xref: /dflybsd-src/sys/netinet/tcp_subr.c (revision b721b9ee4205a28b1f2d01b5c95851add56bf82b)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
53  *	The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *	This product includes software developed by the University of
66  *	California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
84  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
85  * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.45 2005/03/06 05:09:25 hsu Exp $
86  */
87 
88 #include "opt_compat.h"
89 #include "opt_inet6.h"
90 #include "opt_ipsec.h"
91 #include "opt_tcpdebug.h"
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/callout.h>
96 #include <sys/kernel.h>
97 #include <sys/sysctl.h>
98 #include <sys/malloc.h>
99 #include <sys/mpipe.h>
100 #include <sys/mbuf.h>
101 #ifdef INET6
102 #include <sys/domain.h>
103 #endif
104 #include <sys/proc.h>
105 #include <sys/socket.h>
106 #include <sys/socketvar.h>
107 #include <sys/protosw.h>
108 #include <sys/random.h>
109 #include <sys/in_cksum.h>
110 
111 #include <vm/vm_zone.h>
112 
113 #include <net/route.h>
114 #include <net/if.h>
115 #include <net/netisr.h>
116 
117 #define	_IP_VHL
118 #include <netinet/in.h>
119 #include <netinet/in_systm.h>
120 #include <netinet/ip.h>
121 #include <netinet/ip6.h>
122 #include <netinet/in_pcb.h>
123 #include <netinet6/in6_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet6/ip6_var.h>
127 #include <netinet/ip_icmp.h>
128 #ifdef INET6
129 #include <netinet/icmp6.h>
130 #endif
131 #include <netinet/tcp.h>
132 #include <netinet/tcp_fsm.h>
133 #include <netinet/tcp_seq.h>
134 #include <netinet/tcp_timer.h>
135 #include <netinet/tcp_var.h>
136 #include <netinet6/tcp6_var.h>
137 #include <netinet/tcpip.h>
138 #ifdef TCPDEBUG
139 #include <netinet/tcp_debug.h>
140 #endif
141 #include <netinet6/ip6protosw.h>
142 
143 #ifdef IPSEC
144 #include <netinet6/ipsec.h>
145 #ifdef INET6
146 #include <netinet6/ipsec6.h>
147 #endif
148 #endif
149 
150 #ifdef FAST_IPSEC
151 #include <netproto/ipsec/ipsec.h>
152 #ifdef INET6
153 #include <netproto/ipsec/ipsec6.h>
154 #endif
155 #define	IPSEC
156 #endif
157 
158 #include <sys/md5.h>
159 
160 #include <sys/msgport2.h>
161 
162 #include <machine/smp.h>
163 
164 struct inpcbinfo tcbinfo[MAXCPU];
165 struct tcpcbackqhead tcpcbackq[MAXCPU];
166 
167 int tcp_mssdflt = TCP_MSS;
168 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
169     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
170 
171 #ifdef INET6
172 int tcp_v6mssdflt = TCP6_MSS;
173 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
174     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
175 #endif
176 
177 #if 0
178 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
179 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
180     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
181 #endif
182 
183 int tcp_do_rfc1323 = 1;
184 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
185     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
186 
187 int tcp_do_rfc1644 = 0;
188 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
189     &tcp_do_rfc1644, 0, "Enable rfc1644 (TTCP) extensions");
190 
191 static int tcp_tcbhashsize = 0;
192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
193      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
194 
195 static int do_tcpdrain = 1;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
197      "Enable tcp_drain routine for extra help when low on mbufs");
198 
199 /* XXX JH */
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
201     &tcbinfo[0].ipi_count, 0, "Number of active PCBs");
202 
203 static int icmp_may_rst = 1;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
205     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
206 
207 static int tcp_isn_reseed_interval = 0;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
209     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
210 
211 /*
212  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
213  * 1024 exists only for debugging.  A good production default would be
214  * something like 6100.
215  */
216 static int tcp_inflight_enable = 0;
217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
218     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
219 
220 static int tcp_inflight_debug = 0;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
222     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
223 
224 static int tcp_inflight_min = 6144;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
226     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
227 
228 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
229 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
230     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
231 
232 static int tcp_inflight_stab = 20;
233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
234     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 2 packets)");
235 
236 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
237 static struct malloc_pipe tcptemp_mpipe;
238 
239 static void tcp_willblock(void);
240 static void tcp_cleartaocache (void);
241 static void tcp_notify (struct inpcb *, int);
242 
243 struct tcp_stats tcpstats_ary[MAXCPU];
244 #ifdef SMP
245 static int
246 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
247 {
248 	int cpu, error = 0;
249 
250 	for (cpu = 0; cpu < ncpus; ++cpu) {
251 		if ((error = SYSCTL_OUT(req, &tcpstats_ary[cpu],
252 					sizeof(struct tcp_stats))))
253 			break;
254 		if ((error = SYSCTL_IN(req, &tcpstats_ary[cpu],
255 				       sizeof(struct tcp_stats))))
256 			break;
257 	}
258 
259 	return (error);
260 }
261 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
262     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
263 #else
264 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
265     &tcpstat, tcp_stats, "TCP statistics");
266 #endif
267 
268 /*
269  * Target size of TCP PCB hash tables. Must be a power of two.
270  *
271  * Note that this can be overridden by the kernel environment
272  * variable net.inet.tcp.tcbhashsize
273  */
274 #ifndef TCBHASHSIZE
275 #define	TCBHASHSIZE	512
276 #endif
277 
278 /*
279  * This is the actual shape of what we allocate using the zone
280  * allocator.  Doing it this way allows us to protect both structures
281  * using the same generation count, and also eliminates the overhead
282  * of allocating tcpcbs separately.  By hiding the structure here,
283  * we avoid changing most of the rest of the code (although it needs
284  * to be changed, eventually, for greater efficiency).
285  */
286 #define	ALIGNMENT	32
287 #define	ALIGNM1		(ALIGNMENT - 1)
288 struct	inp_tp {
289 	union {
290 		struct	inpcb inp;
291 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
292 	} inp_tp_u;
293 	struct	tcpcb tcb;
294 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
295 	struct	callout inp_tp_delack;
296 };
297 #undef ALIGNMENT
298 #undef ALIGNM1
299 
300 /*
301  * Tcp initialization
302  */
303 void
304 tcp_init()
305 {
306 	struct inpcbporthead *porthashbase;
307 	u_long porthashmask;
308 	struct vm_zone *ipi_zone;
309 	int hashsize = TCBHASHSIZE;
310 	int cpu;
311 
312 	/*
313 	 * note: tcptemp is used for keepalives, and it is ok for an
314 	 * allocation to fail so do not specify MPF_INT.
315 	 */
316 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
317 		    25, -1, 0, NULL);
318 
319 	tcp_ccgen = 1;
320 	tcp_cleartaocache();
321 
322 	tcp_delacktime = TCPTV_DELACK;
323 	tcp_keepinit = TCPTV_KEEP_INIT;
324 	tcp_keepidle = TCPTV_KEEP_IDLE;
325 	tcp_keepintvl = TCPTV_KEEPINTVL;
326 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
327 	tcp_msl = TCPTV_MSL;
328 	tcp_rexmit_min = TCPTV_MIN;
329 	tcp_rexmit_slop = TCPTV_CPU_VAR;
330 
331 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
332 	if (!powerof2(hashsize)) {
333 		printf("WARNING: TCB hash size not a power of 2\n");
334 		hashsize = 512; /* safe default */
335 	}
336 	tcp_tcbhashsize = hashsize;
337 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
338 	ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
339 			 ZONE_INTERRUPT, 0);
340 
341 	for (cpu = 0; cpu < ncpus2; cpu++) {
342 		in_pcbinfo_init(&tcbinfo[cpu]);
343 		tcbinfo[cpu].cpu = cpu;
344 		tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
345 		    &tcbinfo[cpu].hashmask);
346 		tcbinfo[cpu].porthashbase = porthashbase;
347 		tcbinfo[cpu].porthashmask = porthashmask;
348 		tcbinfo[cpu].wildcardhashbase = hashinit(hashsize, M_PCB,
349 		    &tcbinfo[cpu].wildcardhashmask);
350 		tcbinfo[cpu].ipi_zone = ipi_zone;
351 		TAILQ_INIT(&tcpcbackq[cpu]);
352 	}
353 
354 	tcp_reass_maxseg = nmbclusters / 16;
355 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
356 
357 #ifdef INET6
358 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
359 #else
360 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
361 #endif
362 	if (max_protohdr < TCP_MINPROTOHDR)
363 		max_protohdr = TCP_MINPROTOHDR;
364 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
365 		panic("tcp_init");
366 #undef TCP_MINPROTOHDR
367 
368 	/*
369 	 * Initialize TCP statistics.
370 	 *
371 	 * It is layed out as an array which is has one element for UP,
372 	 * and SMP_MAXCPU elements for SMP.  This allows us to retain
373 	 * the access mechanism from userland for both UP and SMP.
374 	 */
375 #ifdef SMP
376 	for (cpu = 0; cpu < ncpus; ++cpu) {
377 		bzero(&tcpstats_ary[cpu], sizeof(struct tcp_stats));
378 	}
379 #else
380 	bzero(&tcpstat, sizeof(struct tcp_stats));
381 #endif
382 
383 	syncache_init();
384 	tcp_sack_init();
385 	tcp_thread_init();
386 }
387 
388 void
389 tcpmsg_service_loop(void *dummy)
390 {
391 	struct netmsg *msg;
392 
393 	while ((msg = lwkt_waitport(&curthread->td_msgport, NULL))) {
394 		do {
395 			msg->nm_lmsg.ms_cmd.cm_func(&msg->nm_lmsg);
396 		} while ((msg = lwkt_getport(&curthread->td_msgport)) != NULL);
397 		tcp_willblock();
398 	}
399 }
400 
401 static void
402 tcp_willblock(void)
403 {
404 	struct tcpcb *tp;
405 	int cpu = mycpu->gd_cpuid;
406 
407 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
408 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
409 		tp->t_flags &= ~TF_ONOUTPUTQ;
410 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
411 		tcp_output(tp);
412 	}
413 }
414 
415 
416 /*
417  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
418  * tcp_template used to store this data in mbufs, but we now recopy it out
419  * of the tcpcb each time to conserve mbufs.
420  */
421 void
422 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
423 {
424 	struct inpcb *inp = tp->t_inpcb;
425 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
426 
427 #ifdef INET6
428 	if (inp->inp_vflag & INP_IPV6) {
429 		struct ip6_hdr *ip6;
430 
431 		ip6 = (struct ip6_hdr *)ip_ptr;
432 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
433 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
434 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
435 			(IPV6_VERSION & IPV6_VERSION_MASK);
436 		ip6->ip6_nxt = IPPROTO_TCP;
437 		ip6->ip6_plen = sizeof(struct tcphdr);
438 		ip6->ip6_src = inp->in6p_laddr;
439 		ip6->ip6_dst = inp->in6p_faddr;
440 		tcp_hdr->th_sum = 0;
441 	} else
442 #endif
443 	{
444 		struct ip *ip = (struct ip *) ip_ptr;
445 
446 		ip->ip_vhl = IP_VHL_BORING;
447 		ip->ip_tos = 0;
448 		ip->ip_len = 0;
449 		ip->ip_id = 0;
450 		ip->ip_off = 0;
451 		ip->ip_ttl = 0;
452 		ip->ip_sum = 0;
453 		ip->ip_p = IPPROTO_TCP;
454 		ip->ip_src = inp->inp_laddr;
455 		ip->ip_dst = inp->inp_faddr;
456 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
457 				    ip->ip_dst.s_addr,
458 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
459 	}
460 
461 	tcp_hdr->th_sport = inp->inp_lport;
462 	tcp_hdr->th_dport = inp->inp_fport;
463 	tcp_hdr->th_seq = 0;
464 	tcp_hdr->th_ack = 0;
465 	tcp_hdr->th_x2 = 0;
466 	tcp_hdr->th_off = 5;
467 	tcp_hdr->th_flags = 0;
468 	tcp_hdr->th_win = 0;
469 	tcp_hdr->th_urp = 0;
470 }
471 
472 /*
473  * Create template to be used to send tcp packets on a connection.
474  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
475  * use for this function is in keepalives, which use tcp_respond.
476  */
477 struct tcptemp *
478 tcp_maketemplate(struct tcpcb *tp)
479 {
480 	struct tcptemp *tmp;
481 
482 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
483 		return (NULL);
484 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
485 	return (tmp);
486 }
487 
488 void
489 tcp_freetemplate(struct tcptemp *tmp)
490 {
491 	mpipe_free(&tcptemp_mpipe, tmp);
492 }
493 
494 /*
495  * Send a single message to the TCP at address specified by
496  * the given TCP/IP header.  If m == NULL, then we make a copy
497  * of the tcpiphdr at ti and send directly to the addressed host.
498  * This is used to force keep alive messages out using the TCP
499  * template for a connection.  If flags are given then we send
500  * a message back to the TCP which originated the * segment ti,
501  * and discard the mbuf containing it and any other attached mbufs.
502  *
503  * In any case the ack and sequence number of the transmitted
504  * segment are as specified by the parameters.
505  *
506  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
507  */
508 void
509 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
510 	    tcp_seq ack, tcp_seq seq, int flags)
511 {
512 	int tlen;
513 	int win = 0;
514 	struct route *ro = NULL;
515 	struct route sro;
516 	struct ip *ip = ipgen;
517 	struct tcphdr *nth;
518 	int ipflags = 0;
519 	struct route_in6 *ro6 = NULL;
520 	struct route_in6 sro6;
521 	struct ip6_hdr *ip6 = ipgen;
522 #ifdef INET6
523 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
524 #else
525 	const boolean_t isipv6 = FALSE;
526 #endif
527 
528 	if (tp != NULL) {
529 		if (!(flags & TH_RST)) {
530 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
531 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
532 				win = (long)TCP_MAXWIN << tp->rcv_scale;
533 		}
534 		if (isipv6)
535 			ro6 = &tp->t_inpcb->in6p_route;
536 		else
537 			ro = &tp->t_inpcb->inp_route;
538 	} else {
539 		if (isipv6) {
540 			ro6 = &sro6;
541 			bzero(ro6, sizeof *ro6);
542 		} else {
543 			ro = &sro;
544 			bzero(ro, sizeof *ro);
545 		}
546 	}
547 	if (m == NULL) {
548 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
549 		if (m == NULL)
550 			return;
551 		tlen = 0;
552 		m->m_data += max_linkhdr;
553 		if (isipv6) {
554 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
555 			ip6 = mtod(m, struct ip6_hdr *);
556 			nth = (struct tcphdr *)(ip6 + 1);
557 		} else {
558 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
559 			ip = mtod(m, struct ip *);
560 			nth = (struct tcphdr *)(ip + 1);
561 		}
562 		bcopy(th, nth, sizeof(struct tcphdr));
563 		flags = TH_ACK;
564 	} else {
565 		m_freem(m->m_next);
566 		m->m_next = NULL;
567 		m->m_data = (caddr_t)ipgen;
568 		/* m_len is set later */
569 		tlen = 0;
570 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
571 		if (isipv6) {
572 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
573 			nth = (struct tcphdr *)(ip6 + 1);
574 		} else {
575 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
576 			nth = (struct tcphdr *)(ip + 1);
577 		}
578 		if (th != nth) {
579 			/*
580 			 * this is usually a case when an extension header
581 			 * exists between the IPv6 header and the
582 			 * TCP header.
583 			 */
584 			nth->th_sport = th->th_sport;
585 			nth->th_dport = th->th_dport;
586 		}
587 		xchg(nth->th_dport, nth->th_sport, n_short);
588 #undef xchg
589 	}
590 	if (isipv6) {
591 		ip6->ip6_flow = 0;
592 		ip6->ip6_vfc = IPV6_VERSION;
593 		ip6->ip6_nxt = IPPROTO_TCP;
594 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
595 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
596 	} else {
597 		tlen += sizeof(struct tcpiphdr);
598 		ip->ip_len = tlen;
599 		ip->ip_ttl = ip_defttl;
600 	}
601 	m->m_len = tlen;
602 	m->m_pkthdr.len = tlen;
603 	m->m_pkthdr.rcvif = (struct ifnet *) NULL;
604 	nth->th_seq = htonl(seq);
605 	nth->th_ack = htonl(ack);
606 	nth->th_x2 = 0;
607 	nth->th_off = sizeof(struct tcphdr) >> 2;
608 	nth->th_flags = flags;
609 	if (tp != NULL)
610 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
611 	else
612 		nth->th_win = htons((u_short)win);
613 	nth->th_urp = 0;
614 	if (isipv6) {
615 		nth->th_sum = 0;
616 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
617 					sizeof(struct ip6_hdr),
618 					tlen - sizeof(struct ip6_hdr));
619 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
620 					       (ro6 && ro6->ro_rt) ?
621 						ro6->ro_rt->rt_ifp : NULL);
622 	} else {
623 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
624 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
625 		m->m_pkthdr.csum_flags = CSUM_TCP;
626 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
627 	}
628 #ifdef TCPDEBUG
629 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
630 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
631 #endif
632 	if (isipv6) {
633 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
634 			   tp ? tp->t_inpcb : NULL);
635 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
636 			RTFREE(ro6->ro_rt);
637 			ro6->ro_rt = NULL;
638 		}
639 	} else {
640 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
641 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
642 			RTFREE(ro->ro_rt);
643 			ro->ro_rt = NULL;
644 		}
645 	}
646 }
647 
648 /*
649  * Create a new TCP control block, making an
650  * empty reassembly queue and hooking it to the argument
651  * protocol control block.  The `inp' parameter must have
652  * come from the zone allocator set up in tcp_init().
653  */
654 struct tcpcb *
655 tcp_newtcpcb(struct inpcb *inp)
656 {
657 	struct inp_tp *it;
658 	struct tcpcb *tp;
659 #ifdef INET6
660 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
661 #else
662 	const boolean_t isipv6 = FALSE;
663 #endif
664 
665 	it = (struct inp_tp *)inp;
666 	tp = &it->tcb;
667 	bzero(tp, sizeof(struct tcpcb));
668 	LIST_INIT(&tp->t_segq);
669 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
670 
671 	/* Set up our timeouts. */
672 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
673 	callout_init(tp->tt_persist = &it->inp_tp_persist);
674 	callout_init(tp->tt_keep = &it->inp_tp_keep);
675 	callout_init(tp->tt_2msl = &it->inp_tp_2msl);
676 	callout_init(tp->tt_delack = &it->inp_tp_delack);
677 
678 	if (tcp_do_rfc1323)
679 		tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
680 	if (tcp_do_rfc1644)
681 		tp->t_flags |= TF_REQ_CC;
682 	tp->t_inpcb = inp;	/* XXX */
683 	tp->t_state = TCPS_CLOSED;
684 	/*
685 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
686 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
687 	 * reasonable initial retransmit time.
688 	 */
689 	tp->t_srtt = TCPTV_SRTTBASE;
690 	tp->t_rttvar =
691 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
692 	tp->t_rttmin = tcp_rexmit_min;
693 	tp->t_rxtcur = TCPTV_RTOBASE;
694 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
695 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
696 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
697 	tp->t_rcvtime = ticks;
698 	/*
699 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
700 	 * because the socket may be bound to an IPv6 wildcard address,
701 	 * which may match an IPv4-mapped IPv6 address.
702 	 */
703 	inp->inp_ip_ttl = ip_defttl;
704 	inp->inp_ppcb = tp;
705 	tcp_sack_tcpcb_init(tp);
706 	return (tp);		/* XXX */
707 }
708 
709 /*
710  * Drop a TCP connection, reporting the specified error.
711  * If connection is synchronized, then send a RST to peer.
712  */
713 struct tcpcb *
714 tcp_drop(struct tcpcb *tp, int errno)
715 {
716 	struct socket *so = tp->t_inpcb->inp_socket;
717 
718 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
719 		tp->t_state = TCPS_CLOSED;
720 		tcp_output(tp);
721 		tcpstat.tcps_drops++;
722 	} else
723 		tcpstat.tcps_conndrops++;
724 	if (errno == ETIMEDOUT && tp->t_softerror)
725 		errno = tp->t_softerror;
726 	so->so_error = errno;
727 	return (tcp_close(tp));
728 }
729 
730 #ifdef SMP
731 
732 struct netmsg_remwildcard {
733 	struct lwkt_msg		nm_lmsg;
734 	struct inpcb		*nm_inp;
735 	struct inpcbinfo	*nm_pcbinfo;
736 #if defined(INET6)
737 	int			nm_isinet6;
738 #else
739 	int			nm_unused01;
740 #endif
741 };
742 
743 /*
744  * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
745  * inp can be detached.  We do this by cycling through the cpus, ending up
746  * on the cpu controlling the inp last and then doing the disconnect.
747  */
748 static int
749 in_pcbremwildcardhash_handler(struct lwkt_msg *msg0)
750 {
751 	struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
752 	int cpu;
753 
754 	cpu = msg->nm_pcbinfo->cpu;
755 
756 	if (cpu == msg->nm_inp->inp_pcbinfo->cpu) {
757 		/* note: detach removes any wildcard hash entry */
758 #ifdef INET6
759 		if (msg->nm_isinet6)
760 			in6_pcbdetach(msg->nm_inp);
761 		else
762 #endif
763 			in_pcbdetach(msg->nm_inp);
764 		lwkt_replymsg(&msg->nm_lmsg, 0);
765 	} else {
766 		in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
767 		cpu = (cpu + 1) % ncpus2;
768 		msg->nm_pcbinfo = &tcbinfo[cpu];
769 		lwkt_forwardmsg(tcp_cport(cpu), &msg->nm_lmsg);
770 	}
771 	return (EASYNC);
772 }
773 
774 #endif
775 
776 /*
777  * Close a TCP control block:
778  *	discard all space held by the tcp
779  *	discard internet protocol block
780  *	wake up any sleepers
781  */
782 struct tcpcb *
783 tcp_close(struct tcpcb *tp)
784 {
785 	struct tseg_qent *q;
786 	struct inpcb *inp = tp->t_inpcb;
787 	struct socket *so = inp->inp_socket;
788 	struct rtentry *rt;
789 	boolean_t dosavessthresh;
790 #ifdef SMP
791 	int cpu;
792 #endif
793 #ifdef INET6
794 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
795 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
796 #else
797 	const boolean_t isipv6 = FALSE;
798 #endif
799 
800 	/*
801 	 * The tp is not instantly destroyed in the wildcard case.  Setting
802 	 * the state to TCPS_TERMINATING will prevent the TCP stack from
803 	 * messing with it, though it should be noted that this change may
804 	 * not take effect on other cpus until we have chained the wildcard
805 	 * hash removal.
806 	 *
807 	 * XXX we currently depend on the BGL to synchronize the tp->t_state
808 	 * update and prevent other tcp protocol threads from accepting new
809 	 * connections on the listen socket we might be trying to close down.
810 	 */
811 	KKASSERT(tp->t_state != TCPS_TERMINATING);
812 	tp->t_state = TCPS_TERMINATING;
813 
814 	/*
815 	 * Make sure that all of our timers are stopped before we
816 	 * delete the PCB.
817 	 */
818 	callout_stop(tp->tt_rexmt);
819 	callout_stop(tp->tt_persist);
820 	callout_stop(tp->tt_keep);
821 	callout_stop(tp->tt_2msl);
822 	callout_stop(tp->tt_delack);
823 
824 	if (tp->t_flags & TF_ONOUTPUTQ) {
825 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
826 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
827 		tp->t_flags &= ~TF_ONOUTPUTQ;
828 	}
829 
830 	/*
831 	 * If we got enough samples through the srtt filter,
832 	 * save the rtt and rttvar in the routing entry.
833 	 * 'Enough' is arbitrarily defined as the 16 samples.
834 	 * 16 samples is enough for the srtt filter to converge
835 	 * to within 5% of the correct value; fewer samples and
836 	 * we could save a very bogus rtt.
837 	 *
838 	 * Don't update the default route's characteristics and don't
839 	 * update anything that the user "locked".
840 	 */
841 	if (tp->t_rttupdated >= 16) {
842 		u_long i = 0;
843 
844 		if (isipv6) {
845 			struct sockaddr_in6 *sin6;
846 
847 			if ((rt = inp->in6p_route.ro_rt) == NULL)
848 				goto no_valid_rt;
849 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
850 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
851 				goto no_valid_rt;
852 		} else
853 			if ((rt = inp->inp_route.ro_rt) == NULL ||
854 			    ((struct sockaddr_in *)rt_key(rt))->
855 			     sin_addr.s_addr == INADDR_ANY)
856 				goto no_valid_rt;
857 
858 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
859 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
860 			if (rt->rt_rmx.rmx_rtt && i)
861 				/*
862 				 * filter this update to half the old & half
863 				 * the new values, converting scale.
864 				 * See route.h and tcp_var.h for a
865 				 * description of the scaling constants.
866 				 */
867 				rt->rt_rmx.rmx_rtt =
868 				    (rt->rt_rmx.rmx_rtt + i) / 2;
869 			else
870 				rt->rt_rmx.rmx_rtt = i;
871 			tcpstat.tcps_cachedrtt++;
872 		}
873 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
874 			i = tp->t_rttvar *
875 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
876 			if (rt->rt_rmx.rmx_rttvar && i)
877 				rt->rt_rmx.rmx_rttvar =
878 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
879 			else
880 				rt->rt_rmx.rmx_rttvar = i;
881 			tcpstat.tcps_cachedrttvar++;
882 		}
883 		/*
884 		 * The old comment here said:
885 		 * update the pipelimit (ssthresh) if it has been updated
886 		 * already or if a pipesize was specified & the threshhold
887 		 * got below half the pipesize.  I.e., wait for bad news
888 		 * before we start updating, then update on both good
889 		 * and bad news.
890 		 *
891 		 * But we want to save the ssthresh even if no pipesize is
892 		 * specified explicitly in the route, because such
893 		 * connections still have an implicit pipesize specified
894 		 * by the global tcp_sendspace.  In the absence of a reliable
895 		 * way to calculate the pipesize, it will have to do.
896 		 */
897 		i = tp->snd_ssthresh;
898 		if (rt->rt_rmx.rmx_sendpipe != 0)
899 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
900 		else
901 			dosavessthresh = (i < so->so_snd.sb_hiwat/2);
902 		if (dosavessthresh ||
903 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
904 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
905 			/*
906 			 * convert the limit from user data bytes to
907 			 * packets then to packet data bytes.
908 			 */
909 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
910 			if (i < 2)
911 				i = 2;
912 			i *= tp->t_maxseg +
913 			     (isipv6 ?
914 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
915 			      sizeof(struct tcpiphdr));
916 			if (rt->rt_rmx.rmx_ssthresh)
917 				rt->rt_rmx.rmx_ssthresh =
918 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
919 			else
920 				rt->rt_rmx.rmx_ssthresh = i;
921 			tcpstat.tcps_cachedssthresh++;
922 		}
923 	}
924 
925 no_valid_rt:
926 	/* free the reassembly queue, if any */
927 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
928 		LIST_REMOVE(q, tqe_q);
929 		m_freem(q->tqe_m);
930 		FREE(q, M_TSEGQ);
931 		tcp_reass_qsize--;
932 	}
933 	/* throw away SACK blocks in scoreboard*/
934 	if (TCP_DO_SACK(tp))
935 		tcp_sack_cleanup(&tp->scb);
936 
937 	inp->inp_ppcb = NULL;
938 	soisdisconnected(so);
939 	/*
940 	 * Discard the inp.  In the SMP case a wildcard inp's hash (created
941 	 * by a listen socket or an INADDR_ANY udp socket) is replicated
942 	 * for each protocol thread and must be removed in the context of
943 	 * that thread.  This is accomplished by chaining the message
944 	 * through the cpus.
945 	 *
946 	 * If the inp is not wildcarded we simply detach, which will remove
947 	 * the any hashes still present for this inp.
948 	 */
949 #ifdef SMP
950 	if (inp->inp_flags & INP_WILDCARD_MP) {
951 		struct netmsg_remwildcard *msg;
952 
953 		cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
954 		msg = malloc(sizeof(struct netmsg_remwildcard),
955 			    M_LWKTMSG, M_INTWAIT);
956 		lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
957 		    lwkt_cmd_func(in_pcbremwildcardhash_handler),
958 		    lwkt_cmd_op_none);
959 #ifdef INET6
960 		msg->nm_isinet6 = isafinet6;
961 #endif
962 		msg->nm_inp = inp;
963 		msg->nm_pcbinfo = &tcbinfo[cpu];
964 		lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
965 	} else
966 #endif
967 	{
968 		/* note: detach removes any wildcard hash entry */
969 #ifdef INET6
970 		if (isafinet6)
971 			in6_pcbdetach(inp);
972 		else
973 #endif
974 			in_pcbdetach(inp);
975 	}
976 	tcpstat.tcps_closed++;
977 	return (NULL);
978 }
979 
980 static __inline void
981 tcp_drain_oncpu(struct inpcbhead *head)
982 {
983 	struct inpcb *inpb;
984 	struct tcpcb *tcpb;
985 	struct tseg_qent *te;
986 
987 	LIST_FOREACH(inpb, head, inp_list) {
988 		if (inpb->inp_flags & INP_PLACEMARKER)
989 			continue;
990 		if ((tcpb = intotcpcb(inpb))) {
991 			while ((te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
992 				LIST_REMOVE(te, tqe_q);
993 				m_freem(te->tqe_m);
994 				FREE(te, M_TSEGQ);
995 				tcp_reass_qsize--;
996 			}
997 		}
998 	}
999 }
1000 
1001 #ifdef SMP
1002 struct netmsg_tcp_drain {
1003 	struct lwkt_msg		nm_lmsg;
1004 	struct inpcbhead	*nm_head;
1005 };
1006 
1007 static int
1008 tcp_drain_handler(lwkt_msg_t lmsg)
1009 {
1010 	struct netmsg_tcp_drain *nm = (void *)lmsg;
1011 
1012 	tcp_drain_oncpu(nm->nm_head);
1013 	lwkt_replymsg(lmsg, 0);
1014 	return(EASYNC);
1015 }
1016 #endif
1017 
1018 void
1019 tcp_drain()
1020 {
1021 #ifdef SMP
1022 	int cpu;
1023 #endif
1024 
1025 	if (!do_tcpdrain)
1026 		return;
1027 
1028 	/*
1029 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1030 	 * if there is one...
1031 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1032 	 *	reassembly queue should be flushed, but in a situation
1033 	 *	where we're really low on mbufs, this is potentially
1034 	 *	useful.
1035 	 */
1036 #ifdef SMP
1037 	for (cpu = 0; cpu < ncpus2; cpu++) {
1038 		struct netmsg_tcp_drain *msg;
1039 
1040 		if (cpu == mycpu->gd_cpuid) {
1041 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1042 		} else {
1043 			msg = malloc(sizeof(struct netmsg_tcp_drain),
1044 				    M_LWKTMSG, M_NOWAIT);
1045 			if (msg == NULL)
1046 				continue;
1047 			lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
1048 				lwkt_cmd_func(tcp_drain_handler),
1049 				lwkt_cmd_op_none);
1050 			msg->nm_head = &tcbinfo[cpu].pcblisthead;
1051 			lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
1052 		}
1053 	}
1054 #else
1055 	tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1056 #endif
1057 }
1058 
1059 /*
1060  * Notify a tcp user of an asynchronous error;
1061  * store error as soft error, but wake up user
1062  * (for now, won't do anything until can select for soft error).
1063  *
1064  * Do not wake up user since there currently is no mechanism for
1065  * reporting soft errors (yet - a kqueue filter may be added).
1066  */
1067 static void
1068 tcp_notify(struct inpcb *inp, int error)
1069 {
1070 	struct tcpcb *tp = intotcpcb(inp);
1071 
1072 	/*
1073 	 * Ignore some errors if we are hooked up.
1074 	 * If connection hasn't completed, has retransmitted several times,
1075 	 * and receives a second error, give up now.  This is better
1076 	 * than waiting a long time to establish a connection that
1077 	 * can never complete.
1078 	 */
1079 	if (tp->t_state == TCPS_ESTABLISHED &&
1080 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1081 	      error == EHOSTDOWN)) {
1082 		return;
1083 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1084 	    tp->t_softerror)
1085 		tcp_drop(tp, error);
1086 	else
1087 		tp->t_softerror = error;
1088 #if 0
1089 	wakeup(&so->so_timeo);
1090 	sorwakeup(so);
1091 	sowwakeup(so);
1092 #endif
1093 }
1094 
1095 static int
1096 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1097 {
1098 	int error, i, n;
1099 	struct inpcb *marker;
1100 	struct inpcb *inp;
1101 	inp_gen_t gencnt;
1102 	globaldata_t gd;
1103 	int origcpu, ccpu;
1104 
1105 	error = 0;
1106 	n = 0;
1107 
1108 	/*
1109 	 * The process of preparing the TCB list is too time-consuming and
1110 	 * resource-intensive to repeat twice on every request.
1111 	 */
1112 	if (req->oldptr == NULL) {
1113 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1114 			gd = globaldata_find(ccpu);
1115 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1116 		}
1117 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1118 		return (0);
1119 	}
1120 
1121 	if (req->newptr != NULL)
1122 		return (EPERM);
1123 
1124 	marker = malloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1125 	marker->inp_flags |= INP_PLACEMARKER;
1126 
1127 	/*
1128 	 * OK, now we're committed to doing something.  Run the inpcb list
1129 	 * for each cpu in the system and construct the output.  Use a
1130 	 * list placemarker to deal with list changes occuring during
1131 	 * copyout blockages (but otherwise depend on being on the correct
1132 	 * cpu to avoid races).
1133 	 */
1134 	origcpu = mycpu->gd_cpuid;
1135 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1136 		globaldata_t rgd;
1137 		caddr_t inp_ppcb;
1138 		struct xtcpcb xt;
1139 		int cpu_id;
1140 
1141 		cpu_id = (origcpu + ccpu) % ncpus;
1142 		if ((smp_active_mask & (1 << cpu_id)) == 0)
1143 			continue;
1144 		rgd = globaldata_find(cpu_id);
1145 		lwkt_setcpu_self(rgd);
1146 
1147 		/* indicate change of CPU */
1148 		cpu_mb1();
1149 
1150 		gencnt = tcbinfo[cpu_id].ipi_gencnt;
1151 		n = tcbinfo[cpu_id].ipi_count;
1152 
1153 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1154 		i = 0;
1155 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1156 			/*
1157 			 * process a snapshot of pcbs, ignoring placemarkers
1158 			 * and using our own to allow SYSCTL_OUT to block.
1159 			 */
1160 			LIST_REMOVE(marker, inp_list);
1161 			LIST_INSERT_AFTER(inp, marker, inp_list);
1162 
1163 			if (inp->inp_flags & INP_PLACEMARKER)
1164 				continue;
1165 			if (inp->inp_gencnt > gencnt)
1166 				continue;
1167 			if (prison_xinpcb(req->td, inp))
1168 				continue;
1169 
1170 			xt.xt_len = sizeof xt;
1171 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1172 			inp_ppcb = inp->inp_ppcb;
1173 			if (inp_ppcb != NULL)
1174 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1175 			else
1176 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1177 			if (inp->inp_socket)
1178 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1179 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1180 				break;
1181 			++i;
1182 		}
1183 		LIST_REMOVE(marker, inp_list);
1184 		if (error == 0 && i < n) {
1185 			bzero(&xt, sizeof xt);
1186 			xt.xt_len = sizeof xt;
1187 			while (i < n) {
1188 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1189 				if (error)
1190 					break;
1191 				++i;
1192 			}
1193 		}
1194 	}
1195 
1196 	/*
1197 	 * Make sure we are on the same cpu we were on originally, since
1198 	 * higher level callers expect this.  Also don't pollute caches with
1199 	 * migrated userland data by (eventually) returning to userland
1200 	 * on a different cpu.
1201 	 */
1202 	lwkt_setcpu_self(globaldata_find(origcpu));
1203 	free(marker, M_TEMP);
1204 	return (error);
1205 }
1206 
1207 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1208 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1209 
1210 static int
1211 tcp_getcred(SYSCTL_HANDLER_ARGS)
1212 {
1213 	struct sockaddr_in addrs[2];
1214 	struct inpcb *inp;
1215 	int cpu;
1216 	int error, s;
1217 
1218 	error = suser(req->td);
1219 	if (error != 0)
1220 		return (error);
1221 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1222 	if (error != 0)
1223 		return (error);
1224 	s = splnet();
1225 
1226 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1227 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1228 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1229 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1230 	if (inp == NULL || inp->inp_socket == NULL) {
1231 		error = ENOENT;
1232 		goto out;
1233 	}
1234 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1235 out:
1236 	splx(s);
1237 	return (error);
1238 }
1239 
1240 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1241     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1242 
1243 #ifdef INET6
1244 static int
1245 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1246 {
1247 	struct sockaddr_in6 addrs[2];
1248 	struct inpcb *inp;
1249 	int error, s;
1250 	boolean_t mapped = FALSE;
1251 
1252 	error = suser(req->td);
1253 	if (error != 0)
1254 		return (error);
1255 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1256 	if (error != 0)
1257 		return (error);
1258 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1259 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1260 			mapped = TRUE;
1261 		else
1262 			return (EINVAL);
1263 	}
1264 	s = splnet();
1265 	if (mapped) {
1266 		inp = in_pcblookup_hash(&tcbinfo[0],
1267 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1268 		    addrs[1].sin6_port,
1269 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1270 		    addrs[0].sin6_port,
1271 		    0, NULL);
1272 	} else {
1273 		inp = in6_pcblookup_hash(&tcbinfo[0],
1274 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1275 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1276 		    0, NULL);
1277 	}
1278 	if (inp == NULL || inp->inp_socket == NULL) {
1279 		error = ENOENT;
1280 		goto out;
1281 	}
1282 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1283 out:
1284 	splx(s);
1285 	return (error);
1286 }
1287 
1288 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1289 	    0, 0,
1290 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1291 #endif
1292 
1293 void
1294 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1295 {
1296 	struct ip *ip = vip;
1297 	struct tcphdr *th;
1298 	struct in_addr faddr;
1299 	struct inpcb *inp;
1300 	struct tcpcb *tp;
1301 	void (*notify)(struct inpcb *, int) = tcp_notify;
1302 	tcp_seq icmpseq;
1303 	int arg, cpu, s;
1304 
1305 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1306 		return;
1307 	}
1308 
1309 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1310 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1311 		return;
1312 
1313 	arg = inetctlerrmap[cmd];
1314 	if (cmd == PRC_QUENCH) {
1315 		notify = tcp_quench;
1316 	} else if (icmp_may_rst &&
1317 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1318 		    cmd == PRC_UNREACH_PORT ||
1319 		    cmd == PRC_TIMXCEED_INTRANS) &&
1320 		   ip != NULL) {
1321 		notify = tcp_drop_syn_sent;
1322 	} else if (cmd == PRC_MSGSIZE) {
1323 		struct icmp *icmp = (struct icmp *)
1324 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1325 
1326 		arg = ntohs(icmp->icmp_nextmtu);
1327 		notify = tcp_mtudisc;
1328 	} else if (PRC_IS_REDIRECT(cmd)) {
1329 		ip = NULL;
1330 		notify = in_rtchange;
1331 	} else if (cmd == PRC_HOSTDEAD) {
1332 		ip = NULL;
1333 	}
1334 
1335 	if (ip != NULL) {
1336 		s = splnet();
1337 		th = (struct tcphdr *)((caddr_t)ip +
1338 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1339 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1340 				  ip->ip_src.s_addr, th->th_sport);
1341 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1342 					ip->ip_src, th->th_sport, 0, NULL);
1343 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1344 			icmpseq = htonl(th->th_seq);
1345 			tp = intotcpcb(inp);
1346 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1347 			    SEQ_LT(icmpseq, tp->snd_max))
1348 				(*notify)(inp, arg);
1349 		} else {
1350 			struct in_conninfo inc;
1351 
1352 			inc.inc_fport = th->th_dport;
1353 			inc.inc_lport = th->th_sport;
1354 			inc.inc_faddr = faddr;
1355 			inc.inc_laddr = ip->ip_src;
1356 #ifdef INET6
1357 			inc.inc_isipv6 = 0;
1358 #endif
1359 			syncache_unreach(&inc, th);
1360 		}
1361 		splx(s);
1362 	} else {
1363 		for (cpu = 0; cpu < ncpus2; cpu++) {
1364 			in_pcbnotifyall(&tcbinfo[cpu].pcblisthead, faddr, arg,
1365 					notify);
1366 		}
1367 	}
1368 }
1369 
1370 #ifdef INET6
1371 void
1372 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1373 {
1374 	struct tcphdr th;
1375 	void (*notify) (struct inpcb *, int) = tcp_notify;
1376 	struct ip6_hdr *ip6;
1377 	struct mbuf *m;
1378 	struct ip6ctlparam *ip6cp = NULL;
1379 	const struct sockaddr_in6 *sa6_src = NULL;
1380 	int off;
1381 	struct tcp_portonly {
1382 		u_int16_t th_sport;
1383 		u_int16_t th_dport;
1384 	} *thp;
1385 	int arg;
1386 
1387 	if (sa->sa_family != AF_INET6 ||
1388 	    sa->sa_len != sizeof(struct sockaddr_in6))
1389 		return;
1390 
1391 	arg = 0;
1392 	if (cmd == PRC_QUENCH)
1393 		notify = tcp_quench;
1394 	else if (cmd == PRC_MSGSIZE) {
1395 		struct ip6ctlparam *ip6cp = d;
1396 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1397 
1398 		arg = ntohl(icmp6->icmp6_mtu);
1399 		notify = tcp_mtudisc;
1400 	} else if (!PRC_IS_REDIRECT(cmd) &&
1401 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1402 		return;
1403 	}
1404 
1405 	/* if the parameter is from icmp6, decode it. */
1406 	if (d != NULL) {
1407 		ip6cp = (struct ip6ctlparam *)d;
1408 		m = ip6cp->ip6c_m;
1409 		ip6 = ip6cp->ip6c_ip6;
1410 		off = ip6cp->ip6c_off;
1411 		sa6_src = ip6cp->ip6c_src;
1412 	} else {
1413 		m = NULL;
1414 		ip6 = NULL;
1415 		off = 0;	/* fool gcc */
1416 		sa6_src = &sa6_any;
1417 	}
1418 
1419 	if (ip6 != NULL) {
1420 		struct in_conninfo inc;
1421 		/*
1422 		 * XXX: We assume that when IPV6 is non NULL,
1423 		 * M and OFF are valid.
1424 		 */
1425 
1426 		/* check if we can safely examine src and dst ports */
1427 		if (m->m_pkthdr.len < off + sizeof *thp)
1428 			return;
1429 
1430 		bzero(&th, sizeof th);
1431 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1432 
1433 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1434 		    (struct sockaddr *)ip6cp->ip6c_src,
1435 		    th.th_sport, cmd, arg, notify);
1436 
1437 		inc.inc_fport = th.th_dport;
1438 		inc.inc_lport = th.th_sport;
1439 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1440 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1441 		inc.inc_isipv6 = 1;
1442 		syncache_unreach(&inc, &th);
1443 	} else
1444 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1445 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1446 }
1447 #endif
1448 
1449 /*
1450  * Following is where TCP initial sequence number generation occurs.
1451  *
1452  * There are two places where we must use initial sequence numbers:
1453  * 1.  In SYN-ACK packets.
1454  * 2.  In SYN packets.
1455  *
1456  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1457  * tcp_syncache.c for details.
1458  *
1459  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1460  * depends on this property.  In addition, these ISNs should be
1461  * unguessable so as to prevent connection hijacking.  To satisfy
1462  * the requirements of this situation, the algorithm outlined in
1463  * RFC 1948 is used to generate sequence numbers.
1464  *
1465  * Implementation details:
1466  *
1467  * Time is based off the system timer, and is corrected so that it
1468  * increases by one megabyte per second.  This allows for proper
1469  * recycling on high speed LANs while still leaving over an hour
1470  * before rollover.
1471  *
1472  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1473  * between seeding of isn_secret.  This is normally set to zero,
1474  * as reseeding should not be necessary.
1475  *
1476  */
1477 
1478 #define	ISN_BYTES_PER_SECOND 1048576
1479 
1480 u_char isn_secret[32];
1481 int isn_last_reseed;
1482 MD5_CTX isn_ctx;
1483 
1484 tcp_seq
1485 tcp_new_isn(struct tcpcb *tp)
1486 {
1487 	u_int32_t md5_buffer[4];
1488 	tcp_seq new_isn;
1489 
1490 	/* Seed if this is the first use, reseed if requested. */
1491 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1492 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1493 		< (u_int)ticks))) {
1494 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1495 		isn_last_reseed = ticks;
1496 	}
1497 
1498 	/* Compute the md5 hash and return the ISN. */
1499 	MD5Init(&isn_ctx);
1500 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1501 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1502 #ifdef INET6
1503 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1504 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1505 			  sizeof(struct in6_addr));
1506 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1507 			  sizeof(struct in6_addr));
1508 	} else
1509 #endif
1510 	{
1511 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1512 			  sizeof(struct in_addr));
1513 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1514 			  sizeof(struct in_addr));
1515 	}
1516 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1517 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1518 	new_isn = (tcp_seq) md5_buffer[0];
1519 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1520 	return (new_isn);
1521 }
1522 
1523 /*
1524  * When a source quench is received, close congestion window
1525  * to one segment.  We will gradually open it again as we proceed.
1526  */
1527 void
1528 tcp_quench(struct inpcb *inp, int errno)
1529 {
1530 	struct tcpcb *tp = intotcpcb(inp);
1531 
1532 	if (tp != NULL)
1533 		tp->snd_cwnd = tp->t_maxseg;
1534 }
1535 
1536 /*
1537  * When a specific ICMP unreachable message is received and the
1538  * connection state is SYN-SENT, drop the connection.  This behavior
1539  * is controlled by the icmp_may_rst sysctl.
1540  */
1541 void
1542 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1543 {
1544 	struct tcpcb *tp = intotcpcb(inp);
1545 
1546 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1547 		tcp_drop(tp, errno);
1548 }
1549 
1550 /*
1551  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1552  * based on the new value in the route.  Also nudge TCP to send something,
1553  * since we know the packet we just sent was dropped.
1554  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1555  */
1556 void
1557 tcp_mtudisc(struct inpcb *inp, int mtu)
1558 {
1559 	struct tcpcb *tp = intotcpcb(inp);
1560 	struct rtentry *rt;
1561 	struct socket *so = inp->inp_socket;
1562 	int maxopd, mss;
1563 #ifdef INET6
1564 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1565 #else
1566 	const boolean_t isipv6 = FALSE;
1567 #endif
1568 
1569 	if (tp == NULL)
1570 		return;
1571 
1572 	/*
1573 	 * If no MTU is provided in the ICMP message, use the
1574 	 * next lower likely value, as specified in RFC 1191.
1575 	 */
1576 	if (mtu == 0) {
1577 		int oldmtu;
1578 
1579 		oldmtu = tp->t_maxopd +
1580 		    (isipv6 ?
1581 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1582 		     sizeof(struct tcpiphdr));
1583 		mtu = ip_next_mtu(oldmtu, 0);
1584 	}
1585 
1586 	if (isipv6)
1587 		rt = tcp_rtlookup6(&inp->inp_inc);
1588 	else
1589 		rt = tcp_rtlookup(&inp->inp_inc);
1590 	if (rt != NULL) {
1591 		struct rmxp_tao *taop = rmx_taop(rt->rt_rmx);
1592 
1593 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1594 			mtu = rt->rt_rmx.rmx_mtu;
1595 
1596 		maxopd = mtu -
1597 		    (isipv6 ?
1598 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1599 		     sizeof(struct tcpiphdr));
1600 
1601 		/*
1602 		 * XXX - The following conditional probably violates the TCP
1603 		 * spec.  The problem is that, since we don't know the
1604 		 * other end's MSS, we are supposed to use a conservative
1605 		 * default.  But, if we do that, then MTU discovery will
1606 		 * never actually take place, because the conservative
1607 		 * default is much less than the MTUs typically seen
1608 		 * on the Internet today.  For the moment, we'll sweep
1609 		 * this under the carpet.
1610 		 *
1611 		 * The conservative default might not actually be a problem
1612 		 * if the only case this occurs is when sending an initial
1613 		 * SYN with options and data to a host we've never talked
1614 		 * to before.  Then, they will reply with an MSS value which
1615 		 * will get recorded and the new parameters should get
1616 		 * recomputed.  For Further Study.
1617 		 */
1618 		if (taop->tao_mssopt != 0 && taop->tao_mssopt < maxopd)
1619 			maxopd = taop->tao_mssopt;
1620 	} else
1621 		maxopd = mtu -
1622 		    (isipv6 ?
1623 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1624 		     sizeof(struct tcpiphdr));
1625 
1626 	if (tp->t_maxopd <= maxopd)
1627 		return;
1628 	tp->t_maxopd = maxopd;
1629 
1630 	mss = maxopd;
1631 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1632 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1633 		mss -= TCPOLEN_TSTAMP_APPA;
1634 
1635 	if ((tp->t_flags & (TF_REQ_CC | TF_RCVD_CC | TF_NOOPT)) ==
1636 			   (TF_REQ_CC | TF_RCVD_CC))
1637 		mss -= TCPOLEN_CC_APPA;
1638 
1639 	/* round down to multiple of MCLBYTES */
1640 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1641 	if (mss > MCLBYTES)
1642 		mss &= ~(MCLBYTES - 1);
1643 #else
1644 	if (mss > MCLBYTES)
1645 		mss = (mss / MCLBYTES) * MCLBYTES;
1646 #endif
1647 
1648 	if (so->so_snd.sb_hiwat < mss)
1649 		mss = so->so_snd.sb_hiwat;
1650 
1651 	tp->t_maxseg = mss;
1652 	tp->t_rtttime = 0;
1653 	tp->snd_nxt = tp->snd_una;
1654 	tcp_output(tp);
1655 	tcpstat.tcps_mturesent++;
1656 }
1657 
1658 /*
1659  * Look-up the routing entry to the peer of this inpcb.  If no route
1660  * is found and it cannot be allocated the return NULL.  This routine
1661  * is called by TCP routines that access the rmx structure and by tcp_mss
1662  * to get the interface MTU.
1663  */
1664 struct rtentry *
1665 tcp_rtlookup(struct in_conninfo *inc)
1666 {
1667 	struct route *ro = &inc->inc_route;
1668 
1669 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1670 		/* No route yet, so try to acquire one */
1671 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1672 			/*
1673 			 * unused portions of the structure MUST be zero'd
1674 			 * out because rtalloc() treats it as opaque data
1675 			 */
1676 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1677 			ro->ro_dst.sa_family = AF_INET;
1678 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1679 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1680 			    inc->inc_faddr;
1681 			rtalloc(ro);
1682 		}
1683 	}
1684 	return (ro->ro_rt);
1685 }
1686 
1687 #ifdef INET6
1688 struct rtentry *
1689 tcp_rtlookup6(struct in_conninfo *inc)
1690 {
1691 	struct route_in6 *ro6 = &inc->inc6_route;
1692 
1693 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1694 		/* No route yet, so try to acquire one */
1695 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1696 			/*
1697 			 * unused portions of the structure MUST be zero'd
1698 			 * out because rtalloc() treats it as opaque data
1699 			 */
1700 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1701 			ro6->ro_dst.sin6_family = AF_INET6;
1702 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1703 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1704 			rtalloc((struct route *)ro6);
1705 		}
1706 	}
1707 	return (ro6->ro_rt);
1708 }
1709 #endif
1710 
1711 #ifdef IPSEC
1712 /* compute ESP/AH header size for TCP, including outer IP header. */
1713 size_t
1714 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1715 {
1716 	struct inpcb *inp;
1717 	struct mbuf *m;
1718 	size_t hdrsiz;
1719 	struct ip *ip;
1720 	struct tcphdr *th;
1721 
1722 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1723 		return (0);
1724 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1725 	if (!m)
1726 		return (0);
1727 
1728 #ifdef INET6
1729 	if (inp->inp_vflag & INP_IPV6) {
1730 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1731 
1732 		th = (struct tcphdr *)(ip6 + 1);
1733 		m->m_pkthdr.len = m->m_len =
1734 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1735 		tcp_fillheaders(tp, ip6, th);
1736 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1737 	} else
1738 #endif
1739 	{
1740 		ip = mtod(m, struct ip *);
1741 		th = (struct tcphdr *)(ip + 1);
1742 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1743 		tcp_fillheaders(tp, ip, th);
1744 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1745 	}
1746 
1747 	m_free(m);
1748 	return (hdrsiz);
1749 }
1750 #endif
1751 
1752 /*
1753  * Return a pointer to the cached information about the remote host.
1754  * The cached information is stored in the protocol specific part of
1755  * the route metrics.
1756  */
1757 struct rmxp_tao *
1758 tcp_gettaocache(struct in_conninfo *inc)
1759 {
1760 	struct rtentry *rt;
1761 
1762 #ifdef INET6
1763 	if (inc->inc_isipv6)
1764 		rt = tcp_rtlookup6(inc);
1765 	else
1766 #endif
1767 		rt = tcp_rtlookup(inc);
1768 
1769 	/* Make sure this is a host route and is up. */
1770 	if (rt == NULL ||
1771 	    (rt->rt_flags & (RTF_UP | RTF_HOST)) != (RTF_UP | RTF_HOST))
1772 		return (NULL);
1773 
1774 	return (rmx_taop(rt->rt_rmx));
1775 }
1776 
1777 /*
1778  * Clear all the TAO cache entries, called from tcp_init.
1779  *
1780  * XXX
1781  * This routine is just an empty one, because we assume that the routing
1782  * routing tables are initialized at the same time when TCP, so there is
1783  * nothing in the cache left over.
1784  */
1785 static void
1786 tcp_cleartaocache()
1787 {
1788 }
1789 
1790 /*
1791  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1792  *
1793  * This code attempts to calculate the bandwidth-delay product as a
1794  * means of determining the optimal window size to maximize bandwidth,
1795  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1796  * routers.  This code also does a fairly good job keeping RTTs in check
1797  * across slow links like modems.  We implement an algorithm which is very
1798  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1799  * transmitter side of a TCP connection and so only effects the transmit
1800  * side of the connection.
1801  *
1802  * BACKGROUND:  TCP makes no provision for the management of buffer space
1803  * at the end points or at the intermediate routers and switches.  A TCP
1804  * stream, whether using NewReno or not, will eventually buffer as
1805  * many packets as it is able and the only reason this typically works is
1806  * due to the fairly small default buffers made available for a connection
1807  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1808  * scaling it is now fairly easy for even a single TCP connection to blow-out
1809  * all available buffer space not only on the local interface, but on
1810  * intermediate routers and switches as well.  NewReno makes a misguided
1811  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1812  * then backing off, then steadily increasing the window again until another
1813  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1814  * is only made worse as network loads increase and the idea of intentionally
1815  * blowing out network buffers is, frankly, a terrible way to manage network
1816  * resources.
1817  *
1818  * It is far better to limit the transmit window prior to the failure
1819  * condition being achieved.  There are two general ways to do this:  First
1820  * you can 'scan' through different transmit window sizes and locate the
1821  * point where the RTT stops increasing, indicating that you have filled the
1822  * pipe, then scan backwards until you note that RTT stops decreasing, then
1823  * repeat ad-infinitum.  This method works in principle but has severe
1824  * implementation issues due to RTT variances, timer granularity, and
1825  * instability in the algorithm which can lead to many false positives and
1826  * create oscillations as well as interact badly with other TCP streams
1827  * implementing the same algorithm.
1828  *
1829  * The second method is to limit the window to the bandwidth delay product
1830  * of the link.  This is the method we implement.  RTT variances and our
1831  * own manipulation of the congestion window, bwnd, can potentially
1832  * destabilize the algorithm.  For this reason we have to stabilize the
1833  * elements used to calculate the window.  We do this by using the minimum
1834  * observed RTT, the long term average of the observed bandwidth, and
1835  * by adding two segments worth of slop.  It isn't perfect but it is able
1836  * to react to changing conditions and gives us a very stable basis on
1837  * which to extend the algorithm.
1838  */
1839 void
1840 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1841 {
1842 	u_long bw;
1843 	u_long bwnd;
1844 	int save_ticks;
1845 	int delta_ticks;
1846 
1847 	/*
1848 	 * If inflight_enable is disabled in the middle of a tcp connection,
1849 	 * make sure snd_bwnd is effectively disabled.
1850 	 */
1851 	if (!tcp_inflight_enable) {
1852 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1853 		tp->snd_bandwidth = 0;
1854 		return;
1855 	}
1856 
1857 	/*
1858 	 * Validate the delta time.  If a connection is new or has been idle
1859 	 * a long time we have to reset the bandwidth calculator.
1860 	 */
1861 	save_ticks = ticks;
1862 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1863 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1864 		tp->t_bw_rtttime = ticks;
1865 		tp->t_bw_rtseq = ack_seq;
1866 		if (tp->snd_bandwidth == 0)
1867 			tp->snd_bandwidth = tcp_inflight_min;
1868 		return;
1869 	}
1870 	if (delta_ticks == 0)
1871 		return;
1872 
1873 	/*
1874 	 * Sanity check, plus ignore pure window update acks.
1875 	 */
1876 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1877 		return;
1878 
1879 	/*
1880 	 * Figure out the bandwidth.  Due to the tick granularity this
1881 	 * is a very rough number and it MUST be averaged over a fairly
1882 	 * long period of time.  XXX we need to take into account a link
1883 	 * that is not using all available bandwidth, but for now our
1884 	 * slop will ramp us up if this case occurs and the bandwidth later
1885 	 * increases.
1886 	 */
1887 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1888 	tp->t_bw_rtttime = save_ticks;
1889 	tp->t_bw_rtseq = ack_seq;
1890 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1891 
1892 	tp->snd_bandwidth = bw;
1893 
1894 	/*
1895 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1896 	 * segments.  The additional slop puts us squarely in the sweet
1897 	 * spot and also handles the bandwidth run-up case.  Without the
1898 	 * slop we could be locking ourselves into a lower bandwidth.
1899 	 *
1900 	 * Situations Handled:
1901 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1902 	 *	    high speed LANs, allowing larger TCP buffers to be
1903 	 *	    specified, and also does a good job preventing
1904 	 *	    over-queueing of packets over choke points like modems
1905 	 *	    (at least for the transmit side).
1906 	 *
1907 	 *	(2) Is able to handle changing network loads (bandwidth
1908 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1909 	 *	    increases).
1910 	 *
1911 	 *	(3) Theoretically should stabilize in the face of multiple
1912 	 *	    connections implementing the same algorithm (this may need
1913 	 *	    a little work).
1914 	 *
1915 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1916 	 *	    be adjusted with a sysctl but typically only needs to be on
1917 	 *	    very slow connections.  A value no smaller then 5 should
1918 	 *	    be used, but only reduce this default if you have no other
1919 	 *	    choice.
1920 	 */
1921 
1922 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1923 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1924 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1925 #undef USERTT
1926 
1927 	if (tcp_inflight_debug > 0) {
1928 		static int ltime;
1929 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1930 			ltime = ticks;
1931 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1932 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1933 		}
1934 	}
1935 	if ((long)bwnd < tcp_inflight_min)
1936 		bwnd = tcp_inflight_min;
1937 	if (bwnd > tcp_inflight_max)
1938 		bwnd = tcp_inflight_max;
1939 	if ((long)bwnd < tp->t_maxseg * 2)
1940 		bwnd = tp->t_maxseg * 2;
1941 	tp->snd_bwnd = bwnd;
1942 }
1943