xref: /dflybsd-src/sys/netinet/tcp_subr.c (revision bf22d4c1f95f57623b2b3030738e116d3a547284)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
35  * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.30 2004/04/28 08:00:35 hsu Exp $
36  */
37 
38 #include "opt_compat.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_tcpdebug.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/kernel.h>
47 #include <sys/sysctl.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #ifdef INET6
51 #include <sys/domain.h>
52 #endif
53 #include <sys/proc.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/protosw.h>
57 #include <sys/random.h>
58 #include <sys/in_cksum.h>
59 
60 #include <vm/vm_zone.h>
61 
62 #include <net/route.h>
63 #include <net/if.h>
64 #include <net/netisr.h>
65 
66 #define	_IP_VHL
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <netinet/ip6.h>
71 #include <netinet/in_pcb.h>
72 #include <netinet6/in6_pcb.h>
73 #include <netinet/in_var.h>
74 #include <netinet/ip_var.h>
75 #include <netinet6/ip6_var.h>
76 #include <netinet/tcp.h>
77 #include <netinet/tcp_fsm.h>
78 #include <netinet/tcp_seq.h>
79 #include <netinet/tcp_timer.h>
80 #include <netinet/tcp_var.h>
81 #include <netinet6/tcp6_var.h>
82 #include <netinet/tcpip.h>
83 #ifdef TCPDEBUG
84 #include <netinet/tcp_debug.h>
85 #endif
86 #include <netinet6/ip6protosw.h>
87 
88 #ifdef IPSEC
89 #include <netinet6/ipsec.h>
90 #ifdef INET6
91 #include <netinet6/ipsec6.h>
92 #endif
93 #endif
94 
95 #ifdef FAST_IPSEC
96 #include <netipsec/ipsec.h>
97 #ifdef INET6
98 #include <netipsec/ipsec6.h>
99 #endif
100 #define	IPSEC
101 #endif
102 
103 #include <sys/md5.h>
104 
105 #include <sys/msgport2.h>
106 
107 int tcp_mssdflt = TCP_MSS;
108 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
109     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
110 
111 #ifdef INET6
112 int tcp_v6mssdflt = TCP6_MSS;
113 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
114     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
115 #endif
116 
117 #if 0
118 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
119 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
120     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
121 #endif
122 
123 int tcp_do_rfc1323 = 1;
124 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
125     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
126 
127 int tcp_do_rfc1644 = 0;
128 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
129     &tcp_do_rfc1644, 0, "Enable rfc1644 (TTCP) extensions");
130 
131 static int tcp_tcbhashsize = 0;
132 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
133      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
134 
135 static int do_tcpdrain = 1;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
137      "Enable tcp_drain routine for extra help when low on mbufs");
138 
139 /* XXX JH */
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
141     &tcbinfo[0].ipi_count, 0, "Number of active PCBs");
142 
143 static int icmp_may_rst = 1;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
145     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
146 
147 static int tcp_isn_reseed_interval = 0;
148 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
149     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
150 
151 /*
152  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
153  * 1024 exists only for debugging.  A good production default would be
154  * something like 6100.
155  */
156 static int tcp_inflight_enable = 0;
157 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
158     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
159 
160 static int tcp_inflight_debug = 0;
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
162     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
163 
164 static int tcp_inflight_min = 6144;
165 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
166     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
167 
168 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
170     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
171 
172 static int tcp_inflight_stab = 20;
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
174     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 2 packets)");
175 
176 static void tcp_cleartaocache (void);
177 static void tcp_notify (struct inpcb *, int);
178 
179 struct tcp_stats tcpstats_ary[MAXCPU];
180 #ifdef SMP
181 static int
182 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
183 {
184 	int cpu, error = 0;
185 
186 	for (cpu = 0; cpu < ncpus; ++cpu) {
187 		if ((error = SYSCTL_OUT(req, (void *)&tcpstats_ary[cpu],
188 					sizeof(struct tcp_stats))))
189 			break;
190 		if ((error = SYSCTL_IN(req, (void *)&tcpstats_ary[cpu],
191 				       sizeof(struct tcp_stats))))
192 			break;
193 	}
194 
195 	return (error);
196 }
197 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
198     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
199 #else
200 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
201     &tcpstat, tcp_stats, "TCP statistics");
202 #endif
203 
204 /*
205  * Target size of TCP PCB hash tables. Must be a power of two.
206  *
207  * Note that this can be overridden by the kernel environment
208  * variable net.inet.tcp.tcbhashsize
209  */
210 #ifndef TCBHASHSIZE
211 #define	TCBHASHSIZE	512
212 #endif
213 
214 /*
215  * This is the actual shape of what we allocate using the zone
216  * allocator.  Doing it this way allows us to protect both structures
217  * using the same generation count, and also eliminates the overhead
218  * of allocating tcpcbs separately.  By hiding the structure here,
219  * we avoid changing most of the rest of the code (although it needs
220  * to be changed, eventually, for greater efficiency).
221  */
222 #define	ALIGNMENT	32
223 #define	ALIGNM1		(ALIGNMENT - 1)
224 struct	inp_tp {
225 	union {
226 		struct	inpcb inp;
227 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
228 	} inp_tp_u;
229 	struct	tcpcb tcb;
230 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
231 	struct	callout inp_tp_delack;
232 };
233 #undef ALIGNMENT
234 #undef ALIGNM1
235 
236 /*
237  * Tcp initialization
238  */
239 void
240 tcp_init()
241 {
242 	struct inpcbporthead *porthashbase;
243 	u_long porthashmask;
244 	struct vm_zone *ipi_zone;
245 	int hashsize = TCBHASHSIZE;
246 	int cpu;
247 
248 	tcp_ccgen = 1;
249 	tcp_cleartaocache();
250 
251 	tcp_delacktime = TCPTV_DELACK;
252 	tcp_keepinit = TCPTV_KEEP_INIT;
253 	tcp_keepidle = TCPTV_KEEP_IDLE;
254 	tcp_keepintvl = TCPTV_KEEPINTVL;
255 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
256 	tcp_msl = TCPTV_MSL;
257 	tcp_rexmit_min = TCPTV_MIN;
258 	tcp_rexmit_slop = TCPTV_CPU_VAR;
259 
260 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
261 	if (!powerof2(hashsize)) {
262 		printf("WARNING: TCB hash size not a power of 2\n");
263 		hashsize = 512; /* safe default */
264 	}
265 	tcp_tcbhashsize = hashsize;
266 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
267 	ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
268 			 ZONE_INTERRUPT, 0);
269 
270 	for (cpu = 0; cpu < ncpus2; cpu++) {
271 		LIST_INIT(&tcbinfo[cpu].listhead);
272 		tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
273 		    &tcbinfo[cpu].hashmask);
274 		tcbinfo[cpu].porthashbase = porthashbase;
275 		tcbinfo[cpu].porthashmask = porthashmask;
276 		tcbinfo[cpu].wildcardhashbase = hashinit(hashsize, M_PCB,
277 		    &tcbinfo[cpu].wildcardhashmask);
278 		tcbinfo[cpu].ipi_zone = ipi_zone;
279 	}
280 
281 	tcp_reass_maxseg = nmbclusters / 16;
282 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
283 
284 #ifdef INET6
285 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
286 #else
287 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
288 #endif
289 	if (max_protohdr < TCP_MINPROTOHDR)
290 		max_protohdr = TCP_MINPROTOHDR;
291 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
292 		panic("tcp_init");
293 #undef TCP_MINPROTOHDR
294 
295 	/*
296 	 * Initialize TCP statistics.
297 	 *
298 	 * It is layed out as an array which is has one element for UP,
299 	 * and SMP_MAXCPU elements for SMP.  This allows us to retain
300 	 * the access mechanism from userland for both UP and SMP.
301 	 */
302 #ifdef SMP
303 	for (cpu = 0; cpu < ncpus; ++cpu) {
304 		bzero(&tcpstats_ary[cpu], sizeof(struct tcp_stats));
305 	}
306 #else
307 	bzero(&tcpstat, sizeof(struct tcp_stats));
308 #endif
309 
310 	syncache_init();
311 	tcp_thread_init();
312 }
313 
314 /*
315  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
316  * tcp_template used to store this data in mbufs, but we now recopy it out
317  * of the tcpcb each time to conserve mbufs.
318  */
319 void
320 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
321 {
322 	struct inpcb *inp = tp->t_inpcb;
323 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
324 
325 #ifdef INET6
326 	if (inp->inp_vflag & INP_IPV6) {
327 		struct ip6_hdr *ip6;
328 
329 		ip6 = (struct ip6_hdr *)ip_ptr;
330 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
331 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
332 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
333 			(IPV6_VERSION & IPV6_VERSION_MASK);
334 		ip6->ip6_nxt = IPPROTO_TCP;
335 		ip6->ip6_plen = sizeof(struct tcphdr);
336 		ip6->ip6_src = inp->in6p_laddr;
337 		ip6->ip6_dst = inp->in6p_faddr;
338 		tcp_hdr->th_sum = 0;
339 	} else
340 #endif
341 	{
342 		struct ip *ip = (struct ip *) ip_ptr;
343 
344 		ip->ip_vhl = IP_VHL_BORING;
345 		ip->ip_tos = 0;
346 		ip->ip_len = 0;
347 		ip->ip_id = 0;
348 		ip->ip_off = 0;
349 		ip->ip_ttl = 0;
350 		ip->ip_sum = 0;
351 		ip->ip_p = IPPROTO_TCP;
352 		ip->ip_src = inp->inp_laddr;
353 		ip->ip_dst = inp->inp_faddr;
354 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
355 				    ip->ip_dst.s_addr,
356 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
357 	}
358 
359 	tcp_hdr->th_sport = inp->inp_lport;
360 	tcp_hdr->th_dport = inp->inp_fport;
361 	tcp_hdr->th_seq = 0;
362 	tcp_hdr->th_ack = 0;
363 	tcp_hdr->th_x2 = 0;
364 	tcp_hdr->th_off = 5;
365 	tcp_hdr->th_flags = 0;
366 	tcp_hdr->th_win = 0;
367 	tcp_hdr->th_urp = 0;
368 }
369 
370 /*
371  * Create template to be used to send tcp packets on a connection.
372  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
373  * use for this function is in keepalives, which use tcp_respond.
374  */
375 struct tcptemp *
376 tcp_maketemplate(struct tcpcb *tp)
377 {
378 	struct mbuf *m;
379 	struct tcptemp *n;
380 
381 	m = m_get(M_DONTWAIT, MT_HEADER);
382 	if (m == NULL)
383 		return (NULL);
384 	m->m_len = sizeof(struct tcptemp);
385 	n = mtod(m, struct tcptemp *);
386 
387 	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
388 	return (n);
389 }
390 
391 /*
392  * Send a single message to the TCP at address specified by
393  * the given TCP/IP header.  If m == NULL, then we make a copy
394  * of the tcpiphdr at ti and send directly to the addressed host.
395  * This is used to force keep alive messages out using the TCP
396  * template for a connection.  If flags are given then we send
397  * a message back to the TCP which originated the * segment ti,
398  * and discard the mbuf containing it and any other attached mbufs.
399  *
400  * In any case the ack and sequence number of the transmitted
401  * segment are as specified by the parameters.
402  *
403  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
404  */
405 void
406 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
407 	    tcp_seq ack, tcp_seq seq, int flags)
408 {
409 	int tlen;
410 	int win = 0;
411 	struct route *ro = NULL;
412 	struct route sro;
413 	struct ip *ip = ipgen;
414 	struct tcphdr *nth;
415 	int ipflags = 0;
416 	struct route_in6 *ro6 = NULL;
417 	struct route_in6 sro6;
418 	struct ip6_hdr *ip6 = ipgen;
419 #ifdef INET6
420 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
421 #else
422 	const boolean_t isipv6 = FALSE;
423 #endif
424 
425 	if (tp != NULL) {
426 		if (!(flags & TH_RST)) {
427 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
428 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
429 				win = (long)TCP_MAXWIN << tp->rcv_scale;
430 		}
431 		if (isipv6)
432 			ro6 = &tp->t_inpcb->in6p_route;
433 		else
434 			ro = &tp->t_inpcb->inp_route;
435 	} else {
436 		if (isipv6) {
437 			ro6 = &sro6;
438 			bzero(ro6, sizeof *ro6);
439 		} else {
440 			ro = &sro;
441 			bzero(ro, sizeof *ro);
442 		}
443 	}
444 	if (m == NULL) {
445 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
446 		if (m == NULL)
447 			return;
448 		tlen = 0;
449 		m->m_data += max_linkhdr;
450 		if (isipv6) {
451 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
452 			ip6 = mtod(m, struct ip6_hdr *);
453 			nth = (struct tcphdr *)(ip6 + 1);
454 		} else {
455 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
456 			ip = mtod(m, struct ip *);
457 			nth = (struct tcphdr *)(ip + 1);
458 		}
459 		bcopy(th, nth, sizeof(struct tcphdr));
460 		flags = TH_ACK;
461 	} else {
462 		m_freem(m->m_next);
463 		m->m_next = NULL;
464 		m->m_data = (caddr_t)ipgen;
465 		/* m_len is set later */
466 		tlen = 0;
467 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
468 		if (isipv6) {
469 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
470 			nth = (struct tcphdr *)(ip6 + 1);
471 		} else {
472 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
473 			nth = (struct tcphdr *)(ip + 1);
474 		}
475 		if (th != nth) {
476 			/*
477 			 * this is usually a case when an extension header
478 			 * exists between the IPv6 header and the
479 			 * TCP header.
480 			 */
481 			nth->th_sport = th->th_sport;
482 			nth->th_dport = th->th_dport;
483 		}
484 		xchg(nth->th_dport, nth->th_sport, n_short);
485 #undef xchg
486 	}
487 	if (isipv6) {
488 		ip6->ip6_flow = 0;
489 		ip6->ip6_vfc = IPV6_VERSION;
490 		ip6->ip6_nxt = IPPROTO_TCP;
491 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
492 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
493 	} else {
494 		tlen += sizeof(struct tcpiphdr);
495 		ip->ip_len = tlen;
496 		ip->ip_ttl = ip_defttl;
497 	}
498 	m->m_len = tlen;
499 	m->m_pkthdr.len = tlen;
500 	m->m_pkthdr.rcvif = (struct ifnet *) NULL;
501 	nth->th_seq = htonl(seq);
502 	nth->th_ack = htonl(ack);
503 	nth->th_x2 = 0;
504 	nth->th_off = sizeof(struct tcphdr) >> 2;
505 	nth->th_flags = flags;
506 	if (tp != NULL)
507 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
508 	else
509 		nth->th_win = htons((u_short)win);
510 	nth->th_urp = 0;
511 	if (isipv6) {
512 		nth->th_sum = 0;
513 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
514 					sizeof(struct ip6_hdr),
515 					tlen - sizeof(struct ip6_hdr));
516 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
517 					       (ro6 && ro6->ro_rt) ?
518 					           ro6->ro_rt->rt_ifp : NULL);
519 	} else {
520 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
521 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
522 		m->m_pkthdr.csum_flags = CSUM_TCP;
523 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
524 	}
525 #ifdef TCPDEBUG
526 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
527 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
528 #endif
529 	if (isipv6) {
530 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
531 				 tp ? tp->t_inpcb : NULL);
532 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
533 			RTFREE(ro6->ro_rt);
534 			ro6->ro_rt = NULL;
535 		}
536 	} else {
537 		(void)ip_output(m, NULL, ro, ipflags, NULL,
538 				tp ? tp->t_inpcb : NULL);
539 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
540 			RTFREE(ro->ro_rt);
541 			ro->ro_rt = NULL;
542 		}
543 	}
544 }
545 
546 /*
547  * Create a new TCP control block, making an
548  * empty reassembly queue and hooking it to the argument
549  * protocol control block.  The `inp' parameter must have
550  * come from the zone allocator set up in tcp_init().
551  */
552 struct tcpcb *
553 tcp_newtcpcb(struct inpcb *inp)
554 {
555 	struct inp_tp *it;
556 	struct tcpcb *tp;
557 #ifdef INET6
558 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
559 #else
560 	const boolean_t isipv6 = FALSE;
561 #endif
562 
563 	it = (struct inp_tp *)inp;
564 	tp = &it->tcb;
565 	bzero(tp, sizeof(struct tcpcb));
566 	LIST_INIT(&tp->t_segq);
567 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
568 
569 	/* Set up our timeouts. */
570 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
571 	callout_init(tp->tt_persist = &it->inp_tp_persist);
572 	callout_init(tp->tt_keep = &it->inp_tp_keep);
573 	callout_init(tp->tt_2msl = &it->inp_tp_2msl);
574 	callout_init(tp->tt_delack = &it->inp_tp_delack);
575 
576 	if (tcp_do_rfc1323)
577 		tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
578 	if (tcp_do_rfc1644)
579 		tp->t_flags |= TF_REQ_CC;
580 	tp->t_inpcb = inp;	/* XXX */
581 	/*
582 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
583 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
584 	 * reasonable initial retransmit time.
585 	 */
586 	tp->t_srtt = TCPTV_SRTTBASE;
587 	tp->t_rttvar =
588 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
589 	tp->t_rttmin = tcp_rexmit_min;
590 	tp->t_rxtcur = TCPTV_RTOBASE;
591 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
592 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
593 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
594 	tp->t_rcvtime = ticks;
595 	tp->t_bw_rtttime = ticks;
596 	/*
597 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
598 	 * because the socket may be bound to an IPv6 wildcard address,
599 	 * which may match an IPv4-mapped IPv6 address.
600 	 */
601 	inp->inp_ip_ttl = ip_defttl;
602 	inp->inp_ppcb = (caddr_t)tp;
603 	return (tp);		/* XXX */
604 }
605 
606 /*
607  * Drop a TCP connection, reporting the specified error.
608  * If connection is synchronized, then send a RST to peer.
609  */
610 struct tcpcb *
611 tcp_drop(struct tcpcb *tp, int errno)
612 {
613 	struct socket *so = tp->t_inpcb->inp_socket;
614 
615 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
616 		tp->t_state = TCPS_CLOSED;
617 		(void) tcp_output(tp);
618 		tcpstat.tcps_drops++;
619 	} else
620 		tcpstat.tcps_conndrops++;
621 	if (errno == ETIMEDOUT && tp->t_softerror)
622 		errno = tp->t_softerror;
623 	so->so_error = errno;
624 	return (tcp_close(tp));
625 }
626 
627 #ifdef SMP
628 struct netmsg_remwildcard {
629 	struct lwkt_msg		nm_lmsg;
630 	struct inpcb		*nm_inp;
631 	struct inpcbinfo	*nm_pcbinfo;
632 };
633 
634 static int
635 in_pcbremwildcardhash_handler(struct lwkt_msg *msg0)
636 {
637 	struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
638 
639 	in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
640 	lwkt_replymsg(&msg->nm_lmsg, 0);
641 	return (EASYNC);
642 }
643 #endif
644 
645 /*
646  * Close a TCP control block:
647  *	discard all space held by the tcp
648  *	discard internet protocol block
649  *	wake up any sleepers
650  */
651 struct tcpcb *
652 tcp_close(struct tcpcb *tp)
653 {
654 	struct tseg_qent *q;
655 	struct inpcb *inp = tp->t_inpcb;
656 	struct socket *so = inp->inp_socket;
657 	struct rtentry *rt;
658 	boolean_t dosavessthresh;
659 #ifdef SMP
660 	int cpu;
661 #endif
662 #ifdef INET6
663 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
664 #else
665 	const boolean_t isipv6 = FALSE;
666 #endif
667 
668 	/*
669 	 * Make sure that all of our timers are stopped before we
670 	 * delete the PCB.
671 	 */
672 	callout_stop(tp->tt_rexmt);
673 	callout_stop(tp->tt_persist);
674 	callout_stop(tp->tt_keep);
675 	callout_stop(tp->tt_2msl);
676 	callout_stop(tp->tt_delack);
677 
678 	/*
679 	 * If we got enough samples through the srtt filter,
680 	 * save the rtt and rttvar in the routing entry.
681 	 * 'Enough' is arbitrarily defined as the 16 samples.
682 	 * 16 samples is enough for the srtt filter to converge
683 	 * to within 5% of the correct value; fewer samples and
684 	 * we could save a very bogus rtt.
685 	 *
686 	 * Don't update the default route's characteristics and don't
687 	 * update anything that the user "locked".
688 	 */
689 	if (tp->t_rttupdated >= 16) {
690 		u_long i = 0;
691 
692 		if (isipv6) {
693 			struct sockaddr_in6 *sin6;
694 
695 			if ((rt = inp->in6p_route.ro_rt) == NULL)
696 				goto no_valid_rt;
697 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
698 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
699 				goto no_valid_rt;
700 		} else
701 			if ((rt = inp->inp_route.ro_rt) == NULL ||
702 			    ((struct sockaddr_in *)rt_key(rt))->
703 			     sin_addr.s_addr == INADDR_ANY)
704 				goto no_valid_rt;
705 
706 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
707 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
708 			if (rt->rt_rmx.rmx_rtt && i)
709 				/*
710 				 * filter this update to half the old & half
711 				 * the new values, converting scale.
712 				 * See route.h and tcp_var.h for a
713 				 * description of the scaling constants.
714 				 */
715 				rt->rt_rmx.rmx_rtt =
716 				    (rt->rt_rmx.rmx_rtt + i) / 2;
717 			else
718 				rt->rt_rmx.rmx_rtt = i;
719 			tcpstat.tcps_cachedrtt++;
720 		}
721 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
722 			i = tp->t_rttvar *
723 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
724 			if (rt->rt_rmx.rmx_rttvar && i)
725 				rt->rt_rmx.rmx_rttvar =
726 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
727 			else
728 				rt->rt_rmx.rmx_rttvar = i;
729 			tcpstat.tcps_cachedrttvar++;
730 		}
731 		/*
732 		 * The old comment here said:
733 		 * update the pipelimit (ssthresh) if it has been updated
734 		 * already or if a pipesize was specified & the threshhold
735 		 * got below half the pipesize.  I.e., wait for bad news
736 		 * before we start updating, then update on both good
737 		 * and bad news.
738 		 *
739 		 * But we want to save the ssthresh even if no pipesize is
740 		 * specified explicitly in the route, because such
741 		 * connections still have an implicit pipesize specified
742 		 * by the global tcp_sendspace.  In the absence of a reliable
743 		 * way to calculate the pipesize, it will have to do.
744 		 */
745 		i = tp->snd_ssthresh;
746 		if (rt->rt_rmx.rmx_sendpipe != 0)
747 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
748 		else
749 			dosavessthresh = (i < so->so_snd.sb_hiwat/2);
750 		if (dosavessthresh ||
751 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
752 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
753 			/*
754 			 * convert the limit from user data bytes to
755 			 * packets then to packet data bytes.
756 			 */
757 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
758 			if (i < 2)
759 				i = 2;
760 			i *= tp->t_maxseg +
761 			     (isipv6 ?
762 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
763 			      sizeof(struct tcpiphdr));
764 			if (rt->rt_rmx.rmx_ssthresh)
765 				rt->rt_rmx.rmx_ssthresh =
766 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
767 			else
768 				rt->rt_rmx.rmx_ssthresh = i;
769 			tcpstat.tcps_cachedssthresh++;
770 		}
771 	}
772 
773 no_valid_rt:
774 	/* free the reassembly queue, if any */
775 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
776 		LIST_REMOVE(q, tqe_q);
777 		m_freem(q->tqe_m);
778 		FREE(q, M_TSEGQ);
779 		tcp_reass_qsize--;
780 	}
781 	inp->inp_ppcb = NULL;
782 	soisdisconnected(so);
783 
784 #ifdef SMP
785 	if (inp->inp_flags & INP_WILDCARD_MP) {
786 		for (cpu = 0; cpu < ncpus2; cpu ++) {
787 			struct netmsg_remwildcard *msg;
788 
789 			msg = malloc(sizeof(struct netmsg_remwildcard),
790 			    M_LWKTMSG, M_INTWAIT);
791 			lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
792 			    lwkt_cmd_func(in_pcbremwildcardhash_handler),
793 			    lwkt_cmd_op_none);
794 			msg->nm_inp = inp;
795 			msg->nm_pcbinfo = &tcbinfo[cpu];
796 			lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
797 		}
798 	}
799 #endif
800 
801 #ifdef INET6
802 	if (INP_CHECK_SOCKAF(so, AF_INET6))
803 		in6_pcbdetach(inp);
804 	else
805 #endif
806 		in_pcbdetach(inp);
807 	tcpstat.tcps_closed++;
808 	return (NULL);
809 }
810 
811 static __inline void
812 tcp_drain_oncpu(struct inpcbhead *head)
813 {
814 	struct inpcb *inpb;
815 	struct tcpcb *tcpb;
816 	struct tseg_qent *te;
817 
818 	LIST_FOREACH(inpb, head, inp_list) {
819 		if ((tcpb = intotcpcb(inpb))) {
820 			while ((te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
821 				LIST_REMOVE(te, tqe_q);
822 				m_freem(te->tqe_m);
823 				FREE(te, M_TSEGQ);
824 				tcp_reass_qsize--;
825 			}
826 		}
827 	}
828 }
829 
830 #ifdef SMP
831 struct netmsg_tcp_drain {
832 	struct lwkt_msg		nm_lmsg;
833 	struct inpcbhead	*nm_head;
834 };
835 
836 static int
837 tcp_drain_handler(lwkt_msg_t lmsg)
838 {
839 	struct netmsg_tcp_drain *nm = (void *)lmsg;
840 
841 	tcp_drain_oncpu(nm->nm_head);
842 	lwkt_replymsg(lmsg, 0);
843 	return(EASYNC);
844 }
845 #endif
846 
847 void
848 tcp_drain()
849 {
850 #ifdef SMP
851 	int cpu;
852 #endif
853 
854 	if (!do_tcpdrain)
855 		return;
856 
857 	/*
858 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
859 	 * if there is one...
860 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
861 	 *	reassembly queue should be flushed, but in a situation
862 	 *	where we're really low on mbufs, this is potentially
863 	 *	useful.
864 	 */
865 #ifdef SMP
866 	for (cpu = 0; cpu < ncpus2; cpu++) {
867 		struct netmsg_tcp_drain *msg;
868 
869 		if (cpu == mycpu->gd_cpuid) {
870 			tcp_drain_oncpu(&tcbinfo[cpu].listhead);
871 		} else {
872 			msg = malloc(sizeof(struct netmsg_tcp_drain),
873 				    M_LWKTMSG, M_NOWAIT);
874 			if (msg == NULL)
875 				continue;
876 			lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
877 				lwkt_cmd_func(tcp_drain_handler),
878 				lwkt_cmd_op_none);
879 			msg->nm_head = &tcbinfo[cpu].listhead;
880 			lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
881 		}
882 	}
883 #else
884 	tcp_drain_oncpu(&tcbinfo[0].listhead);
885 #endif
886 }
887 
888 /*
889  * Notify a tcp user of an asynchronous error;
890  * store error as soft error, but wake up user
891  * (for now, won't do anything until can select for soft error).
892  *
893  * Do not wake up user since there currently is no mechanism for
894  * reporting soft errors (yet - a kqueue filter may be added).
895  */
896 static void
897 tcp_notify(struct inpcb *inp, int error)
898 {
899 	struct tcpcb *tp = intotcpcb(inp);
900 
901 	/*
902 	 * Ignore some errors if we are hooked up.
903 	 * If connection hasn't completed, has retransmitted several times,
904 	 * and receives a second error, give up now.  This is better
905 	 * than waiting a long time to establish a connection that
906 	 * can never complete.
907 	 */
908 	if (tp->t_state == TCPS_ESTABLISHED &&
909 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
910 	      error == EHOSTDOWN)) {
911 		return;
912 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
913 	    tp->t_softerror)
914 		tcp_drop(tp, error);
915 	else
916 		tp->t_softerror = error;
917 #if 0
918 	wakeup((caddr_t) &so->so_timeo);
919 	sorwakeup(so);
920 	sowwakeup(so);
921 #endif
922 }
923 
924 static int
925 tcp_pcblist(SYSCTL_HANDLER_ARGS)
926 {
927 	int error, i, n, s;
928 	struct inpcb *inp, **inp_list;
929 	inp_gen_t gencnt;
930 	struct xinpgen xig;
931 
932 	/*
933 	 * The process of preparing the TCB list is too time-consuming and
934 	 * resource-intensive to repeat twice on every request.
935 	 */
936 	if (req->oldptr == NULL) {
937 		n = tcbinfo[mycpu->gd_cpuid].ipi_count;
938 		req->oldidx = 2 * (sizeof xig) +
939 			      (n + n/8) * sizeof(struct xtcpcb);
940 		return (0);
941 	}
942 
943 	if (req->newptr != NULL)
944 		return (EPERM);
945 
946 	/*
947 	 * OK, now we're committed to doing something.
948 	 */
949 	s = splnet();
950 	gencnt = tcbinfo[mycpu->gd_cpuid].ipi_gencnt;
951 	n = tcbinfo[mycpu->gd_cpuid].ipi_count;
952 	splx(s);
953 
954 	xig.xig_len = sizeof xig;
955 	xig.xig_count = n;
956 	xig.xig_gen = gencnt;
957 	xig.xig_sogen = so_gencnt;
958 	error = SYSCTL_OUT(req, &xig, sizeof xig);
959 	if (error != 0)
960 		return (error);
961 
962 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
963 	if (inp_list == NULL)
964 		return (ENOMEM);
965 
966 	s = splnet();
967 	for (inp = LIST_FIRST(&tcbinfo[mycpu->gd_cpuid].listhead), i = 0;
968 	    inp && i < n; inp = LIST_NEXT(inp, inp_list)) {
969 		if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->td, inp))
970 			inp_list[i++] = inp;
971 	}
972 	splx(s);
973 	n = i;
974 
975 	error = 0;
976 	for (i = 0; i < n; i++) {
977 		inp = inp_list[i];
978 		if (inp->inp_gencnt <= gencnt) {
979 			struct xtcpcb xt;
980 			caddr_t inp_ppcb;
981 			xt.xt_len = sizeof xt;
982 			/* XXX should avoid extra copy */
983 			bcopy(inp, &xt.xt_inp, sizeof *inp);
984 			inp_ppcb = inp->inp_ppcb;
985 			if (inp_ppcb != NULL)
986 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
987 			else
988 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
989 			if (inp->inp_socket)
990 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
991 			error = SYSCTL_OUT(req, &xt, sizeof xt);
992 		}
993 	}
994 	if (!error) {
995 		/*
996 		 * Give the user an updated idea of our state.
997 		 * If the generation differs from what we told
998 		 * her before, she knows that something happened
999 		 * while we were processing this request, and it
1000 		 * might be necessary to retry.
1001 		 */
1002 		s = splnet();
1003 		xig.xig_gen = tcbinfo[mycpu->gd_cpuid].ipi_gencnt;
1004 		xig.xig_sogen = so_gencnt;
1005 		xig.xig_count = tcbinfo[mycpu->gd_cpuid].ipi_count;
1006 		splx(s);
1007 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1008 	}
1009 	free(inp_list, M_TEMP);
1010 	return (error);
1011 }
1012 
1013 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1014 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1015 
1016 static int
1017 tcp_getcred(SYSCTL_HANDLER_ARGS)
1018 {
1019 	struct sockaddr_in addrs[2];
1020 	struct inpcb *inp;
1021 	int cpu;
1022 	int error, s;
1023 
1024 	error = suser(req->td);
1025 	if (error != 0)
1026 		return (error);
1027 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1028 	if (error != 0)
1029 		return (error);
1030 	s = splnet();
1031 
1032 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1033 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1034 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1035 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1036 	if (inp == NULL || inp->inp_socket == NULL) {
1037 		error = ENOENT;
1038 		goto out;
1039 	}
1040 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1041 out:
1042 	splx(s);
1043 	return (error);
1044 }
1045 
1046 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1047     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1048 
1049 #ifdef INET6
1050 static int
1051 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1052 {
1053 	struct sockaddr_in6 addrs[2];
1054 	struct inpcb *inp;
1055 	int error, s;
1056 	boolean_t mapped = FALSE;
1057 
1058 	error = suser(req->td);
1059 	if (error != 0)
1060 		return (error);
1061 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1062 	if (error != 0)
1063 		return (error);
1064 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1065 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1066 			mapped = TRUE;
1067 		else
1068 			return (EINVAL);
1069 	}
1070 	s = splnet();
1071 	if (mapped) {
1072 		inp = in_pcblookup_hash(&tcbinfo[0],
1073 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1074 		    addrs[1].sin6_port,
1075 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1076 		    addrs[0].sin6_port,
1077 		    0, NULL);
1078 	} else {
1079 		inp = in6_pcblookup_hash(&tcbinfo[0],
1080 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1081 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1082 		    0, NULL);
1083 	}
1084 	if (inp == NULL || inp->inp_socket == NULL) {
1085 		error = ENOENT;
1086 		goto out;
1087 	}
1088 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1089 out:
1090 	splx(s);
1091 	return (error);
1092 }
1093 
1094 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1095 	    0, 0,
1096 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1097 #endif
1098 
1099 void
1100 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1101 {
1102 	struct ip *ip = vip;
1103 	struct tcphdr *th;
1104 	struct in_addr faddr;
1105 	struct inpcb *inp;
1106 	struct tcpcb *tp;
1107 	void (*notify)(struct inpcb *, int) = tcp_notify;
1108 	tcp_seq icmp_seq;
1109 	int cpu;
1110 	int s;
1111 
1112 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1113 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1114 		return;
1115 
1116 	if (cmd == PRC_QUENCH)
1117 		notify = tcp_quench;
1118 	else if (icmp_may_rst &&
1119 		 (cmd == PRC_UNREACH_ADMIN_PROHIB || cmd == PRC_UNREACH_PORT ||
1120 		  cmd == PRC_TIMXCEED_INTRANS) &&
1121 		 ip != NULL)
1122 		notify = tcp_drop_syn_sent;
1123 	else if (cmd == PRC_MSGSIZE)
1124 		notify = tcp_mtudisc;
1125 	else if (PRC_IS_REDIRECT(cmd)) {
1126 		ip = NULL;
1127 		notify = in_rtchange;
1128 	} else if (cmd == PRC_HOSTDEAD)
1129 		ip = NULL;
1130 	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1131 		return;
1132 	if (ip != NULL) {
1133 		s = splnet();
1134 		th = (struct tcphdr *)((caddr_t)ip +
1135 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1136 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1137 				  ip->ip_src.s_addr, th->th_sport);
1138 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1139 					ip->ip_src, th->th_sport, 0, NULL);
1140 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1141 			icmp_seq = htonl(th->th_seq);
1142 			tp = intotcpcb(inp);
1143 			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1144 			    SEQ_LT(icmp_seq, tp->snd_max))
1145 				(*notify)(inp, inetctlerrmap[cmd]);
1146 		} else {
1147 			struct in_conninfo inc;
1148 
1149 			inc.inc_fport = th->th_dport;
1150 			inc.inc_lport = th->th_sport;
1151 			inc.inc_faddr = faddr;
1152 			inc.inc_laddr = ip->ip_src;
1153 #ifdef INET6
1154 			inc.inc_isipv6 = 0;
1155 #endif
1156 			syncache_unreach(&inc, th);
1157 		}
1158 		splx(s);
1159 	} else {
1160 		for (cpu = 0; cpu < ncpus2; cpu++) {
1161 			in_pcbnotifyall(&tcbinfo[cpu].listhead, faddr,
1162 					inetctlerrmap[cmd], notify);
1163 		}
1164 	}
1165 }
1166 
1167 #ifdef INET6
1168 void
1169 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1170 {
1171 	struct tcphdr th;
1172 	void (*notify) (struct inpcb *, int) = tcp_notify;
1173 	struct ip6_hdr *ip6;
1174 	struct mbuf *m;
1175 	struct ip6ctlparam *ip6cp = NULL;
1176 	const struct sockaddr_in6 *sa6_src = NULL;
1177 	int off;
1178 	struct tcp_portonly {
1179 		u_int16_t th_sport;
1180 		u_int16_t th_dport;
1181 	} *thp;
1182 
1183 	if (sa->sa_family != AF_INET6 ||
1184 	    sa->sa_len != sizeof(struct sockaddr_in6))
1185 		return;
1186 
1187 	if (cmd == PRC_QUENCH)
1188 		notify = tcp_quench;
1189 	else if (cmd == PRC_MSGSIZE)
1190 		notify = tcp_mtudisc;
1191 	else if (!PRC_IS_REDIRECT(cmd) &&
1192 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1193 		return;
1194 
1195 	/* if the parameter is from icmp6, decode it. */
1196 	if (d != NULL) {
1197 		ip6cp = (struct ip6ctlparam *)d;
1198 		m = ip6cp->ip6c_m;
1199 		ip6 = ip6cp->ip6c_ip6;
1200 		off = ip6cp->ip6c_off;
1201 		sa6_src = ip6cp->ip6c_src;
1202 	} else {
1203 		m = NULL;
1204 		ip6 = NULL;
1205 		off = 0;	/* fool gcc */
1206 		sa6_src = &sa6_any;
1207 	}
1208 
1209 	if (ip6 != NULL) {
1210 		struct in_conninfo inc;
1211 		/*
1212 		 * XXX: We assume that when IPV6 is non NULL,
1213 		 * M and OFF are valid.
1214 		 */
1215 
1216 		/* check if we can safely examine src and dst ports */
1217 		if (m->m_pkthdr.len < off + sizeof *thp)
1218 			return;
1219 
1220 		bzero(&th, sizeof th);
1221 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1222 
1223 		in6_pcbnotify(&tcbinfo[0].listhead, sa, th.th_dport,
1224 		    (struct sockaddr *)ip6cp->ip6c_src,
1225 		    th.th_sport, cmd, notify);
1226 
1227 		inc.inc_fport = th.th_dport;
1228 		inc.inc_lport = th.th_sport;
1229 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1230 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1231 		inc.inc_isipv6 = 1;
1232 		syncache_unreach(&inc, &th);
1233 	} else
1234 		in6_pcbnotify(&tcbinfo[0].listhead, sa, 0,
1235 		    (const struct sockaddr *)sa6_src, 0, cmd, notify);
1236 }
1237 #endif
1238 
1239 /*
1240  * Following is where TCP initial sequence number generation occurs.
1241  *
1242  * There are two places where we must use initial sequence numbers:
1243  * 1.  In SYN-ACK packets.
1244  * 2.  In SYN packets.
1245  *
1246  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1247  * tcp_syncache.c for details.
1248  *
1249  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1250  * depends on this property.  In addition, these ISNs should be
1251  * unguessable so as to prevent connection hijacking.  To satisfy
1252  * the requirements of this situation, the algorithm outlined in
1253  * RFC 1948 is used to generate sequence numbers.
1254  *
1255  * Implementation details:
1256  *
1257  * Time is based off the system timer, and is corrected so that it
1258  * increases by one megabyte per second.  This allows for proper
1259  * recycling on high speed LANs while still leaving over an hour
1260  * before rollover.
1261  *
1262  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1263  * between seeding of isn_secret.  This is normally set to zero,
1264  * as reseeding should not be necessary.
1265  *
1266  */
1267 
1268 #define	ISN_BYTES_PER_SECOND 1048576
1269 
1270 u_char isn_secret[32];
1271 int isn_last_reseed;
1272 MD5_CTX isn_ctx;
1273 
1274 tcp_seq
1275 tcp_new_isn(struct tcpcb *tp)
1276 {
1277 	u_int32_t md5_buffer[4];
1278 	tcp_seq new_isn;
1279 
1280 	/* Seed if this is the first use, reseed if requested. */
1281 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1282 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1283 		< (u_int)ticks))) {
1284 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1285 		isn_last_reseed = ticks;
1286 	}
1287 
1288 	/* Compute the md5 hash and return the ISN. */
1289 	MD5Init(&isn_ctx);
1290 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1291 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1292 #ifdef INET6
1293 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1294 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1295 			  sizeof(struct in6_addr));
1296 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1297 			  sizeof(struct in6_addr));
1298 	} else
1299 #endif
1300 	{
1301 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1302 			  sizeof(struct in_addr));
1303 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1304 			  sizeof(struct in_addr));
1305 	}
1306 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1307 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1308 	new_isn = (tcp_seq) md5_buffer[0];
1309 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1310 	return (new_isn);
1311 }
1312 
1313 /*
1314  * When a source quench is received, close congestion window
1315  * to one segment.  We will gradually open it again as we proceed.
1316  */
1317 void
1318 tcp_quench(struct inpcb *inp, int errno)
1319 {
1320 	struct tcpcb *tp = intotcpcb(inp);
1321 
1322 	if (tp != NULL)
1323 		tp->snd_cwnd = tp->t_maxseg;
1324 }
1325 
1326 /*
1327  * When a specific ICMP unreachable message is received and the
1328  * connection state is SYN-SENT, drop the connection.  This behavior
1329  * is controlled by the icmp_may_rst sysctl.
1330  */
1331 void
1332 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1333 {
1334 	struct tcpcb *tp = intotcpcb(inp);
1335 
1336 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1337 		tcp_drop(tp, errno);
1338 }
1339 
1340 /*
1341  * When `need fragmentation' ICMP is received, update our idea of the MSS
1342  * based on the new value in the route.  Also nudge TCP to send something,
1343  * since we know the packet we just sent was dropped.
1344  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1345  */
1346 void
1347 tcp_mtudisc(struct inpcb *inp, int errno)
1348 {
1349 	struct tcpcb *tp = intotcpcb(inp);
1350 	struct rtentry *rt;
1351 	struct rmxp_tao *taop;
1352 	struct socket *so = inp->inp_socket;
1353 	int offered;
1354 	int mss;
1355 #ifdef INET6
1356 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1357 #else
1358 	const boolean_t isipv6 = FALSE;
1359 #endif
1360 
1361 	if (tp != NULL) {
1362 		if (isipv6)
1363 			rt = tcp_rtlookup6(&inp->inp_inc);
1364 		else
1365 			rt = tcp_rtlookup(&inp->inp_inc);
1366 		if (rt == NULL || rt->rt_rmx.rmx_mtu == 0) {
1367 			tp->t_maxopd = tp->t_maxseg =
1368 			    isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
1369 			return;
1370 		}
1371 		taop = rmx_taop(rt->rt_rmx);
1372 		offered = taop->tao_mssopt;
1373 		mss = rt->rt_rmx.rmx_mtu -
1374 			(isipv6 ?
1375 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1376 			 sizeof(struct tcpiphdr));
1377 
1378 		if (offered != 0)
1379 			mss = min(mss, offered);
1380 		/*
1381 		 * XXX - The above conditional probably violates the TCP
1382 		 * spec.  The problem is that, since we don't know the
1383 		 * other end's MSS, we are supposed to use a conservative
1384 		 * default.  But, if we do that, then MTU discovery will
1385 		 * never actually take place, because the conservative
1386 		 * default is much less than the MTUs typically seen
1387 		 * on the Internet today.  For the moment, we'll sweep
1388 		 * this under the carpet.
1389 		 *
1390 		 * The conservative default might not actually be a problem
1391 		 * if the only case this occurs is when sending an initial
1392 		 * SYN with options and data to a host we've never talked
1393 		 * to before.  Then, they will reply with an MSS value which
1394 		 * will get recorded and the new parameters should get
1395 		 * recomputed.  For Further Study.
1396 		 */
1397 		if (tp->t_maxopd <= mss)
1398 			return;
1399 		tp->t_maxopd = mss;
1400 
1401 		if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
1402 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1403 			mss -= TCPOLEN_TSTAMP_APPA;
1404 		if ((tp->t_flags & (TF_REQ_CC | TF_NOOPT)) == TF_REQ_CC &&
1405 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1406 			mss -= TCPOLEN_CC_APPA;
1407 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1408 		if (mss > MCLBYTES)
1409 			mss &= ~(MCLBYTES - 1);
1410 #else
1411 		if (mss > MCLBYTES)
1412 			mss = mss / MCLBYTES * MCLBYTES;
1413 #endif
1414 		if (so->so_snd.sb_hiwat < mss)
1415 			mss = so->so_snd.sb_hiwat;
1416 
1417 		tp->t_maxseg = mss;
1418 
1419 		tcpstat.tcps_mturesent++;
1420 		tp->t_rtttime = 0;
1421 		tp->snd_nxt = tp->snd_una;
1422 		tcp_output(tp);
1423 	}
1424 }
1425 
1426 /*
1427  * Look-up the routing entry to the peer of this inpcb.  If no route
1428  * is found and it cannot be allocated the return NULL.  This routine
1429  * is called by TCP routines that access the rmx structure and by tcp_mss
1430  * to get the interface MTU.
1431  */
1432 struct rtentry *
1433 tcp_rtlookup(struct in_conninfo *inc)
1434 {
1435 	struct route *ro;
1436 	struct rtentry *rt;
1437 
1438 	ro = &inc->inc_route;
1439 	rt = ro->ro_rt;
1440 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1441 		/* No route yet, so try to acquire one */
1442 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1443 			ro->ro_dst.sa_family = AF_INET;
1444 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1445 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1446 			    inc->inc_faddr;
1447 			rtalloc(ro);
1448 			rt = ro->ro_rt;
1449 		}
1450 	}
1451 	return (rt);
1452 }
1453 
1454 #ifdef INET6
1455 struct rtentry *
1456 tcp_rtlookup6(struct in_conninfo *inc)
1457 {
1458 	struct route_in6 *ro6;
1459 	struct rtentry *rt;
1460 
1461 	ro6 = &inc->inc6_route;
1462 	rt = ro6->ro_rt;
1463 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1464 		/* No route yet, so try to acquire one */
1465 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1466 			ro6->ro_dst.sin6_family = AF_INET6;
1467 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1468 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1469 			rtalloc((struct route *)ro6);
1470 			rt = ro6->ro_rt;
1471 		}
1472 	}
1473 	return (rt);
1474 }
1475 #endif
1476 
1477 #ifdef IPSEC
1478 /* compute ESP/AH header size for TCP, including outer IP header. */
1479 size_t
1480 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1481 {
1482 	struct inpcb *inp;
1483 	struct mbuf *m;
1484 	size_t hdrsiz;
1485 	struct ip *ip;
1486 	struct tcphdr *th;
1487 
1488 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1489 		return (0);
1490 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1491 	if (!m)
1492 		return (0);
1493 
1494 #ifdef INET6
1495 	if (inp->inp_vflag & INP_IPV6) {
1496 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1497 
1498 		th = (struct tcphdr *)(ip6 + 1);
1499 		m->m_pkthdr.len = m->m_len =
1500 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1501 		tcp_fillheaders(tp, ip6, th);
1502 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1503 	} else
1504 #endif
1505 	{
1506 		ip = mtod(m, struct ip *);
1507 		th = (struct tcphdr *)(ip + 1);
1508 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1509 		tcp_fillheaders(tp, ip, th);
1510 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1511 	}
1512 
1513 	m_free(m);
1514 	return (hdrsiz);
1515 }
1516 #endif
1517 
1518 /*
1519  * Return a pointer to the cached information about the remote host.
1520  * The cached information is stored in the protocol specific part of
1521  * the route metrics.
1522  */
1523 struct rmxp_tao *
1524 tcp_gettaocache(struct in_conninfo *inc)
1525 {
1526 	struct rtentry *rt;
1527 
1528 #ifdef INET6
1529 	if (inc->inc_isipv6)
1530 		rt = tcp_rtlookup6(inc);
1531 	else
1532 #endif
1533 		rt = tcp_rtlookup(inc);
1534 
1535 	/* Make sure this is a host route and is up. */
1536 	if (rt == NULL ||
1537 	    (rt->rt_flags & (RTF_UP | RTF_HOST)) != (RTF_UP | RTF_HOST))
1538 		return (NULL);
1539 
1540 	return (rmx_taop(rt->rt_rmx));
1541 }
1542 
1543 /*
1544  * Clear all the TAO cache entries, called from tcp_init.
1545  *
1546  * XXX
1547  * This routine is just an empty one, because we assume that the routing
1548  * routing tables are initialized at the same time when TCP, so there is
1549  * nothing in the cache left over.
1550  */
1551 static void
1552 tcp_cleartaocache()
1553 {
1554 }
1555 
1556 /*
1557  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1558  *
1559  * This code attempts to calculate the bandwidth-delay product as a
1560  * means of determining the optimal window size to maximize bandwidth,
1561  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1562  * routers.  This code also does a fairly good job keeping RTTs in check
1563  * across slow links like modems.  We implement an algorithm which is very
1564  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1565  * transmitter side of a TCP connection and so only effects the transmit
1566  * side of the connection.
1567  *
1568  * BACKGROUND:  TCP makes no provision for the management of buffer space
1569  * at the end points or at the intermediate routers and switches.  A TCP
1570  * stream, whether using NewReno or not, will eventually buffer as
1571  * many packets as it is able and the only reason this typically works is
1572  * due to the fairly small default buffers made available for a connection
1573  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1574  * scaling it is now fairly easy for even a single TCP connection to blow-out
1575  * all available buffer space not only on the local interface, but on
1576  * intermediate routers and switches as well.  NewReno makes a misguided
1577  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1578  * then backing off, then steadily increasing the window again until another
1579  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1580  * is only made worse as network loads increase and the idea of intentionally
1581  * blowing out network buffers is, frankly, a terrible way to manage network
1582  * resources.
1583  *
1584  * It is far better to limit the transmit window prior to the failure
1585  * condition being achieved.  There are two general ways to do this:  First
1586  * you can 'scan' through different transmit window sizes and locate the
1587  * point where the RTT stops increasing, indicating that you have filled the
1588  * pipe, then scan backwards until you note that RTT stops decreasing, then
1589  * repeat ad-infinitum.  This method works in principle but has severe
1590  * implementation issues due to RTT variances, timer granularity, and
1591  * instability in the algorithm which can lead to many false positives and
1592  * create oscillations as well as interact badly with other TCP streams
1593  * implementing the same algorithm.
1594  *
1595  * The second method is to limit the window to the bandwidth delay product
1596  * of the link.  This is the method we implement.  RTT variances and our
1597  * own manipulation of the congestion window, bwnd, can potentially
1598  * destabilize the algorithm.  For this reason we have to stabilize the
1599  * elements used to calculate the window.  We do this by using the minimum
1600  * observed RTT, the long term average of the observed bandwidth, and
1601  * by adding two segments worth of slop.  It isn't perfect but it is able
1602  * to react to changing conditions and gives us a very stable basis on
1603  * which to extend the algorithm.
1604  */
1605 void
1606 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1607 {
1608 	u_long bw;
1609 	u_long bwnd;
1610 	int save_ticks;
1611 
1612 	/*
1613 	 * If inflight_enable is disabled in the middle of a tcp connection,
1614 	 * make sure snd_bwnd is effectively disabled.
1615 	 */
1616 	if (!tcp_inflight_enable) {
1617 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1618 		tp->snd_bandwidth = 0;
1619 		return;
1620 	}
1621 
1622 	/*
1623 	 * Figure out the bandwidth.  Due to the tick granularity this
1624 	 * is a very rough number and it MUST be averaged over a fairly
1625 	 * long period of time.  XXX we need to take into account a link
1626 	 * that is not using all available bandwidth, but for now our
1627 	 * slop will ramp us up if this case occurs and the bandwidth later
1628 	 * increases.
1629 	 *
1630 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1631 	 * effectively reset t_bw_rtttime for this case.
1632 	 */
1633 	save_ticks = ticks;
1634 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1635 		return;
1636 
1637 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1638 	    (save_ticks - tp->t_bw_rtttime);
1639 	tp->t_bw_rtttime = save_ticks;
1640 	tp->t_bw_rtseq = ack_seq;
1641 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1642 		return;
1643 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1644 
1645 	tp->snd_bandwidth = bw;
1646 
1647 	/*
1648 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1649 	 * segments.  The additional slop puts us squarely in the sweet
1650 	 * spot and also handles the bandwidth run-up case.  Without the
1651 	 * slop we could be locking ourselves into a lower bandwidth.
1652 	 *
1653 	 * Situations Handled:
1654 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1655 	 *	    high speed LANs, allowing larger TCP buffers to be
1656 	 *	    specified, and also does a good job preventing
1657 	 *	    over-queueing of packets over choke points like modems
1658 	 *	    (at least for the transmit side).
1659 	 *
1660 	 *	(2) Is able to handle changing network loads (bandwidth
1661 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1662 	 *	    increases).
1663 	 *
1664 	 *	(3) Theoretically should stabilize in the face of multiple
1665 	 *	    connections implementing the same algorithm (this may need
1666 	 *	    a little work).
1667 	 *
1668 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1669 	 *	    be adjusted with a sysctl but typically only needs to be on
1670 	 *	    very slow connections.  A value no smaller then 5 should
1671 	 *	    be used, but only reduce this default if you have no other
1672 	 *	    choice.
1673 	 */
1674 
1675 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1676 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1677 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1678 #undef USERTT
1679 
1680 	if (tcp_inflight_debug > 0) {
1681 		static int ltime;
1682 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1683 			ltime = ticks;
1684 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1685 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1686 		}
1687 	}
1688 	if ((long)bwnd < tcp_inflight_min)
1689 		bwnd = tcp_inflight_min;
1690 	if (bwnd > tcp_inflight_max)
1691 		bwnd = tcp_inflight_max;
1692 	if ((long)bwnd < tp->t_maxseg * 2)
1693 		bwnd = tp->t_maxseg * 2;
1694 	tp->snd_bwnd = bwnd;
1695 }
1696