xref: /dflybsd-src/sys/netinet/tcp_subr.c (revision ad63697b1227b985f99dd96f67aaafb238b3d148)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
68  */
69 
70 #include "opt_compat.h"
71 #include "opt_inet.h"
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/callout.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
82 #include <sys/mpipe.h>
83 #include <sys/mbuf.h>
84 #ifdef INET6
85 #include <sys/domain.h>
86 #endif
87 #include <sys/proc.h>
88 #include <sys/priv.h>
89 #include <sys/socket.h>
90 #include <sys/socketvar.h>
91 #include <sys/protosw.h>
92 #include <sys/random.h>
93 #include <sys/in_cksum.h>
94 #include <sys/ktr.h>
95 
96 #include <net/route.h>
97 #include <net/if.h>
98 #include <net/netisr.h>
99 
100 #define	_IP_VHL
101 #include <netinet/in.h>
102 #include <netinet/in_systm.h>
103 #include <netinet/ip.h>
104 #include <netinet/ip6.h>
105 #include <netinet/in_pcb.h>
106 #include <netinet6/in6_pcb.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip_var.h>
109 #include <netinet6/ip6_var.h>
110 #include <netinet/ip_icmp.h>
111 #ifdef INET6
112 #include <netinet/icmp6.h>
113 #endif
114 #include <netinet/tcp.h>
115 #include <netinet/tcp_fsm.h>
116 #include <netinet/tcp_seq.h>
117 #include <netinet/tcp_timer.h>
118 #include <netinet/tcp_timer2.h>
119 #include <netinet/tcp_var.h>
120 #include <netinet6/tcp6_var.h>
121 #include <netinet/tcpip.h>
122 #ifdef TCPDEBUG
123 #include <netinet/tcp_debug.h>
124 #endif
125 #include <netinet6/ip6protosw.h>
126 
127 #ifdef IPSEC
128 #include <netinet6/ipsec.h>
129 #include <netproto/key/key.h>
130 #ifdef INET6
131 #include <netinet6/ipsec6.h>
132 #endif
133 #endif
134 
135 #ifdef FAST_IPSEC
136 #include <netproto/ipsec/ipsec.h>
137 #ifdef INET6
138 #include <netproto/ipsec/ipsec6.h>
139 #endif
140 #define	IPSEC
141 #endif
142 
143 #include <sys/md5.h>
144 #include <machine/smp.h>
145 
146 #include <sys/msgport2.h>
147 #include <sys/mplock2.h>
148 #include <net/netmsg2.h>
149 
150 #if !defined(KTR_TCP)
151 #define KTR_TCP		KTR_ALL
152 #endif
153 /*
154 KTR_INFO_MASTER(tcp);
155 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
156 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
157 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
158 #define logtcp(name)	KTR_LOG(tcp_ ## name)
159 */
160 
161 #define TCP_IW_MAXSEGS_DFLT	4
162 #define TCP_IW_CAPSEGS_DFLT	3
163 
164 struct inpcbinfo tcbinfo[MAXCPU];
165 struct tcpcbackqhead tcpcbackq[MAXCPU];
166 
167 static struct lwkt_token tcp_port_token =
168 		LWKT_TOKEN_INITIALIZER(tcp_port_token);
169 
170 int tcp_mssdflt = TCP_MSS;
171 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
172     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
173 
174 #ifdef INET6
175 int tcp_v6mssdflt = TCP6_MSS;
176 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
177     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
178 #endif
179 
180 /*
181  * Minimum MSS we accept and use. This prevents DoS attacks where
182  * we are forced to a ridiculous low MSS like 20 and send hundreds
183  * of packets instead of one. The effect scales with the available
184  * bandwidth and quickly saturates the CPU and network interface
185  * with packet generation and sending. Set to zero to disable MINMSS
186  * checking. This setting prevents us from sending too small packets.
187  */
188 int tcp_minmss = TCP_MINMSS;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
190     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
191 
192 #if 0
193 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
194 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
195     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
196 #endif
197 
198 int tcp_do_rfc1323 = 1;
199 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
200     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
201 
202 static int tcp_tcbhashsize = 0;
203 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
204      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
205 
206 static int do_tcpdrain = 1;
207 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
208      "Enable tcp_drain routine for extra help when low on mbufs");
209 
210 static int icmp_may_rst = 1;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
212     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
213 
214 static int tcp_isn_reseed_interval = 0;
215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
216     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
217 
218 /*
219  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
220  * by default, but with generous values which should allow maximal
221  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
222  *
223  * The reason for doing this is that the limiter is the only mechanism we
224  * have which seems to do a really good job preventing receiver RX rings
225  * on network interfaces from getting blown out.  Even though GigE/10GigE
226  * is supposed to flow control it looks like either it doesn't actually
227  * do it or Open Source drivers do not properly enable it.
228  *
229  * People using the limiter to reduce bottlenecks on slower WAN connections
230  * should set the slop to 20 (2 packets).
231  */
232 static int tcp_inflight_enable = 1;
233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
234     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
235 
236 static int tcp_inflight_debug = 0;
237 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
238     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
239 
240 static int tcp_inflight_min = 6144;
241 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
242     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
243 
244 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
245 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
246     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
247 
248 static int tcp_inflight_stab = 50;
249 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
250     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
251 
252 static int tcp_do_rfc3390 = 1;
253 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
254     &tcp_do_rfc3390, 0,
255     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
256 
257 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
258 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
259     &tcp_iw_maxsegs, 0, "TCP IW segments max");
260 
261 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
262 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
263     &tcp_iw_capsegs, 0, "TCP IW segments");
264 
265 int tcp_low_rtobase = 1;
266 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
267     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
268 
269 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
270 static struct malloc_pipe tcptemp_mpipe;
271 
272 static void tcp_willblock(void);
273 static void tcp_notify (struct inpcb *, int);
274 
275 struct tcp_stats tcpstats_percpu[MAXCPU];
276 #ifdef SMP
277 static int
278 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
279 {
280 	int cpu, error = 0;
281 
282 	for (cpu = 0; cpu < ncpus; ++cpu) {
283 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
284 					sizeof(struct tcp_stats))))
285 			break;
286 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
287 				       sizeof(struct tcp_stats))))
288 			break;
289 	}
290 
291 	return (error);
292 }
293 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
294     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
295 #else
296 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
297     &tcpstat, tcp_stats, "TCP statistics");
298 #endif
299 
300 /*
301  * Target size of TCP PCB hash tables. Must be a power of two.
302  *
303  * Note that this can be overridden by the kernel environment
304  * variable net.inet.tcp.tcbhashsize
305  */
306 #ifndef TCBHASHSIZE
307 #define	TCBHASHSIZE	512
308 #endif
309 
310 /*
311  * This is the actual shape of what we allocate using the zone
312  * allocator.  Doing it this way allows us to protect both structures
313  * using the same generation count, and also eliminates the overhead
314  * of allocating tcpcbs separately.  By hiding the structure here,
315  * we avoid changing most of the rest of the code (although it needs
316  * to be changed, eventually, for greater efficiency).
317  */
318 #define	ALIGNMENT	32
319 #define	ALIGNM1		(ALIGNMENT - 1)
320 struct	inp_tp {
321 	union {
322 		struct	inpcb inp;
323 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
324 	} inp_tp_u;
325 	struct	tcpcb tcb;
326 	struct	tcp_callout inp_tp_rexmt;
327 	struct	tcp_callout inp_tp_persist;
328 	struct	tcp_callout inp_tp_keep;
329 	struct	tcp_callout inp_tp_2msl;
330 	struct	tcp_callout inp_tp_delack;
331 	struct	netmsg_tcp_timer inp_tp_timermsg;
332 };
333 #undef ALIGNMENT
334 #undef ALIGNM1
335 
336 /*
337  * Tcp initialization
338  */
339 void
340 tcp_init(void)
341 {
342 	struct inpcbporthead *porthashbase;
343 	struct inpcbinfo *ticb;
344 	u_long porthashmask;
345 	int hashsize = TCBHASHSIZE;
346 	int cpu;
347 
348 	/*
349 	 * note: tcptemp is used for keepalives, and it is ok for an
350 	 * allocation to fail so do not specify MPF_INT.
351 	 */
352 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
353 		    25, -1, 0, NULL, NULL, NULL);
354 
355 	tcp_delacktime = TCPTV_DELACK;
356 	tcp_keepinit = TCPTV_KEEP_INIT;
357 	tcp_keepidle = TCPTV_KEEP_IDLE;
358 	tcp_keepintvl = TCPTV_KEEPINTVL;
359 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
360 	tcp_msl = TCPTV_MSL;
361 	tcp_rexmit_min = TCPTV_MIN;
362 	tcp_rexmit_slop = TCPTV_CPU_VAR;
363 
364 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
365 	if (!powerof2(hashsize)) {
366 		kprintf("WARNING: TCB hash size not a power of 2\n");
367 		hashsize = 512; /* safe default */
368 	}
369 	tcp_tcbhashsize = hashsize;
370 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
371 
372 	for (cpu = 0; cpu < ncpus2; cpu++) {
373 		ticb = &tcbinfo[cpu];
374 		in_pcbinfo_init(ticb);
375 		ticb->cpu = cpu;
376 		ticb->hashbase = hashinit(hashsize, M_PCB,
377 					  &ticb->hashmask);
378 		ticb->porthashbase = porthashbase;
379 		ticb->porthashmask = porthashmask;
380 		ticb->porttoken = &tcp_port_token;
381 #if 0
382 		ticb->porthashbase = hashinit(hashsize, M_PCB,
383 					      &ticb->porthashmask);
384 #endif
385 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
386 						  &ticb->wildcardhashmask);
387 		ticb->ipi_size = sizeof(struct inp_tp);
388 		TAILQ_INIT(&tcpcbackq[cpu]);
389 	}
390 
391 	tcp_reass_maxseg = nmbclusters / 16;
392 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
393 
394 #ifdef INET6
395 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
396 #else
397 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
398 #endif
399 	if (max_protohdr < TCP_MINPROTOHDR)
400 		max_protohdr = TCP_MINPROTOHDR;
401 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
402 		panic("tcp_init");
403 #undef TCP_MINPROTOHDR
404 
405 	/*
406 	 * Initialize TCP statistics counters for each CPU.
407 	 */
408 #ifdef SMP
409 	for (cpu = 0; cpu < ncpus; ++cpu) {
410 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
411 	}
412 #else
413 	bzero(&tcpstat, sizeof(struct tcp_stats));
414 #endif
415 
416 	syncache_init();
417 	netisr_register_rollup(tcp_willblock);
418 }
419 
420 static void
421 tcp_willblock(void)
422 {
423 	struct tcpcb *tp;
424 	int cpu = mycpu->gd_cpuid;
425 
426 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
427 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
428 		tp->t_flags &= ~TF_ONOUTPUTQ;
429 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
430 		tcp_output(tp);
431 	}
432 }
433 
434 /*
435  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
436  * tcp_template used to store this data in mbufs, but we now recopy it out
437  * of the tcpcb each time to conserve mbufs.
438  */
439 void
440 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
441 {
442 	struct inpcb *inp = tp->t_inpcb;
443 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
444 
445 #ifdef INET6
446 	if (inp->inp_vflag & INP_IPV6) {
447 		struct ip6_hdr *ip6;
448 
449 		ip6 = (struct ip6_hdr *)ip_ptr;
450 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
451 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
452 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
453 			(IPV6_VERSION & IPV6_VERSION_MASK);
454 		ip6->ip6_nxt = IPPROTO_TCP;
455 		ip6->ip6_plen = sizeof(struct tcphdr);
456 		ip6->ip6_src = inp->in6p_laddr;
457 		ip6->ip6_dst = inp->in6p_faddr;
458 		tcp_hdr->th_sum = 0;
459 	} else
460 #endif
461 	{
462 		struct ip *ip = (struct ip *) ip_ptr;
463 
464 		ip->ip_vhl = IP_VHL_BORING;
465 		ip->ip_tos = 0;
466 		ip->ip_len = 0;
467 		ip->ip_id = 0;
468 		ip->ip_off = 0;
469 		ip->ip_ttl = 0;
470 		ip->ip_sum = 0;
471 		ip->ip_p = IPPROTO_TCP;
472 		ip->ip_src = inp->inp_laddr;
473 		ip->ip_dst = inp->inp_faddr;
474 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
475 				    ip->ip_dst.s_addr,
476 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
477 	}
478 
479 	tcp_hdr->th_sport = inp->inp_lport;
480 	tcp_hdr->th_dport = inp->inp_fport;
481 	tcp_hdr->th_seq = 0;
482 	tcp_hdr->th_ack = 0;
483 	tcp_hdr->th_x2 = 0;
484 	tcp_hdr->th_off = 5;
485 	tcp_hdr->th_flags = 0;
486 	tcp_hdr->th_win = 0;
487 	tcp_hdr->th_urp = 0;
488 }
489 
490 /*
491  * Create template to be used to send tcp packets on a connection.
492  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
493  * use for this function is in keepalives, which use tcp_respond.
494  */
495 struct tcptemp *
496 tcp_maketemplate(struct tcpcb *tp)
497 {
498 	struct tcptemp *tmp;
499 
500 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
501 		return (NULL);
502 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
503 	return (tmp);
504 }
505 
506 void
507 tcp_freetemplate(struct tcptemp *tmp)
508 {
509 	mpipe_free(&tcptemp_mpipe, tmp);
510 }
511 
512 /*
513  * Send a single message to the TCP at address specified by
514  * the given TCP/IP header.  If m == NULL, then we make a copy
515  * of the tcpiphdr at ti and send directly to the addressed host.
516  * This is used to force keep alive messages out using the TCP
517  * template for a connection.  If flags are given then we send
518  * a message back to the TCP which originated the * segment ti,
519  * and discard the mbuf containing it and any other attached mbufs.
520  *
521  * In any case the ack and sequence number of the transmitted
522  * segment are as specified by the parameters.
523  *
524  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
525  */
526 void
527 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
528 	    tcp_seq ack, tcp_seq seq, int flags)
529 {
530 	int tlen;
531 	int win = 0;
532 	struct route *ro = NULL;
533 	struct route sro;
534 	struct ip *ip = ipgen;
535 	struct tcphdr *nth;
536 	int ipflags = 0;
537 	struct route_in6 *ro6 = NULL;
538 	struct route_in6 sro6;
539 	struct ip6_hdr *ip6 = ipgen;
540 	boolean_t use_tmpro = TRUE;
541 #ifdef INET6
542 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
543 #else
544 	const boolean_t isipv6 = FALSE;
545 #endif
546 
547 	if (tp != NULL) {
548 		if (!(flags & TH_RST)) {
549 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
550 			if (win < 0)
551 				win = 0;
552 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
553 				win = (long)TCP_MAXWIN << tp->rcv_scale;
554 		}
555 		/*
556 		 * Don't use the route cache of a listen socket,
557 		 * it is not MPSAFE; use temporary route cache.
558 		 */
559 		if (tp->t_state != TCPS_LISTEN) {
560 			if (isipv6)
561 				ro6 = &tp->t_inpcb->in6p_route;
562 			else
563 				ro = &tp->t_inpcb->inp_route;
564 			use_tmpro = FALSE;
565 		}
566 	}
567 	if (use_tmpro) {
568 		if (isipv6) {
569 			ro6 = &sro6;
570 			bzero(ro6, sizeof *ro6);
571 		} else {
572 			ro = &sro;
573 			bzero(ro, sizeof *ro);
574 		}
575 	}
576 	if (m == NULL) {
577 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
578 		if (m == NULL)
579 			return;
580 		tlen = 0;
581 		m->m_data += max_linkhdr;
582 		if (isipv6) {
583 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
584 			ip6 = mtod(m, struct ip6_hdr *);
585 			nth = (struct tcphdr *)(ip6 + 1);
586 		} else {
587 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
588 			ip = mtod(m, struct ip *);
589 			nth = (struct tcphdr *)(ip + 1);
590 		}
591 		bcopy(th, nth, sizeof(struct tcphdr));
592 		flags = TH_ACK;
593 	} else {
594 		m_freem(m->m_next);
595 		m->m_next = NULL;
596 		m->m_data = (caddr_t)ipgen;
597 		/* m_len is set later */
598 		tlen = 0;
599 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
600 		if (isipv6) {
601 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
602 			nth = (struct tcphdr *)(ip6 + 1);
603 		} else {
604 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
605 			nth = (struct tcphdr *)(ip + 1);
606 		}
607 		if (th != nth) {
608 			/*
609 			 * this is usually a case when an extension header
610 			 * exists between the IPv6 header and the
611 			 * TCP header.
612 			 */
613 			nth->th_sport = th->th_sport;
614 			nth->th_dport = th->th_dport;
615 		}
616 		xchg(nth->th_dport, nth->th_sport, n_short);
617 #undef xchg
618 	}
619 	if (isipv6) {
620 		ip6->ip6_flow = 0;
621 		ip6->ip6_vfc = IPV6_VERSION;
622 		ip6->ip6_nxt = IPPROTO_TCP;
623 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
624 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
625 	} else {
626 		tlen += sizeof(struct tcpiphdr);
627 		ip->ip_len = tlen;
628 		ip->ip_ttl = ip_defttl;
629 	}
630 	m->m_len = tlen;
631 	m->m_pkthdr.len = tlen;
632 	m->m_pkthdr.rcvif = NULL;
633 	nth->th_seq = htonl(seq);
634 	nth->th_ack = htonl(ack);
635 	nth->th_x2 = 0;
636 	nth->th_off = sizeof(struct tcphdr) >> 2;
637 	nth->th_flags = flags;
638 	if (tp != NULL)
639 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
640 	else
641 		nth->th_win = htons((u_short)win);
642 	nth->th_urp = 0;
643 	if (isipv6) {
644 		nth->th_sum = 0;
645 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
646 					sizeof(struct ip6_hdr),
647 					tlen - sizeof(struct ip6_hdr));
648 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
649 					       (ro6 && ro6->ro_rt) ?
650 						ro6->ro_rt->rt_ifp : NULL);
651 	} else {
652 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
653 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
654 		m->m_pkthdr.csum_flags = CSUM_TCP;
655 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
656 	}
657 #ifdef TCPDEBUG
658 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
659 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
660 #endif
661 	if (isipv6) {
662 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
663 			   tp ? tp->t_inpcb : NULL);
664 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
665 			RTFREE(ro6->ro_rt);
666 			ro6->ro_rt = NULL;
667 		}
668 	} else {
669 		ipflags |= IP_DEBUGROUTE;
670 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
671 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
672 			RTFREE(ro->ro_rt);
673 			ro->ro_rt = NULL;
674 		}
675 	}
676 }
677 
678 /*
679  * Create a new TCP control block, making an
680  * empty reassembly queue and hooking it to the argument
681  * protocol control block.  The `inp' parameter must have
682  * come from the zone allocator set up in tcp_init().
683  */
684 struct tcpcb *
685 tcp_newtcpcb(struct inpcb *inp)
686 {
687 	struct inp_tp *it;
688 	struct tcpcb *tp;
689 #ifdef INET6
690 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
691 #else
692 	const boolean_t isipv6 = FALSE;
693 #endif
694 
695 	it = (struct inp_tp *)inp;
696 	tp = &it->tcb;
697 	bzero(tp, sizeof(struct tcpcb));
698 	LIST_INIT(&tp->t_segq);
699 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
700 
701 	/* Set up our timeouts. */
702 	tp->tt_rexmt = &it->inp_tp_rexmt;
703 	tp->tt_persist = &it->inp_tp_persist;
704 	tp->tt_keep = &it->inp_tp_keep;
705 	tp->tt_2msl = &it->inp_tp_2msl;
706 	tp->tt_delack = &it->inp_tp_delack;
707 	tcp_inittimers(tp);
708 
709 	/*
710 	 * Zero out timer message.  We don't create it here,
711 	 * since the current CPU may not be the owner of this
712 	 * inpcb.
713 	 */
714 	tp->tt_msg = &it->inp_tp_timermsg;
715 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
716 
717 	tp->t_keepinit = tcp_keepinit;
718 	tp->t_keepidle = tcp_keepidle;
719 	tp->t_keepintvl = tcp_keepintvl;
720 	tp->t_keepcnt = tcp_keepcnt;
721 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
722 
723 	if (tcp_do_rfc1323)
724 		tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
725 	tp->t_inpcb = inp;	/* XXX */
726 	tp->t_state = TCPS_CLOSED;
727 	/*
728 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
729 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
730 	 * reasonable initial retransmit time.
731 	 */
732 	tp->t_srtt = TCPTV_SRTTBASE;
733 	tp->t_rttvar =
734 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
735 	tp->t_rttmin = tcp_rexmit_min;
736 	tp->t_rxtcur = TCPTV_RTOBASE;
737 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
738 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
739 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
740 	tp->snd_last = ticks;
741 	tp->t_rcvtime = ticks;
742 	/*
743 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
744 	 * because the socket may be bound to an IPv6 wildcard address,
745 	 * which may match an IPv4-mapped IPv6 address.
746 	 */
747 	inp->inp_ip_ttl = ip_defttl;
748 	inp->inp_ppcb = tp;
749 	tcp_sack_tcpcb_init(tp);
750 	return (tp);		/* XXX */
751 }
752 
753 /*
754  * Drop a TCP connection, reporting the specified error.
755  * If connection is synchronized, then send a RST to peer.
756  */
757 struct tcpcb *
758 tcp_drop(struct tcpcb *tp, int error)
759 {
760 	struct socket *so = tp->t_inpcb->inp_socket;
761 
762 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
763 		tp->t_state = TCPS_CLOSED;
764 		tcp_output(tp);
765 		tcpstat.tcps_drops++;
766 	} else
767 		tcpstat.tcps_conndrops++;
768 	if (error == ETIMEDOUT && tp->t_softerror)
769 		error = tp->t_softerror;
770 	so->so_error = error;
771 	return (tcp_close(tp));
772 }
773 
774 #ifdef SMP
775 
776 struct netmsg_listen_detach {
777 	struct netmsg_base	base;
778 	struct tcpcb		*nm_tp;
779 };
780 
781 static void
782 tcp_listen_detach_handler(netmsg_t msg)
783 {
784 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
785 	struct tcpcb *tp = nmsg->nm_tp;
786 	int cpu = mycpuid, nextcpu;
787 
788 	if (tp->t_flags & TF_LISTEN)
789 		syncache_destroy(tp);
790 
791 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
792 
793 	nextcpu = cpu + 1;
794 	if (nextcpu < ncpus2)
795 		lwkt_forwardmsg(cpu_portfn(nextcpu), &nmsg->base.lmsg);
796 	else
797 		lwkt_replymsg(&nmsg->base.lmsg, 0);
798 }
799 
800 #endif
801 
802 /*
803  * Close a TCP control block:
804  *	discard all space held by the tcp
805  *	discard internet protocol block
806  *	wake up any sleepers
807  */
808 struct tcpcb *
809 tcp_close(struct tcpcb *tp)
810 {
811 	struct tseg_qent *q;
812 	struct inpcb *inp = tp->t_inpcb;
813 	struct socket *so = inp->inp_socket;
814 	struct rtentry *rt;
815 	boolean_t dosavessthresh;
816 #ifdef INET6
817 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
818 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
819 #else
820 	const boolean_t isipv6 = FALSE;
821 #endif
822 
823 #ifdef SMP
824 	/*
825 	 * INP_WILDCARD_MP indicates that listen(2) has been called on
826 	 * this socket.  This implies:
827 	 * - A wildcard inp's hash is replicated for each protocol thread.
828 	 * - Syncache for this inp grows independently in each protocol
829 	 *   thread.
830 	 * - There is more than one cpu
831 	 *
832 	 * We have to chain a message to the rest of the protocol threads
833 	 * to cleanup the wildcard hash and the syncache.  The cleanup
834 	 * in the current protocol thread is defered till the end of this
835 	 * function.
836 	 *
837 	 * NOTE:
838 	 * After cleanup the inp's hash and syncache entries, this inp will
839 	 * no longer be available to the rest of the protocol threads, so we
840 	 * are safe to whack the inp in the following code.
841 	 */
842 	if (inp->inp_flags & INP_WILDCARD_MP) {
843 		struct netmsg_listen_detach nmsg;
844 
845 		KKASSERT(so->so_port == cpu_portfn(0));
846 		KKASSERT(&curthread->td_msgport == cpu_portfn(0));
847 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
848 
849 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
850 			    MSGF_PRIORITY, tcp_listen_detach_handler);
851 		nmsg.nm_tp = tp;
852 		lwkt_domsg(cpu_portfn(1), &nmsg.base.lmsg, 0);
853 
854 		inp->inp_flags &= ~INP_WILDCARD_MP;
855 	}
856 #endif
857 
858 	KKASSERT(tp->t_state != TCPS_TERMINATING);
859 	tp->t_state = TCPS_TERMINATING;
860 
861 	/*
862 	 * Make sure that all of our timers are stopped before we
863 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
864 	 * timers are never used.  If timer message is never created
865 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
866 	 */
867 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
868 		tcp_callout_stop(tp, tp->tt_rexmt);
869 		tcp_callout_stop(tp, tp->tt_persist);
870 		tcp_callout_stop(tp, tp->tt_keep);
871 		tcp_callout_stop(tp, tp->tt_2msl);
872 		tcp_callout_stop(tp, tp->tt_delack);
873 	}
874 
875 	if (tp->t_flags & TF_ONOUTPUTQ) {
876 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
877 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
878 		tp->t_flags &= ~TF_ONOUTPUTQ;
879 	}
880 
881 	/*
882 	 * If we got enough samples through the srtt filter,
883 	 * save the rtt and rttvar in the routing entry.
884 	 * 'Enough' is arbitrarily defined as the 16 samples.
885 	 * 16 samples is enough for the srtt filter to converge
886 	 * to within 5% of the correct value; fewer samples and
887 	 * we could save a very bogus rtt.
888 	 *
889 	 * Don't update the default route's characteristics and don't
890 	 * update anything that the user "locked".
891 	 */
892 	if (tp->t_rttupdated >= 16) {
893 		u_long i = 0;
894 
895 		if (isipv6) {
896 			struct sockaddr_in6 *sin6;
897 
898 			if ((rt = inp->in6p_route.ro_rt) == NULL)
899 				goto no_valid_rt;
900 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
901 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
902 				goto no_valid_rt;
903 		} else
904 			if ((rt = inp->inp_route.ro_rt) == NULL ||
905 			    ((struct sockaddr_in *)rt_key(rt))->
906 			     sin_addr.s_addr == INADDR_ANY)
907 				goto no_valid_rt;
908 
909 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
910 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
911 			if (rt->rt_rmx.rmx_rtt && i)
912 				/*
913 				 * filter this update to half the old & half
914 				 * the new values, converting scale.
915 				 * See route.h and tcp_var.h for a
916 				 * description of the scaling constants.
917 				 */
918 				rt->rt_rmx.rmx_rtt =
919 				    (rt->rt_rmx.rmx_rtt + i) / 2;
920 			else
921 				rt->rt_rmx.rmx_rtt = i;
922 			tcpstat.tcps_cachedrtt++;
923 		}
924 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
925 			i = tp->t_rttvar *
926 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
927 			if (rt->rt_rmx.rmx_rttvar && i)
928 				rt->rt_rmx.rmx_rttvar =
929 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
930 			else
931 				rt->rt_rmx.rmx_rttvar = i;
932 			tcpstat.tcps_cachedrttvar++;
933 		}
934 		/*
935 		 * The old comment here said:
936 		 * update the pipelimit (ssthresh) if it has been updated
937 		 * already or if a pipesize was specified & the threshhold
938 		 * got below half the pipesize.  I.e., wait for bad news
939 		 * before we start updating, then update on both good
940 		 * and bad news.
941 		 *
942 		 * But we want to save the ssthresh even if no pipesize is
943 		 * specified explicitly in the route, because such
944 		 * connections still have an implicit pipesize specified
945 		 * by the global tcp_sendspace.  In the absence of a reliable
946 		 * way to calculate the pipesize, it will have to do.
947 		 */
948 		i = tp->snd_ssthresh;
949 		if (rt->rt_rmx.rmx_sendpipe != 0)
950 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
951 		else
952 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
953 		if (dosavessthresh ||
954 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
955 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
956 			/*
957 			 * convert the limit from user data bytes to
958 			 * packets then to packet data bytes.
959 			 */
960 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
961 			if (i < 2)
962 				i = 2;
963 			i *= tp->t_maxseg +
964 			     (isipv6 ?
965 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
966 			      sizeof(struct tcpiphdr));
967 			if (rt->rt_rmx.rmx_ssthresh)
968 				rt->rt_rmx.rmx_ssthresh =
969 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
970 			else
971 				rt->rt_rmx.rmx_ssthresh = i;
972 			tcpstat.tcps_cachedssthresh++;
973 		}
974 	}
975 
976 no_valid_rt:
977 	/* free the reassembly queue, if any */
978 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
979 		LIST_REMOVE(q, tqe_q);
980 		m_freem(q->tqe_m);
981 		kfree(q, M_TSEGQ);
982 		atomic_add_int(&tcp_reass_qsize, -1);
983 	}
984 	/* throw away SACK blocks in scoreboard*/
985 	if (TCP_DO_SACK(tp))
986 		tcp_sack_destroy(&tp->scb);
987 
988 	inp->inp_ppcb = NULL;
989 	soisdisconnected(so);
990 	/* note: pcb detached later on */
991 
992 	tcp_destroy_timermsg(tp);
993 
994 	if (tp->t_flags & TF_LISTEN)
995 		syncache_destroy(tp);
996 
997 	/*
998 	 * NOTE:
999 	 * pcbdetach removes any wildcard hash entry on the current CPU.
1000 	 */
1001 #ifdef INET6
1002 	if (isafinet6)
1003 		in6_pcbdetach(inp);
1004 	else
1005 #endif
1006 		in_pcbdetach(inp);
1007 
1008 	tcpstat.tcps_closed++;
1009 	return (NULL);
1010 }
1011 
1012 static __inline void
1013 tcp_drain_oncpu(struct inpcbhead *head)
1014 {
1015 	struct inpcb *marker;
1016 	struct inpcb *inpb;
1017 	struct tcpcb *tcpb;
1018 	struct tseg_qent *te;
1019 
1020 	/*
1021 	 * Allows us to block while running the list
1022 	 */
1023 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1024 	marker->inp_flags |= INP_PLACEMARKER;
1025 	LIST_INSERT_HEAD(head, marker, inp_list);
1026 
1027 	while ((inpb = LIST_NEXT(marker, inp_list)) != NULL) {
1028 		if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1029 		    (tcpb = intotcpcb(inpb)) != NULL &&
1030 		    (te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
1031 			LIST_REMOVE(te, tqe_q);
1032 			m_freem(te->tqe_m);
1033 			kfree(te, M_TSEGQ);
1034 			atomic_add_int(&tcp_reass_qsize, -1);
1035 			/* retry */
1036 		} else {
1037 			LIST_REMOVE(marker, inp_list);
1038 			LIST_INSERT_AFTER(inpb, marker, inp_list);
1039 		}
1040 	}
1041 	LIST_REMOVE(marker, inp_list);
1042 	kfree(marker, M_TEMP);
1043 }
1044 
1045 #ifdef SMP
1046 struct netmsg_tcp_drain {
1047 	struct netmsg_base	base;
1048 	struct inpcbhead	*nm_head;
1049 };
1050 
1051 static void
1052 tcp_drain_handler(netmsg_t msg)
1053 {
1054 	struct netmsg_tcp_drain *nm = (void *)msg;
1055 
1056 	tcp_drain_oncpu(nm->nm_head);
1057 	lwkt_replymsg(&nm->base.lmsg, 0);
1058 }
1059 #endif
1060 
1061 void
1062 tcp_drain(void)
1063 {
1064 #ifdef SMP
1065 	int cpu;
1066 #endif
1067 
1068 	if (!do_tcpdrain)
1069 		return;
1070 
1071 	/*
1072 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1073 	 * if there is one...
1074 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1075 	 *	reassembly queue should be flushed, but in a situation
1076 	 *	where we're really low on mbufs, this is potentially
1077 	 *	useful.
1078 	 */
1079 #ifdef SMP
1080 	for (cpu = 0; cpu < ncpus2; cpu++) {
1081 		struct netmsg_tcp_drain *nm;
1082 
1083 		if (cpu == mycpu->gd_cpuid) {
1084 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1085 		} else {
1086 			nm = kmalloc(sizeof(struct netmsg_tcp_drain),
1087 				     M_LWKTMSG, M_NOWAIT);
1088 			if (nm == NULL)
1089 				continue;
1090 			netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1091 				    0, tcp_drain_handler);
1092 			nm->nm_head = &tcbinfo[cpu].pcblisthead;
1093 			lwkt_sendmsg(cpu_portfn(cpu), &nm->base.lmsg);
1094 		}
1095 	}
1096 #else
1097 	tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1098 #endif
1099 }
1100 
1101 /*
1102  * Notify a tcp user of an asynchronous error;
1103  * store error as soft error, but wake up user
1104  * (for now, won't do anything until can select for soft error).
1105  *
1106  * Do not wake up user since there currently is no mechanism for
1107  * reporting soft errors (yet - a kqueue filter may be added).
1108  */
1109 static void
1110 tcp_notify(struct inpcb *inp, int error)
1111 {
1112 	struct tcpcb *tp = intotcpcb(inp);
1113 
1114 	/*
1115 	 * Ignore some errors if we are hooked up.
1116 	 * If connection hasn't completed, has retransmitted several times,
1117 	 * and receives a second error, give up now.  This is better
1118 	 * than waiting a long time to establish a connection that
1119 	 * can never complete.
1120 	 */
1121 	if (tp->t_state == TCPS_ESTABLISHED &&
1122 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1123 	      error == EHOSTDOWN)) {
1124 		return;
1125 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1126 	    tp->t_softerror)
1127 		tcp_drop(tp, error);
1128 	else
1129 		tp->t_softerror = error;
1130 #if 0
1131 	wakeup(&so->so_timeo);
1132 	sorwakeup(so);
1133 	sowwakeup(so);
1134 #endif
1135 }
1136 
1137 static int
1138 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1139 {
1140 	int error, i, n;
1141 	struct inpcb *marker;
1142 	struct inpcb *inp;
1143 	globaldata_t gd;
1144 	int origcpu, ccpu;
1145 
1146 	error = 0;
1147 	n = 0;
1148 
1149 	/*
1150 	 * The process of preparing the TCB list is too time-consuming and
1151 	 * resource-intensive to repeat twice on every request.
1152 	 */
1153 	if (req->oldptr == NULL) {
1154 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1155 			gd = globaldata_find(ccpu);
1156 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1157 		}
1158 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1159 		return (0);
1160 	}
1161 
1162 	if (req->newptr != NULL)
1163 		return (EPERM);
1164 
1165 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1166 	marker->inp_flags |= INP_PLACEMARKER;
1167 
1168 	/*
1169 	 * OK, now we're committed to doing something.  Run the inpcb list
1170 	 * for each cpu in the system and construct the output.  Use a
1171 	 * list placemarker to deal with list changes occuring during
1172 	 * copyout blockages (but otherwise depend on being on the correct
1173 	 * cpu to avoid races).
1174 	 */
1175 	origcpu = mycpu->gd_cpuid;
1176 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1177 		globaldata_t rgd;
1178 		caddr_t inp_ppcb;
1179 		struct xtcpcb xt;
1180 		int cpu_id;
1181 
1182 		cpu_id = (origcpu + ccpu) % ncpus;
1183 		if ((smp_active_mask & CPUMASK(cpu_id)) == 0)
1184 			continue;
1185 		rgd = globaldata_find(cpu_id);
1186 		lwkt_setcpu_self(rgd);
1187 
1188 		n = tcbinfo[cpu_id].ipi_count;
1189 
1190 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1191 		i = 0;
1192 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1193 			/*
1194 			 * process a snapshot of pcbs, ignoring placemarkers
1195 			 * and using our own to allow SYSCTL_OUT to block.
1196 			 */
1197 			LIST_REMOVE(marker, inp_list);
1198 			LIST_INSERT_AFTER(inp, marker, inp_list);
1199 
1200 			if (inp->inp_flags & INP_PLACEMARKER)
1201 				continue;
1202 			if (prison_xinpcb(req->td, inp))
1203 				continue;
1204 
1205 			xt.xt_len = sizeof xt;
1206 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1207 			inp_ppcb = inp->inp_ppcb;
1208 			if (inp_ppcb != NULL)
1209 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1210 			else
1211 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1212 			if (inp->inp_socket)
1213 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1214 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1215 				break;
1216 			++i;
1217 		}
1218 		LIST_REMOVE(marker, inp_list);
1219 		if (error == 0 && i < n) {
1220 			bzero(&xt, sizeof xt);
1221 			xt.xt_len = sizeof xt;
1222 			while (i < n) {
1223 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1224 				if (error)
1225 					break;
1226 				++i;
1227 			}
1228 		}
1229 	}
1230 
1231 	/*
1232 	 * Make sure we are on the same cpu we were on originally, since
1233 	 * higher level callers expect this.  Also don't pollute caches with
1234 	 * migrated userland data by (eventually) returning to userland
1235 	 * on a different cpu.
1236 	 */
1237 	lwkt_setcpu_self(globaldata_find(origcpu));
1238 	kfree(marker, M_TEMP);
1239 	return (error);
1240 }
1241 
1242 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1243 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1244 
1245 static int
1246 tcp_getcred(SYSCTL_HANDLER_ARGS)
1247 {
1248 	struct sockaddr_in addrs[2];
1249 	struct inpcb *inp;
1250 	int cpu;
1251 	int error;
1252 
1253 	error = priv_check(req->td, PRIV_ROOT);
1254 	if (error != 0)
1255 		return (error);
1256 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1257 	if (error != 0)
1258 		return (error);
1259 	crit_enter();
1260 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1261 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1262 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1263 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1264 	if (inp == NULL || inp->inp_socket == NULL) {
1265 		error = ENOENT;
1266 		goto out;
1267 	}
1268 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1269 out:
1270 	crit_exit();
1271 	return (error);
1272 }
1273 
1274 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1275     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1276 
1277 #ifdef INET6
1278 static int
1279 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1280 {
1281 	struct sockaddr_in6 addrs[2];
1282 	struct inpcb *inp;
1283 	int error;
1284 	boolean_t mapped = FALSE;
1285 
1286 	error = priv_check(req->td, PRIV_ROOT);
1287 	if (error != 0)
1288 		return (error);
1289 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1290 	if (error != 0)
1291 		return (error);
1292 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1293 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1294 			mapped = TRUE;
1295 		else
1296 			return (EINVAL);
1297 	}
1298 	crit_enter();
1299 	if (mapped) {
1300 		inp = in_pcblookup_hash(&tcbinfo[0],
1301 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1302 		    addrs[1].sin6_port,
1303 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1304 		    addrs[0].sin6_port,
1305 		    0, NULL);
1306 	} else {
1307 		inp = in6_pcblookup_hash(&tcbinfo[0],
1308 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1309 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1310 		    0, NULL);
1311 	}
1312 	if (inp == NULL || inp->inp_socket == NULL) {
1313 		error = ENOENT;
1314 		goto out;
1315 	}
1316 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1317 out:
1318 	crit_exit();
1319 	return (error);
1320 }
1321 
1322 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1323 	    0, 0,
1324 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1325 #endif
1326 
1327 struct netmsg_tcp_notify {
1328 	struct netmsg_base base;
1329 	void		(*nm_notify)(struct inpcb *, int);
1330 	struct in_addr	nm_faddr;
1331 	int		nm_arg;
1332 };
1333 
1334 static void
1335 tcp_notifyall_oncpu(netmsg_t msg)
1336 {
1337 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1338 	int nextcpu;
1339 
1340 	in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nm->nm_faddr,
1341 			nm->nm_arg, nm->nm_notify);
1342 
1343 	nextcpu = mycpuid + 1;
1344 	if (nextcpu < ncpus2)
1345 		lwkt_forwardmsg(cpu_portfn(nextcpu), &nm->base.lmsg);
1346 	else
1347 		lwkt_replymsg(&nm->base.lmsg, 0);
1348 }
1349 
1350 void
1351 tcp_ctlinput(netmsg_t msg)
1352 {
1353 	int cmd = msg->ctlinput.nm_cmd;
1354 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1355 	struct ip *ip = msg->ctlinput.nm_extra;
1356 	struct tcphdr *th;
1357 	struct in_addr faddr;
1358 	struct inpcb *inp;
1359 	struct tcpcb *tp;
1360 	void (*notify)(struct inpcb *, int) = tcp_notify;
1361 	tcp_seq icmpseq;
1362 	int arg, cpu;
1363 
1364 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1365 		goto done;
1366 	}
1367 
1368 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1369 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1370 		goto done;
1371 
1372 	arg = inetctlerrmap[cmd];
1373 	if (cmd == PRC_QUENCH) {
1374 		notify = tcp_quench;
1375 	} else if (icmp_may_rst &&
1376 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1377 		    cmd == PRC_UNREACH_PORT ||
1378 		    cmd == PRC_TIMXCEED_INTRANS) &&
1379 		   ip != NULL) {
1380 		notify = tcp_drop_syn_sent;
1381 	} else if (cmd == PRC_MSGSIZE) {
1382 		struct icmp *icmp = (struct icmp *)
1383 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1384 
1385 		arg = ntohs(icmp->icmp_nextmtu);
1386 		notify = tcp_mtudisc;
1387 	} else if (PRC_IS_REDIRECT(cmd)) {
1388 		ip = NULL;
1389 		notify = in_rtchange;
1390 	} else if (cmd == PRC_HOSTDEAD) {
1391 		ip = NULL;
1392 	}
1393 
1394 	if (ip != NULL) {
1395 		crit_enter();
1396 		th = (struct tcphdr *)((caddr_t)ip +
1397 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1398 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1399 				  ip->ip_src.s_addr, th->th_sport);
1400 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1401 					ip->ip_src, th->th_sport, 0, NULL);
1402 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1403 			icmpseq = htonl(th->th_seq);
1404 			tp = intotcpcb(inp);
1405 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1406 			    SEQ_LT(icmpseq, tp->snd_max))
1407 				(*notify)(inp, arg);
1408 		} else {
1409 			struct in_conninfo inc;
1410 
1411 			inc.inc_fport = th->th_dport;
1412 			inc.inc_lport = th->th_sport;
1413 			inc.inc_faddr = faddr;
1414 			inc.inc_laddr = ip->ip_src;
1415 #ifdef INET6
1416 			inc.inc_isipv6 = 0;
1417 #endif
1418 			syncache_unreach(&inc, th);
1419 		}
1420 		crit_exit();
1421 	} else {
1422 		struct netmsg_tcp_notify *nm;
1423 
1424 		KKASSERT(&curthread->td_msgport == cpu_portfn(0));
1425 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1426 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1427 			    0, tcp_notifyall_oncpu);
1428 		nm->nm_faddr = faddr;
1429 		nm->nm_arg = arg;
1430 		nm->nm_notify = notify;
1431 
1432 		lwkt_sendmsg(cpu_portfn(0), &nm->base.lmsg);
1433 	}
1434 done:
1435 	lwkt_replymsg(&msg->lmsg, 0);
1436 }
1437 
1438 #ifdef INET6
1439 
1440 void
1441 tcp6_ctlinput(netmsg_t msg)
1442 {
1443 	int cmd = msg->ctlinput.nm_cmd;
1444 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1445 	void *d = msg->ctlinput.nm_extra;
1446 	struct tcphdr th;
1447 	void (*notify) (struct inpcb *, int) = tcp_notify;
1448 	struct ip6_hdr *ip6;
1449 	struct mbuf *m;
1450 	struct ip6ctlparam *ip6cp = NULL;
1451 	const struct sockaddr_in6 *sa6_src = NULL;
1452 	int off;
1453 	struct tcp_portonly {
1454 		u_int16_t th_sport;
1455 		u_int16_t th_dport;
1456 	} *thp;
1457 	int arg;
1458 
1459 	if (sa->sa_family != AF_INET6 ||
1460 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1461 		goto out;
1462 	}
1463 
1464 	arg = 0;
1465 	if (cmd == PRC_QUENCH)
1466 		notify = tcp_quench;
1467 	else if (cmd == PRC_MSGSIZE) {
1468 		struct ip6ctlparam *ip6cp = d;
1469 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1470 
1471 		arg = ntohl(icmp6->icmp6_mtu);
1472 		notify = tcp_mtudisc;
1473 	} else if (!PRC_IS_REDIRECT(cmd) &&
1474 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1475 		goto out;
1476 	}
1477 
1478 	/* if the parameter is from icmp6, decode it. */
1479 	if (d != NULL) {
1480 		ip6cp = (struct ip6ctlparam *)d;
1481 		m = ip6cp->ip6c_m;
1482 		ip6 = ip6cp->ip6c_ip6;
1483 		off = ip6cp->ip6c_off;
1484 		sa6_src = ip6cp->ip6c_src;
1485 	} else {
1486 		m = NULL;
1487 		ip6 = NULL;
1488 		off = 0;	/* fool gcc */
1489 		sa6_src = &sa6_any;
1490 	}
1491 
1492 	if (ip6 != NULL) {
1493 		struct in_conninfo inc;
1494 		/*
1495 		 * XXX: We assume that when IPV6 is non NULL,
1496 		 * M and OFF are valid.
1497 		 */
1498 
1499 		/* check if we can safely examine src and dst ports */
1500 		if (m->m_pkthdr.len < off + sizeof *thp)
1501 			goto out;
1502 
1503 		bzero(&th, sizeof th);
1504 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1505 
1506 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1507 		    (struct sockaddr *)ip6cp->ip6c_src,
1508 		    th.th_sport, cmd, arg, notify);
1509 
1510 		inc.inc_fport = th.th_dport;
1511 		inc.inc_lport = th.th_sport;
1512 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1513 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1514 		inc.inc_isipv6 = 1;
1515 		syncache_unreach(&inc, &th);
1516 	} else {
1517 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1518 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1519 	}
1520 out:
1521 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1522 }
1523 
1524 #endif
1525 
1526 /*
1527  * Following is where TCP initial sequence number generation occurs.
1528  *
1529  * There are two places where we must use initial sequence numbers:
1530  * 1.  In SYN-ACK packets.
1531  * 2.  In SYN packets.
1532  *
1533  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1534  * tcp_syncache.c for details.
1535  *
1536  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1537  * depends on this property.  In addition, these ISNs should be
1538  * unguessable so as to prevent connection hijacking.  To satisfy
1539  * the requirements of this situation, the algorithm outlined in
1540  * RFC 1948 is used to generate sequence numbers.
1541  *
1542  * Implementation details:
1543  *
1544  * Time is based off the system timer, and is corrected so that it
1545  * increases by one megabyte per second.  This allows for proper
1546  * recycling on high speed LANs while still leaving over an hour
1547  * before rollover.
1548  *
1549  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1550  * between seeding of isn_secret.  This is normally set to zero,
1551  * as reseeding should not be necessary.
1552  *
1553  */
1554 
1555 #define	ISN_BYTES_PER_SECOND 1048576
1556 
1557 u_char isn_secret[32];
1558 int isn_last_reseed;
1559 MD5_CTX isn_ctx;
1560 
1561 tcp_seq
1562 tcp_new_isn(struct tcpcb *tp)
1563 {
1564 	u_int32_t md5_buffer[4];
1565 	tcp_seq new_isn;
1566 
1567 	/* Seed if this is the first use, reseed if requested. */
1568 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1569 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1570 		< (u_int)ticks))) {
1571 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1572 		isn_last_reseed = ticks;
1573 	}
1574 
1575 	/* Compute the md5 hash and return the ISN. */
1576 	MD5Init(&isn_ctx);
1577 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1578 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1579 #ifdef INET6
1580 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1581 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1582 			  sizeof(struct in6_addr));
1583 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1584 			  sizeof(struct in6_addr));
1585 	} else
1586 #endif
1587 	{
1588 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1589 			  sizeof(struct in_addr));
1590 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1591 			  sizeof(struct in_addr));
1592 	}
1593 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1594 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1595 	new_isn = (tcp_seq) md5_buffer[0];
1596 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1597 	return (new_isn);
1598 }
1599 
1600 /*
1601  * When a source quench is received, close congestion window
1602  * to one segment.  We will gradually open it again as we proceed.
1603  */
1604 void
1605 tcp_quench(struct inpcb *inp, int error)
1606 {
1607 	struct tcpcb *tp = intotcpcb(inp);
1608 
1609 	if (tp != NULL) {
1610 		tp->snd_cwnd = tp->t_maxseg;
1611 		tp->snd_wacked = 0;
1612 	}
1613 }
1614 
1615 /*
1616  * When a specific ICMP unreachable message is received and the
1617  * connection state is SYN-SENT, drop the connection.  This behavior
1618  * is controlled by the icmp_may_rst sysctl.
1619  */
1620 void
1621 tcp_drop_syn_sent(struct inpcb *inp, int error)
1622 {
1623 	struct tcpcb *tp = intotcpcb(inp);
1624 
1625 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1626 		tcp_drop(tp, error);
1627 }
1628 
1629 /*
1630  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1631  * based on the new value in the route.  Also nudge TCP to send something,
1632  * since we know the packet we just sent was dropped.
1633  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1634  */
1635 void
1636 tcp_mtudisc(struct inpcb *inp, int mtu)
1637 {
1638 	struct tcpcb *tp = intotcpcb(inp);
1639 	struct rtentry *rt;
1640 	struct socket *so = inp->inp_socket;
1641 	int maxopd, mss;
1642 #ifdef INET6
1643 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1644 #else
1645 	const boolean_t isipv6 = FALSE;
1646 #endif
1647 
1648 	if (tp == NULL)
1649 		return;
1650 
1651 	/*
1652 	 * If no MTU is provided in the ICMP message, use the
1653 	 * next lower likely value, as specified in RFC 1191.
1654 	 */
1655 	if (mtu == 0) {
1656 		int oldmtu;
1657 
1658 		oldmtu = tp->t_maxopd +
1659 		    (isipv6 ?
1660 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1661 		     sizeof(struct tcpiphdr));
1662 		mtu = ip_next_mtu(oldmtu, 0);
1663 	}
1664 
1665 	if (isipv6)
1666 		rt = tcp_rtlookup6(&inp->inp_inc);
1667 	else
1668 		rt = tcp_rtlookup(&inp->inp_inc);
1669 	if (rt != NULL) {
1670 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1671 			mtu = rt->rt_rmx.rmx_mtu;
1672 
1673 		maxopd = mtu -
1674 		    (isipv6 ?
1675 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1676 		     sizeof(struct tcpiphdr));
1677 
1678 		/*
1679 		 * XXX - The following conditional probably violates the TCP
1680 		 * spec.  The problem is that, since we don't know the
1681 		 * other end's MSS, we are supposed to use a conservative
1682 		 * default.  But, if we do that, then MTU discovery will
1683 		 * never actually take place, because the conservative
1684 		 * default is much less than the MTUs typically seen
1685 		 * on the Internet today.  For the moment, we'll sweep
1686 		 * this under the carpet.
1687 		 *
1688 		 * The conservative default might not actually be a problem
1689 		 * if the only case this occurs is when sending an initial
1690 		 * SYN with options and data to a host we've never talked
1691 		 * to before.  Then, they will reply with an MSS value which
1692 		 * will get recorded and the new parameters should get
1693 		 * recomputed.  For Further Study.
1694 		 */
1695 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1696 			maxopd = rt->rt_rmx.rmx_mssopt;
1697 	} else
1698 		maxopd = mtu -
1699 		    (isipv6 ?
1700 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1701 		     sizeof(struct tcpiphdr));
1702 
1703 	if (tp->t_maxopd <= maxopd)
1704 		return;
1705 	tp->t_maxopd = maxopd;
1706 
1707 	mss = maxopd;
1708 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1709 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1710 		mss -= TCPOLEN_TSTAMP_APPA;
1711 
1712 	/* round down to multiple of MCLBYTES */
1713 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1714 	if (mss > MCLBYTES)
1715 		mss &= ~(MCLBYTES - 1);
1716 #else
1717 	if (mss > MCLBYTES)
1718 		mss = (mss / MCLBYTES) * MCLBYTES;
1719 #endif
1720 
1721 	if (so->so_snd.ssb_hiwat < mss)
1722 		mss = so->so_snd.ssb_hiwat;
1723 
1724 	tp->t_maxseg = mss;
1725 	tp->t_rtttime = 0;
1726 	tp->snd_nxt = tp->snd_una;
1727 	tcp_output(tp);
1728 	tcpstat.tcps_mturesent++;
1729 }
1730 
1731 /*
1732  * Look-up the routing entry to the peer of this inpcb.  If no route
1733  * is found and it cannot be allocated the return NULL.  This routine
1734  * is called by TCP routines that access the rmx structure and by tcp_mss
1735  * to get the interface MTU.
1736  */
1737 struct rtentry *
1738 tcp_rtlookup(struct in_conninfo *inc)
1739 {
1740 	struct route *ro = &inc->inc_route;
1741 
1742 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1743 		/* No route yet, so try to acquire one */
1744 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1745 			/*
1746 			 * unused portions of the structure MUST be zero'd
1747 			 * out because rtalloc() treats it as opaque data
1748 			 */
1749 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1750 			ro->ro_dst.sa_family = AF_INET;
1751 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1752 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1753 			    inc->inc_faddr;
1754 			rtalloc(ro);
1755 		}
1756 	}
1757 	return (ro->ro_rt);
1758 }
1759 
1760 #ifdef INET6
1761 struct rtentry *
1762 tcp_rtlookup6(struct in_conninfo *inc)
1763 {
1764 	struct route_in6 *ro6 = &inc->inc6_route;
1765 
1766 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1767 		/* No route yet, so try to acquire one */
1768 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1769 			/*
1770 			 * unused portions of the structure MUST be zero'd
1771 			 * out because rtalloc() treats it as opaque data
1772 			 */
1773 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1774 			ro6->ro_dst.sin6_family = AF_INET6;
1775 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1776 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1777 			rtalloc((struct route *)ro6);
1778 		}
1779 	}
1780 	return (ro6->ro_rt);
1781 }
1782 #endif
1783 
1784 #ifdef IPSEC
1785 /* compute ESP/AH header size for TCP, including outer IP header. */
1786 size_t
1787 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1788 {
1789 	struct inpcb *inp;
1790 	struct mbuf *m;
1791 	size_t hdrsiz;
1792 	struct ip *ip;
1793 	struct tcphdr *th;
1794 
1795 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1796 		return (0);
1797 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1798 	if (!m)
1799 		return (0);
1800 
1801 #ifdef INET6
1802 	if (inp->inp_vflag & INP_IPV6) {
1803 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1804 
1805 		th = (struct tcphdr *)(ip6 + 1);
1806 		m->m_pkthdr.len = m->m_len =
1807 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1808 		tcp_fillheaders(tp, ip6, th);
1809 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1810 	} else
1811 #endif
1812 	{
1813 		ip = mtod(m, struct ip *);
1814 		th = (struct tcphdr *)(ip + 1);
1815 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1816 		tcp_fillheaders(tp, ip, th);
1817 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1818 	}
1819 
1820 	m_free(m);
1821 	return (hdrsiz);
1822 }
1823 #endif
1824 
1825 /*
1826  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1827  *
1828  * This code attempts to calculate the bandwidth-delay product as a
1829  * means of determining the optimal window size to maximize bandwidth,
1830  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1831  * routers.  This code also does a fairly good job keeping RTTs in check
1832  * across slow links like modems.  We implement an algorithm which is very
1833  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1834  * transmitter side of a TCP connection and so only effects the transmit
1835  * side of the connection.
1836  *
1837  * BACKGROUND:  TCP makes no provision for the management of buffer space
1838  * at the end points or at the intermediate routers and switches.  A TCP
1839  * stream, whether using NewReno or not, will eventually buffer as
1840  * many packets as it is able and the only reason this typically works is
1841  * due to the fairly small default buffers made available for a connection
1842  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1843  * scaling it is now fairly easy for even a single TCP connection to blow-out
1844  * all available buffer space not only on the local interface, but on
1845  * intermediate routers and switches as well.  NewReno makes a misguided
1846  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1847  * then backing off, then steadily increasing the window again until another
1848  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1849  * is only made worse as network loads increase and the idea of intentionally
1850  * blowing out network buffers is, frankly, a terrible way to manage network
1851  * resources.
1852  *
1853  * It is far better to limit the transmit window prior to the failure
1854  * condition being achieved.  There are two general ways to do this:  First
1855  * you can 'scan' through different transmit window sizes and locate the
1856  * point where the RTT stops increasing, indicating that you have filled the
1857  * pipe, then scan backwards until you note that RTT stops decreasing, then
1858  * repeat ad-infinitum.  This method works in principle but has severe
1859  * implementation issues due to RTT variances, timer granularity, and
1860  * instability in the algorithm which can lead to many false positives and
1861  * create oscillations as well as interact badly with other TCP streams
1862  * implementing the same algorithm.
1863  *
1864  * The second method is to limit the window to the bandwidth delay product
1865  * of the link.  This is the method we implement.  RTT variances and our
1866  * own manipulation of the congestion window, bwnd, can potentially
1867  * destabilize the algorithm.  For this reason we have to stabilize the
1868  * elements used to calculate the window.  We do this by using the minimum
1869  * observed RTT, the long term average of the observed bandwidth, and
1870  * by adding two segments worth of slop.  It isn't perfect but it is able
1871  * to react to changing conditions and gives us a very stable basis on
1872  * which to extend the algorithm.
1873  */
1874 void
1875 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1876 {
1877 	u_long bw;
1878 	u_long bwnd;
1879 	int save_ticks;
1880 	int delta_ticks;
1881 
1882 	/*
1883 	 * If inflight_enable is disabled in the middle of a tcp connection,
1884 	 * make sure snd_bwnd is effectively disabled.
1885 	 */
1886 	if (!tcp_inflight_enable) {
1887 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1888 		tp->snd_bandwidth = 0;
1889 		return;
1890 	}
1891 
1892 	/*
1893 	 * Validate the delta time.  If a connection is new or has been idle
1894 	 * a long time we have to reset the bandwidth calculator.
1895 	 */
1896 	save_ticks = ticks;
1897 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1898 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1899 		tp->t_bw_rtttime = ticks;
1900 		tp->t_bw_rtseq = ack_seq;
1901 		if (tp->snd_bandwidth == 0)
1902 			tp->snd_bandwidth = tcp_inflight_min;
1903 		return;
1904 	}
1905 	if (delta_ticks == 0)
1906 		return;
1907 
1908 	/*
1909 	 * Sanity check, plus ignore pure window update acks.
1910 	 */
1911 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1912 		return;
1913 
1914 	/*
1915 	 * Figure out the bandwidth.  Due to the tick granularity this
1916 	 * is a very rough number and it MUST be averaged over a fairly
1917 	 * long period of time.  XXX we need to take into account a link
1918 	 * that is not using all available bandwidth, but for now our
1919 	 * slop will ramp us up if this case occurs and the bandwidth later
1920 	 * increases.
1921 	 */
1922 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1923 	tp->t_bw_rtttime = save_ticks;
1924 	tp->t_bw_rtseq = ack_seq;
1925 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1926 
1927 	tp->snd_bandwidth = bw;
1928 
1929 	/*
1930 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1931 	 * segments.  The additional slop puts us squarely in the sweet
1932 	 * spot and also handles the bandwidth run-up case.  Without the
1933 	 * slop we could be locking ourselves into a lower bandwidth.
1934 	 *
1935 	 * Situations Handled:
1936 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1937 	 *	    high speed LANs, allowing larger TCP buffers to be
1938 	 *	    specified, and also does a good job preventing
1939 	 *	    over-queueing of packets over choke points like modems
1940 	 *	    (at least for the transmit side).
1941 	 *
1942 	 *	(2) Is able to handle changing network loads (bandwidth
1943 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1944 	 *	    increases).
1945 	 *
1946 	 *	(3) Theoretically should stabilize in the face of multiple
1947 	 *	    connections implementing the same algorithm (this may need
1948 	 *	    a little work).
1949 	 *
1950 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1951 	 *	    be adjusted with a sysctl but typically only needs to be on
1952 	 *	    very slow connections.  A value no smaller then 5 should
1953 	 *	    be used, but only reduce this default if you have no other
1954 	 *	    choice.
1955 	 */
1956 
1957 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1958 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1959 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1960 #undef USERTT
1961 
1962 	if (tcp_inflight_debug > 0) {
1963 		static int ltime;
1964 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1965 			ltime = ticks;
1966 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1967 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1968 		}
1969 	}
1970 	if ((long)bwnd < tcp_inflight_min)
1971 		bwnd = tcp_inflight_min;
1972 	if (bwnd > tcp_inflight_max)
1973 		bwnd = tcp_inflight_max;
1974 	if ((long)bwnd < tp->t_maxseg * 2)
1975 		bwnd = tp->t_maxseg * 2;
1976 	tp->snd_bwnd = bwnd;
1977 }
1978 
1979 static void
1980 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
1981 {
1982 	struct rtentry *rt;
1983 	struct inpcb *inp = tp->t_inpcb;
1984 #ifdef INET6
1985 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
1986 #else
1987 	const boolean_t isipv6 = FALSE;
1988 #endif
1989 
1990 	/* XXX */
1991 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
1992 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
1993 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
1994 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
1995 
1996 	if (isipv6)
1997 		rt = tcp_rtlookup6(&inp->inp_inc);
1998 	else
1999 		rt = tcp_rtlookup(&inp->inp_inc);
2000 	if (rt == NULL ||
2001 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2002 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2003 		*maxsegs = tcp_iw_maxsegs;
2004 		*capsegs = tcp_iw_capsegs;
2005 		return;
2006 	}
2007 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2008 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2009 }
2010 
2011 u_long
2012 tcp_initial_window(struct tcpcb *tp)
2013 {
2014 	if (tcp_do_rfc3390) {
2015 		/*
2016 		 * RFC3390:
2017 		 * "If the SYN or SYN/ACK is lost, the initial window
2018 		 *  used by a sender after a correctly transmitted SYN
2019 		 *  MUST be one segment consisting of MSS bytes."
2020 		 *
2021 		 * However, we do something a little bit more aggressive
2022 		 * then RFC3390 here:
2023 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2024 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2025 		 *   because when RFC3390 is published, the initial RTO is
2026 		 *   still 3 seconds (the threshold we test here), while
2027 		 *   after RFC6298, the initial RTO is 1 second.  This
2028 		 *   behaviour probably still falls within the spirit of
2029 		 *   RFC3390.
2030 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2031 		 *   Mainly to avoid sender and receiver deadlock until
2032 		 *   delayed ACK timer expires.  And even RFC2581 does not
2033 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2034 		 *   timeout.
2035 		 *
2036 		 * See also:
2037 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2038 		 */
2039 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2040 			return (2 * tp->t_maxseg);
2041 		} else {
2042 			u_long maxsegs, capsegs;
2043 
2044 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2045 			return min(maxsegs * tp->t_maxseg,
2046 				   max(2 * tp->t_maxseg, capsegs * 1460));
2047 		}
2048 	} else {
2049 		/*
2050 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2051 		 *
2052 		 * Mainly to avoid sender and receiver deadlock
2053 		 * until delayed ACK timer expires.
2054 		 */
2055 		return (2 * tp->t_maxseg);
2056 	}
2057 }
2058 
2059 #ifdef TCP_SIGNATURE
2060 /*
2061  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2062  *
2063  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2064  * When called from tcp_input(), we can be sure that th_sum has been
2065  * zeroed out and verified already.
2066  *
2067  * Return 0 if successful, otherwise return -1.
2068  *
2069  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2070  * search with the destination IP address, and a 'magic SPI' to be
2071  * determined by the application. This is hardcoded elsewhere to 1179
2072  * right now. Another branch of this code exists which uses the SPD to
2073  * specify per-application flows but it is unstable.
2074  */
2075 int
2076 tcpsignature_compute(
2077 	struct mbuf *m,		/* mbuf chain */
2078 	int len,		/* length of TCP data */
2079 	int optlen,		/* length of TCP options */
2080 	u_char *buf,		/* storage for MD5 digest */
2081 	u_int direction)	/* direction of flow */
2082 {
2083 	struct ippseudo ippseudo;
2084 	MD5_CTX ctx;
2085 	int doff;
2086 	struct ip *ip;
2087 	struct ipovly *ipovly;
2088 	struct secasvar *sav;
2089 	struct tcphdr *th;
2090 #ifdef INET6
2091 	struct ip6_hdr *ip6;
2092 	struct in6_addr in6;
2093 	uint32_t plen;
2094 	uint16_t nhdr;
2095 #endif /* INET6 */
2096 	u_short savecsum;
2097 
2098 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2099 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2100 	/*
2101 	 * Extract the destination from the IP header in the mbuf.
2102 	 */
2103 	ip = mtod(m, struct ip *);
2104 #ifdef INET6
2105 	ip6 = NULL;     /* Make the compiler happy. */
2106 #endif /* INET6 */
2107 	/*
2108 	 * Look up an SADB entry which matches the address found in
2109 	 * the segment.
2110 	 */
2111 	switch (IP_VHL_V(ip->ip_vhl)) {
2112 	case IPVERSION:
2113 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2114 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2115 		break;
2116 #ifdef INET6
2117 	case (IPV6_VERSION >> 4):
2118 		ip6 = mtod(m, struct ip6_hdr *);
2119 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2120 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2121 		break;
2122 #endif /* INET6 */
2123 	default:
2124 		return (EINVAL);
2125 		/* NOTREACHED */
2126 		break;
2127 	}
2128 	if (sav == NULL) {
2129 		kprintf("%s: SADB lookup failed\n", __func__);
2130 		return (EINVAL);
2131 	}
2132 	MD5Init(&ctx);
2133 
2134 	/*
2135 	 * Step 1: Update MD5 hash with IP pseudo-header.
2136 	 *
2137 	 * XXX The ippseudo header MUST be digested in network byte order,
2138 	 * or else we'll fail the regression test. Assume all fields we've
2139 	 * been doing arithmetic on have been in host byte order.
2140 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2141 	 * tcp_output(), the underlying ip_len member has not yet been set.
2142 	 */
2143 	switch (IP_VHL_V(ip->ip_vhl)) {
2144 	case IPVERSION:
2145 		ipovly = (struct ipovly *)ip;
2146 		ippseudo.ippseudo_src = ipovly->ih_src;
2147 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2148 		ippseudo.ippseudo_pad = 0;
2149 		ippseudo.ippseudo_p = IPPROTO_TCP;
2150 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2151 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2152 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2153 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2154 		break;
2155 #ifdef INET6
2156 	/*
2157 	 * RFC 2385, 2.0  Proposal
2158 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2159 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2160 	 * extended next header value (to form 32 bits), and 32-bit segment
2161 	 * length.
2162 	 * Note: Upper-Layer Packet Length comes before Next Header.
2163 	 */
2164 	case (IPV6_VERSION >> 4):
2165 		in6 = ip6->ip6_src;
2166 		in6_clearscope(&in6);
2167 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2168 		in6 = ip6->ip6_dst;
2169 		in6_clearscope(&in6);
2170 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2171 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2172 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2173 		nhdr = 0;
2174 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2175 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2176 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2177 		nhdr = IPPROTO_TCP;
2178 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2179 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2180 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2181 		break;
2182 #endif /* INET6 */
2183 	default:
2184 		return (EINVAL);
2185 		/* NOTREACHED */
2186 		break;
2187 	}
2188 	/*
2189 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2190 	 * The TCP checksum must be set to zero.
2191 	 */
2192 	savecsum = th->th_sum;
2193 	th->th_sum = 0;
2194 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2195 	th->th_sum = savecsum;
2196 	/*
2197 	 * Step 3: Update MD5 hash with TCP segment data.
2198 	 *         Use m_apply() to avoid an early m_pullup().
2199 	 */
2200 	if (len > 0)
2201 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2202 	/*
2203 	 * Step 4: Update MD5 hash with shared secret.
2204 	 */
2205 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2206 	MD5Final(buf, &ctx);
2207 	key_sa_recordxfer(sav, m);
2208 	key_freesav(sav);
2209 	return (0);
2210 }
2211 
2212 int
2213 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2214 {
2215 
2216 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2217 	return (0);
2218 }
2219 #endif /* TCP_SIGNATURE */
2220