	struct netmsg_tcp_drain *nm = (void *)msg;
1090 
1091 	tcp_drain_oncpu(nm->nm_head);
1092 	lwkt_replymsg(&nm->base.lmsg, 0);
1093 }
1094 
1095 void
1096 tcp_drain(void)
1097 {
1098 	int cpu;
1099 
1100 	if (!do_tcpdrain)
1101 		return;
1102 
1103 	/*
1104 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1105 	 * if there is one...
1106 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1107 	 *	reassembly queue should be flushed, but in a situation
1108 	 *	where we're really low on mbufs, this is potentially
1109 	 *	useful.
1110 	 */
1111 	for (cpu = 0; cpu < ncpus2; cpu++) {
1112 		struct netmsg_tcp_drain *nm;
1113 
1114 		if (cpu == mycpu->gd_cpuid) {
1115 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1116 		} else {
1117 			nm = kmalloc(sizeof(struct netmsg_tcp_drain),
1118 				     M_LWKTMSG, M_NOWAIT);
1119 			if (nm == NULL)
1120 				continue;
1121 			netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1122 				    0, tcp_drain_handler);
1123 			nm->nm_head = &tcbinfo[cpu].pcblisthead;
1124 			lwkt_sendmsg(netisr_cpuport(cpu), &nm->base.lmsg);
1125 		}
1126 	}
1127 }
1128 
1129 /*
1130  * Notify a tcp user of an asynchronous error;
1131  * store error as soft error, but wake up user
1132  * (for now, won't do anything until can select for soft error).
1133  *
1134  * Do not wake up user since there currently is no mechanism for
1135  * reporting soft errors (yet - a kqueue filter may be added).
1136  */
1137 static void
1138 tcp_notify(struct inpcb *inp, int error)
1139 {
1140 	struct tcpcb *tp = intotcpcb(inp);
1141 
1142 	/*
1143 	 * Ignore some errors if we are hooked up.
1144 	 * If connection hasn't completed, has retransmitted several times,
1145 	 * and receives a second error, give up now.  This is better
1146 	 * than waiting a long time to establish a connection that
1147 	 * can never complete.
1148 	 */
1149 	if (tp->t_state == TCPS_ESTABLISHED &&
1150 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1151 	      error == EHOSTDOWN)) {
1152 		return;
1153 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1154 	    tp->t_softerror)
1155 		tcp_drop(tp, error);
1156 	else
1157 		tp->t_softerror = error;
1158 #if 0
1159 	wakeup(&so->so_timeo);
1160 	sorwakeup(so);
1161 	sowwakeup(so);
1162 #endif
1163 }
1164 
1165 static int
1166 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1167 {
1168 	int error, i, n;
1169 	struct inpcb *marker;
1170 	struct inpcb *inp;
1171 	globaldata_t gd;
1172 	int origcpu, ccpu;
1173 
1174 	error = 0;
1175 	n = 0;
1176 
1177 	/*
1178 	 * The process of preparing the TCB list is too time-consuming and
1179 	 * resource-intensive to repeat twice on every request.
1180 	 */
1181 	if (req->oldptr == NULL) {
1182 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1183 			gd = globaldata_find(ccpu);
1184 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1185 		}
1186 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1187 		return (0);
1188 	}
1189 
1190 	if (req->newptr != NULL)
1191 		return (EPERM);
1192 
1193 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1194 	marker->inp_flags |= INP_PLACEMARKER;
1195 
1196 	/*
1197 	 * OK, now we're committed to doing something.  Run the inpcb list
1198 	 * for each cpu in the system and construct the output.  Use a
1199 	 * list placemarker to deal with list changes occuring during
1200 	 * copyout blockages (but otherwise depend on being on the correct
1201 	 * cpu to avoid races).
1202 	 */
1203 	origcpu = mycpu->gd_cpuid;
1204 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1205 		globaldata_t rgd;
1206 		caddr_t inp_ppcb;
1207 		struct xtcpcb xt;
1208 		int cpu_id;
1209 
1210 		cpu_id = (origcpu + ccpu) % ncpus;
1211 		if ((smp_active_mask & CPUMASK(cpu_id)) == 0)
1212 			continue;
1213 		rgd = globaldata_find(cpu_id);
1214 		lwkt_setcpu_self(rgd);
1215 
1216 		n = tcbinfo[cpu_id].ipi_count;
1217 
1218 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1219 		i = 0;
1220 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1221 			/*
1222 			 * process a snapshot of pcbs, ignoring placemarkers
1223 			 * and using our own to allow SYSCTL_OUT to block.
1224 			 */
1225 			LIST_REMOVE(marker, inp_list);
1226 			LIST_INSERT_AFTER(inp, marker, inp_list);
1227 
1228 			if (inp->inp_flags & INP_PLACEMARKER)
1229 				continue;
1230 			if (prison_xinpcb(req->td, inp))
1231 				continue;
1232 
1233 			xt.xt_len = sizeof xt;
1234 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1235 			inp_ppcb = inp->inp_ppcb;
1236 			if (inp_ppcb != NULL)
1237 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1238 			else
1239 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1240 			if (inp->inp_socket)
1241 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1242 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1243 				break;
1244 			++i;
1245 		}
1246 		LIST_REMOVE(marker, inp_list);
1247 		if (error == 0 && i < n) {
1248 			bzero(&xt, sizeof xt);
1249 			xt.xt_len = sizeof xt;
1250 			while (i < n) {
1251 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1252 				if (error)
1253 					break;
1254 				++i;
1255 			}
1256 		}
1257 	}
1258 
1259 	/*
1260 	 * Make sure we are on the same cpu we were on originally, since
1261 	 * higher level callers expect this.  Also don't pollute caches with
1262 	 * migrated userland data by (eventually) returning to userland
1263 	 * on a different cpu.
1264 	 */
1265 	lwkt_setcpu_self(globaldata_find(origcpu));
1266 	kfree(marker, M_TEMP);
1267 	return (error);
1268 }
1269 
1270 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1271 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1272 
1273 static int
1274 tcp_getcred(SYSCTL_HANDLER_ARGS)
1275 {
1276 	struct sockaddr_in addrs[2];
1277 	struct inpcb *inp;
1278 	int cpu;
1279 	int error;
1280 
1281 	error = priv_check(req->td, PRIV_ROOT);
1282 	if (error != 0)
1283 		return (error);
1284 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1285 	if (error != 0)
1286 		return (error);
1287 	crit_enter();
1288 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1289 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1290 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1291 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1292 	if (inp == NULL || inp->inp_socket == NULL) {
1293 		error = ENOENT;
1294 		goto out;
1295 	}
1296 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1297 out:
1298 	crit_exit();
1299 	return (error);
1300 }
1301 
1302 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1303     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1304 
1305 #ifdef INET6
1306 static int
1307 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1308 {
1309 	struct sockaddr_in6 addrs[2];
1310 	struct inpcb *inp;
1311 	int error;
1312 	boolean_t mapped = FALSE;
1313 
1314 	error = priv_check(req->td, PRIV_ROOT);
1315 	if (error != 0)
1316 		return (error);
1317 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1318 	if (error != 0)
1319 		return (error);
1320 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1321 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1322 			mapped = TRUE;
1323 		else
1324 			return (EINVAL);
1325 	}
1326 	crit_enter();
1327 	if (mapped) {
1328 		inp = in_pcblookup_hash(&tcbinfo[0],
1329 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1330 		    addrs[1].sin6_port,
1331 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1332 		    addrs[0].sin6_port,
1333 		    0, NULL);
1334 	} else {
1335 		inp = in6_pcblookup_hash(&tcbinfo[0],
1336 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1337 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1338 		    0, NULL);
1339 	}
1340 	if (inp == NULL || inp->inp_socket == NULL) {
1341 		error = ENOENT;
1342 		goto out;
1343 	}
1344 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1345 out:
1346 	crit_exit();
1347 	return (error);
1348 }
1349 
1350 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1351 	    0, 0,
1352 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1353 #endif
1354 
1355 struct netmsg_tcp_notify {
1356 	struct netmsg_base base;
1357 	void		(*nm_notify)(struct inpcb *, int);
1358 	struct in_addr	nm_faddr;
1359 	int		nm_arg;
1360 };
1361 
1362 static void
1363 tcp_notifyall_oncpu(netmsg_t msg)
1364 {
1365 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1366 	int nextcpu;
1367 
1368 	in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nm->nm_faddr,
1369 			nm->nm_arg, nm->nm_notify);
1370 
1371 	nextcpu = mycpuid + 1;
1372 	if (nextcpu < ncpus2)
1373 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1374 	else
1375 		lwkt_replymsg(&nm->base.lmsg, 0);
1376 }
1377 
1378 void
1379 tcp_ctlinput(netmsg_t msg)
1380 {
1381 	int cmd = msg->ctlinput.nm_cmd;
1382 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1383 	struct ip *ip = msg->ctlinput.nm_extra;
1384 	struct tcphdr *th;
1385 	struct in_addr faddr;
1386 	struct inpcb *inp;
1387 	struct tcpcb *tp;
1388 	void (*notify)(struct inpcb *, int) = tcp_notify;
1389 	tcp_seq icmpseq;
1390 	int arg, cpu;
1391 
1392 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1393 		goto done;
1394 	}
1395 
1396 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1397 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1398 		goto done;
1399 
1400 	arg = inetctlerrmap[cmd];
1401 	if (cmd == PRC_QUENCH) {
1402 		notify = tcp_quench;
1403 	} else if (icmp_may_rst &&
1404 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1405 		    cmd == PRC_UNREACH_PORT ||
1406 		    cmd == PRC_TIMXCEED_INTRANS) &&
1407 		   ip != NULL) {
1408 		notify = tcp_drop_syn_sent;
1409 	} else if (cmd == PRC_MSGSIZE) {
1410 		struct icmp *icmp = (struct icmp *)
1411 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1412 
1413 		arg = ntohs(icmp->icmp_nextmtu);
1414 		notify = tcp_mtudisc;
1415 	} else if (PRC_IS_REDIRECT(cmd)) {
1416 		ip = NULL;
1417 		notify = in_rtchange;
1418 	} else if (cmd == PRC_HOSTDEAD) {
1419 		ip = NULL;
1420 	}
1421 
1422 	if (ip != NULL) {
1423 		crit_enter();
1424 		th = (struct tcphdr *)((caddr_t)ip +
1425 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1426 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1427 				  ip->ip_src.s_addr, th->th_sport);
1428 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1429 					ip->ip_src, th->th_sport, 0, NULL);
1430 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1431 			icmpseq = htonl(th->th_seq);
1432 			tp = intotcpcb(inp);
1433 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1434 			    SEQ_LT(icmpseq, tp->snd_max))
1435 				(*notify)(inp, arg);
1436 		} else {
1437 			struct in_conninfo inc;
1438 
1439 			inc.inc_fport = th->th_dport;
1440 			inc.inc_lport = th->th_sport;
1441 			inc.inc_faddr = faddr;
1442 			inc.inc_laddr = ip->ip_src;
1443 #ifdef INET6
1444 			inc.inc_isipv6 = 0;
1445 #endif
1446 			syncache_unreach(&inc, th);
1447 		}
1448 		crit_exit();
1449 	} else {
1450 		struct netmsg_tcp_notify *nm;
1451 
1452 		KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
1453 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1454 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1455 			    0, tcp_notifyall_oncpu);
1456 		nm->nm_faddr = faddr;
1457 		nm->nm_arg = arg;
1458 		nm->nm_notify = notify;
1459 
1460 		lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1461 	}
1462 done:
1463 	lwkt_replymsg(&msg->lmsg, 0);
1464 }
1465 
1466 #ifdef INET6
1467 
1468 void
1469 tcp6_ctlinput(netmsg_t msg)
1470 {
1471 	int cmd = msg->ctlinput.nm_cmd;
1472 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1473 	void *d = msg->ctlinput.nm_extra;
1474 	struct tcphdr th;
1475 	void (*notify) (struct inpcb *, int) = tcp_notify;
1476 	struct ip6_hdr *ip6;
1477 	struct mbuf *m;
1478 	struct ip6ctlparam *ip6cp = NULL;
1479 	const struct sockaddr_in6 *sa6_src = NULL;
1480 	int off;
1481 	struct tcp_portonly {
1482 		u_int16_t th_sport;
1483 		u_int16_t th_dport;
1484 	} *thp;
1485 	int arg;
1486 
1487 	if (sa->sa_family != AF_INET6 ||
1488 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1489 		goto out;
1490 	}
1491 
1492 	arg = 0;
1493 	if (cmd == PRC_QUENCH)
1494 		notify = tcp_quench;
1495 	else if (cmd == PRC_MSGSIZE) {
1496 		struct ip6ctlparam *ip6cp = d;
1497 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1498 
1499 		arg = ntohl(icmp6->icmp6_mtu);
1500 		notify = tcp_mtudisc;
1501 	} else if (!PRC_IS_REDIRECT(cmd) &&
1502 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1503 		goto out;
1504 	}
1505 
1506 	/* if the parameter is from icmp6, decode it. */
1507 	if (d != NULL) {
1508 		ip6cp = (struct ip6ctlparam *)d;
1509 		m = ip6cp->ip6c_m;
1510 		ip6 = ip6cp->ip6c_ip6;
1511 		off = ip6cp->ip6c_off;
1512 		sa6_src = ip6cp->ip6c_src;
1513 	} else {
1514 		m = NULL;
1515 		ip6 = NULL;
1516 		off = 0;	/* fool gcc */
1517 		sa6_src = &sa6_any;
1518 	}
1519 
1520 	if (ip6 != NULL) {
1521 		struct in_conninfo inc;
1522 		/*
1523 		 * XXX: We assume that when IPV6 is non NULL,
1524 		 * M and OFF are valid.
1525 		 */
1526 
1527 		/* check if we can safely examine src and dst ports */
1528 		if (m->m_pkthdr.len < off + sizeof *thp)
1529 			goto out;
1530 
1531 		bzero(&th, sizeof th);
1532 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1533 
1534 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1535 		    (struct sockaddr *)ip6cp->ip6c_src,
1536 		    th.th_sport, cmd, arg, notify);
1537 
1538 		inc.inc_fport = th.th_dport;
1539 		inc.inc_lport = th.th_sport;
1540 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1541 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1542 		inc.inc_isipv6 = 1;
1543 		syncache_unreach(&inc, &th);
1544 	} else {
1545 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1546 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1547 	}
1548 out:
1549 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1550 }
1551 
1552 #endif
1553 
1554 /*
1555  * Following is where TCP initial sequence number generation occurs.
1556  *
1557  * There are two places where we must use initial sequence numbers:
1558  * 1.  In SYN-ACK packets.
1559  * 2.  In SYN packets.
1560  *
1561  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1562  * tcp_syncache.c for details.
1563  *
1564  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1565  * depends on this property.  In addition, these ISNs should be
1566  * unguessable so as to prevent connection hijacking.  To satisfy
1567  * the requirements of this situation, the algorithm outlined in
1568  * RFC 1948 is used to generate sequence numbers.
1569  *
1570  * Implementation details:
1571  *
1572  * Time is based off the system timer, and is corrected so that it
1573  * increases by one megabyte per second.  This allows for proper
1574  * recycling on high speed LANs while still leaving over an hour
1575  * before rollover.
1576  *
1577  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1578  * between seeding of isn_secret.  This is normally set to zero,
1579  * as reseeding should not be necessary.
1580  *
1581  */
1582 
1583 #define	ISN_BYTES_PER_SECOND 1048576
1584 
1585 u_char isn_secret[32];
1586 int isn_last_reseed;
1587 MD5_CTX isn_ctx;
1588 
1589 tcp_seq
1590 tcp_new_isn(struct tcpcb *tp)
1591 {
1592 	u_int32_t md5_buffer[4];
1593 	tcp_seq new_isn;
1594 
1595 	/* Seed if this is the first use, reseed if requested. */
1596 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1597 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1598 		< (u_int)ticks))) {
1599 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1600 		isn_last_reseed = ticks;
1601 	}
1602 
1603 	/* Compute the md5 hash and return the ISN. */
1604 	MD5Init(&isn_ctx);
1605 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1606 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1607 #ifdef INET6
1608 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1609 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1610 			  sizeof(struct in6_addr));
1611 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1612 			  sizeof(struct in6_addr));
1613 	} else
1614 #endif
1615 	{
1616 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1617 			  sizeof(struct in_addr));
1618 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1619 			  sizeof(struct in_addr));
1620 	}
1621 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1622 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1623 	new_isn = (tcp_seq) md5_buffer[0];
1624 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1625 	return (new_isn);
1626 }
1627 
1628 /*
1629  * When a source quench is received, close congestion window
1630  * to one segment.  We will gradually open it again as we proceed.
1631  */
1632 void
1633 tcp_quench(struct inpcb *inp, int error)
1634 {
1635 	struct tcpcb *tp = intotcpcb(inp);
1636 
1637 	if (tp != NULL) {
1638 		tp->snd_cwnd = tp->t_maxseg;
1639 		tp->snd_wacked = 0;
1640 	}
1641 }
1642 
1643 /*
1644  * When a specific ICMP unreachable message is received and the
1645  * connection state is SYN-SENT, drop the connection.  This behavior
1646  * is controlled by the icmp_may_rst sysctl.
1647  */
1648 void
1649 tcp_drop_syn_sent(struct inpcb *inp, int error)
1650 {
1651 	struct tcpcb *tp = intotcpcb(inp);
1652 
1653 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1654 		tcp_drop(tp, error);
1655 }
1656 
1657 /*
1658  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1659  * based on the new value in the route.  Also nudge TCP to send something,
1660  * since we know the packet we just sent was dropped.
1661  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1662  */
1663 void
1664 tcp_mtudisc(struct inpcb *inp, int mtu)
1665 {
1666 	struct tcpcb *tp = intotcpcb(inp);
1667 	struct rtentry *rt;
1668 	struct socket *so = inp->inp_socket;
1669 	int maxopd, mss;
1670 #ifdef INET6
1671 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1672 #else
1673 	const boolean_t isipv6 = FALSE;
1674 #endif
1675 
1676 	if (tp == NULL)
1677 		return;
1678 
1679 	/*
1680 	 * If no MTU is provided in the ICMP message, use the
1681 	 * next lower likely value, as specified in RFC 1191.
1682 	 */
1683 	if (mtu == 0) {
1684 		int oldmtu;
1685 
1686 		oldmtu = tp->t_maxopd +
1687 		    (isipv6 ?
1688 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1689 		     sizeof(struct tcpiphdr));
1690 		mtu = ip_next_mtu(oldmtu, 0);
1691 	}
1692 
1693 	if (isipv6)
1694 		rt = tcp_rtlookup6(&inp->inp_inc);
1695 	else
1696 		rt = tcp_rtlookup(&inp->inp_inc);
1697 	if (rt != NULL) {
1698 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1699 			mtu = rt->rt_rmx.rmx_mtu;
1700 
1701 		maxopd = mtu -
1702 		    (isipv6 ?
1703 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1704 		     sizeof(struct tcpiphdr));
1705 
1706 		/*
1707 		 * XXX - The following conditional probably violates the TCP
1708 		 * spec.  The problem is that, since we don't know the
1709 		 * other end's MSS, we are supposed to use a conservative
1710 		 * default.  But, if we do that, then MTU discovery will
1711 		 * never actually take place, because the conservative
1712 		 * default is much less than the MTUs typically seen
1713 		 * on the Internet today.  For the moment, we'll sweep
1714 		 * this under the carpet.
1715 		 *
1716 		 * The conservative default might not actually be a problem
1717 		 * if the only case this occurs is when sending an initial
1718 		 * SYN with options and data to a host we've never talked
1719 		 * to before.  Then, they will reply with an MSS value which
1720 		 * will get recorded and the new parameters should get
1721 		 * recomputed.  For Further Study.
1722 		 */
1723 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1724 			maxopd = rt->rt_rmx.rmx_mssopt;
1725 	} else
1726 		maxopd = mtu -
1727 		    (isipv6 ?
1728 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1729 		     sizeof(struct tcpiphdr));
1730 
1731 	if (tp->t_maxopd <= maxopd)
1732 		return;
1733 	tp->t_maxopd = maxopd;
1734 
1735 	mss = maxopd;
1736 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1737 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1738 		mss -= TCPOLEN_TSTAMP_APPA;
1739 
1740 	/* round down to multiple of MCLBYTES */
1741 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1742 	if (mss > MCLBYTES)
1743 		mss &= ~(MCLBYTES - 1);
1744 #else
1745 	if (mss > MCLBYTES)
1746 		mss = (mss / MCLBYTES) * MCLBYTES;
1747 #endif
1748 
1749 	if (so->so_snd.ssb_hiwat < mss)
1750 		mss = so->so_snd.ssb_hiwat;
1751 
1752 	tp->t_maxseg = mss;
1753 	tp->t_rtttime = 0;
1754 	tp->snd_nxt = tp->snd_una;
1755 	tcp_output(tp);
1756 	tcpstat.tcps_mturesent++;
1757 }
1758 
1759 /*
1760  * Look-up the routing entry to the peer of this inpcb.  If no route
1761  * is found and it cannot be allocated the return NULL.  This routine
1762  * is called by TCP routines that access the rmx structure and by tcp_mss
1763  * to get the interface MTU.
1764  */
1765 struct rtentry *
1766 tcp_rtlookup(struct in_conninfo *inc)
1767 {
1768 	struct route *ro = &inc->inc_route;
1769 
1770 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1771 		/* No route yet, so try to acquire one */
1772 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1773 			/*
1774 			 * unused portions of the structure MUST be zero'd
1775 			 * out because rtalloc() treats it as opaque data
1776 			 */
1777 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1778 			ro->ro_dst.sa_family = AF_INET;
1779 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1780 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1781 			    inc->inc_faddr;
1782 			rtalloc(ro);
1783 		}
1784 	}
1785 	return (ro->ro_rt);
1786 }
1787 
1788 #ifdef INET6
1789 struct rtentry *
1790 tcp_rtlookup6(struct in_conninfo *inc)
1791 {
1792 	struct route_in6 *ro6 = &inc->inc6_route;
1793 
1794 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1795 		/* No route yet, so try to acquire one */
1796 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1797 			/*
1798 			 * unused portions of the structure MUST be zero'd
1799 			 * out because rtalloc() treats it as opaque data
1800 			 */
1801 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1802 			ro6->ro_dst.sin6_family = AF_INET6;
1803 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1804 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1805 			rtalloc((struct route *)ro6);
1806 		}
1807 	}
1808 	return (ro6->ro_rt);
1809 }
1810 #endif
1811 
1812 #ifdef IPSEC
1813 /* compute ESP/AH header size for TCP, including outer IP header. */
1814 size_t
1815 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1816 {
1817 	struct inpcb *inp;
1818 	struct mbuf *m;
1819 	size_t hdrsiz;
1820 	struct ip *ip;
1821 	struct tcphdr *th;
1822 
1823 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1824 		return (0);
1825 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1826 	if (!m)
1827 		return (0);
1828 
1829 #ifdef INET6
1830 	if (inp->inp_vflag & INP_IPV6) {
1831 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1832 
1833 		th = (struct tcphdr *)(ip6 + 1);
1834 		m->m_pkthdr.len = m->m_len =
1835 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1836 		tcp_fillheaders(tp, ip6, th, FALSE);
1837 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1838 	} else
1839 #endif
1840 	{
1841 		ip = mtod(m, struct ip *);
1842 		th = (struct tcphdr *)(ip + 1);
1843 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1844 		tcp_fillheaders(tp, ip, th, FALSE);
1845 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1846 	}
1847 
1848 	m_free(m);
1849 	return (hdrsiz);
1850 }
1851 #endif
1852 
1853 /*
1854  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1855  *
1856  * This code attempts to calculate the bandwidth-delay product as a
1857  * means of determining the optimal window size to maximize bandwidth,
1858  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1859  * routers.  This code also does a fairly good job keeping RTTs in check
1860  * across slow links like modems.  We implement an algorithm which is very
1861  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1862  * transmitter side of a TCP connection and so only effects the transmit
1863  * side of the connection.
1864  *
1865  * BACKGROUND:  TCP makes no provision for the management of buffer space
1866  * at the end points or at the intermediate routers and switches.  A TCP
1867  * stream, whether using NewReno or not, will eventually buffer as
1868  * many packets as it is able and the only reason this typically works is
1869  * due to the fairly small default buffers made available for a connection
1870  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1871  * scaling it is now fairly easy for even a single TCP connection to blow-out
1872  * all available buffer space not only on the local interface, but on
1873  * intermediate routers and switches as well.  NewReno makes a misguided
1874  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1875  * then backing off, then steadily increasing the window again until another
1876  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1877  * is only made worse as network loads increase and the idea of intentionally
1878  * blowing out network buffers is, frankly, a terrible way to manage network
1879  * resources.
1880  *
1881  * It is far better to limit the transmit window prior to the failure
1882  * condition being achieved.  There are two general ways to do this:  First
1883  * you can 'scan' through different transmit window sizes and locate the
1884  * point where the RTT stops increasing, indicating that you have filled the
1885  * pipe, then scan backwards until you note that RTT stops decreasing, then
1886  * repeat ad-infinitum.  This method works in principle but has severe
1887  * implementation issues due to RTT variances, timer granularity, and
1888  * instability in the algorithm which can lead to many false positives and
1889  * create oscillations as well as interact badly with other TCP streams
1890  * implementing the same algorithm.
1891  *
1892  * The second method is to limit the window to the bandwidth delay product
1893  * of the link.  This is the method we implement.  RTT variances and our
1894  * own manipulation of the congestion window, bwnd, can potentially
1895  * destabilize the algorithm.  For this reason we have to stabilize the
1896  * elements used to calculate the window.  We do this by using the minimum
1897  * observed RTT, the long term average of the observed bandwidth, and
1898  * by adding two segments worth of slop.  It isn't perfect but it is able
1899  * to react to changing conditions and gives us a very stable basis on
1900  * which to extend the algorithm.
1901  */
1902 void
1903 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1904 {
1905 	u_long bw;
1906 	u_long bwnd;
1907 	int save_ticks;
1908 	int delta_ticks;
1909 
1910 	/*
1911 	 * If inflight_enable is disabled in the middle of a tcp connection,
1912 	 * make sure snd_bwnd is effectively disabled.
1913 	 */
1914 	if (!tcp_inflight_enable) {
1915 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1916 		tp->snd_bandwidth = 0;
1917 		return;
1918 	}
1919 
1920 	/*
1921 	 * Validate the delta time.  If a connection is new or has been idle
1922 	 * a long time we have to reset the bandwidth calculator.
1923 	 */
1924 	save_ticks = ticks;
1925 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1926 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1927 		tp->t_bw_rtttime = ticks;
1928 		tp->t_bw_rtseq = ack_seq;
1929 		if (tp->snd_bandwidth == 0)
1930 			tp->snd_bandwidth = tcp_inflight_min;
1931 		return;
1932 	}
1933 	if (delta_ticks == 0)
1934 		return;
1935 
1936 	/*
1937 	 * Sanity check, plus ignore pure window update acks.
1938 	 */
1939 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1940 		return;
1941 
1942 	/*
1943 	 * Figure out the bandwidth.  Due to the tick granularity this
1944 	 * is a very rough number and it MUST be averaged over a fairly
1945 	 * long period of time.  XXX we need to take into account a link
1946 	 * that is not using all available bandwidth, but for now our
1947 	 * slop will ramp us up if this case occurs and the bandwidth later
1948 	 * increases.
1949 	 */
1950 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1951 	tp->t_bw_rtttime = save_ticks;
1952 	tp->t_bw_rtseq = ack_seq;
1953 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1954 
1955 	tp->snd_bandwidth = bw;
1956 
1957 	/*
1958 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1959 	 * segments.  The additional slop puts us squarely in the sweet
1960 	 * spot and also handles the bandwidth run-up case.  Without the
1961 	 * slop we could be locking ourselves into a lower bandwidth.
1962 	 *
1963 	 * Situations Handled:
1964 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1965 	 *	    high speed LANs, allowing larger TCP buffers to be
1966 	 *	    specified, and also does a good job preventing
1967 	 *	    over-queueing of packets over choke points like modems
1968 	 *	    (at least for the transmit side).
1969 	 *
1970 	 *	(2) Is able to handle changing network loads (bandwidth
1971 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1972 	 *	    increases).
1973 	 *
1974 	 *	(3) Theoretically should stabilize in the face of multiple
1975 	 *	    connections implementing the same algorithm (this may need
1976 	 *	    a little work).
1977 	 *
1978 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1979 	 *	    be adjusted with a sysctl but typically only needs to be on
1980 	 *	    very slow connections.  A value no smaller then 5 should
1981 	 *	    be used, but only reduce this default if you have no other
1982 	 *	    choice.
1983 	 */
1984 
1985 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1986 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1987 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1988 #undef USERTT
1989 
1990 	if (tcp_inflight_debug > 0) {
1991 		static int ltime;
1992 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1993 			ltime = ticks;
1994 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1995 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1996 		}
1997 	}
1998 	if ((long)bwnd < tcp_inflight_min)
1999 		bwnd = tcp_inflight_min;
2000 	if (bwnd > tcp_inflight_max)
2001 		bwnd = tcp_inflight_max;
2002 	if ((long)bwnd < tp->t_maxseg * 2)
2003 		bwnd = tp->t_maxseg * 2;
2004 	tp->snd_bwnd = bwnd;
2005 }
2006 
2007 static void
2008 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
2009 {
2010 	struct rtentry *rt;
2011 	struct inpcb *inp = tp->t_inpcb;
2012 #ifdef INET6
2013 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2014 #else
2015 	const boolean_t isipv6 = FALSE;
2016 #endif
2017 
2018 	/* XXX */
2019 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2020 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2021 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2022 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2023 
2024 	if (isipv6)
2025 		rt = tcp_rtlookup6(&inp->inp_inc);
2026 	else
2027 		rt = tcp_rtlookup(&inp->inp_inc);
2028 	if (rt == NULL ||
2029 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2030 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2031 		*maxsegs = tcp_iw_maxsegs;
2032 		*capsegs = tcp_iw_capsegs;
2033 		return;
2034 	}
2035 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2036 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2037 }
2038 
2039 u_long
2040 tcp_initial_window(struct tcpcb *tp)
2041 {
2042 	if (tcp_do_rfc3390) {
2043 		/*
2044 		 * RFC3390:
2045 		 * "If the SYN or SYN/ACK is lost, the initial window
2046 		 *  used by a sender after a correctly transmitted SYN
2047 		 *  MUST be one segment consisting of MSS bytes."
2048 		 *
2049 		 * However, we do something a little bit more aggressive
2050 		 * then RFC3390 here:
2051 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2052 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2053 		 *   because when RFC3390 is published, the initial RTO is
2054 		 *   still 3 seconds (the threshold we test here), while
2055 		 *   after RFC6298, the initial RTO is 1 second.  This
2056 		 *   behaviour probably still falls within the spirit of
2057 		 *   RFC3390.
2058 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2059 		 *   Mainly to avoid sender and receiver deadlock until
2060 		 *   delayed ACK timer expires.  And even RFC2581 does not
2061 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2062 		 *   timeout.
2063 		 *
2064 		 * See also:
2065 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2066 		 */
2067 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2068 			return (2 * tp->t_maxseg);
2069 		} else {
2070 			u_long maxsegs, capsegs;
2071 
2072 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2073 			return min(maxsegs * tp->t_maxseg,
2074 				   max(2 * tp->t_maxseg, capsegs * 1460));
2075 		}
2076 	} else {
2077 		/*
2078 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2079 		 *
2080 		 * Mainly to avoid sender and receiver deadlock
2081 		 * until delayed ACK timer expires.
2082 		 */
2083 		return (2 * tp->t_maxseg);
2084 	}
2085 }
2086 
2087 #ifdef TCP_SIGNATURE
2088 /*
2089  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2090  *
2091  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2092  * When called from tcp_input(), we can be sure that th_sum has been
2093  * zeroed out and verified already.
2094  *
2095  * Return 0 if successful, otherwise return -1.
2096  *
2097  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2098  * search with the destination IP address, and a 'magic SPI' to be
2099  * determined by the application. This is hardcoded elsewhere to 1179
2100  * right now. Another branch of this code exists which uses the SPD to
2101  * specify per-application flows but it is unstable.
2102  */
2103 int
2104 tcpsignature_compute(
2105 	struct mbuf *m,		/* mbuf chain */
2106 	int len,		/* length of TCP data */
2107 	int optlen,		/* length of TCP options */
2108 	u_char *buf,		/* storage for MD5 digest */
2109 	u_int direction)	/* direction of flow */
2110 {
2111 	struct ippseudo ippseudo;
2112 	MD5_CTX ctx;
2113 	int doff;
2114 	struct ip *ip;
2115 	struct ipovly *ipovly;
2116 	struct secasvar *sav;
2117 	struct tcphdr *th;
2118 #ifdef INET6
2119 	struct ip6_hdr *ip6;
2120 	struct in6_addr in6;
2121 	uint32_t plen;
2122 	uint16_t nhdr;
2123 #endif /* INET6 */
2124 	u_short savecsum;
2125 
2126 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2127 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2128 	/*
2129 	 * Extract the destination from the IP header in the mbuf.
2130 	 */
2131 	ip = mtod(m, struct ip *);
2132 #ifdef INET6
2133 	ip6 = NULL;     /* Make the compiler happy. */
2134 #endif /* INET6 */
2135 	/*
2136 	 * Look up an SADB entry which matches the address found in
2137 	 * the segment.
2138 	 */
2139 	switch (IP_VHL_V(ip->ip_vhl)) {
2140 	case IPVERSION:
2141 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2142 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2143 		break;
2144 #ifdef INET6
2145 	case (IPV6_VERSION >> 4):
2146 		ip6 = mtod(m, struct ip6_hdr *);
2147 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2148 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2149 		break;
2150 #endif /* INET6 */
2151 	default:
2152 		return (EINVAL);
2153 		/* NOTREACHED */
2154 		break;
2155 	}
2156 	if (sav == NULL) {
2157 		kprintf("%s: SADB lookup failed\n", __func__);
2158 		return (EINVAL);
2159 	}
2160 	MD5Init(&ctx);
2161 
2162 	/*
2163 	 * Step 1: Update MD5 hash with IP pseudo-header.
2164 	 *
2165 	 * XXX The ippseudo header MUST be digested in network byte order,
2166 	 * or else we'll fail the regression test. Assume all fields we've
2167 	 * been doing arithmetic on have been in host byte order.
2168 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2169 	 * tcp_output(), the underlying ip_len member has not yet been set.
2170 	 */
2171 	switch (IP_VHL_V(ip->ip_vhl)) {
2172 	case IPVERSION:
2173 		ipovly = (struct ipovly *)ip;
2174 		ippseudo.ippseudo_src = ipovly->ih_src;
2175 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2176 		ippseudo.ippseudo_pad = 0;
2177 		ippseudo.ippseudo_p = IPPROTO_TCP;
2178 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2179 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2180 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2181 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2182 		break;
2183 #ifdef INET6
2184 	/*
2185 	 * RFC 2385, 2.0  Proposal
2186 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2187 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2188 	 * extended next header value (to form 32 bits), and 32-bit segment
2189 	 * length.
2190 	 * Note: Upper-Layer Packet Length comes before Next Header.
2191 	 */
2192 	case (IPV6_VERSION >> 4):
2193 		in6 = ip6->ip6_src;
2194 		in6_clearscope(&in6);
2195 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2196 		in6 = ip6->ip6_dst;
2197 		in6_clearscope(&in6);
2198 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2199 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2200 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2201 		nhdr = 0;
2202 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2203 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2204 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2205 		nhdr = IPPROTO_TCP;
2206 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2207 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2208 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2209 		break;
2210 #endif /* INET6 */
2211 	default:
2212 		return (EINVAL);
2213 		/* NOTREACHED */
2214 		break;
2215 	}
2216 	/*
2217 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2218 	 * The TCP checksum must be set to zero.
2219 	 */
2220 	savecsum = th->th_sum;
2221 	th->th_sum = 0;
2222 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2223 	th->th_sum = savecsum;
2224 	/*
2225 	 * Step 3: Update MD5 hash with TCP segment data.
2226 	 *         Use m_apply() to avoid an early m_pullup().
2227 	 */
2228 	if (len > 0)
2229 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2230 	/*
2231 	 * Step 4: Update MD5 hash with shared secret.
2232 	 */
2233 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2234 	MD5Final(buf, &ctx);
2235 	key_sa_recordxfer(sav, m);
2236 	key_freesav(sav);
2237 	return (0);
2238 }
2239 
2240 int
2241 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2242 {
2243 
2244 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2245 	return (0);
2246 }
2247 #endif /* TCP_SIGNATURE */
2248