xref: /dflybsd-src/sys/netinet/tcp_subr.c (revision a62226e46c982d037de05e1bb0894805c0b7a32f)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
63  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
64  */
65 
66 #include "opt_compat.h"
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 #include "opt_tcpdebug.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/malloc.h>
78 #include <sys/mpipe.h>
79 #include <sys/mbuf.h>
80 #ifdef INET6
81 #include <sys/domain.h>
82 #endif
83 #include <sys/proc.h>
84 #include <sys/priv.h>
85 #include <sys/socket.h>
86 #include <sys/socketops.h>
87 #include <sys/socketvar.h>
88 #include <sys/protosw.h>
89 #include <sys/random.h>
90 #include <sys/in_cksum.h>
91 #include <sys/ktr.h>
92 
93 #include <net/route.h>
94 #include <net/if.h>
95 #include <net/netisr2.h>
96 
97 #define	_IP_VHL
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/ip6.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet6/in6_pcb.h>
104 #include <netinet/in_var.h>
105 #include <netinet/ip_var.h>
106 #include <netinet6/ip6_var.h>
107 #include <netinet/ip_icmp.h>
108 #ifdef INET6
109 #include <netinet/icmp6.h>
110 #endif
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
118 #include <netinet/tcpip.h>
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 #endif
122 #include <netinet6/ip6protosw.h>
123 
124 #ifdef IPSEC
125 #include <netinet6/ipsec.h>
126 #include <netproto/key/key.h>
127 #ifdef INET6
128 #include <netinet6/ipsec6.h>
129 #endif
130 #endif
131 
132 #ifdef FAST_IPSEC
133 #include <netproto/ipsec/ipsec.h>
134 #ifdef INET6
135 #include <netproto/ipsec/ipsec6.h>
136 #endif
137 #define	IPSEC
138 #endif
139 
140 #include <sys/md5.h>
141 #include <machine/smp.h>
142 
143 #include <sys/msgport2.h>
144 #include <sys/mplock2.h>
145 #include <net/netmsg2.h>
146 
147 #if !defined(KTR_TCP)
148 #define KTR_TCP		KTR_ALL
149 #endif
150 /*
151 KTR_INFO_MASTER(tcp);
152 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
153 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
154 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
155 #define logtcp(name)	KTR_LOG(tcp_ ## name)
156 */
157 
158 #define TCP_IW_MAXSEGS_DFLT	4
159 #define TCP_IW_CAPSEGS_DFLT	3
160 
161 struct inpcbinfo tcbinfo[MAXCPU];
162 struct tcpcbackqhead tcpcbackq[MAXCPU];
163 
164 int tcp_mssdflt = TCP_MSS;
165 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
166     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
167 
168 #ifdef INET6
169 int tcp_v6mssdflt = TCP6_MSS;
170 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
171     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
172 #endif
173 
174 /*
175  * Minimum MSS we accept and use. This prevents DoS attacks where
176  * we are forced to a ridiculous low MSS like 20 and send hundreds
177  * of packets instead of one. The effect scales with the available
178  * bandwidth and quickly saturates the CPU and network interface
179  * with packet generation and sending. Set to zero to disable MINMSS
180  * checking. This setting prevents us from sending too small packets.
181  */
182 int tcp_minmss = TCP_MINMSS;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
184     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
185 
186 #if 0
187 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
188 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
189     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
190 #endif
191 
192 int tcp_do_rfc1323 = 1;
193 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
194     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
195 
196 static int tcp_tcbhashsize = 0;
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
198      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
199 
200 static int do_tcpdrain = 1;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
202      "Enable tcp_drain routine for extra help when low on mbufs");
203 
204 static int icmp_may_rst = 1;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
206     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
207 
208 static int tcp_isn_reseed_interval = 0;
209 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
210     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
211 
212 /*
213  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
214  * by default, but with generous values which should allow maximal
215  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
216  *
217  * The reason for doing this is that the limiter is the only mechanism we
218  * have which seems to do a really good job preventing receiver RX rings
219  * on network interfaces from getting blown out.  Even though GigE/10GigE
220  * is supposed to flow control it looks like either it doesn't actually
221  * do it or Open Source drivers do not properly enable it.
222  *
223  * People using the limiter to reduce bottlenecks on slower WAN connections
224  * should set the slop to 20 (2 packets).
225  */
226 static int tcp_inflight_enable = 1;
227 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
228     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
229 
230 static int tcp_inflight_debug = 0;
231 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
232     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
233 
234 static int tcp_inflight_min = 6144;
235 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
236     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
237 
238 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
239 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
240     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
241 
242 static int tcp_inflight_stab = 50;
243 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
244     &tcp_inflight_stab, 0, "Fudge bw 1/10% (50=5%)");
245 
246 static int tcp_inflight_adjrtt = 2;
247 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_adjrtt, CTLFLAG_RW,
248     &tcp_inflight_adjrtt, 0, "Slop for rtt 1/(hz*32)");
249 
250 static int tcp_do_rfc3390 = 1;
251 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
252     &tcp_do_rfc3390, 0,
253     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
254 
255 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
256 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
257     &tcp_iw_maxsegs, 0, "TCP IW segments max");
258 
259 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
260 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
261     &tcp_iw_capsegs, 0, "TCP IW segments");
262 
263 int tcp_low_rtobase = 1;
264 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
265     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
266 
267 static int tcp_do_ncr = 1;
268 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
269     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
270 
271 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
272 static struct malloc_pipe tcptemp_mpipe;
273 
274 static void tcp_willblock(void);
275 static void tcp_notify (struct inpcb *, int);
276 
277 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
278 
279 static int
280 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
281 {
282 	int cpu, error = 0;
283 
284 	for (cpu = 0; cpu < ncpus2; ++cpu) {
285 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
286 					sizeof(struct tcp_stats))))
287 			break;
288 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
289 				       sizeof(struct tcp_stats))))
290 			break;
291 	}
292 
293 	return (error);
294 }
295 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
296     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
297 
298 /*
299  * Target size of TCP PCB hash tables. Must be a power of two.
300  *
301  * Note that this can be overridden by the kernel environment
302  * variable net.inet.tcp.tcbhashsize
303  */
304 #ifndef TCBHASHSIZE
305 #define	TCBHASHSIZE	512
306 #endif
307 
308 /*
309  * This is the actual shape of what we allocate using the zone
310  * allocator.  Doing it this way allows us to protect both structures
311  * using the same generation count, and also eliminates the overhead
312  * of allocating tcpcbs separately.  By hiding the structure here,
313  * we avoid changing most of the rest of the code (although it needs
314  * to be changed, eventually, for greater efficiency).
315  */
316 #define	ALIGNMENT	32
317 #define	ALIGNM1		(ALIGNMENT - 1)
318 struct	inp_tp {
319 	union {
320 		struct	inpcb inp;
321 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
322 	} inp_tp_u;
323 	struct	tcpcb tcb;
324 	struct	tcp_callout inp_tp_rexmt;
325 	struct	tcp_callout inp_tp_persist;
326 	struct	tcp_callout inp_tp_keep;
327 	struct	tcp_callout inp_tp_2msl;
328 	struct	tcp_callout inp_tp_delack;
329 	struct	netmsg_tcp_timer inp_tp_timermsg;
330 	struct	netmsg_base inp_tp_sndmore;
331 };
332 #undef ALIGNMENT
333 #undef ALIGNM1
334 
335 /*
336  * Tcp initialization
337  */
338 void
339 tcp_init(void)
340 {
341 	struct inpcbportinfo *portinfo;
342 	struct inpcbinfo *ticb;
343 	int hashsize = TCBHASHSIZE;
344 	int cpu;
345 
346 	/*
347 	 * note: tcptemp is used for keepalives, and it is ok for an
348 	 * allocation to fail so do not specify MPF_INT.
349 	 */
350 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
351 		    25, -1, 0, NULL, NULL, NULL);
352 
353 	tcp_delacktime = TCPTV_DELACK;
354 	tcp_keepinit = TCPTV_KEEP_INIT;
355 	tcp_keepidle = TCPTV_KEEP_IDLE;
356 	tcp_keepintvl = TCPTV_KEEPINTVL;
357 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
358 	tcp_msl = TCPTV_MSL;
359 	tcp_rexmit_min = TCPTV_MIN;
360 	tcp_rexmit_slop = TCPTV_CPU_VAR;
361 
362 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
363 	if (!powerof2(hashsize)) {
364 		kprintf("WARNING: TCB hash size not a power of 2\n");
365 		hashsize = 512; /* safe default */
366 	}
367 	tcp_tcbhashsize = hashsize;
368 
369 	portinfo = kmalloc_cachealign(sizeof(*portinfo) * ncpus2, M_PCB,
370 	    M_WAITOK);
371 
372 	for (cpu = 0; cpu < ncpus2; cpu++) {
373 		ticb = &tcbinfo[cpu];
374 		in_pcbinfo_init(ticb);
375 		ticb->cpu = cpu;
376 		ticb->hashbase = hashinit(hashsize, M_PCB,
377 					  &ticb->hashmask);
378 		in_pcbportinfo_init(&portinfo[cpu], hashsize, TRUE, cpu);
379 		ticb->portinfo = portinfo;
380 		ticb->portinfo_mask = ncpus2_mask;
381 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
382 						  &ticb->wildcardhashmask);
383 		ticb->localgrphashbase = hashinit(hashsize, M_PCB,
384 						  &ticb->localgrphashmask);
385 		ticb->ipi_size = sizeof(struct inp_tp);
386 		TAILQ_INIT(&tcpcbackq[cpu]);
387 	}
388 
389 	tcp_reass_maxseg = nmbclusters / 16;
390 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
391 
392 #ifdef INET6
393 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
394 #else
395 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
396 #endif
397 	if (max_protohdr < TCP_MINPROTOHDR)
398 		max_protohdr = TCP_MINPROTOHDR;
399 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
400 		panic("tcp_init");
401 #undef TCP_MINPROTOHDR
402 
403 	/*
404 	 * Initialize TCP statistics counters for each CPU.
405 	 */
406 	for (cpu = 0; cpu < ncpus2; ++cpu)
407 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
408 
409 	syncache_init();
410 	netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
411 }
412 
413 static void
414 tcp_willblock(void)
415 {
416 	struct tcpcb *tp;
417 	int cpu = mycpu->gd_cpuid;
418 
419 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
420 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
421 		tp->t_flags &= ~TF_ONOUTPUTQ;
422 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
423 		tcp_output(tp);
424 	}
425 }
426 
427 /*
428  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
429  * tcp_template used to store this data in mbufs, but we now recopy it out
430  * of the tcpcb each time to conserve mbufs.
431  */
432 void
433 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
434 {
435 	struct inpcb *inp = tp->t_inpcb;
436 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
437 
438 #ifdef INET6
439 	if (inp->inp_vflag & INP_IPV6) {
440 		struct ip6_hdr *ip6;
441 
442 		ip6 = (struct ip6_hdr *)ip_ptr;
443 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
444 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
445 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
446 			(IPV6_VERSION & IPV6_VERSION_MASK);
447 		ip6->ip6_nxt = IPPROTO_TCP;
448 		ip6->ip6_plen = sizeof(struct tcphdr);
449 		ip6->ip6_src = inp->in6p_laddr;
450 		ip6->ip6_dst = inp->in6p_faddr;
451 		tcp_hdr->th_sum = 0;
452 	} else
453 #endif
454 	{
455 		struct ip *ip = (struct ip *) ip_ptr;
456 		u_int plen;
457 
458 		ip->ip_vhl = IP_VHL_BORING;
459 		ip->ip_tos = 0;
460 		ip->ip_len = 0;
461 		ip->ip_id = 0;
462 		ip->ip_off = 0;
463 		ip->ip_ttl = 0;
464 		ip->ip_sum = 0;
465 		ip->ip_p = IPPROTO_TCP;
466 		ip->ip_src = inp->inp_laddr;
467 		ip->ip_dst = inp->inp_faddr;
468 
469 		if (tso)
470 			plen = htons(IPPROTO_TCP);
471 		else
472 			plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
473 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
474 		    ip->ip_dst.s_addr, plen);
475 	}
476 
477 	tcp_hdr->th_sport = inp->inp_lport;
478 	tcp_hdr->th_dport = inp->inp_fport;
479 	tcp_hdr->th_seq = 0;
480 	tcp_hdr->th_ack = 0;
481 	tcp_hdr->th_x2 = 0;
482 	tcp_hdr->th_off = 5;
483 	tcp_hdr->th_flags = 0;
484 	tcp_hdr->th_win = 0;
485 	tcp_hdr->th_urp = 0;
486 }
487 
488 /*
489  * Create template to be used to send tcp packets on a connection.
490  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
491  * use for this function is in keepalives, which use tcp_respond.
492  */
493 struct tcptemp *
494 tcp_maketemplate(struct tcpcb *tp)
495 {
496 	struct tcptemp *tmp;
497 
498 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
499 		return (NULL);
500 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
501 	return (tmp);
502 }
503 
504 void
505 tcp_freetemplate(struct tcptemp *tmp)
506 {
507 	mpipe_free(&tcptemp_mpipe, tmp);
508 }
509 
510 /*
511  * Send a single message to the TCP at address specified by
512  * the given TCP/IP header.  If m == NULL, then we make a copy
513  * of the tcpiphdr at ti and send directly to the addressed host.
514  * This is used to force keep alive messages out using the TCP
515  * template for a connection.  If flags are given then we send
516  * a message back to the TCP which originated the * segment ti,
517  * and discard the mbuf containing it and any other attached mbufs.
518  *
519  * In any case the ack and sequence number of the transmitted
520  * segment are as specified by the parameters.
521  *
522  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
523  */
524 void
525 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
526 	    tcp_seq ack, tcp_seq seq, int flags)
527 {
528 	int tlen;
529 	int win = 0;
530 	struct route *ro = NULL;
531 	struct route sro;
532 	struct ip *ip = ipgen;
533 	struct tcphdr *nth;
534 	int ipflags = 0;
535 	struct route_in6 *ro6 = NULL;
536 	struct route_in6 sro6;
537 	struct ip6_hdr *ip6 = ipgen;
538 	boolean_t use_tmpro = TRUE;
539 #ifdef INET6
540 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
541 #else
542 	const boolean_t isipv6 = FALSE;
543 #endif
544 
545 	if (tp != NULL) {
546 		if (!(flags & TH_RST)) {
547 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
548 			if (win < 0)
549 				win = 0;
550 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
551 				win = (long)TCP_MAXWIN << tp->rcv_scale;
552 		}
553 		/*
554 		 * Don't use the route cache of a listen socket,
555 		 * it is not MPSAFE; use temporary route cache.
556 		 */
557 		if (tp->t_state != TCPS_LISTEN) {
558 			if (isipv6)
559 				ro6 = &tp->t_inpcb->in6p_route;
560 			else
561 				ro = &tp->t_inpcb->inp_route;
562 			use_tmpro = FALSE;
563 		}
564 	}
565 	if (use_tmpro) {
566 		if (isipv6) {
567 			ro6 = &sro6;
568 			bzero(ro6, sizeof *ro6);
569 		} else {
570 			ro = &sro;
571 			bzero(ro, sizeof *ro);
572 		}
573 	}
574 	if (m == NULL) {
575 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
576 		if (m == NULL)
577 			return;
578 		tlen = 0;
579 		m->m_data += max_linkhdr;
580 		if (isipv6) {
581 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
582 			ip6 = mtod(m, struct ip6_hdr *);
583 			nth = (struct tcphdr *)(ip6 + 1);
584 		} else {
585 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
586 			ip = mtod(m, struct ip *);
587 			nth = (struct tcphdr *)(ip + 1);
588 		}
589 		bcopy(th, nth, sizeof(struct tcphdr));
590 		flags = TH_ACK;
591 	} else {
592 		m_freem(m->m_next);
593 		m->m_next = NULL;
594 		m->m_data = (caddr_t)ipgen;
595 		/* m_len is set later */
596 		tlen = 0;
597 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
598 		if (isipv6) {
599 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
600 			nth = (struct tcphdr *)(ip6 + 1);
601 		} else {
602 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
603 			nth = (struct tcphdr *)(ip + 1);
604 		}
605 		if (th != nth) {
606 			/*
607 			 * this is usually a case when an extension header
608 			 * exists between the IPv6 header and the
609 			 * TCP header.
610 			 */
611 			nth->th_sport = th->th_sport;
612 			nth->th_dport = th->th_dport;
613 		}
614 		xchg(nth->th_dport, nth->th_sport, n_short);
615 #undef xchg
616 	}
617 	if (isipv6) {
618 		ip6->ip6_flow = 0;
619 		ip6->ip6_vfc = IPV6_VERSION;
620 		ip6->ip6_nxt = IPPROTO_TCP;
621 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
622 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
623 	} else {
624 		tlen += sizeof(struct tcpiphdr);
625 		ip->ip_len = tlen;
626 		ip->ip_ttl = ip_defttl;
627 	}
628 	m->m_len = tlen;
629 	m->m_pkthdr.len = tlen;
630 	m->m_pkthdr.rcvif = NULL;
631 	nth->th_seq = htonl(seq);
632 	nth->th_ack = htonl(ack);
633 	nth->th_x2 = 0;
634 	nth->th_off = sizeof(struct tcphdr) >> 2;
635 	nth->th_flags = flags;
636 	if (tp != NULL)
637 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
638 	else
639 		nth->th_win = htons((u_short)win);
640 	nth->th_urp = 0;
641 	if (isipv6) {
642 		nth->th_sum = 0;
643 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
644 					sizeof(struct ip6_hdr),
645 					tlen - sizeof(struct ip6_hdr));
646 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
647 					       (ro6 && ro6->ro_rt) ?
648 						ro6->ro_rt->rt_ifp : NULL);
649 	} else {
650 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
651 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
652 		m->m_pkthdr.csum_flags = CSUM_TCP;
653 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
654 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
655 	}
656 #ifdef TCPDEBUG
657 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
658 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
659 #endif
660 	if (isipv6) {
661 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
662 			   tp ? tp->t_inpcb : NULL);
663 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
664 			RTFREE(ro6->ro_rt);
665 			ro6->ro_rt = NULL;
666 		}
667 	} else {
668 		ipflags |= IP_DEBUGROUTE;
669 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
670 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
671 			RTFREE(ro->ro_rt);
672 			ro->ro_rt = NULL;
673 		}
674 	}
675 }
676 
677 /*
678  * Create a new TCP control block, making an
679  * empty reassembly queue and hooking it to the argument
680  * protocol control block.  The `inp' parameter must have
681  * come from the zone allocator set up in tcp_init().
682  */
683 struct tcpcb *
684 tcp_newtcpcb(struct inpcb *inp)
685 {
686 	struct inp_tp *it;
687 	struct tcpcb *tp;
688 #ifdef INET6
689 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
690 #else
691 	const boolean_t isipv6 = FALSE;
692 #endif
693 
694 	it = (struct inp_tp *)inp;
695 	tp = &it->tcb;
696 	bzero(tp, sizeof(struct tcpcb));
697 	TAILQ_INIT(&tp->t_segq);
698 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
699 	tp->t_rxtthresh = tcprexmtthresh;
700 
701 	/* Set up our timeouts. */
702 	tp->tt_rexmt = &it->inp_tp_rexmt;
703 	tp->tt_persist = &it->inp_tp_persist;
704 	tp->tt_keep = &it->inp_tp_keep;
705 	tp->tt_2msl = &it->inp_tp_2msl;
706 	tp->tt_delack = &it->inp_tp_delack;
707 	tcp_inittimers(tp);
708 
709 	/*
710 	 * Zero out timer message.  We don't create it here,
711 	 * since the current CPU may not be the owner of this
712 	 * inpcb.
713 	 */
714 	tp->tt_msg = &it->inp_tp_timermsg;
715 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
716 
717 	tp->t_keepinit = tcp_keepinit;
718 	tp->t_keepidle = tcp_keepidle;
719 	tp->t_keepintvl = tcp_keepintvl;
720 	tp->t_keepcnt = tcp_keepcnt;
721 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
722 
723 	if (tcp_do_ncr)
724 		tp->t_flags |= TF_NCR;
725 	if (tcp_do_rfc1323)
726 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
727 
728 	tp->t_inpcb = inp;	/* XXX */
729 	tp->t_state = TCPS_CLOSED;
730 	/*
731 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
732 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
733 	 * reasonable initial retransmit time.
734 	 */
735 	tp->t_srtt = TCPTV_SRTTBASE;
736 	tp->t_rttvar =
737 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
738 	tp->t_rttmin = tcp_rexmit_min;
739 	tp->t_rxtcur = TCPTV_RTOBASE;
740 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
741 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
742 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
743 	tp->snd_last = ticks;
744 	tp->t_rcvtime = ticks;
745 	/*
746 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
747 	 * because the socket may be bound to an IPv6 wildcard address,
748 	 * which may match an IPv4-mapped IPv6 address.
749 	 */
750 	inp->inp_ip_ttl = ip_defttl;
751 	inp->inp_ppcb = tp;
752 	tcp_sack_tcpcb_init(tp);
753 
754 	tp->tt_sndmore = &it->inp_tp_sndmore;
755 	tcp_output_init(tp);
756 
757 	return (tp);		/* XXX */
758 }
759 
760 /*
761  * Drop a TCP connection, reporting the specified error.
762  * If connection is synchronized, then send a RST to peer.
763  */
764 struct tcpcb *
765 tcp_drop(struct tcpcb *tp, int error)
766 {
767 	struct socket *so = tp->t_inpcb->inp_socket;
768 
769 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
770 		tp->t_state = TCPS_CLOSED;
771 		tcp_output(tp);
772 		tcpstat.tcps_drops++;
773 	} else
774 		tcpstat.tcps_conndrops++;
775 	if (error == ETIMEDOUT && tp->t_softerror)
776 		error = tp->t_softerror;
777 	so->so_error = error;
778 	return (tcp_close(tp));
779 }
780 
781 struct netmsg_listen_detach {
782 	struct netmsg_base	base;
783 	struct tcpcb		*nm_tp;
784 	struct tcpcb		*nm_tp_inh;
785 };
786 
787 static void
788 tcp_listen_detach_handler(netmsg_t msg)
789 {
790 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
791 	struct tcpcb *tp = nmsg->nm_tp;
792 	int cpu = mycpuid, nextcpu;
793 
794 	if (tp->t_flags & TF_LISTEN)
795 		syncache_destroy(tp, nmsg->nm_tp_inh);
796 
797 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
798 
799 	nextcpu = cpu + 1;
800 	if (nextcpu < ncpus2)
801 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
802 	else
803 		lwkt_replymsg(&nmsg->base.lmsg, 0);
804 }
805 
806 /*
807  * Close a TCP control block:
808  *	discard all space held by the tcp
809  *	discard internet protocol block
810  *	wake up any sleepers
811  */
812 struct tcpcb *
813 tcp_close(struct tcpcb *tp)
814 {
815 	struct tseg_qent *q;
816 	struct inpcb *inp = tp->t_inpcb;
817 	struct inpcb *inp_inh = NULL;
818 	struct tcpcb *tp_inh = NULL;
819 	struct socket *so = inp->inp_socket;
820 	struct rtentry *rt;
821 	boolean_t dosavessthresh;
822 #ifdef INET6
823 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
824 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
825 #else
826 	const boolean_t isipv6 = FALSE;
827 #endif
828 
829 	if (tp->t_flags & TF_LISTEN) {
830 		/*
831 		 * Pending socket/syncache inheritance
832 		 *
833 		 * If this is a listen(2) socket, find another listen(2)
834 		 * socket in the same local group, which could inherit
835 		 * the syncache and sockets pending on the completion
836 		 * and incompletion queues.
837 		 *
838 		 * NOTE:
839 		 * Currently the inheritance could only happen on the
840 		 * listen(2) sockets w/ SO_REUSEPORT set.
841 		 */
842 		KASSERT(&curthread->td_msgport == netisr_cpuport(0),
843 		    ("listen socket close not in netisr0"));
844 		inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
845 		if (inp_inh != NULL)
846 			tp_inh = intotcpcb(inp_inh);
847 	}
848 
849 	/*
850 	 * INP_WILDCARD_MP indicates that listen(2) has been called on
851 	 * this socket.  This implies:
852 	 * - A wildcard inp's hash is replicated for each protocol thread.
853 	 * - Syncache for this inp grows independently in each protocol
854 	 *   thread.
855 	 * - There is more than one cpu
856 	 *
857 	 * We have to chain a message to the rest of the protocol threads
858 	 * to cleanup the wildcard hash and the syncache.  The cleanup
859 	 * in the current protocol thread is defered till the end of this
860 	 * function.
861 	 *
862 	 * NOTE:
863 	 * After cleanup the inp's hash and syncache entries, this inp will
864 	 * no longer be available to the rest of the protocol threads, so we
865 	 * are safe to whack the inp in the following code.
866 	 */
867 	if (inp->inp_flags & INP_WILDCARD_MP) {
868 		struct netmsg_listen_detach nmsg;
869 
870 		KKASSERT(so->so_port == netisr_cpuport(0));
871 		KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
872 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
873 
874 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
875 			    MSGF_PRIORITY, tcp_listen_detach_handler);
876 		nmsg.nm_tp = tp;
877 		nmsg.nm_tp_inh = tp_inh;
878 		lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
879 
880 		inp->inp_flags &= ~INP_WILDCARD_MP;
881 	}
882 
883 	KKASSERT(tp->t_state != TCPS_TERMINATING);
884 	tp->t_state = TCPS_TERMINATING;
885 
886 	/*
887 	 * Make sure that all of our timers are stopped before we
888 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
889 	 * timers are never used.  If timer message is never created
890 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
891 	 */
892 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
893 		tcp_callout_stop(tp, tp->tt_rexmt);
894 		tcp_callout_stop(tp, tp->tt_persist);
895 		tcp_callout_stop(tp, tp->tt_keep);
896 		tcp_callout_stop(tp, tp->tt_2msl);
897 		tcp_callout_stop(tp, tp->tt_delack);
898 	}
899 
900 	if (tp->t_flags & TF_ONOUTPUTQ) {
901 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
902 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
903 		tp->t_flags &= ~TF_ONOUTPUTQ;
904 	}
905 
906 	/*
907 	 * If we got enough samples through the srtt filter,
908 	 * save the rtt and rttvar in the routing entry.
909 	 * 'Enough' is arbitrarily defined as the 16 samples.
910 	 * 16 samples is enough for the srtt filter to converge
911 	 * to within 5% of the correct value; fewer samples and
912 	 * we could save a very bogus rtt.
913 	 *
914 	 * Don't update the default route's characteristics and don't
915 	 * update anything that the user "locked".
916 	 */
917 	if (tp->t_rttupdated >= 16) {
918 		u_long i = 0;
919 
920 		if (isipv6) {
921 			struct sockaddr_in6 *sin6;
922 
923 			if ((rt = inp->in6p_route.ro_rt) == NULL)
924 				goto no_valid_rt;
925 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
926 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
927 				goto no_valid_rt;
928 		} else
929 			if ((rt = inp->inp_route.ro_rt) == NULL ||
930 			    ((struct sockaddr_in *)rt_key(rt))->
931 			     sin_addr.s_addr == INADDR_ANY)
932 				goto no_valid_rt;
933 
934 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
935 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
936 			if (rt->rt_rmx.rmx_rtt && i)
937 				/*
938 				 * filter this update to half the old & half
939 				 * the new values, converting scale.
940 				 * See route.h and tcp_var.h for a
941 				 * description of the scaling constants.
942 				 */
943 				rt->rt_rmx.rmx_rtt =
944 				    (rt->rt_rmx.rmx_rtt + i) / 2;
945 			else
946 				rt->rt_rmx.rmx_rtt = i;
947 			tcpstat.tcps_cachedrtt++;
948 		}
949 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
950 			i = tp->t_rttvar *
951 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
952 			if (rt->rt_rmx.rmx_rttvar && i)
953 				rt->rt_rmx.rmx_rttvar =
954 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
955 			else
956 				rt->rt_rmx.rmx_rttvar = i;
957 			tcpstat.tcps_cachedrttvar++;
958 		}
959 		/*
960 		 * The old comment here said:
961 		 * update the pipelimit (ssthresh) if it has been updated
962 		 * already or if a pipesize was specified & the threshhold
963 		 * got below half the pipesize.  I.e., wait for bad news
964 		 * before we start updating, then update on both good
965 		 * and bad news.
966 		 *
967 		 * But we want to save the ssthresh even if no pipesize is
968 		 * specified explicitly in the route, because such
969 		 * connections still have an implicit pipesize specified
970 		 * by the global tcp_sendspace.  In the absence of a reliable
971 		 * way to calculate the pipesize, it will have to do.
972 		 */
973 		i = tp->snd_ssthresh;
974 		if (rt->rt_rmx.rmx_sendpipe != 0)
975 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
976 		else
977 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
978 		if (dosavessthresh ||
979 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
980 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
981 			/*
982 			 * convert the limit from user data bytes to
983 			 * packets then to packet data bytes.
984 			 */
985 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
986 			if (i < 2)
987 				i = 2;
988 			i *= tp->t_maxseg +
989 			     (isipv6 ?
990 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
991 			      sizeof(struct tcpiphdr));
992 			if (rt->rt_rmx.rmx_ssthresh)
993 				rt->rt_rmx.rmx_ssthresh =
994 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
995 			else
996 				rt->rt_rmx.rmx_ssthresh = i;
997 			tcpstat.tcps_cachedssthresh++;
998 		}
999 	}
1000 
1001 no_valid_rt:
1002 	/* free the reassembly queue, if any */
1003 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
1004 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
1005 		m_freem(q->tqe_m);
1006 		kfree(q, M_TSEGQ);
1007 		atomic_add_int(&tcp_reass_qsize, -1);
1008 	}
1009 	/* throw away SACK blocks in scoreboard*/
1010 	if (TCP_DO_SACK(tp))
1011 		tcp_sack_destroy(&tp->scb);
1012 
1013 	inp->inp_ppcb = NULL;
1014 	soisdisconnected(so);
1015 	/* note: pcb detached later on */
1016 
1017 	tcp_destroy_timermsg(tp);
1018 	tcp_output_cancel(tp);
1019 
1020 	if (tp->t_flags & TF_LISTEN) {
1021 		syncache_destroy(tp, tp_inh);
1022 		if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
1023 			/*
1024 			 * Pending sockets inheritance only needs
1025 			 * to be done once in the current thread,
1026 			 * i.e. netisr0.
1027 			 */
1028 			soinherit(so, inp_inh->inp_socket);
1029 		}
1030 	}
1031 
1032 	so_async_rcvd_drop(so);
1033 	/* Drop the reference for the asynchronized pru_rcvd */
1034 	sofree(so);
1035 
1036 	/*
1037 	 * NOTE:
1038 	 * pcbdetach removes any wildcard hash entry on the current CPU.
1039 	 */
1040 #ifdef INET6
1041 	if (isafinet6)
1042 		in6_pcbdetach(inp);
1043 	else
1044 #endif
1045 		in_pcbdetach(inp);
1046 
1047 	tcpstat.tcps_closed++;
1048 	return (NULL);
1049 }
1050 
1051 static __inline void
1052 tcp_drain_oncpu(struct inpcbhead *head)
1053 {
1054 	struct inpcb *marker;
1055 	struct inpcb *inpb;
1056 	struct tcpcb *tcpb;
1057 	struct tseg_qent *te;
1058 
1059 	/*
1060 	 * Allows us to block while running the list
1061 	 */
1062 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1063 	marker->inp_flags |= INP_PLACEMARKER;
1064 	LIST_INSERT_HEAD(head, marker, inp_list);
1065 
1066 	while ((inpb = LIST_NEXT(marker, inp_list)) != NULL) {
1067 		if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1068 		    (tcpb = intotcpcb(inpb)) != NULL &&
1069 		    (te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1070 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1071 			if (te->tqe_th->th_flags & TH_FIN)
1072 				tcpb->t_flags &= ~TF_QUEDFIN;
1073 			m_freem(te->tqe_m);
1074 			kfree(te, M_TSEGQ);
1075 			atomic_add_int(&tcp_reass_qsize, -1);
1076 			/* retry */
1077 		} else {
1078 			LIST_REMOVE(marker, inp_list);
1079 			LIST_INSERT_AFTER(inpb, marker, inp_list);
1080 		}
1081 	}
1082 	LIST_REMOVE(marker, inp_list);
1083 	kfree(marker, M_TEMP);
1084 }
1085 
1086 struct netmsg_tcp_drain {
1087 	struct netmsg_base	base;
1088 	struct inpcbhead	*nm_head;
1089 };
1090 
1091 static void
1092 tcp_drain_handler(netmsg_t msg)
1093 {
1094 	struct netmsg_tcp_drain *nm = (void *)msg;
1095 
1096 	tcp_drain_oncpu(nm->nm_head);
1097 	lwkt_replymsg(&nm->base.lmsg, 0);
1098 }
1099 
1100 void
1101 tcp_drain(void)
1102 {
1103 	int cpu;
1104 
1105 	if (!do_tcpdrain)
1106 		return;
1107 
1108 	/*
1109 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1110 	 * if there is one...
1111 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1112 	 *	reassembly queue should be flushed, but in a situation
1113 	 *	where we're really low on mbufs, this is potentially
1114 	 *	useful.
1115 	 */
1116 	for (cpu = 0; cpu < ncpus2; cpu++) {
1117 		struct netmsg_tcp_drain *nm;
1118 
1119 		if (cpu == mycpu->gd_cpuid) {
1120 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1121 		} else {
1122 			nm = kmalloc(sizeof(struct netmsg_tcp_drain),
1123 				     M_LWKTMSG, M_NOWAIT);
1124 			if (nm == NULL)
1125 				continue;
1126 			netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1127 				    0, tcp_drain_handler);
1128 			nm->nm_head = &tcbinfo[cpu].pcblisthead;
1129 			lwkt_sendmsg(netisr_cpuport(cpu), &nm->base.lmsg);
1130 		}
1131 	}
1132 }
1133 
1134 /*
1135  * Notify a tcp user of an asynchronous error;
1136  * store error as soft error, but wake up user
1137  * (for now, won't do anything until can select for soft error).
1138  *
1139  * Do not wake up user since there currently is no mechanism for
1140  * reporting soft errors (yet - a kqueue filter may be added).
1141  */
1142 static void
1143 tcp_notify(struct inpcb *inp, int error)
1144 {
1145 	struct tcpcb *tp = intotcpcb(inp);
1146 
1147 	/*
1148 	 * Ignore some errors if we are hooked up.
1149 	 * If connection hasn't completed, has retransmitted several times,
1150 	 * and receives a second error, give up now.  This is better
1151 	 * than waiting a long time to establish a connection that
1152 	 * can never complete.
1153 	 */
1154 	if (tp->t_state == TCPS_ESTABLISHED &&
1155 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1156 	      error == EHOSTDOWN)) {
1157 		return;
1158 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1159 	    tp->t_softerror)
1160 		tcp_drop(tp, error);
1161 	else
1162 		tp->t_softerror = error;
1163 #if 0
1164 	wakeup(&so->so_timeo);
1165 	sorwakeup(so);
1166 	sowwakeup(so);
1167 #endif
1168 }
1169 
1170 static int
1171 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1172 {
1173 	int error, i, n;
1174 	struct inpcb *marker;
1175 	struct inpcb *inp;
1176 	globaldata_t gd;
1177 	int origcpu, ccpu;
1178 
1179 	error = 0;
1180 	n = 0;
1181 
1182 	/*
1183 	 * The process of preparing the TCB list is too time-consuming and
1184 	 * resource-intensive to repeat twice on every request.
1185 	 */
1186 	if (req->oldptr == NULL) {
1187 		for (ccpu = 0; ccpu < ncpus2; ++ccpu) {
1188 			gd = globaldata_find(ccpu);
1189 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1190 		}
1191 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1192 		return (0);
1193 	}
1194 
1195 	if (req->newptr != NULL)
1196 		return (EPERM);
1197 
1198 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1199 	marker->inp_flags |= INP_PLACEMARKER;
1200 
1201 	/*
1202 	 * OK, now we're committed to doing something.  Run the inpcb list
1203 	 * for each cpu in the system and construct the output.  Use a
1204 	 * list placemarker to deal with list changes occuring during
1205 	 * copyout blockages (but otherwise depend on being on the correct
1206 	 * cpu to avoid races).
1207 	 */
1208 	origcpu = mycpu->gd_cpuid;
1209 	for (ccpu = 0; ccpu < ncpus2 && error == 0; ++ccpu) {
1210 		caddr_t inp_ppcb;
1211 		struct xtcpcb xt;
1212 
1213 		lwkt_migratecpu(ccpu);
1214 
1215 		n = tcbinfo[ccpu].ipi_count;
1216 
1217 		LIST_INSERT_HEAD(&tcbinfo[ccpu].pcblisthead, marker, inp_list);
1218 		i = 0;
1219 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1220 			/*
1221 			 * process a snapshot of pcbs, ignoring placemarkers
1222 			 * and using our own to allow SYSCTL_OUT to block.
1223 			 */
1224 			LIST_REMOVE(marker, inp_list);
1225 			LIST_INSERT_AFTER(inp, marker, inp_list);
1226 
1227 			if (inp->inp_flags & INP_PLACEMARKER)
1228 				continue;
1229 			if (prison_xinpcb(req->td, inp))
1230 				continue;
1231 
1232 			xt.xt_len = sizeof xt;
1233 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1234 			inp_ppcb = inp->inp_ppcb;
1235 			if (inp_ppcb != NULL)
1236 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1237 			else
1238 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1239 			if (inp->inp_socket)
1240 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1241 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1242 				break;
1243 			++i;
1244 		}
1245 		LIST_REMOVE(marker, inp_list);
1246 		if (error == 0 && i < n) {
1247 			bzero(&xt, sizeof xt);
1248 			xt.xt_len = sizeof xt;
1249 			while (i < n) {
1250 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1251 				if (error)
1252 					break;
1253 				++i;
1254 			}
1255 		}
1256 	}
1257 
1258 	/*
1259 	 * Make sure we are on the same cpu we were on originally, since
1260 	 * higher level callers expect this.  Also don't pollute caches with
1261 	 * migrated userland data by (eventually) returning to userland
1262 	 * on a different cpu.
1263 	 */
1264 	lwkt_migratecpu(origcpu);
1265 	kfree(marker, M_TEMP);
1266 	return (error);
1267 }
1268 
1269 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1270 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1271 
1272 static int
1273 tcp_getcred(SYSCTL_HANDLER_ARGS)
1274 {
1275 	struct sockaddr_in addrs[2];
1276 	struct inpcb *inp;
1277 	int cpu;
1278 	int error;
1279 
1280 	error = priv_check(req->td, PRIV_ROOT);
1281 	if (error != 0)
1282 		return (error);
1283 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1284 	if (error != 0)
1285 		return (error);
1286 	crit_enter();
1287 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1288 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1289 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1290 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1291 	if (inp == NULL || inp->inp_socket == NULL) {
1292 		error = ENOENT;
1293 		goto out;
1294 	}
1295 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1296 out:
1297 	crit_exit();
1298 	return (error);
1299 }
1300 
1301 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1302     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1303 
1304 #ifdef INET6
1305 static int
1306 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1307 {
1308 	struct sockaddr_in6 addrs[2];
1309 	struct inpcb *inp;
1310 	int error;
1311 	boolean_t mapped = FALSE;
1312 
1313 	error = priv_check(req->td, PRIV_ROOT);
1314 	if (error != 0)
1315 		return (error);
1316 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1317 	if (error != 0)
1318 		return (error);
1319 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1320 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1321 			mapped = TRUE;
1322 		else
1323 			return (EINVAL);
1324 	}
1325 	crit_enter();
1326 	if (mapped) {
1327 		inp = in_pcblookup_hash(&tcbinfo[0],
1328 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1329 		    addrs[1].sin6_port,
1330 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1331 		    addrs[0].sin6_port,
1332 		    0, NULL);
1333 	} else {
1334 		inp = in6_pcblookup_hash(&tcbinfo[0],
1335 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1336 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1337 		    0, NULL);
1338 	}
1339 	if (inp == NULL || inp->inp_socket == NULL) {
1340 		error = ENOENT;
1341 		goto out;
1342 	}
1343 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1344 out:
1345 	crit_exit();
1346 	return (error);
1347 }
1348 
1349 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1350 	    0, 0,
1351 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1352 #endif
1353 
1354 struct netmsg_tcp_notify {
1355 	struct netmsg_base base;
1356 	void		(*nm_notify)(struct inpcb *, int);
1357 	struct in_addr	nm_faddr;
1358 	int		nm_arg;
1359 };
1360 
1361 static void
1362 tcp_notifyall_oncpu(netmsg_t msg)
1363 {
1364 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1365 	int nextcpu;
1366 
1367 	in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nm->nm_faddr,
1368 			nm->nm_arg, nm->nm_notify);
1369 
1370 	nextcpu = mycpuid + 1;
1371 	if (nextcpu < ncpus2)
1372 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1373 	else
1374 		lwkt_replymsg(&nm->base.lmsg, 0);
1375 }
1376 
1377 void
1378 tcp_ctlinput(netmsg_t msg)
1379 {
1380 	int cmd = msg->ctlinput.nm_cmd;
1381 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1382 	struct ip *ip = msg->ctlinput.nm_extra;
1383 	struct tcphdr *th;
1384 	struct in_addr faddr;
1385 	struct inpcb *inp;
1386 	struct tcpcb *tp;
1387 	void (*notify)(struct inpcb *, int) = tcp_notify;
1388 	tcp_seq icmpseq;
1389 	int arg, cpu;
1390 
1391 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1392 		goto done;
1393 	}
1394 
1395 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1396 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1397 		goto done;
1398 
1399 	arg = inetctlerrmap[cmd];
1400 	if (cmd == PRC_QUENCH) {
1401 		notify = tcp_quench;
1402 	} else if (icmp_may_rst &&
1403 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1404 		    cmd == PRC_UNREACH_PORT ||
1405 		    cmd == PRC_TIMXCEED_INTRANS) &&
1406 		   ip != NULL) {
1407 		notify = tcp_drop_syn_sent;
1408 	} else if (cmd == PRC_MSGSIZE) {
1409 		struct icmp *icmp = (struct icmp *)
1410 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1411 
1412 		arg = ntohs(icmp->icmp_nextmtu);
1413 		notify = tcp_mtudisc;
1414 	} else if (PRC_IS_REDIRECT(cmd)) {
1415 		ip = NULL;
1416 		notify = in_rtchange;
1417 	} else if (cmd == PRC_HOSTDEAD) {
1418 		ip = NULL;
1419 	}
1420 
1421 	if (ip != NULL) {
1422 		crit_enter();
1423 		th = (struct tcphdr *)((caddr_t)ip +
1424 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1425 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1426 				  ip->ip_src.s_addr, th->th_sport);
1427 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1428 					ip->ip_src, th->th_sport, 0, NULL);
1429 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1430 			icmpseq = htonl(th->th_seq);
1431 			tp = intotcpcb(inp);
1432 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1433 			    SEQ_LT(icmpseq, tp->snd_max))
1434 				(*notify)(inp, arg);
1435 		} else {
1436 			struct in_conninfo inc;
1437 
1438 			inc.inc_fport = th->th_dport;
1439 			inc.inc_lport = th->th_sport;
1440 			inc.inc_faddr = faddr;
1441 			inc.inc_laddr = ip->ip_src;
1442 #ifdef INET6
1443 			inc.inc_isipv6 = 0;
1444 #endif
1445 			syncache_unreach(&inc, th);
1446 		}
1447 		crit_exit();
1448 	} else {
1449 		struct netmsg_tcp_notify *nm;
1450 
1451 		KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
1452 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1453 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1454 			    0, tcp_notifyall_oncpu);
1455 		nm->nm_faddr = faddr;
1456 		nm->nm_arg = arg;
1457 		nm->nm_notify = notify;
1458 
1459 		lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1460 	}
1461 done:
1462 	lwkt_replymsg(&msg->lmsg, 0);
1463 }
1464 
1465 #ifdef INET6
1466 
1467 void
1468 tcp6_ctlinput(netmsg_t msg)
1469 {
1470 	int cmd = msg->ctlinput.nm_cmd;
1471 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1472 	void *d = msg->ctlinput.nm_extra;
1473 	struct tcphdr th;
1474 	void (*notify) (struct inpcb *, int) = tcp_notify;
1475 	struct ip6_hdr *ip6;
1476 	struct mbuf *m;
1477 	struct ip6ctlparam *ip6cp = NULL;
1478 	const struct sockaddr_in6 *sa6_src = NULL;
1479 	int off;
1480 	struct tcp_portonly {
1481 		u_int16_t th_sport;
1482 		u_int16_t th_dport;
1483 	} *thp;
1484 	int arg;
1485 
1486 	if (sa->sa_family != AF_INET6 ||
1487 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1488 		goto out;
1489 	}
1490 
1491 	arg = 0;
1492 	if (cmd == PRC_QUENCH)
1493 		notify = tcp_quench;
1494 	else if (cmd == PRC_MSGSIZE) {
1495 		struct ip6ctlparam *ip6cp = d;
1496 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1497 
1498 		arg = ntohl(icmp6->icmp6_mtu);
1499 		notify = tcp_mtudisc;
1500 	} else if (!PRC_IS_REDIRECT(cmd) &&
1501 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1502 		goto out;
1503 	}
1504 
1505 	/* if the parameter is from icmp6, decode it. */
1506 	if (d != NULL) {
1507 		ip6cp = (struct ip6ctlparam *)d;
1508 		m = ip6cp->ip6c_m;
1509 		ip6 = ip6cp->ip6c_ip6;
1510 		off = ip6cp->ip6c_off;
1511 		sa6_src = ip6cp->ip6c_src;
1512 	} else {
1513 		m = NULL;
1514 		ip6 = NULL;
1515 		off = 0;	/* fool gcc */
1516 		sa6_src = &sa6_any;
1517 	}
1518 
1519 	if (ip6 != NULL) {
1520 		struct in_conninfo inc;
1521 		/*
1522 		 * XXX: We assume that when IPV6 is non NULL,
1523 		 * M and OFF are valid.
1524 		 */
1525 
1526 		/* check if we can safely examine src and dst ports */
1527 		if (m->m_pkthdr.len < off + sizeof *thp)
1528 			goto out;
1529 
1530 		bzero(&th, sizeof th);
1531 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1532 
1533 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1534 		    (struct sockaddr *)ip6cp->ip6c_src,
1535 		    th.th_sport, cmd, arg, notify);
1536 
1537 		inc.inc_fport = th.th_dport;
1538 		inc.inc_lport = th.th_sport;
1539 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1540 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1541 		inc.inc_isipv6 = 1;
1542 		syncache_unreach(&inc, &th);
1543 	} else {
1544 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1545 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1546 	}
1547 out:
1548 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1549 }
1550 
1551 #endif
1552 
1553 /*
1554  * Following is where TCP initial sequence number generation occurs.
1555  *
1556  * There are two places where we must use initial sequence numbers:
1557  * 1.  In SYN-ACK packets.
1558  * 2.  In SYN packets.
1559  *
1560  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1561  * tcp_syncache.c for details.
1562  *
1563  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1564  * depends on this property.  In addition, these ISNs should be
1565  * unguessable so as to prevent connection hijacking.  To satisfy
1566  * the requirements of this situation, the algorithm outlined in
1567  * RFC 1948 is used to generate sequence numbers.
1568  *
1569  * Implementation details:
1570  *
1571  * Time is based off the system timer, and is corrected so that it
1572  * increases by one megabyte per second.  This allows for proper
1573  * recycling on high speed LANs while still leaving over an hour
1574  * before rollover.
1575  *
1576  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1577  * between seeding of isn_secret.  This is normally set to zero,
1578  * as reseeding should not be necessary.
1579  *
1580  */
1581 
1582 #define	ISN_BYTES_PER_SECOND 1048576
1583 
1584 u_char isn_secret[32];
1585 int isn_last_reseed;
1586 MD5_CTX isn_ctx;
1587 
1588 tcp_seq
1589 tcp_new_isn(struct tcpcb *tp)
1590 {
1591 	u_int32_t md5_buffer[4];
1592 	tcp_seq new_isn;
1593 
1594 	/* Seed if this is the first use, reseed if requested. */
1595 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1596 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1597 		< (u_int)ticks))) {
1598 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1599 		isn_last_reseed = ticks;
1600 	}
1601 
1602 	/* Compute the md5 hash and return the ISN. */
1603 	MD5Init(&isn_ctx);
1604 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1605 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1606 #ifdef INET6
1607 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1608 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1609 			  sizeof(struct in6_addr));
1610 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1611 			  sizeof(struct in6_addr));
1612 	} else
1613 #endif
1614 	{
1615 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1616 			  sizeof(struct in_addr));
1617 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1618 			  sizeof(struct in_addr));
1619 	}
1620 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1621 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1622 	new_isn = (tcp_seq) md5_buffer[0];
1623 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1624 	return (new_isn);
1625 }
1626 
1627 /*
1628  * When a source quench is received, close congestion window
1629  * to one segment.  We will gradually open it again as we proceed.
1630  */
1631 void
1632 tcp_quench(struct inpcb *inp, int error)
1633 {
1634 	struct tcpcb *tp = intotcpcb(inp);
1635 
1636 	if (tp != NULL) {
1637 		tp->snd_cwnd = tp->t_maxseg;
1638 		tp->snd_wacked = 0;
1639 	}
1640 }
1641 
1642 /*
1643  * When a specific ICMP unreachable message is received and the
1644  * connection state is SYN-SENT, drop the connection.  This behavior
1645  * is controlled by the icmp_may_rst sysctl.
1646  */
1647 void
1648 tcp_drop_syn_sent(struct inpcb *inp, int error)
1649 {
1650 	struct tcpcb *tp = intotcpcb(inp);
1651 
1652 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1653 		tcp_drop(tp, error);
1654 }
1655 
1656 /*
1657  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1658  * based on the new value in the route.  Also nudge TCP to send something,
1659  * since we know the packet we just sent was dropped.
1660  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1661  */
1662 void
1663 tcp_mtudisc(struct inpcb *inp, int mtu)
1664 {
1665 	struct tcpcb *tp = intotcpcb(inp);
1666 	struct rtentry *rt;
1667 	struct socket *so = inp->inp_socket;
1668 	int maxopd, mss;
1669 #ifdef INET6
1670 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1671 #else
1672 	const boolean_t isipv6 = FALSE;
1673 #endif
1674 
1675 	if (tp == NULL)
1676 		return;
1677 
1678 	/*
1679 	 * If no MTU is provided in the ICMP message, use the
1680 	 * next lower likely value, as specified in RFC 1191.
1681 	 */
1682 	if (mtu == 0) {
1683 		int oldmtu;
1684 
1685 		oldmtu = tp->t_maxopd +
1686 		    (isipv6 ?
1687 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1688 		     sizeof(struct tcpiphdr));
1689 		mtu = ip_next_mtu(oldmtu, 0);
1690 	}
1691 
1692 	if (isipv6)
1693 		rt = tcp_rtlookup6(&inp->inp_inc);
1694 	else
1695 		rt = tcp_rtlookup(&inp->inp_inc);
1696 	if (rt != NULL) {
1697 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1698 			mtu = rt->rt_rmx.rmx_mtu;
1699 
1700 		maxopd = mtu -
1701 		    (isipv6 ?
1702 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1703 		     sizeof(struct tcpiphdr));
1704 
1705 		/*
1706 		 * XXX - The following conditional probably violates the TCP
1707 		 * spec.  The problem is that, since we don't know the
1708 		 * other end's MSS, we are supposed to use a conservative
1709 		 * default.  But, if we do that, then MTU discovery will
1710 		 * never actually take place, because the conservative
1711 		 * default is much less than the MTUs typically seen
1712 		 * on the Internet today.  For the moment, we'll sweep
1713 		 * this under the carpet.
1714 		 *
1715 		 * The conservative default might not actually be a problem
1716 		 * if the only case this occurs is when sending an initial
1717 		 * SYN with options and data to a host we've never talked
1718 		 * to before.  Then, they will reply with an MSS value which
1719 		 * will get recorded and the new parameters should get
1720 		 * recomputed.  For Further Study.
1721 		 */
1722 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1723 			maxopd = rt->rt_rmx.rmx_mssopt;
1724 	} else
1725 		maxopd = mtu -
1726 		    (isipv6 ?
1727 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1728 		     sizeof(struct tcpiphdr));
1729 
1730 	if (tp->t_maxopd <= maxopd)
1731 		return;
1732 	tp->t_maxopd = maxopd;
1733 
1734 	mss = maxopd;
1735 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1736 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1737 		mss -= TCPOLEN_TSTAMP_APPA;
1738 
1739 	/* round down to multiple of MCLBYTES */
1740 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1741 	if (mss > MCLBYTES)
1742 		mss &= ~(MCLBYTES - 1);
1743 #else
1744 	if (mss > MCLBYTES)
1745 		mss = (mss / MCLBYTES) * MCLBYTES;
1746 #endif
1747 
1748 	if (so->so_snd.ssb_hiwat < mss)
1749 		mss = so->so_snd.ssb_hiwat;
1750 
1751 	tp->t_maxseg = mss;
1752 	tp->t_rtttime = 0;
1753 	tp->snd_nxt = tp->snd_una;
1754 	tcp_output(tp);
1755 	tcpstat.tcps_mturesent++;
1756 }
1757 
1758 /*
1759  * Look-up the routing entry to the peer of this inpcb.  If no route
1760  * is found and it cannot be allocated the return NULL.  This routine
1761  * is called by TCP routines that access the rmx structure and by tcp_mss
1762  * to get the interface MTU.
1763  */
1764 struct rtentry *
1765 tcp_rtlookup(struct in_conninfo *inc)
1766 {
1767 	struct route *ro = &inc->inc_route;
1768 
1769 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1770 		/* No route yet, so try to acquire one */
1771 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1772 			/*
1773 			 * unused portions of the structure MUST be zero'd
1774 			 * out because rtalloc() treats it as opaque data
1775 			 */
1776 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1777 			ro->ro_dst.sa_family = AF_INET;
1778 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1779 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1780 			    inc->inc_faddr;
1781 			rtalloc(ro);
1782 		}
1783 	}
1784 	return (ro->ro_rt);
1785 }
1786 
1787 #ifdef INET6
1788 struct rtentry *
1789 tcp_rtlookup6(struct in_conninfo *inc)
1790 {
1791 	struct route_in6 *ro6 = &inc->inc6_route;
1792 
1793 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1794 		/* No route yet, so try to acquire one */
1795 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1796 			/*
1797 			 * unused portions of the structure MUST be zero'd
1798 			 * out because rtalloc() treats it as opaque data
1799 			 */
1800 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1801 			ro6->ro_dst.sin6_family = AF_INET6;
1802 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1803 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1804 			rtalloc((struct route *)ro6);
1805 		}
1806 	}
1807 	return (ro6->ro_rt);
1808 }
1809 #endif
1810 
1811 #ifdef IPSEC
1812 /* compute ESP/AH header size for TCP, including outer IP header. */
1813 size_t
1814 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1815 {
1816 	struct inpcb *inp;
1817 	struct mbuf *m;
1818 	size_t hdrsiz;
1819 	struct ip *ip;
1820 	struct tcphdr *th;
1821 
1822 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1823 		return (0);
1824 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1825 	if (!m)
1826 		return (0);
1827 
1828 #ifdef INET6
1829 	if (inp->inp_vflag & INP_IPV6) {
1830 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1831 
1832 		th = (struct tcphdr *)(ip6 + 1);
1833 		m->m_pkthdr.len = m->m_len =
1834 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1835 		tcp_fillheaders(tp, ip6, th, FALSE);
1836 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1837 	} else
1838 #endif
1839 	{
1840 		ip = mtod(m, struct ip *);
1841 		th = (struct tcphdr *)(ip + 1);
1842 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1843 		tcp_fillheaders(tp, ip, th, FALSE);
1844 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1845 	}
1846 
1847 	m_free(m);
1848 	return (hdrsiz);
1849 }
1850 #endif
1851 
1852 /*
1853  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1854  *
1855  * This code attempts to calculate the bandwidth-delay product as a
1856  * means of determining the optimal window size to maximize bandwidth,
1857  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1858  * routers.  This code also does a fairly good job keeping RTTs in check
1859  * across slow links like modems.  We implement an algorithm which is very
1860  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1861  * transmitter side of a TCP connection and so only effects the transmit
1862  * side of the connection.
1863  *
1864  * BACKGROUND:  TCP makes no provision for the management of buffer space
1865  * at the end points or at the intermediate routers and switches.  A TCP
1866  * stream, whether using NewReno or not, will eventually buffer as
1867  * many packets as it is able and the only reason this typically works is
1868  * due to the fairly small default buffers made available for a connection
1869  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1870  * scaling it is now fairly easy for even a single TCP connection to blow-out
1871  * all available buffer space not only on the local interface, but on
1872  * intermediate routers and switches as well.  NewReno makes a misguided
1873  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1874  * then backing off, then steadily increasing the window again until another
1875  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1876  * is only made worse as network loads increase and the idea of intentionally
1877  * blowing out network buffers is, frankly, a terrible way to manage network
1878  * resources.
1879  *
1880  * It is far better to limit the transmit window prior to the failure
1881  * condition being achieved.  There are two general ways to do this:  First
1882  * you can 'scan' through different transmit window sizes and locate the
1883  * point where the RTT stops increasing, indicating that you have filled the
1884  * pipe, then scan backwards until you note that RTT stops decreasing, then
1885  * repeat ad-infinitum.  This method works in principle but has severe
1886  * implementation issues due to RTT variances, timer granularity, and
1887  * instability in the algorithm which can lead to many false positives and
1888  * create oscillations as well as interact badly with other TCP streams
1889  * implementing the same algorithm.
1890  *
1891  * The second method is to limit the window to the bandwidth delay product
1892  * of the link.  This is the method we implement.  RTT variances and our
1893  * own manipulation of the congestion window, bwnd, can potentially
1894  * destabilize the algorithm.  For this reason we have to stabilize the
1895  * elements used to calculate the window.  We do this by using the minimum
1896  * observed RTT, the long term average of the observed bandwidth, and
1897  * by adding two segments worth of slop.  It isn't perfect but it is able
1898  * to react to changing conditions and gives us a very stable basis on
1899  * which to extend the algorithm.
1900  */
1901 void
1902 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1903 {
1904 	u_long bw;
1905 	u_long bwnd;
1906 	int save_ticks;
1907 	int delta_ticks;
1908 
1909 	/*
1910 	 * If inflight_enable is disabled in the middle of a tcp connection,
1911 	 * make sure snd_bwnd is effectively disabled.
1912 	 */
1913 	if (!tcp_inflight_enable) {
1914 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1915 		tp->snd_bandwidth = 0;
1916 		return;
1917 	}
1918 
1919 	/*
1920 	 * Validate the delta time.  If a connection is new or has been idle
1921 	 * a long time we have to reset the bandwidth calculator.
1922 	 */
1923 	save_ticks = ticks;
1924 	cpu_ccfence();
1925 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1926 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1927 		tp->t_bw_rtttime = ticks;
1928 		tp->t_bw_rtseq = ack_seq;
1929 		if (tp->snd_bandwidth == 0)
1930 			tp->snd_bandwidth = tcp_inflight_min;
1931 		return;
1932 	}
1933 
1934 	/*
1935 	 * A delta of at least 1 tick is required.  Waiting 2 ticks will
1936 	 * result in better (bw) accuracy.  More than that and the ramp-up
1937 	 * will be too slow.
1938 	 */
1939 	if (delta_ticks == 0 || delta_ticks == 1)
1940 		return;
1941 
1942 	/*
1943 	 * Sanity check, plus ignore pure window update acks.
1944 	 */
1945 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1946 		return;
1947 
1948 	/*
1949 	 * Figure out the bandwidth.  Due to the tick granularity this
1950 	 * is a very rough number and it MUST be averaged over a fairly
1951 	 * long period of time.  XXX we need to take into account a link
1952 	 * that is not using all available bandwidth, but for now our
1953 	 * slop will ramp us up if this case occurs and the bandwidth later
1954 	 * increases.
1955 	 */
1956 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1957 	tp->t_bw_rtttime = save_ticks;
1958 	tp->t_bw_rtseq = ack_seq;
1959 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1960 
1961 	tp->snd_bandwidth = bw;
1962 
1963 	/*
1964 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1965 	 * segments.  The additional slop puts us squarely in the sweet
1966 	 * spot and also handles the bandwidth run-up case.  Without the
1967 	 * slop we could be locking ourselves into a lower bandwidth.
1968 	 *
1969 	 * At very high speeds the bw calculation can become overly sensitive
1970 	 * and error prone when delta_ticks is low (e.g. usually 1).  To deal
1971 	 * with the problem the stab must be scaled to the bw.  A stab of 50
1972 	 * (the default) increases the bw for the purposes of the bwnd
1973 	 * calculation by 5%.
1974 	 *
1975 	 * Situations Handled:
1976 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1977 	 *	    high speed LANs, allowing larger TCP buffers to be
1978 	 *	    specified, and also does a good job preventing
1979 	 *	    over-queueing of packets over choke points like modems
1980 	 *	    (at least for the transmit side).
1981 	 *
1982 	 *	(2) Is able to handle changing network loads (bandwidth
1983 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1984 	 *	    increases).
1985 	 *
1986 	 *	(3) Theoretically should stabilize in the face of multiple
1987 	 *	    connections implementing the same algorithm (this may need
1988 	 *	    a little work).
1989 	 *
1990 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1991 	 *	    be adjusted with a sysctl but typically only needs to be on
1992 	 *	    very slow connections.  A value no smaller then 5 should
1993 	 *	    be used, but only reduce this default if you have no other
1994 	 *	    choice.
1995 	 */
1996 
1997 #define	USERTT	(((tp->t_srtt + tp->t_rttbest) / 2) + tcp_inflight_adjrtt)
1998 	bw += bw * tcp_inflight_stab / 1000;
1999 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2000 	       (int)tp->t_maxseg * 2;
2001 #undef USERTT
2002 
2003 	if (tcp_inflight_debug > 0) {
2004 		static int ltime;
2005 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2006 			ltime = ticks;
2007 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2008 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
2009 		}
2010 	}
2011 	if ((long)bwnd < tcp_inflight_min)
2012 		bwnd = tcp_inflight_min;
2013 	if (bwnd > tcp_inflight_max)
2014 		bwnd = tcp_inflight_max;
2015 	if ((long)bwnd < tp->t_maxseg * 2)
2016 		bwnd = tp->t_maxseg * 2;
2017 	tp->snd_bwnd = bwnd;
2018 }
2019 
2020 static void
2021 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
2022 {
2023 	struct rtentry *rt;
2024 	struct inpcb *inp = tp->t_inpcb;
2025 #ifdef INET6
2026 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2027 #else
2028 	const boolean_t isipv6 = FALSE;
2029 #endif
2030 
2031 	/* XXX */
2032 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2033 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2034 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2035 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2036 
2037 	if (isipv6)
2038 		rt = tcp_rtlookup6(&inp->inp_inc);
2039 	else
2040 		rt = tcp_rtlookup(&inp->inp_inc);
2041 	if (rt == NULL ||
2042 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2043 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2044 		*maxsegs = tcp_iw_maxsegs;
2045 		*capsegs = tcp_iw_capsegs;
2046 		return;
2047 	}
2048 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2049 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2050 }
2051 
2052 u_long
2053 tcp_initial_window(struct tcpcb *tp)
2054 {
2055 	if (tcp_do_rfc3390) {
2056 		/*
2057 		 * RFC3390:
2058 		 * "If the SYN or SYN/ACK is lost, the initial window
2059 		 *  used by a sender after a correctly transmitted SYN
2060 		 *  MUST be one segment consisting of MSS bytes."
2061 		 *
2062 		 * However, we do something a little bit more aggressive
2063 		 * then RFC3390 here:
2064 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2065 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2066 		 *   because when RFC3390 is published, the initial RTO is
2067 		 *   still 3 seconds (the threshold we test here), while
2068 		 *   after RFC6298, the initial RTO is 1 second.  This
2069 		 *   behaviour probably still falls within the spirit of
2070 		 *   RFC3390.
2071 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2072 		 *   Mainly to avoid sender and receiver deadlock until
2073 		 *   delayed ACK timer expires.  And even RFC2581 does not
2074 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2075 		 *   timeout.
2076 		 *
2077 		 * See also:
2078 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2079 		 */
2080 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2081 			return (2 * tp->t_maxseg);
2082 		} else {
2083 			u_long maxsegs, capsegs;
2084 
2085 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2086 			return min(maxsegs * tp->t_maxseg,
2087 				   max(2 * tp->t_maxseg, capsegs * 1460));
2088 		}
2089 	} else {
2090 		/*
2091 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2092 		 *
2093 		 * Mainly to avoid sender and receiver deadlock
2094 		 * until delayed ACK timer expires.
2095 		 */
2096 		return (2 * tp->t_maxseg);
2097 	}
2098 }
2099 
2100 #ifdef TCP_SIGNATURE
2101 /*
2102  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2103  *
2104  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2105  * When called from tcp_input(), we can be sure that th_sum has been
2106  * zeroed out and verified already.
2107  *
2108  * Return 0 if successful, otherwise return -1.
2109  *
2110  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2111  * search with the destination IP address, and a 'magic SPI' to be
2112  * determined by the application. This is hardcoded elsewhere to 1179
2113  * right now. Another branch of this code exists which uses the SPD to
2114  * specify per-application flows but it is unstable.
2115  */
2116 int
2117 tcpsignature_compute(
2118 	struct mbuf *m,		/* mbuf chain */
2119 	int len,		/* length of TCP data */
2120 	int optlen,		/* length of TCP options */
2121 	u_char *buf,		/* storage for MD5 digest */
2122 	u_int direction)	/* direction of flow */
2123 {
2124 	struct ippseudo ippseudo;
2125 	MD5_CTX ctx;
2126 	int doff;
2127 	struct ip *ip;
2128 	struct ipovly *ipovly;
2129 	struct secasvar *sav;
2130 	struct tcphdr *th;
2131 #ifdef INET6
2132 	struct ip6_hdr *ip6;
2133 	struct in6_addr in6;
2134 	uint32_t plen;
2135 	uint16_t nhdr;
2136 #endif /* INET6 */
2137 	u_short savecsum;
2138 
2139 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2140 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2141 	/*
2142 	 * Extract the destination from the IP header in the mbuf.
2143 	 */
2144 	ip = mtod(m, struct ip *);
2145 #ifdef INET6
2146 	ip6 = NULL;     /* Make the compiler happy. */
2147 #endif /* INET6 */
2148 	/*
2149 	 * Look up an SADB entry which matches the address found in
2150 	 * the segment.
2151 	 */
2152 	switch (IP_VHL_V(ip->ip_vhl)) {
2153 	case IPVERSION:
2154 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2155 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2156 		break;
2157 #ifdef INET6
2158 	case (IPV6_VERSION >> 4):
2159 		ip6 = mtod(m, struct ip6_hdr *);
2160 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2161 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2162 		break;
2163 #endif /* INET6 */
2164 	default:
2165 		return (EINVAL);
2166 		/* NOTREACHED */
2167 		break;
2168 	}
2169 	if (sav == NULL) {
2170 		kprintf("%s: SADB lookup failed\n", __func__);
2171 		return (EINVAL);
2172 	}
2173 	MD5Init(&ctx);
2174 
2175 	/*
2176 	 * Step 1: Update MD5 hash with IP pseudo-header.
2177 	 *
2178 	 * XXX The ippseudo header MUST be digested in network byte order,
2179 	 * or else we'll fail the regression test. Assume all fields we've
2180 	 * been doing arithmetic on have been in host byte order.
2181 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2182 	 * tcp_output(), the underlying ip_len member has not yet been set.
2183 	 */
2184 	switch (IP_VHL_V(ip->ip_vhl)) {
2185 	case IPVERSION:
2186 		ipovly = (struct ipovly *)ip;
2187 		ippseudo.ippseudo_src = ipovly->ih_src;
2188 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2189 		ippseudo.ippseudo_pad = 0;
2190 		ippseudo.ippseudo_p = IPPROTO_TCP;
2191 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2192 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2193 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2194 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2195 		break;
2196 #ifdef INET6
2197 	/*
2198 	 * RFC 2385, 2.0  Proposal
2199 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2200 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2201 	 * extended next header value (to form 32 bits), and 32-bit segment
2202 	 * length.
2203 	 * Note: Upper-Layer Packet Length comes before Next Header.
2204 	 */
2205 	case (IPV6_VERSION >> 4):
2206 		in6 = ip6->ip6_src;
2207 		in6_clearscope(&in6);
2208 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2209 		in6 = ip6->ip6_dst;
2210 		in6_clearscope(&in6);
2211 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2212 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2213 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2214 		nhdr = 0;
2215 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2216 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2217 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2218 		nhdr = IPPROTO_TCP;
2219 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2220 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2221 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2222 		break;
2223 #endif /* INET6 */
2224 	default:
2225 		return (EINVAL);
2226 		/* NOTREACHED */
2227 		break;
2228 	}
2229 	/*
2230 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2231 	 * The TCP checksum must be set to zero.
2232 	 */
2233 	savecsum = th->th_sum;
2234 	th->th_sum = 0;
2235 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2236 	th->th_sum = savecsum;
2237 	/*
2238 	 * Step 3: Update MD5 hash with TCP segment data.
2239 	 *         Use m_apply() to avoid an early m_pullup().
2240 	 */
2241 	if (len > 0)
2242 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2243 	/*
2244 	 * Step 4: Update MD5 hash with shared secret.
2245 	 */
2246 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2247 	MD5Final(buf, &ctx);
2248 	key_sa_recordxfer(sav, m);
2249 	key_freesav(sav);
2250 	return (0);
2251 }
2252 
2253 int
2254 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2255 {
2256 
2257 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2258 	return (0);
2259 }
2260 #endif /* TCP_SIGNATURE */
2261