xref: /dflybsd-src/sys/netinet/tcp_subr.c (revision eda7db0843743319744b6ffa93dbc2536ff89f3f)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
68  */
69 
70 #include "opt_compat.h"
71 #include "opt_inet.h"
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/callout.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
82 #include <sys/mpipe.h>
83 #include <sys/mbuf.h>
84 #ifdef INET6
85 #include <sys/domain.h>
86 #endif
87 #include <sys/proc.h>
88 #include <sys/priv.h>
89 #include <sys/socket.h>
90 #include <sys/socketvar.h>
91 #include <sys/protosw.h>
92 #include <sys/random.h>
93 #include <sys/in_cksum.h>
94 #include <sys/ktr.h>
95 
96 #include <net/route.h>
97 #include <net/if.h>
98 #include <net/netisr.h>
99 
100 #define	_IP_VHL
101 #include <netinet/in.h>
102 #include <netinet/in_systm.h>
103 #include <netinet/ip.h>
104 #include <netinet/ip6.h>
105 #include <netinet/in_pcb.h>
106 #include <netinet6/in6_pcb.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip_var.h>
109 #include <netinet6/ip6_var.h>
110 #include <netinet/ip_icmp.h>
111 #ifdef INET6
112 #include <netinet/icmp6.h>
113 #endif
114 #include <netinet/tcp.h>
115 #include <netinet/tcp_fsm.h>
116 #include <netinet/tcp_seq.h>
117 #include <netinet/tcp_timer.h>
118 #include <netinet/tcp_timer2.h>
119 #include <netinet/tcp_var.h>
120 #include <netinet6/tcp6_var.h>
121 #include <netinet/tcpip.h>
122 #ifdef TCPDEBUG
123 #include <netinet/tcp_debug.h>
124 #endif
125 #include <netinet6/ip6protosw.h>
126 
127 #ifdef IPSEC
128 #include <netinet6/ipsec.h>
129 #include <netproto/key/key.h>
130 #ifdef INET6
131 #include <netinet6/ipsec6.h>
132 #endif
133 #endif
134 
135 #ifdef FAST_IPSEC
136 #include <netproto/ipsec/ipsec.h>
137 #ifdef INET6
138 #include <netproto/ipsec/ipsec6.h>
139 #endif
140 #define	IPSEC
141 #endif
142 
143 #include <sys/md5.h>
144 #include <machine/smp.h>
145 
146 #include <sys/msgport2.h>
147 #include <sys/mplock2.h>
148 #include <net/netmsg2.h>
149 
150 #if !defined(KTR_TCP)
151 #define KTR_TCP		KTR_ALL
152 #endif
153 /*
154 KTR_INFO_MASTER(tcp);
155 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
156 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
157 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
158 #define logtcp(name)	KTR_LOG(tcp_ ## name)
159 */
160 
161 #define TCP_IW_MAXSEGS_DFLT	4
162 #define TCP_IW_CAPSEGS_DFLT	3
163 
164 struct inpcbinfo tcbinfo[MAXCPU];
165 struct tcpcbackqhead tcpcbackq[MAXCPU];
166 
167 static struct lwkt_token tcp_port_token =
168 		LWKT_TOKEN_INITIALIZER(tcp_port_token);
169 
170 int tcp_mssdflt = TCP_MSS;
171 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
172     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
173 
174 #ifdef INET6
175 int tcp_v6mssdflt = TCP6_MSS;
176 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
177     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
178 #endif
179 
180 /*
181  * Minimum MSS we accept and use. This prevents DoS attacks where
182  * we are forced to a ridiculous low MSS like 20 and send hundreds
183  * of packets instead of one. The effect scales with the available
184  * bandwidth and quickly saturates the CPU and network interface
185  * with packet generation and sending. Set to zero to disable MINMSS
186  * checking. This setting prevents us from sending too small packets.
187  */
188 int tcp_minmss = TCP_MINMSS;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
190     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
191 
192 #if 0
193 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
194 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
195     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
196 #endif
197 
198 int tcp_do_rfc1323 = 1;
199 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
200     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
201 
202 static int tcp_tcbhashsize = 0;
203 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
204      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
205 
206 static int do_tcpdrain = 1;
207 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
208      "Enable tcp_drain routine for extra help when low on mbufs");
209 
210 static int icmp_may_rst = 1;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
212     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
213 
214 static int tcp_isn_reseed_interval = 0;
215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
216     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
217 
218 /*
219  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
220  * by default, but with generous values which should allow maximal
221  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
222  *
223  * The reason for doing this is that the limiter is the only mechanism we
224  * have which seems to do a really good job preventing receiver RX rings
225  * on network interfaces from getting blown out.  Even though GigE/10GigE
226  * is supposed to flow control it looks like either it doesn't actually
227  * do it or Open Source drivers do not properly enable it.
228  *
229  * People using the limiter to reduce bottlenecks on slower WAN connections
230  * should set the slop to 20 (2 packets).
231  */
232 static int tcp_inflight_enable = 1;
233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
234     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
235 
236 static int tcp_inflight_debug = 0;
237 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
238     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
239 
240 static int tcp_inflight_min = 6144;
241 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
242     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
243 
244 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
245 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
246     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
247 
248 static int tcp_inflight_stab = 50;
249 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
250     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
251 
252 static int tcp_do_rfc3390 = 1;
253 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
254     &tcp_do_rfc3390, 0,
255     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
256 
257 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
258 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
259     &tcp_iw_maxsegs, 0, "TCP IW segments max");
260 
261 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
262 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
263     &tcp_iw_capsegs, 0, "TCP IW segments");
264 
265 int tcp_low_rtobase = 1;
266 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
267     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
268 
269 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
270 static struct malloc_pipe tcptemp_mpipe;
271 
272 static void tcp_willblock(void);
273 static void tcp_notify (struct inpcb *, int);
274 
275 struct tcp_stats tcpstats_percpu[MAXCPU];
276 #ifdef SMP
277 static int
278 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
279 {
280 	int cpu, error = 0;
281 
282 	for (cpu = 0; cpu < ncpus; ++cpu) {
283 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
284 					sizeof(struct tcp_stats))))
285 			break;
286 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
287 				       sizeof(struct tcp_stats))))
288 			break;
289 	}
290 
291 	return (error);
292 }
293 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
294     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
295 #else
296 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
297     &tcpstat, tcp_stats, "TCP statistics");
298 #endif
299 
300 /*
301  * Target size of TCP PCB hash tables. Must be a power of two.
302  *
303  * Note that this can be overridden by the kernel environment
304  * variable net.inet.tcp.tcbhashsize
305  */
306 #ifndef TCBHASHSIZE
307 #define	TCBHASHSIZE	512
308 #endif
309 
310 /*
311  * This is the actual shape of what we allocate using the zone
312  * allocator.  Doing it this way allows us to protect both structures
313  * using the same generation count, and also eliminates the overhead
314  * of allocating tcpcbs separately.  By hiding the structure here,
315  * we avoid changing most of the rest of the code (although it needs
316  * to be changed, eventually, for greater efficiency).
317  */
318 #define	ALIGNMENT	32
319 #define	ALIGNM1		(ALIGNMENT - 1)
320 struct	inp_tp {
321 	union {
322 		struct	inpcb inp;
323 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
324 	} inp_tp_u;
325 	struct	tcpcb tcb;
326 	struct	tcp_callout inp_tp_rexmt;
327 	struct	tcp_callout inp_tp_persist;
328 	struct	tcp_callout inp_tp_keep;
329 	struct	tcp_callout inp_tp_2msl;
330 	struct	tcp_callout inp_tp_delack;
331 	struct	netmsg_tcp_timer inp_tp_timermsg;
332 };
333 #undef ALIGNMENT
334 #undef ALIGNM1
335 
336 /*
337  * Tcp initialization
338  */
339 void
340 tcp_init(void)
341 {
342 	struct inpcbporthead *porthashbase;
343 	struct inpcbinfo *ticb;
344 	u_long porthashmask;
345 	int hashsize = TCBHASHSIZE;
346 	int cpu;
347 
348 	/*
349 	 * note: tcptemp is used for keepalives, and it is ok for an
350 	 * allocation to fail so do not specify MPF_INT.
351 	 */
352 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
353 		    25, -1, 0, NULL, NULL, NULL);
354 
355 	tcp_delacktime = TCPTV_DELACK;
356 	tcp_keepinit = TCPTV_KEEP_INIT;
357 	tcp_keepidle = TCPTV_KEEP_IDLE;
358 	tcp_keepintvl = TCPTV_KEEPINTVL;
359 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
360 	tcp_msl = TCPTV_MSL;
361 	tcp_rexmit_min = TCPTV_MIN;
362 	tcp_rexmit_slop = TCPTV_CPU_VAR;
363 
364 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
365 	if (!powerof2(hashsize)) {
366 		kprintf("WARNING: TCB hash size not a power of 2\n");
367 		hashsize = 512; /* safe default */
368 	}
369 	tcp_tcbhashsize = hashsize;
370 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
371 
372 	for (cpu = 0; cpu < ncpus2; cpu++) {
373 		ticb = &tcbinfo[cpu];
374 		in_pcbinfo_init(ticb);
375 		ticb->cpu = cpu;
376 		ticb->hashbase = hashinit(hashsize, M_PCB,
377 					  &ticb->hashmask);
378 		ticb->porthashbase = porthashbase;
379 		ticb->porthashmask = porthashmask;
380 		ticb->porttoken = &tcp_port_token;
381 #if 0
382 		ticb->porthashbase = hashinit(hashsize, M_PCB,
383 					      &ticb->porthashmask);
384 #endif
385 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
386 						  &ticb->wildcardhashmask);
387 		ticb->ipi_size = sizeof(struct inp_tp);
388 		TAILQ_INIT(&tcpcbackq[cpu]);
389 	}
390 
391 	tcp_reass_maxseg = nmbclusters / 16;
392 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
393 
394 #ifdef INET6
395 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
396 #else
397 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
398 #endif
399 	if (max_protohdr < TCP_MINPROTOHDR)
400 		max_protohdr = TCP_MINPROTOHDR;
401 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
402 		panic("tcp_init");
403 #undef TCP_MINPROTOHDR
404 
405 	/*
406 	 * Initialize TCP statistics counters for each CPU.
407 	 */
408 #ifdef SMP
409 	for (cpu = 0; cpu < ncpus; ++cpu) {
410 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
411 	}
412 #else
413 	bzero(&tcpstat, sizeof(struct tcp_stats));
414 #endif
415 
416 	syncache_init();
417 	netisr_register_rollup(tcp_willblock);
418 }
419 
420 static void
421 tcp_willblock(void)
422 {
423 	struct tcpcb *tp;
424 	int cpu = mycpu->gd_cpuid;
425 
426 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
427 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
428 		tp->t_flags &= ~TF_ONOUTPUTQ;
429 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
430 		tcp_output(tp);
431 	}
432 }
433 
434 /*
435  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
436  * tcp_template used to store this data in mbufs, but we now recopy it out
437  * of the tcpcb each time to conserve mbufs.
438  */
439 void
440 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
441 {
442 	struct inpcb *inp = tp->t_inpcb;
443 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
444 
445 #ifdef INET6
446 	if (inp->inp_vflag & INP_IPV6) {
447 		struct ip6_hdr *ip6;
448 
449 		ip6 = (struct ip6_hdr *)ip_ptr;
450 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
451 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
452 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
453 			(IPV6_VERSION & IPV6_VERSION_MASK);
454 		ip6->ip6_nxt = IPPROTO_TCP;
455 		ip6->ip6_plen = sizeof(struct tcphdr);
456 		ip6->ip6_src = inp->in6p_laddr;
457 		ip6->ip6_dst = inp->in6p_faddr;
458 		tcp_hdr->th_sum = 0;
459 	} else
460 #endif
461 	{
462 		struct ip *ip = (struct ip *) ip_ptr;
463 
464 		ip->ip_vhl = IP_VHL_BORING;
465 		ip->ip_tos = 0;
466 		ip->ip_len = 0;
467 		ip->ip_id = 0;
468 		ip->ip_off = 0;
469 		ip->ip_ttl = 0;
470 		ip->ip_sum = 0;
471 		ip->ip_p = IPPROTO_TCP;
472 		ip->ip_src = inp->inp_laddr;
473 		ip->ip_dst = inp->inp_faddr;
474 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
475 				    ip->ip_dst.s_addr,
476 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
477 	}
478 
479 	tcp_hdr->th_sport = inp->inp_lport;
480 	tcp_hdr->th_dport = inp->inp_fport;
481 	tcp_hdr->th_seq = 0;
482 	tcp_hdr->th_ack = 0;
483 	tcp_hdr->th_x2 = 0;
484 	tcp_hdr->th_off = 5;
485 	tcp_hdr->th_flags = 0;
486 	tcp_hdr->th_win = 0;
487 	tcp_hdr->th_urp = 0;
488 }
489 
490 /*
491  * Create template to be used to send tcp packets on a connection.
492  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
493  * use for this function is in keepalives, which use tcp_respond.
494  */
495 struct tcptemp *
496 tcp_maketemplate(struct tcpcb *tp)
497 {
498 	struct tcptemp *tmp;
499 
500 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
501 		return (NULL);
502 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
503 	return (tmp);
504 }
505 
506 void
507 tcp_freetemplate(struct tcptemp *tmp)
508 {
509 	mpipe_free(&tcptemp_mpipe, tmp);
510 }
511 
512 /*
513  * Send a single message to the TCP at address specified by
514  * the given TCP/IP header.  If m == NULL, then we make a copy
515  * of the tcpiphdr at ti and send directly to the addressed host.
516  * This is used to force keep alive messages out using the TCP
517  * template for a connection.  If flags are given then we send
518  * a message back to the TCP which originated the * segment ti,
519  * and discard the mbuf containing it and any other attached mbufs.
520  *
521  * In any case the ack and sequence number of the transmitted
522  * segment are as specified by the parameters.
523  *
524  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
525  */
526 void
527 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
528 	    tcp_seq ack, tcp_seq seq, int flags)
529 {
530 	int tlen;
531 	int win = 0;
532 	struct route *ro = NULL;
533 	struct route sro;
534 	struct ip *ip = ipgen;
535 	struct tcphdr *nth;
536 	int ipflags = 0;
537 	struct route_in6 *ro6 = NULL;
538 	struct route_in6 sro6;
539 	struct ip6_hdr *ip6 = ipgen;
540 	boolean_t use_tmpro = TRUE;
541 #ifdef INET6
542 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
543 #else
544 	const boolean_t isipv6 = FALSE;
545 #endif
546 
547 	if (tp != NULL) {
548 		if (!(flags & TH_RST)) {
549 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
550 			if (win < 0)
551 				win = 0;
552 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
553 				win = (long)TCP_MAXWIN << tp->rcv_scale;
554 		}
555 		/*
556 		 * Don't use the route cache of a listen socket,
557 		 * it is not MPSAFE; use temporary route cache.
558 		 */
559 		if (tp->t_state != TCPS_LISTEN) {
560 			if (isipv6)
561 				ro6 = &tp->t_inpcb->in6p_route;
562 			else
563 				ro = &tp->t_inpcb->inp_route;
564 			use_tmpro = FALSE;
565 		}
566 	}
567 	if (use_tmpro) {
568 		if (isipv6) {
569 			ro6 = &sro6;
570 			bzero(ro6, sizeof *ro6);
571 		} else {
572 			ro = &sro;
573 			bzero(ro, sizeof *ro);
574 		}
575 	}
576 	if (m == NULL) {
577 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
578 		if (m == NULL)
579 			return;
580 		tlen = 0;
581 		m->m_data += max_linkhdr;
582 		if (isipv6) {
583 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
584 			ip6 = mtod(m, struct ip6_hdr *);
585 			nth = (struct tcphdr *)(ip6 + 1);
586 		} else {
587 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
588 			ip = mtod(m, struct ip *);
589 			nth = (struct tcphdr *)(ip + 1);
590 		}
591 		bcopy(th, nth, sizeof(struct tcphdr));
592 		flags = TH_ACK;
593 	} else {
594 		m_freem(m->m_next);
595 		m->m_next = NULL;
596 		m->m_data = (caddr_t)ipgen;
597 		/* m_len is set later */
598 		tlen = 0;
599 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
600 		if (isipv6) {
601 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
602 			nth = (struct tcphdr *)(ip6 + 1);
603 		} else {
604 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
605 			nth = (struct tcphdr *)(ip + 1);
606 		}
607 		if (th != nth) {
608 			/*
609 			 * this is usually a case when an extension header
610 			 * exists between the IPv6 header and the
611 			 * TCP header.
612 			 */
613 			nth->th_sport = th->th_sport;
614 			nth->th_dport = th->th_dport;
615 		}
616 		xchg(nth->th_dport, nth->th_sport, n_short);
617 #undef xchg
618 	}
619 	if (isipv6) {
620 		ip6->ip6_flow = 0;
621 		ip6->ip6_vfc = IPV6_VERSION;
622 		ip6->ip6_nxt = IPPROTO_TCP;
623 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
624 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
625 	} else {
626 		tlen += sizeof(struct tcpiphdr);
627 		ip->ip_len = tlen;
628 		ip->ip_ttl = ip_defttl;
629 	}
630 	m->m_len = tlen;
631 	m->m_pkthdr.len = tlen;
632 	m->m_pkthdr.rcvif = NULL;
633 	nth->th_seq = htonl(seq);
634 	nth->th_ack = htonl(ack);
635 	nth->th_x2 = 0;
636 	nth->th_off = sizeof(struct tcphdr) >> 2;
637 	nth->th_flags = flags;
638 	if (tp != NULL)
639 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
640 	else
641 		nth->th_win = htons((u_short)win);
642 	nth->th_urp = 0;
643 	if (isipv6) {
644 		nth->th_sum = 0;
645 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
646 					sizeof(struct ip6_hdr),
647 					tlen - sizeof(struct ip6_hdr));
648 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
649 					       (ro6 && ro6->ro_rt) ?
650 						ro6->ro_rt->rt_ifp : NULL);
651 	} else {
652 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
653 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
654 		m->m_pkthdr.csum_flags = CSUM_TCP;
655 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
656 	}
657 #ifdef TCPDEBUG
658 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
659 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
660 #endif
661 	if (isipv6) {
662 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
663 			   tp ? tp->t_inpcb : NULL);
664 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
665 			RTFREE(ro6->ro_rt);
666 			ro6->ro_rt = NULL;
667 		}
668 	} else {
669 		ipflags |= IP_DEBUGROUTE;
670 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
671 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
672 			RTFREE(ro->ro_rt);
673 			ro->ro_rt = NULL;
674 		}
675 	}
676 }
677 
678 /*
679  * Create a new TCP control block, making an
680  * empty reassembly queue and hooking it to the argument
681  * protocol control block.  The `inp' parameter must have
682  * come from the zone allocator set up in tcp_init().
683  */
684 struct tcpcb *
685 tcp_newtcpcb(struct inpcb *inp)
686 {
687 	struct inp_tp *it;
688 	struct tcpcb *tp;
689 #ifdef INET6
690 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
691 #else
692 	const boolean_t isipv6 = FALSE;
693 #endif
694 
695 	it = (struct inp_tp *)inp;
696 	tp = &it->tcb;
697 	bzero(tp, sizeof(struct tcpcb));
698 	LIST_INIT(&tp->t_segq);
699 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
700 
701 	/* Set up our timeouts. */
702 	tp->tt_rexmt = &it->inp_tp_rexmt;
703 	tp->tt_persist = &it->inp_tp_persist;
704 	tp->tt_keep = &it->inp_tp_keep;
705 	tp->tt_2msl = &it->inp_tp_2msl;
706 	tp->tt_delack = &it->inp_tp_delack;
707 	tcp_inittimers(tp);
708 
709 	/*
710 	 * Zero out timer message.  We don't create it here,
711 	 * since the current CPU may not be the owner of this
712 	 * inpcb.
713 	 */
714 	tp->tt_msg = &it->inp_tp_timermsg;
715 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
716 
717 	tp->t_keepinit = tcp_keepinit;
718 	tp->t_keepidle = tcp_keepidle;
719 	tp->t_keepintvl = tcp_keepintvl;
720 	tp->t_keepcnt = tcp_keepcnt;
721 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
722 
723 	if (tcp_do_rfc1323)
724 		tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
725 	tp->t_inpcb = inp;	/* XXX */
726 	tp->t_state = TCPS_CLOSED;
727 	/*
728 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
729 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
730 	 * reasonable initial retransmit time.
731 	 */
732 	tp->t_srtt = TCPTV_SRTTBASE;
733 	tp->t_rttvar =
734 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
735 	tp->t_rttmin = tcp_rexmit_min;
736 	tp->t_rxtcur = TCPTV_RTOBASE;
737 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
738 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
739 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
740 	tp->t_rcvtime = ticks;
741 	/*
742 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
743 	 * because the socket may be bound to an IPv6 wildcard address,
744 	 * which may match an IPv4-mapped IPv6 address.
745 	 */
746 	inp->inp_ip_ttl = ip_defttl;
747 	inp->inp_ppcb = tp;
748 	tcp_sack_tcpcb_init(tp);
749 	return (tp);		/* XXX */
750 }
751 
752 /*
753  * Drop a TCP connection, reporting the specified error.
754  * If connection is synchronized, then send a RST to peer.
755  */
756 struct tcpcb *
757 tcp_drop(struct tcpcb *tp, int error)
758 {
759 	struct socket *so = tp->t_inpcb->inp_socket;
760 
761 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
762 		tp->t_state = TCPS_CLOSED;
763 		tcp_output(tp);
764 		tcpstat.tcps_drops++;
765 	} else
766 		tcpstat.tcps_conndrops++;
767 	if (error == ETIMEDOUT && tp->t_softerror)
768 		error = tp->t_softerror;
769 	so->so_error = error;
770 	return (tcp_close(tp));
771 }
772 
773 #ifdef SMP
774 
775 struct netmsg_listen_detach {
776 	struct netmsg_base	base;
777 	struct tcpcb		*nm_tp;
778 };
779 
780 static void
781 tcp_listen_detach_handler(netmsg_t msg)
782 {
783 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
784 	struct tcpcb *tp = nmsg->nm_tp;
785 	int cpu = mycpuid, nextcpu;
786 
787 	if (tp->t_flags & TF_LISTEN)
788 		syncache_destroy(tp);
789 
790 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
791 
792 	nextcpu = cpu + 1;
793 	if (nextcpu < ncpus2)
794 		lwkt_forwardmsg(cpu_portfn(nextcpu), &nmsg->base.lmsg);
795 	else
796 		lwkt_replymsg(&nmsg->base.lmsg, 0);
797 }
798 
799 #endif
800 
801 /*
802  * Close a TCP control block:
803  *	discard all space held by the tcp
804  *	discard internet protocol block
805  *	wake up any sleepers
806  */
807 struct tcpcb *
808 tcp_close(struct tcpcb *tp)
809 {
810 	struct tseg_qent *q;
811 	struct inpcb *inp = tp->t_inpcb;
812 	struct socket *so = inp->inp_socket;
813 	struct rtentry *rt;
814 	boolean_t dosavessthresh;
815 #ifdef INET6
816 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
817 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
818 #else
819 	const boolean_t isipv6 = FALSE;
820 #endif
821 
822 #ifdef SMP
823 	/*
824 	 * INP_WILDCARD_MP indicates that listen(2) has been called on
825 	 * this socket.  This implies:
826 	 * - A wildcard inp's hash is replicated for each protocol thread.
827 	 * - Syncache for this inp grows independently in each protocol
828 	 *   thread.
829 	 * - There is more than one cpu
830 	 *
831 	 * We have to chain a message to the rest of the protocol threads
832 	 * to cleanup the wildcard hash and the syncache.  The cleanup
833 	 * in the current protocol thread is defered till the end of this
834 	 * function.
835 	 *
836 	 * NOTE:
837 	 * After cleanup the inp's hash and syncache entries, this inp will
838 	 * no longer be available to the rest of the protocol threads, so we
839 	 * are safe to whack the inp in the following code.
840 	 */
841 	if (inp->inp_flags & INP_WILDCARD_MP) {
842 		struct netmsg_listen_detach nmsg;
843 
844 		KKASSERT(so->so_port == cpu_portfn(0));
845 		KKASSERT(&curthread->td_msgport == cpu_portfn(0));
846 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
847 
848 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
849 			    MSGF_PRIORITY, tcp_listen_detach_handler);
850 		nmsg.nm_tp = tp;
851 		lwkt_domsg(cpu_portfn(1), &nmsg.base.lmsg, 0);
852 
853 		inp->inp_flags &= ~INP_WILDCARD_MP;
854 	}
855 #endif
856 
857 	KKASSERT(tp->t_state != TCPS_TERMINATING);
858 	tp->t_state = TCPS_TERMINATING;
859 
860 	/*
861 	 * Make sure that all of our timers are stopped before we
862 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
863 	 * timers are never used.  If timer message is never created
864 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
865 	 */
866 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
867 		tcp_callout_stop(tp, tp->tt_rexmt);
868 		tcp_callout_stop(tp, tp->tt_persist);
869 		tcp_callout_stop(tp, tp->tt_keep);
870 		tcp_callout_stop(tp, tp->tt_2msl);
871 		tcp_callout_stop(tp, tp->tt_delack);
872 	}
873 
874 	if (tp->t_flags & TF_ONOUTPUTQ) {
875 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
876 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
877 		tp->t_flags &= ~TF_ONOUTPUTQ;
878 	}
879 
880 	/*
881 	 * If we got enough samples through the srtt filter,
882 	 * save the rtt and rttvar in the routing entry.
883 	 * 'Enough' is arbitrarily defined as the 16 samples.
884 	 * 16 samples is enough for the srtt filter to converge
885 	 * to within 5% of the correct value; fewer samples and
886 	 * we could save a very bogus rtt.
887 	 *
888 	 * Don't update the default route's characteristics and don't
889 	 * update anything that the user "locked".
890 	 */
891 	if (tp->t_rttupdated >= 16) {
892 		u_long i = 0;
893 
894 		if (isipv6) {
895 			struct sockaddr_in6 *sin6;
896 
897 			if ((rt = inp->in6p_route.ro_rt) == NULL)
898 				goto no_valid_rt;
899 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
900 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
901 				goto no_valid_rt;
902 		} else
903 			if ((rt = inp->inp_route.ro_rt) == NULL ||
904 			    ((struct sockaddr_in *)rt_key(rt))->
905 			     sin_addr.s_addr == INADDR_ANY)
906 				goto no_valid_rt;
907 
908 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
909 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
910 			if (rt->rt_rmx.rmx_rtt && i)
911 				/*
912 				 * filter this update to half the old & half
913 				 * the new values, converting scale.
914 				 * See route.h and tcp_var.h for a
915 				 * description of the scaling constants.
916 				 */
917 				rt->rt_rmx.rmx_rtt =
918 				    (rt->rt_rmx.rmx_rtt + i) / 2;
919 			else
920 				rt->rt_rmx.rmx_rtt = i;
921 			tcpstat.tcps_cachedrtt++;
922 		}
923 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
924 			i = tp->t_rttvar *
925 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
926 			if (rt->rt_rmx.rmx_rttvar && i)
927 				rt->rt_rmx.rmx_rttvar =
928 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
929 			else
930 				rt->rt_rmx.rmx_rttvar = i;
931 			tcpstat.tcps_cachedrttvar++;
932 		}
933 		/*
934 		 * The old comment here said:
935 		 * update the pipelimit (ssthresh) if it has been updated
936 		 * already or if a pipesize was specified & the threshhold
937 		 * got below half the pipesize.  I.e., wait for bad news
938 		 * before we start updating, then update on both good
939 		 * and bad news.
940 		 *
941 		 * But we want to save the ssthresh even if no pipesize is
942 		 * specified explicitly in the route, because such
943 		 * connections still have an implicit pipesize specified
944 		 * by the global tcp_sendspace.  In the absence of a reliable
945 		 * way to calculate the pipesize, it will have to do.
946 		 */
947 		i = tp->snd_ssthresh;
948 		if (rt->rt_rmx.rmx_sendpipe != 0)
949 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
950 		else
951 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
952 		if (dosavessthresh ||
953 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
954 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
955 			/*
956 			 * convert the limit from user data bytes to
957 			 * packets then to packet data bytes.
958 			 */
959 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
960 			if (i < 2)
961 				i = 2;
962 			i *= tp->t_maxseg +
963 			     (isipv6 ?
964 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
965 			      sizeof(struct tcpiphdr));
966 			if (rt->rt_rmx.rmx_ssthresh)
967 				rt->rt_rmx.rmx_ssthresh =
968 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
969 			else
970 				rt->rt_rmx.rmx_ssthresh = i;
971 			tcpstat.tcps_cachedssthresh++;
972 		}
973 	}
974 
975 no_valid_rt:
976 	/* free the reassembly queue, if any */
977 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
978 		LIST_REMOVE(q, tqe_q);
979 		m_freem(q->tqe_m);
980 		kfree(q, M_TSEGQ);
981 		atomic_add_int(&tcp_reass_qsize, -1);
982 	}
983 	/* throw away SACK blocks in scoreboard*/
984 	if (TCP_DO_SACK(tp))
985 		tcp_sack_cleanup(&tp->scb);
986 
987 	inp->inp_ppcb = NULL;
988 	soisdisconnected(so);
989 	/* note: pcb detached later on */
990 
991 	tcp_destroy_timermsg(tp);
992 
993 	if (tp->t_flags & TF_LISTEN)
994 		syncache_destroy(tp);
995 
996 	/*
997 	 * NOTE:
998 	 * pcbdetach removes any wildcard hash entry on the current CPU.
999 	 */
1000 #ifdef INET6
1001 	if (isafinet6)
1002 		in6_pcbdetach(inp);
1003 	else
1004 #endif
1005 		in_pcbdetach(inp);
1006 
1007 	tcpstat.tcps_closed++;
1008 	return (NULL);
1009 }
1010 
1011 static __inline void
1012 tcp_drain_oncpu(struct inpcbhead *head)
1013 {
1014 	struct inpcb *marker;
1015 	struct inpcb *inpb;
1016 	struct tcpcb *tcpb;
1017 	struct tseg_qent *te;
1018 
1019 	/*
1020 	 * Allows us to block while running the list
1021 	 */
1022 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1023 	marker->inp_flags |= INP_PLACEMARKER;
1024 	LIST_INSERT_HEAD(head, marker, inp_list);
1025 
1026 	while ((inpb = LIST_NEXT(marker, inp_list)) != NULL) {
1027 		if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1028 		    (tcpb = intotcpcb(inpb)) != NULL &&
1029 		    (te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
1030 			LIST_REMOVE(te, tqe_q);
1031 			m_freem(te->tqe_m);
1032 			kfree(te, M_TSEGQ);
1033 			atomic_add_int(&tcp_reass_qsize, -1);
1034 			/* retry */
1035 		} else {
1036 			LIST_REMOVE(marker, inp_list);
1037 			LIST_INSERT_AFTER(inpb, marker, inp_list);
1038 		}
1039 	}
1040 	LIST_REMOVE(marker, inp_list);
1041 	kfree(marker, M_TEMP);
1042 }
1043 
1044 #ifdef SMP
1045 struct netmsg_tcp_drain {
1046 	struct netmsg_base	base;
1047 	struct inpcbhead	*nm_head;
1048 };
1049 
1050 static void
1051 tcp_drain_handler(netmsg_t msg)
1052 {
1053 	struct netmsg_tcp_drain *nm = (void *)msg;
1054 
1055 	tcp_drain_oncpu(nm->nm_head);
1056 	lwkt_replymsg(&nm->base.lmsg, 0);
1057 }
1058 #endif
1059 
1060 void
1061 tcp_drain(void)
1062 {
1063 #ifdef SMP
1064 	int cpu;
1065 #endif
1066 
1067 	if (!do_tcpdrain)
1068 		return;
1069 
1070 	/*
1071 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1072 	 * if there is one...
1073 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1074 	 *	reassembly queue should be flushed, but in a situation
1075 	 *	where we're really low on mbufs, this is potentially
1076 	 *	useful.
1077 	 */
1078 #ifdef SMP
1079 	for (cpu = 0; cpu < ncpus2; cpu++) {
1080 		struct netmsg_tcp_drain *nm;
1081 
1082 		if (cpu == mycpu->gd_cpuid) {
1083 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1084 		} else {
1085 			nm = kmalloc(sizeof(struct netmsg_tcp_drain),
1086 				     M_LWKTMSG, M_NOWAIT);
1087 			if (nm == NULL)
1088 				continue;
1089 			netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1090 				    0, tcp_drain_handler);
1091 			nm->nm_head = &tcbinfo[cpu].pcblisthead;
1092 			lwkt_sendmsg(cpu_portfn(cpu), &nm->base.lmsg);
1093 		}
1094 	}
1095 #else
1096 	tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1097 #endif
1098 }
1099 
1100 /*
1101  * Notify a tcp user of an asynchronous error;
1102  * store error as soft error, but wake up user
1103  * (for now, won't do anything until can select for soft error).
1104  *
1105  * Do not wake up user since there currently is no mechanism for
1106  * reporting soft errors (yet - a kqueue filter may be added).
1107  */
1108 static void
1109 tcp_notify(struct inpcb *inp, int error)
1110 {
1111 	struct tcpcb *tp = intotcpcb(inp);
1112 
1113 	/*
1114 	 * Ignore some errors if we are hooked up.
1115 	 * If connection hasn't completed, has retransmitted several times,
1116 	 * and receives a second error, give up now.  This is better
1117 	 * than waiting a long time to establish a connection that
1118 	 * can never complete.
1119 	 */
1120 	if (tp->t_state == TCPS_ESTABLISHED &&
1121 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1122 	      error == EHOSTDOWN)) {
1123 		return;
1124 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1125 	    tp->t_softerror)
1126 		tcp_drop(tp, error);
1127 	else
1128 		tp->t_softerror = error;
1129 #if 0
1130 	wakeup(&so->so_timeo);
1131 	sorwakeup(so);
1132 	sowwakeup(so);
1133 #endif
1134 }
1135 
1136 static int
1137 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1138 {
1139 	int error, i, n;
1140 	struct inpcb *marker;
1141 	struct inpcb *inp;
1142 	globaldata_t gd;
1143 	int origcpu, ccpu;
1144 
1145 	error = 0;
1146 	n = 0;
1147 
1148 	/*
1149 	 * The process of preparing the TCB list is too time-consuming and
1150 	 * resource-intensive to repeat twice on every request.
1151 	 */
1152 	if (req->oldptr == NULL) {
1153 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1154 			gd = globaldata_find(ccpu);
1155 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1156 		}
1157 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1158 		return (0);
1159 	}
1160 
1161 	if (req->newptr != NULL)
1162 		return (EPERM);
1163 
1164 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1165 	marker->inp_flags |= INP_PLACEMARKER;
1166 
1167 	/*
1168 	 * OK, now we're committed to doing something.  Run the inpcb list
1169 	 * for each cpu in the system and construct the output.  Use a
1170 	 * list placemarker to deal with list changes occuring during
1171 	 * copyout blockages (but otherwise depend on being on the correct
1172 	 * cpu to avoid races).
1173 	 */
1174 	origcpu = mycpu->gd_cpuid;
1175 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1176 		globaldata_t rgd;
1177 		caddr_t inp_ppcb;
1178 		struct xtcpcb xt;
1179 		int cpu_id;
1180 
1181 		cpu_id = (origcpu + ccpu) % ncpus;
1182 		if ((smp_active_mask & CPUMASK(cpu_id)) == 0)
1183 			continue;
1184 		rgd = globaldata_find(cpu_id);
1185 		lwkt_setcpu_self(rgd);
1186 
1187 		n = tcbinfo[cpu_id].ipi_count;
1188 
1189 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1190 		i = 0;
1191 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1192 			/*
1193 			 * process a snapshot of pcbs, ignoring placemarkers
1194 			 * and using our own to allow SYSCTL_OUT to block.
1195 			 */
1196 			LIST_REMOVE(marker, inp_list);
1197 			LIST_INSERT_AFTER(inp, marker, inp_list);
1198 
1199 			if (inp->inp_flags & INP_PLACEMARKER)
1200 				continue;
1201 			if (prison_xinpcb(req->td, inp))
1202 				continue;
1203 
1204 			xt.xt_len = sizeof xt;
1205 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1206 			inp_ppcb = inp->inp_ppcb;
1207 			if (inp_ppcb != NULL)
1208 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1209 			else
1210 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1211 			if (inp->inp_socket)
1212 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1213 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1214 				break;
1215 			++i;
1216 		}
1217 		LIST_REMOVE(marker, inp_list);
1218 		if (error == 0 && i < n) {
1219 			bzero(&xt, sizeof xt);
1220 			xt.xt_len = sizeof xt;
1221 			while (i < n) {
1222 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1223 				if (error)
1224 					break;
1225 				++i;
1226 			}
1227 		}
1228 	}
1229 
1230 	/*
1231 	 * Make sure we are on the same cpu we were on originally, since
1232 	 * higher level callers expect this.  Also don't pollute caches with
1233 	 * migrated userland data by (eventually) returning to userland
1234 	 * on a different cpu.
1235 	 */
1236 	lwkt_setcpu_self(globaldata_find(origcpu));
1237 	kfree(marker, M_TEMP);
1238 	return (error);
1239 }
1240 
1241 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1242 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1243 
1244 static int
1245 tcp_getcred(SYSCTL_HANDLER_ARGS)
1246 {
1247 	struct sockaddr_in addrs[2];
1248 	struct inpcb *inp;
1249 	int cpu;
1250 	int error;
1251 
1252 	error = priv_check(req->td, PRIV_ROOT);
1253 	if (error != 0)
1254 		return (error);
1255 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1256 	if (error != 0)
1257 		return (error);
1258 	crit_enter();
1259 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1260 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1261 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1262 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1263 	if (inp == NULL || inp->inp_socket == NULL) {
1264 		error = ENOENT;
1265 		goto out;
1266 	}
1267 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1268 out:
1269 	crit_exit();
1270 	return (error);
1271 }
1272 
1273 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1274     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1275 
1276 #ifdef INET6
1277 static int
1278 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1279 {
1280 	struct sockaddr_in6 addrs[2];
1281 	struct inpcb *inp;
1282 	int error;
1283 	boolean_t mapped = FALSE;
1284 
1285 	error = priv_check(req->td, PRIV_ROOT);
1286 	if (error != 0)
1287 		return (error);
1288 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1289 	if (error != 0)
1290 		return (error);
1291 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1292 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1293 			mapped = TRUE;
1294 		else
1295 			return (EINVAL);
1296 	}
1297 	crit_enter();
1298 	if (mapped) {
1299 		inp = in_pcblookup_hash(&tcbinfo[0],
1300 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1301 		    addrs[1].sin6_port,
1302 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1303 		    addrs[0].sin6_port,
1304 		    0, NULL);
1305 	} else {
1306 		inp = in6_pcblookup_hash(&tcbinfo[0],
1307 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1308 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1309 		    0, NULL);
1310 	}
1311 	if (inp == NULL || inp->inp_socket == NULL) {
1312 		error = ENOENT;
1313 		goto out;
1314 	}
1315 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1316 out:
1317 	crit_exit();
1318 	return (error);
1319 }
1320 
1321 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1322 	    0, 0,
1323 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1324 #endif
1325 
1326 struct netmsg_tcp_notify {
1327 	struct netmsg_base base;
1328 	void		(*nm_notify)(struct inpcb *, int);
1329 	struct in_addr	nm_faddr;
1330 	int		nm_arg;
1331 };
1332 
1333 static void
1334 tcp_notifyall_oncpu(netmsg_t msg)
1335 {
1336 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1337 	int nextcpu;
1338 
1339 	in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nm->nm_faddr,
1340 			nm->nm_arg, nm->nm_notify);
1341 
1342 	nextcpu = mycpuid + 1;
1343 	if (nextcpu < ncpus2)
1344 		lwkt_forwardmsg(cpu_portfn(nextcpu), &nm->base.lmsg);
1345 	else
1346 		lwkt_replymsg(&nm->base.lmsg, 0);
1347 }
1348 
1349 void
1350 tcp_ctlinput(netmsg_t msg)
1351 {
1352 	int cmd = msg->ctlinput.nm_cmd;
1353 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1354 	struct ip *ip = msg->ctlinput.nm_extra;
1355 	struct tcphdr *th;
1356 	struct in_addr faddr;
1357 	struct inpcb *inp;
1358 	struct tcpcb *tp;
1359 	void (*notify)(struct inpcb *, int) = tcp_notify;
1360 	tcp_seq icmpseq;
1361 	int arg, cpu;
1362 
1363 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1364 		goto done;
1365 	}
1366 
1367 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1368 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1369 		goto done;
1370 
1371 	arg = inetctlerrmap[cmd];
1372 	if (cmd == PRC_QUENCH) {
1373 		notify = tcp_quench;
1374 	} else if (icmp_may_rst &&
1375 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1376 		    cmd == PRC_UNREACH_PORT ||
1377 		    cmd == PRC_TIMXCEED_INTRANS) &&
1378 		   ip != NULL) {
1379 		notify = tcp_drop_syn_sent;
1380 	} else if (cmd == PRC_MSGSIZE) {
1381 		struct icmp *icmp = (struct icmp *)
1382 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1383 
1384 		arg = ntohs(icmp->icmp_nextmtu);
1385 		notify = tcp_mtudisc;
1386 	} else if (PRC_IS_REDIRECT(cmd)) {
1387 		ip = NULL;
1388 		notify = in_rtchange;
1389 	} else if (cmd == PRC_HOSTDEAD) {
1390 		ip = NULL;
1391 	}
1392 
1393 	if (ip != NULL) {
1394 		crit_enter();
1395 		th = (struct tcphdr *)((caddr_t)ip +
1396 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1397 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1398 				  ip->ip_src.s_addr, th->th_sport);
1399 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1400 					ip->ip_src, th->th_sport, 0, NULL);
1401 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1402 			icmpseq = htonl(th->th_seq);
1403 			tp = intotcpcb(inp);
1404 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1405 			    SEQ_LT(icmpseq, tp->snd_max))
1406 				(*notify)(inp, arg);
1407 		} else {
1408 			struct in_conninfo inc;
1409 
1410 			inc.inc_fport = th->th_dport;
1411 			inc.inc_lport = th->th_sport;
1412 			inc.inc_faddr = faddr;
1413 			inc.inc_laddr = ip->ip_src;
1414 #ifdef INET6
1415 			inc.inc_isipv6 = 0;
1416 #endif
1417 			syncache_unreach(&inc, th);
1418 		}
1419 		crit_exit();
1420 	} else {
1421 		struct netmsg_tcp_notify *nm;
1422 
1423 		KKASSERT(&curthread->td_msgport == cpu_portfn(0));
1424 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1425 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1426 			    0, tcp_notifyall_oncpu);
1427 		nm->nm_faddr = faddr;
1428 		nm->nm_arg = arg;
1429 		nm->nm_notify = notify;
1430 
1431 		lwkt_sendmsg(cpu_portfn(0), &nm->base.lmsg);
1432 	}
1433 done:
1434 	lwkt_replymsg(&msg->lmsg, 0);
1435 }
1436 
1437 #ifdef INET6
1438 
1439 void
1440 tcp6_ctlinput(netmsg_t msg)
1441 {
1442 	int cmd = msg->ctlinput.nm_cmd;
1443 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1444 	void *d = msg->ctlinput.nm_extra;
1445 	struct tcphdr th;
1446 	void (*notify) (struct inpcb *, int) = tcp_notify;
1447 	struct ip6_hdr *ip6;
1448 	struct mbuf *m;
1449 	struct ip6ctlparam *ip6cp = NULL;
1450 	const struct sockaddr_in6 *sa6_src = NULL;
1451 	int off;
1452 	struct tcp_portonly {
1453 		u_int16_t th_sport;
1454 		u_int16_t th_dport;
1455 	} *thp;
1456 	int arg;
1457 
1458 	if (sa->sa_family != AF_INET6 ||
1459 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1460 		goto out;
1461 	}
1462 
1463 	arg = 0;
1464 	if (cmd == PRC_QUENCH)
1465 		notify = tcp_quench;
1466 	else if (cmd == PRC_MSGSIZE) {
1467 		struct ip6ctlparam *ip6cp = d;
1468 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1469 
1470 		arg = ntohl(icmp6->icmp6_mtu);
1471 		notify = tcp_mtudisc;
1472 	} else if (!PRC_IS_REDIRECT(cmd) &&
1473 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1474 		goto out;
1475 	}
1476 
1477 	/* if the parameter is from icmp6, decode it. */
1478 	if (d != NULL) {
1479 		ip6cp = (struct ip6ctlparam *)d;
1480 		m = ip6cp->ip6c_m;
1481 		ip6 = ip6cp->ip6c_ip6;
1482 		off = ip6cp->ip6c_off;
1483 		sa6_src = ip6cp->ip6c_src;
1484 	} else {
1485 		m = NULL;
1486 		ip6 = NULL;
1487 		off = 0;	/* fool gcc */
1488 		sa6_src = &sa6_any;
1489 	}
1490 
1491 	if (ip6 != NULL) {
1492 		struct in_conninfo inc;
1493 		/*
1494 		 * XXX: We assume that when IPV6 is non NULL,
1495 		 * M and OFF are valid.
1496 		 */
1497 
1498 		/* check if we can safely examine src and dst ports */
1499 		if (m->m_pkthdr.len < off + sizeof *thp)
1500 			goto out;
1501 
1502 		bzero(&th, sizeof th);
1503 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1504 
1505 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1506 		    (struct sockaddr *)ip6cp->ip6c_src,
1507 		    th.th_sport, cmd, arg, notify);
1508 
1509 		inc.inc_fport = th.th_dport;
1510 		inc.inc_lport = th.th_sport;
1511 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1512 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1513 		inc.inc_isipv6 = 1;
1514 		syncache_unreach(&inc, &th);
1515 	} else {
1516 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1517 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1518 	}
1519 out:
1520 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1521 }
1522 
1523 #endif
1524 
1525 /*
1526  * Following is where TCP initial sequence number generation occurs.
1527  *
1528  * There are two places where we must use initial sequence numbers:
1529  * 1.  In SYN-ACK packets.
1530  * 2.  In SYN packets.
1531  *
1532  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1533  * tcp_syncache.c for details.
1534  *
1535  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1536  * depends on this property.  In addition, these ISNs should be
1537  * unguessable so as to prevent connection hijacking.  To satisfy
1538  * the requirements of this situation, the algorithm outlined in
1539  * RFC 1948 is used to generate sequence numbers.
1540  *
1541  * Implementation details:
1542  *
1543  * Time is based off the system timer, and is corrected so that it
1544  * increases by one megabyte per second.  This allows for proper
1545  * recycling on high speed LANs while still leaving over an hour
1546  * before rollover.
1547  *
1548  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1549  * between seeding of isn_secret.  This is normally set to zero,
1550  * as reseeding should not be necessary.
1551  *
1552  */
1553 
1554 #define	ISN_BYTES_PER_SECOND 1048576
1555 
1556 u_char isn_secret[32];
1557 int isn_last_reseed;
1558 MD5_CTX isn_ctx;
1559 
1560 tcp_seq
1561 tcp_new_isn(struct tcpcb *tp)
1562 {
1563 	u_int32_t md5_buffer[4];
1564 	tcp_seq new_isn;
1565 
1566 	/* Seed if this is the first use, reseed if requested. */
1567 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1568 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1569 		< (u_int)ticks))) {
1570 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1571 		isn_last_reseed = ticks;
1572 	}
1573 
1574 	/* Compute the md5 hash and return the ISN. */
1575 	MD5Init(&isn_ctx);
1576 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1577 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1578 #ifdef INET6
1579 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1580 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1581 			  sizeof(struct in6_addr));
1582 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1583 			  sizeof(struct in6_addr));
1584 	} else
1585 #endif
1586 	{
1587 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1588 			  sizeof(struct in_addr));
1589 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1590 			  sizeof(struct in_addr));
1591 	}
1592 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1593 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1594 	new_isn = (tcp_seq) md5_buffer[0];
1595 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1596 	return (new_isn);
1597 }
1598 
1599 /*
1600  * When a source quench is received, close congestion window
1601  * to one segment.  We will gradually open it again as we proceed.
1602  */
1603 void
1604 tcp_quench(struct inpcb *inp, int error)
1605 {
1606 	struct tcpcb *tp = intotcpcb(inp);
1607 
1608 	if (tp != NULL) {
1609 		tp->snd_cwnd = tp->t_maxseg;
1610 		tp->snd_wacked = 0;
1611 	}
1612 }
1613 
1614 /*
1615  * When a specific ICMP unreachable message is received and the
1616  * connection state is SYN-SENT, drop the connection.  This behavior
1617  * is controlled by the icmp_may_rst sysctl.
1618  */
1619 void
1620 tcp_drop_syn_sent(struct inpcb *inp, int error)
1621 {
1622 	struct tcpcb *tp = intotcpcb(inp);
1623 
1624 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1625 		tcp_drop(tp, error);
1626 }
1627 
1628 /*
1629  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1630  * based on the new value in the route.  Also nudge TCP to send something,
1631  * since we know the packet we just sent was dropped.
1632  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1633  */
1634 void
1635 tcp_mtudisc(struct inpcb *inp, int mtu)
1636 {
1637 	struct tcpcb *tp = intotcpcb(inp);
1638 	struct rtentry *rt;
1639 	struct socket *so = inp->inp_socket;
1640 	int maxopd, mss;
1641 #ifdef INET6
1642 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1643 #else
1644 	const boolean_t isipv6 = FALSE;
1645 #endif
1646 
1647 	if (tp == NULL)
1648 		return;
1649 
1650 	/*
1651 	 * If no MTU is provided in the ICMP message, use the
1652 	 * next lower likely value, as specified in RFC 1191.
1653 	 */
1654 	if (mtu == 0) {
1655 		int oldmtu;
1656 
1657 		oldmtu = tp->t_maxopd +
1658 		    (isipv6 ?
1659 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1660 		     sizeof(struct tcpiphdr));
1661 		mtu = ip_next_mtu(oldmtu, 0);
1662 	}
1663 
1664 	if (isipv6)
1665 		rt = tcp_rtlookup6(&inp->inp_inc);
1666 	else
1667 		rt = tcp_rtlookup(&inp->inp_inc);
1668 	if (rt != NULL) {
1669 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1670 			mtu = rt->rt_rmx.rmx_mtu;
1671 
1672 		maxopd = mtu -
1673 		    (isipv6 ?
1674 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1675 		     sizeof(struct tcpiphdr));
1676 
1677 		/*
1678 		 * XXX - The following conditional probably violates the TCP
1679 		 * spec.  The problem is that, since we don't know the
1680 		 * other end's MSS, we are supposed to use a conservative
1681 		 * default.  But, if we do that, then MTU discovery will
1682 		 * never actually take place, because the conservative
1683 		 * default is much less than the MTUs typically seen
1684 		 * on the Internet today.  For the moment, we'll sweep
1685 		 * this under the carpet.
1686 		 *
1687 		 * The conservative default might not actually be a problem
1688 		 * if the only case this occurs is when sending an initial
1689 		 * SYN with options and data to a host we've never talked
1690 		 * to before.  Then, they will reply with an MSS value which
1691 		 * will get recorded and the new parameters should get
1692 		 * recomputed.  For Further Study.
1693 		 */
1694 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1695 			maxopd = rt->rt_rmx.rmx_mssopt;
1696 	} else
1697 		maxopd = mtu -
1698 		    (isipv6 ?
1699 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1700 		     sizeof(struct tcpiphdr));
1701 
1702 	if (tp->t_maxopd <= maxopd)
1703 		return;
1704 	tp->t_maxopd = maxopd;
1705 
1706 	mss = maxopd;
1707 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1708 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1709 		mss -= TCPOLEN_TSTAMP_APPA;
1710 
1711 	/* round down to multiple of MCLBYTES */
1712 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1713 	if (mss > MCLBYTES)
1714 		mss &= ~(MCLBYTES - 1);
1715 #else
1716 	if (mss > MCLBYTES)
1717 		mss = (mss / MCLBYTES) * MCLBYTES;
1718 #endif
1719 
1720 	if (so->so_snd.ssb_hiwat < mss)
1721 		mss = so->so_snd.ssb_hiwat;
1722 
1723 	tp->t_maxseg = mss;
1724 	tp->t_rtttime = 0;
1725 	tp->snd_nxt = tp->snd_una;
1726 	tcp_output(tp);
1727 	tcpstat.tcps_mturesent++;
1728 }
1729 
1730 /*
1731  * Look-up the routing entry to the peer of this inpcb.  If no route
1732  * is found and it cannot be allocated the return NULL.  This routine
1733  * is called by TCP routines that access the rmx structure and by tcp_mss
1734  * to get the interface MTU.
1735  */
1736 struct rtentry *
1737 tcp_rtlookup(struct in_conninfo *inc)
1738 {
1739 	struct route *ro = &inc->inc_route;
1740 
1741 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1742 		/* No route yet, so try to acquire one */
1743 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1744 			/*
1745 			 * unused portions of the structure MUST be zero'd
1746 			 * out because rtalloc() treats it as opaque data
1747 			 */
1748 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1749 			ro->ro_dst.sa_family = AF_INET;
1750 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1751 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1752 			    inc->inc_faddr;
1753 			rtalloc(ro);
1754 		}
1755 	}
1756 	return (ro->ro_rt);
1757 }
1758 
1759 #ifdef INET6
1760 struct rtentry *
1761 tcp_rtlookup6(struct in_conninfo *inc)
1762 {
1763 	struct route_in6 *ro6 = &inc->inc6_route;
1764 
1765 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1766 		/* No route yet, so try to acquire one */
1767 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1768 			/*
1769 			 * unused portions of the structure MUST be zero'd
1770 			 * out because rtalloc() treats it as opaque data
1771 			 */
1772 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1773 			ro6->ro_dst.sin6_family = AF_INET6;
1774 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1775 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1776 			rtalloc((struct route *)ro6);
1777 		}
1778 	}
1779 	return (ro6->ro_rt);
1780 }
1781 #endif
1782 
1783 #ifdef IPSEC
1784 /* compute ESP/AH header size for TCP, including outer IP header. */
1785 size_t
1786 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1787 {
1788 	struct inpcb *inp;
1789 	struct mbuf *m;
1790 	size_t hdrsiz;
1791 	struct ip *ip;
1792 	struct tcphdr *th;
1793 
1794 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1795 		return (0);
1796 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1797 	if (!m)
1798 		return (0);
1799 
1800 #ifdef INET6
1801 	if (inp->inp_vflag & INP_IPV6) {
1802 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1803 
1804 		th = (struct tcphdr *)(ip6 + 1);
1805 		m->m_pkthdr.len = m->m_len =
1806 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1807 		tcp_fillheaders(tp, ip6, th);
1808 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1809 	} else
1810 #endif
1811 	{
1812 		ip = mtod(m, struct ip *);
1813 		th = (struct tcphdr *)(ip + 1);
1814 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1815 		tcp_fillheaders(tp, ip, th);
1816 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1817 	}
1818 
1819 	m_free(m);
1820 	return (hdrsiz);
1821 }
1822 #endif
1823 
1824 /*
1825  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1826  *
1827  * This code attempts to calculate the bandwidth-delay product as a
1828  * means of determining the optimal window size to maximize bandwidth,
1829  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1830  * routers.  This code also does a fairly good job keeping RTTs in check
1831  * across slow links like modems.  We implement an algorithm which is very
1832  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1833  * transmitter side of a TCP connection and so only effects the transmit
1834  * side of the connection.
1835  *
1836  * BACKGROUND:  TCP makes no provision for the management of buffer space
1837  * at the end points or at the intermediate routers and switches.  A TCP
1838  * stream, whether using NewReno or not, will eventually buffer as
1839  * many packets as it is able and the only reason this typically works is
1840  * due to the fairly small default buffers made available for a connection
1841  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1842  * scaling it is now fairly easy for even a single TCP connection to blow-out
1843  * all available buffer space not only on the local interface, but on
1844  * intermediate routers and switches as well.  NewReno makes a misguided
1845  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1846  * then backing off, then steadily increasing the window again until another
1847  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1848  * is only made worse as network loads increase and the idea of intentionally
1849  * blowing out network buffers is, frankly, a terrible way to manage network
1850  * resources.
1851  *
1852  * It is far better to limit the transmit window prior to the failure
1853  * condition being achieved.  There are two general ways to do this:  First
1854  * you can 'scan' through different transmit window sizes and locate the
1855  * point where the RTT stops increasing, indicating that you have filled the
1856  * pipe, then scan backwards until you note that RTT stops decreasing, then
1857  * repeat ad-infinitum.  This method works in principle but has severe
1858  * implementation issues due to RTT variances, timer granularity, and
1859  * instability in the algorithm which can lead to many false positives and
1860  * create oscillations as well as interact badly with other TCP streams
1861  * implementing the same algorithm.
1862  *
1863  * The second method is to limit the window to the bandwidth delay product
1864  * of the link.  This is the method we implement.  RTT variances and our
1865  * own manipulation of the congestion window, bwnd, can potentially
1866  * destabilize the algorithm.  For this reason we have to stabilize the
1867  * elements used to calculate the window.  We do this by using the minimum
1868  * observed RTT, the long term average of the observed bandwidth, and
1869  * by adding two segments worth of slop.  It isn't perfect but it is able
1870  * to react to changing conditions and gives us a very stable basis on
1871  * which to extend the algorithm.
1872  */
1873 void
1874 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1875 {
1876 	u_long bw;
1877 	u_long bwnd;
1878 	int save_ticks;
1879 	int delta_ticks;
1880 
1881 	/*
1882 	 * If inflight_enable is disabled in the middle of a tcp connection,
1883 	 * make sure snd_bwnd is effectively disabled.
1884 	 */
1885 	if (!tcp_inflight_enable) {
1886 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1887 		tp->snd_bandwidth = 0;
1888 		return;
1889 	}
1890 
1891 	/*
1892 	 * Validate the delta time.  If a connection is new or has been idle
1893 	 * a long time we have to reset the bandwidth calculator.
1894 	 */
1895 	save_ticks = ticks;
1896 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1897 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1898 		tp->t_bw_rtttime = ticks;
1899 		tp->t_bw_rtseq = ack_seq;
1900 		if (tp->snd_bandwidth == 0)
1901 			tp->snd_bandwidth = tcp_inflight_min;
1902 		return;
1903 	}
1904 	if (delta_ticks == 0)
1905 		return;
1906 
1907 	/*
1908 	 * Sanity check, plus ignore pure window update acks.
1909 	 */
1910 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1911 		return;
1912 
1913 	/*
1914 	 * Figure out the bandwidth.  Due to the tick granularity this
1915 	 * is a very rough number and it MUST be averaged over a fairly
1916 	 * long period of time.  XXX we need to take into account a link
1917 	 * that is not using all available bandwidth, but for now our
1918 	 * slop will ramp us up if this case occurs and the bandwidth later
1919 	 * increases.
1920 	 */
1921 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1922 	tp->t_bw_rtttime = save_ticks;
1923 	tp->t_bw_rtseq = ack_seq;
1924 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1925 
1926 	tp->snd_bandwidth = bw;
1927 
1928 	/*
1929 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1930 	 * segments.  The additional slop puts us squarely in the sweet
1931 	 * spot and also handles the bandwidth run-up case.  Without the
1932 	 * slop we could be locking ourselves into a lower bandwidth.
1933 	 *
1934 	 * Situations Handled:
1935 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1936 	 *	    high speed LANs, allowing larger TCP buffers to be
1937 	 *	    specified, and also does a good job preventing
1938 	 *	    over-queueing of packets over choke points like modems
1939 	 *	    (at least for the transmit side).
1940 	 *
1941 	 *	(2) Is able to handle changing network loads (bandwidth
1942 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1943 	 *	    increases).
1944 	 *
1945 	 *	(3) Theoretically should stabilize in the face of multiple
1946 	 *	    connections implementing the same algorithm (this may need
1947 	 *	    a little work).
1948 	 *
1949 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1950 	 *	    be adjusted with a sysctl but typically only needs to be on
1951 	 *	    very slow connections.  A value no smaller then 5 should
1952 	 *	    be used, but only reduce this default if you have no other
1953 	 *	    choice.
1954 	 */
1955 
1956 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1957 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1958 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1959 #undef USERTT
1960 
1961 	if (tcp_inflight_debug > 0) {
1962 		static int ltime;
1963 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1964 			ltime = ticks;
1965 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1966 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1967 		}
1968 	}
1969 	if ((long)bwnd < tcp_inflight_min)
1970 		bwnd = tcp_inflight_min;
1971 	if (bwnd > tcp_inflight_max)
1972 		bwnd = tcp_inflight_max;
1973 	if ((long)bwnd < tp->t_maxseg * 2)
1974 		bwnd = tp->t_maxseg * 2;
1975 	tp->snd_bwnd = bwnd;
1976 }
1977 
1978 static void
1979 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
1980 {
1981 	struct rtentry *rt;
1982 	struct inpcb *inp = tp->t_inpcb;
1983 #ifdef INET6
1984 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
1985 #else
1986 	const boolean_t isipv6 = FALSE;
1987 #endif
1988 
1989 	/* XXX */
1990 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
1991 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
1992 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
1993 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
1994 
1995 	if (isipv6)
1996 		rt = tcp_rtlookup6(&inp->inp_inc);
1997 	else
1998 		rt = tcp_rtlookup(&inp->inp_inc);
1999 	if (rt == NULL ||
2000 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2001 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2002 		*maxsegs = tcp_iw_maxsegs;
2003 		*capsegs = tcp_iw_capsegs;
2004 		return;
2005 	}
2006 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2007 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2008 }
2009 
2010 u_long
2011 tcp_initial_window(struct tcpcb *tp)
2012 {
2013 	if (tcp_do_rfc3390) {
2014 		/*
2015 		 * RFC3390:
2016 		 * "If the SYN or SYN/ACK is lost, the initial window
2017 		 *  used by a sender after a correctly transmitted SYN
2018 		 *  MUST be one segment consisting of MSS bytes."
2019 		 *
2020 		 * However, we do something a little bit more aggressive
2021 		 * then RFC3390 here:
2022 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2023 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2024 		 *   because when RFC3390 is published, the initial RTO is
2025 		 *   still 3 seconds (the threshold we test here), while
2026 		 *   after RFC6298, the initial RTO is 1 second.  This
2027 		 *   behaviour probably still falls within the spirit of
2028 		 *   RFC3390.
2029 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2030 		 *   Mainly to avoid sender and receiver deadlock until
2031 		 *   delayed ACK timer expires.  And even RFC2581 does not
2032 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2033 		 *   timeout.
2034 		 *
2035 		 * See also:
2036 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2037 		 */
2038 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2039 			return (2 * tp->t_maxseg);
2040 		} else {
2041 			u_long maxsegs, capsegs;
2042 
2043 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2044 			return min(maxsegs * tp->t_maxseg,
2045 				   max(2 * tp->t_maxseg, capsegs * 1460));
2046 		}
2047 	} else {
2048 		/*
2049 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2050 		 *
2051 		 * Mainly to avoid sender and receiver deadlock
2052 		 * until delayed ACK timer expires.
2053 		 */
2054 		return (2 * tp->t_maxseg);
2055 	}
2056 }
2057 
2058 #ifdef TCP_SIGNATURE
2059 /*
2060  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2061  *
2062  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2063  * When called from tcp_input(), we can be sure that th_sum has been
2064  * zeroed out and verified already.
2065  *
2066  * Return 0 if successful, otherwise return -1.
2067  *
2068  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2069  * search with the destination IP address, and a 'magic SPI' to be
2070  * determined by the application. This is hardcoded elsewhere to 1179
2071  * right now. Another branch of this code exists which uses the SPD to
2072  * specify per-application flows but it is unstable.
2073  */
2074 int
2075 tcpsignature_compute(
2076 	struct mbuf *m,		/* mbuf chain */
2077 	int len,		/* length of TCP data */
2078 	int optlen,		/* length of TCP options */
2079 	u_char *buf,		/* storage for MD5 digest */
2080 	u_int direction)	/* direction of flow */
2081 {
2082 	struct ippseudo ippseudo;
2083 	MD5_CTX ctx;
2084 	int doff;
2085 	struct ip *ip;
2086 	struct ipovly *ipovly;
2087 	struct secasvar *sav;
2088 	struct tcphdr *th;
2089 #ifdef INET6
2090 	struct ip6_hdr *ip6;
2091 	struct in6_addr in6;
2092 	uint32_t plen;
2093 	uint16_t nhdr;
2094 #endif /* INET6 */
2095 	u_short savecsum;
2096 
2097 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2098 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2099 	/*
2100 	 * Extract the destination from the IP header in the mbuf.
2101 	 */
2102 	ip = mtod(m, struct ip *);
2103 #ifdef INET6
2104 	ip6 = NULL;     /* Make the compiler happy. */
2105 #endif /* INET6 */
2106 	/*
2107 	 * Look up an SADB entry which matches the address found in
2108 	 * the segment.
2109 	 */
2110 	switch (IP_VHL_V(ip->ip_vhl)) {
2111 	case IPVERSION:
2112 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2113 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2114 		break;
2115 #ifdef INET6
2116 	case (IPV6_VERSION >> 4):
2117 		ip6 = mtod(m, struct ip6_hdr *);
2118 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2119 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2120 		break;
2121 #endif /* INET6 */
2122 	default:
2123 		return (EINVAL);
2124 		/* NOTREACHED */
2125 		break;
2126 	}
2127 	if (sav == NULL) {
2128 		kprintf("%s: SADB lookup failed\n", __func__);
2129 		return (EINVAL);
2130 	}
2131 	MD5Init(&ctx);
2132 
2133 	/*
2134 	 * Step 1: Update MD5 hash with IP pseudo-header.
2135 	 *
2136 	 * XXX The ippseudo header MUST be digested in network byte order,
2137 	 * or else we'll fail the regression test. Assume all fields we've
2138 	 * been doing arithmetic on have been in host byte order.
2139 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2140 	 * tcp_output(), the underlying ip_len member has not yet been set.
2141 	 */
2142 	switch (IP_VHL_V(ip->ip_vhl)) {
2143 	case IPVERSION:
2144 		ipovly = (struct ipovly *)ip;
2145 		ippseudo.ippseudo_src = ipovly->ih_src;
2146 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2147 		ippseudo.ippseudo_pad = 0;
2148 		ippseudo.ippseudo_p = IPPROTO_TCP;
2149 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2150 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2151 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2152 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2153 		break;
2154 #ifdef INET6
2155 	/*
2156 	 * RFC 2385, 2.0  Proposal
2157 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2158 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2159 	 * extended next header value (to form 32 bits), and 32-bit segment
2160 	 * length.
2161 	 * Note: Upper-Layer Packet Length comes before Next Header.
2162 	 */
2163 	case (IPV6_VERSION >> 4):
2164 		in6 = ip6->ip6_src;
2165 		in6_clearscope(&in6);
2166 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2167 		in6 = ip6->ip6_dst;
2168 		in6_clearscope(&in6);
2169 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2170 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2171 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2172 		nhdr = 0;
2173 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2174 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2175 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2176 		nhdr = IPPROTO_TCP;
2177 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2178 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2179 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2180 		break;
2181 #endif /* INET6 */
2182 	default:
2183 		return (EINVAL);
2184 		/* NOTREACHED */
2185 		break;
2186 	}
2187 	/*
2188 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2189 	 * The TCP checksum must be set to zero.
2190 	 */
2191 	savecsum = th->th_sum;
2192 	th->th_sum = 0;
2193 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2194 	th->th_sum = savecsum;
2195 	/*
2196 	 * Step 3: Update MD5 hash with TCP segment data.
2197 	 *         Use m_apply() to avoid an early m_pullup().
2198 	 */
2199 	if (len > 0)
2200 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2201 	/*
2202 	 * Step 4: Update MD5 hash with shared secret.
2203 	 */
2204 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2205 	MD5Final(buf, &ctx);
2206 	key_sa_recordxfer(sav, m);
2207 	key_freesav(sav);
2208 	return (0);
2209 }
2210 
2211 int
2212 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2213 {
2214 
2215 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2216 	return (0);
2217 }
2218 #endif /* TCP_SIGNATURE */
2219