xref: /dflybsd-src/sys/netinet/tcp_subr.c (revision 871020e7804af32d9a544b48cd250fa49fcbb269)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
53  *	The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *	This product includes software developed by the University of
66  *	California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
84  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
85  * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.47 2005/04/22 17:41:15 joerg Exp $
86  */
87 
88 #include "opt_compat.h"
89 #include "opt_inet6.h"
90 #include "opt_ipsec.h"
91 #include "opt_tcpdebug.h"
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/callout.h>
96 #include <sys/kernel.h>
97 #include <sys/sysctl.h>
98 #include <sys/malloc.h>
99 #include <sys/mpipe.h>
100 #include <sys/mbuf.h>
101 #ifdef INET6
102 #include <sys/domain.h>
103 #endif
104 #include <sys/proc.h>
105 #include <sys/socket.h>
106 #include <sys/socketvar.h>
107 #include <sys/protosw.h>
108 #include <sys/random.h>
109 #include <sys/in_cksum.h>
110 
111 #include <vm/vm_zone.h>
112 
113 #include <net/route.h>
114 #include <net/if.h>
115 #include <net/netisr.h>
116 
117 #define	_IP_VHL
118 #include <netinet/in.h>
119 #include <netinet/in_systm.h>
120 #include <netinet/ip.h>
121 #include <netinet/ip6.h>
122 #include <netinet/in_pcb.h>
123 #include <netinet6/in6_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet6/ip6_var.h>
127 #include <netinet/ip_icmp.h>
128 #ifdef INET6
129 #include <netinet/icmp6.h>
130 #endif
131 #include <netinet/tcp.h>
132 #include <netinet/tcp_fsm.h>
133 #include <netinet/tcp_seq.h>
134 #include <netinet/tcp_timer.h>
135 #include <netinet/tcp_var.h>
136 #include <netinet6/tcp6_var.h>
137 #include <netinet/tcpip.h>
138 #ifdef TCPDEBUG
139 #include <netinet/tcp_debug.h>
140 #endif
141 #include <netinet6/ip6protosw.h>
142 
143 #ifdef IPSEC
144 #include <netinet6/ipsec.h>
145 #ifdef INET6
146 #include <netinet6/ipsec6.h>
147 #endif
148 #endif
149 
150 #ifdef FAST_IPSEC
151 #include <netproto/ipsec/ipsec.h>
152 #ifdef INET6
153 #include <netproto/ipsec/ipsec6.h>
154 #endif
155 #define	IPSEC
156 #endif
157 
158 #include <sys/md5.h>
159 
160 #include <sys/msgport2.h>
161 
162 #include <machine/smp.h>
163 
164 struct inpcbinfo tcbinfo[MAXCPU];
165 struct tcpcbackqhead tcpcbackq[MAXCPU];
166 
167 int tcp_mssdflt = TCP_MSS;
168 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
169     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
170 
171 #ifdef INET6
172 int tcp_v6mssdflt = TCP6_MSS;
173 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
174     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
175 #endif
176 
177 #if 0
178 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
179 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
180     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
181 #endif
182 
183 int tcp_do_rfc1323 = 1;
184 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
185     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
186 
187 int tcp_do_rfc1644 = 0;
188 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
189     &tcp_do_rfc1644, 0, "Enable rfc1644 (TTCP) extensions");
190 
191 static int tcp_tcbhashsize = 0;
192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
193      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
194 
195 static int do_tcpdrain = 1;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
197      "Enable tcp_drain routine for extra help when low on mbufs");
198 
199 /* XXX JH */
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
201     &tcbinfo[0].ipi_count, 0, "Number of active PCBs");
202 
203 static int icmp_may_rst = 1;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
205     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
206 
207 static int tcp_isn_reseed_interval = 0;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
209     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
210 
211 /*
212  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
213  * 1024 exists only for debugging.  A good production default would be
214  * something like 6100.
215  */
216 static int tcp_inflight_enable = 0;
217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
218     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
219 
220 static int tcp_inflight_debug = 0;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
222     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
223 
224 static int tcp_inflight_min = 6144;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
226     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
227 
228 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
229 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
230     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
231 
232 static int tcp_inflight_stab = 20;
233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
234     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 2 packets)");
235 
236 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
237 static struct malloc_pipe tcptemp_mpipe;
238 
239 static void tcp_willblock(void);
240 static void tcp_cleartaocache (void);
241 static void tcp_notify (struct inpcb *, int);
242 
243 struct tcp_stats tcpstats_percpu[MAXCPU];
244 #ifdef SMP
245 static int
246 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
247 {
248 	int cpu, error = 0;
249 
250 	for (cpu = 0; cpu < ncpus; ++cpu) {
251 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
252 					sizeof(struct tcp_stats))))
253 			break;
254 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
255 				       sizeof(struct tcp_stats))))
256 			break;
257 	}
258 
259 	return (error);
260 }
261 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
262     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
263 #else
264 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
265     &tcpstat, tcp_stats, "TCP statistics");
266 #endif
267 
268 /*
269  * Target size of TCP PCB hash tables. Must be a power of two.
270  *
271  * Note that this can be overridden by the kernel environment
272  * variable net.inet.tcp.tcbhashsize
273  */
274 #ifndef TCBHASHSIZE
275 #define	TCBHASHSIZE	512
276 #endif
277 
278 /*
279  * This is the actual shape of what we allocate using the zone
280  * allocator.  Doing it this way allows us to protect both structures
281  * using the same generation count, and also eliminates the overhead
282  * of allocating tcpcbs separately.  By hiding the structure here,
283  * we avoid changing most of the rest of the code (although it needs
284  * to be changed, eventually, for greater efficiency).
285  */
286 #define	ALIGNMENT	32
287 #define	ALIGNM1		(ALIGNMENT - 1)
288 struct	inp_tp {
289 	union {
290 		struct	inpcb inp;
291 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
292 	} inp_tp_u;
293 	struct	tcpcb tcb;
294 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
295 	struct	callout inp_tp_delack;
296 };
297 #undef ALIGNMENT
298 #undef ALIGNM1
299 
300 /*
301  * Tcp initialization
302  */
303 void
304 tcp_init()
305 {
306 	struct inpcbporthead *porthashbase;
307 	u_long porthashmask;
308 	struct vm_zone *ipi_zone;
309 	int hashsize = TCBHASHSIZE;
310 	int cpu;
311 
312 	/*
313 	 * note: tcptemp is used for keepalives, and it is ok for an
314 	 * allocation to fail so do not specify MPF_INT.
315 	 */
316 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
317 		    25, -1, 0, NULL);
318 
319 	tcp_ccgen = 1;
320 	tcp_cleartaocache();
321 
322 	tcp_delacktime = TCPTV_DELACK;
323 	tcp_keepinit = TCPTV_KEEP_INIT;
324 	tcp_keepidle = TCPTV_KEEP_IDLE;
325 	tcp_keepintvl = TCPTV_KEEPINTVL;
326 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
327 	tcp_msl = TCPTV_MSL;
328 	tcp_rexmit_min = TCPTV_MIN;
329 	tcp_rexmit_slop = TCPTV_CPU_VAR;
330 
331 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
332 	if (!powerof2(hashsize)) {
333 		printf("WARNING: TCB hash size not a power of 2\n");
334 		hashsize = 512; /* safe default */
335 	}
336 	tcp_tcbhashsize = hashsize;
337 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
338 	ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
339 			 ZONE_INTERRUPT, 0);
340 
341 	for (cpu = 0; cpu < ncpus2; cpu++) {
342 		in_pcbinfo_init(&tcbinfo[cpu]);
343 		tcbinfo[cpu].cpu = cpu;
344 		tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
345 		    &tcbinfo[cpu].hashmask);
346 		tcbinfo[cpu].porthashbase = porthashbase;
347 		tcbinfo[cpu].porthashmask = porthashmask;
348 		tcbinfo[cpu].wildcardhashbase = hashinit(hashsize, M_PCB,
349 		    &tcbinfo[cpu].wildcardhashmask);
350 		tcbinfo[cpu].ipi_zone = ipi_zone;
351 		TAILQ_INIT(&tcpcbackq[cpu]);
352 	}
353 
354 	tcp_reass_maxseg = nmbclusters / 16;
355 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
356 
357 #ifdef INET6
358 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
359 #else
360 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
361 #endif
362 	if (max_protohdr < TCP_MINPROTOHDR)
363 		max_protohdr = TCP_MINPROTOHDR;
364 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
365 		panic("tcp_init");
366 #undef TCP_MINPROTOHDR
367 
368 	/*
369 	 * Initialize TCP statistics counters for each CPU.
370 	 */
371 #ifdef SMP
372 	for (cpu = 0; cpu < ncpus; ++cpu) {
373 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
374 	}
375 #else
376 	bzero(&tcpstat, sizeof(struct tcp_stats));
377 #endif
378 
379 	syncache_init();
380 	tcp_sack_init();
381 	tcp_thread_init();
382 }
383 
384 void
385 tcpmsg_service_loop(void *dummy)
386 {
387 	struct netmsg *msg;
388 
389 	while ((msg = lwkt_waitport(&curthread->td_msgport, NULL))) {
390 		do {
391 			msg->nm_lmsg.ms_cmd.cm_func(&msg->nm_lmsg);
392 		} while ((msg = lwkt_getport(&curthread->td_msgport)) != NULL);
393 		tcp_willblock();
394 	}
395 }
396 
397 static void
398 tcp_willblock(void)
399 {
400 	struct tcpcb *tp;
401 	int cpu = mycpu->gd_cpuid;
402 
403 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
404 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
405 		tp->t_flags &= ~TF_ONOUTPUTQ;
406 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
407 		tcp_output(tp);
408 	}
409 }
410 
411 
412 /*
413  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
414  * tcp_template used to store this data in mbufs, but we now recopy it out
415  * of the tcpcb each time to conserve mbufs.
416  */
417 void
418 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
419 {
420 	struct inpcb *inp = tp->t_inpcb;
421 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
422 
423 #ifdef INET6
424 	if (inp->inp_vflag & INP_IPV6) {
425 		struct ip6_hdr *ip6;
426 
427 		ip6 = (struct ip6_hdr *)ip_ptr;
428 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
429 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
430 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
431 			(IPV6_VERSION & IPV6_VERSION_MASK);
432 		ip6->ip6_nxt = IPPROTO_TCP;
433 		ip6->ip6_plen = sizeof(struct tcphdr);
434 		ip6->ip6_src = inp->in6p_laddr;
435 		ip6->ip6_dst = inp->in6p_faddr;
436 		tcp_hdr->th_sum = 0;
437 	} else
438 #endif
439 	{
440 		struct ip *ip = (struct ip *) ip_ptr;
441 
442 		ip->ip_vhl = IP_VHL_BORING;
443 		ip->ip_tos = 0;
444 		ip->ip_len = 0;
445 		ip->ip_id = 0;
446 		ip->ip_off = 0;
447 		ip->ip_ttl = 0;
448 		ip->ip_sum = 0;
449 		ip->ip_p = IPPROTO_TCP;
450 		ip->ip_src = inp->inp_laddr;
451 		ip->ip_dst = inp->inp_faddr;
452 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
453 				    ip->ip_dst.s_addr,
454 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
455 	}
456 
457 	tcp_hdr->th_sport = inp->inp_lport;
458 	tcp_hdr->th_dport = inp->inp_fport;
459 	tcp_hdr->th_seq = 0;
460 	tcp_hdr->th_ack = 0;
461 	tcp_hdr->th_x2 = 0;
462 	tcp_hdr->th_off = 5;
463 	tcp_hdr->th_flags = 0;
464 	tcp_hdr->th_win = 0;
465 	tcp_hdr->th_urp = 0;
466 }
467 
468 /*
469  * Create template to be used to send tcp packets on a connection.
470  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
471  * use for this function is in keepalives, which use tcp_respond.
472  */
473 struct tcptemp *
474 tcp_maketemplate(struct tcpcb *tp)
475 {
476 	struct tcptemp *tmp;
477 
478 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
479 		return (NULL);
480 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
481 	return (tmp);
482 }
483 
484 void
485 tcp_freetemplate(struct tcptemp *tmp)
486 {
487 	mpipe_free(&tcptemp_mpipe, tmp);
488 }
489 
490 /*
491  * Send a single message to the TCP at address specified by
492  * the given TCP/IP header.  If m == NULL, then we make a copy
493  * of the tcpiphdr at ti and send directly to the addressed host.
494  * This is used to force keep alive messages out using the TCP
495  * template for a connection.  If flags are given then we send
496  * a message back to the TCP which originated the * segment ti,
497  * and discard the mbuf containing it and any other attached mbufs.
498  *
499  * In any case the ack and sequence number of the transmitted
500  * segment are as specified by the parameters.
501  *
502  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
503  */
504 void
505 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
506 	    tcp_seq ack, tcp_seq seq, int flags)
507 {
508 	int tlen;
509 	int win = 0;
510 	struct route *ro = NULL;
511 	struct route sro;
512 	struct ip *ip = ipgen;
513 	struct tcphdr *nth;
514 	int ipflags = 0;
515 	struct route_in6 *ro6 = NULL;
516 	struct route_in6 sro6;
517 	struct ip6_hdr *ip6 = ipgen;
518 #ifdef INET6
519 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
520 #else
521 	const boolean_t isipv6 = FALSE;
522 #endif
523 
524 	if (tp != NULL) {
525 		if (!(flags & TH_RST)) {
526 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
527 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
528 				win = (long)TCP_MAXWIN << tp->rcv_scale;
529 		}
530 		if (isipv6)
531 			ro6 = &tp->t_inpcb->in6p_route;
532 		else
533 			ro = &tp->t_inpcb->inp_route;
534 	} else {
535 		if (isipv6) {
536 			ro6 = &sro6;
537 			bzero(ro6, sizeof *ro6);
538 		} else {
539 			ro = &sro;
540 			bzero(ro, sizeof *ro);
541 		}
542 	}
543 	if (m == NULL) {
544 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
545 		if (m == NULL)
546 			return;
547 		tlen = 0;
548 		m->m_data += max_linkhdr;
549 		if (isipv6) {
550 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
551 			ip6 = mtod(m, struct ip6_hdr *);
552 			nth = (struct tcphdr *)(ip6 + 1);
553 		} else {
554 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
555 			ip = mtod(m, struct ip *);
556 			nth = (struct tcphdr *)(ip + 1);
557 		}
558 		bcopy(th, nth, sizeof(struct tcphdr));
559 		flags = TH_ACK;
560 	} else {
561 		m_freem(m->m_next);
562 		m->m_next = NULL;
563 		m->m_data = (caddr_t)ipgen;
564 		/* m_len is set later */
565 		tlen = 0;
566 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
567 		if (isipv6) {
568 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
569 			nth = (struct tcphdr *)(ip6 + 1);
570 		} else {
571 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
572 			nth = (struct tcphdr *)(ip + 1);
573 		}
574 		if (th != nth) {
575 			/*
576 			 * this is usually a case when an extension header
577 			 * exists between the IPv6 header and the
578 			 * TCP header.
579 			 */
580 			nth->th_sport = th->th_sport;
581 			nth->th_dport = th->th_dport;
582 		}
583 		xchg(nth->th_dport, nth->th_sport, n_short);
584 #undef xchg
585 	}
586 	if (isipv6) {
587 		ip6->ip6_flow = 0;
588 		ip6->ip6_vfc = IPV6_VERSION;
589 		ip6->ip6_nxt = IPPROTO_TCP;
590 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
591 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
592 	} else {
593 		tlen += sizeof(struct tcpiphdr);
594 		ip->ip_len = tlen;
595 		ip->ip_ttl = ip_defttl;
596 	}
597 	m->m_len = tlen;
598 	m->m_pkthdr.len = tlen;
599 	m->m_pkthdr.rcvif = (struct ifnet *) NULL;
600 	nth->th_seq = htonl(seq);
601 	nth->th_ack = htonl(ack);
602 	nth->th_x2 = 0;
603 	nth->th_off = sizeof(struct tcphdr) >> 2;
604 	nth->th_flags = flags;
605 	if (tp != NULL)
606 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
607 	else
608 		nth->th_win = htons((u_short)win);
609 	nth->th_urp = 0;
610 	if (isipv6) {
611 		nth->th_sum = 0;
612 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
613 					sizeof(struct ip6_hdr),
614 					tlen - sizeof(struct ip6_hdr));
615 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
616 					       (ro6 && ro6->ro_rt) ?
617 						ro6->ro_rt->rt_ifp : NULL);
618 	} else {
619 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
620 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
621 		m->m_pkthdr.csum_flags = CSUM_TCP;
622 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
623 	}
624 #ifdef TCPDEBUG
625 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
626 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
627 #endif
628 	if (isipv6) {
629 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
630 			   tp ? tp->t_inpcb : NULL);
631 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
632 			RTFREE(ro6->ro_rt);
633 			ro6->ro_rt = NULL;
634 		}
635 	} else {
636 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
637 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
638 			RTFREE(ro->ro_rt);
639 			ro->ro_rt = NULL;
640 		}
641 	}
642 }
643 
644 /*
645  * Create a new TCP control block, making an
646  * empty reassembly queue and hooking it to the argument
647  * protocol control block.  The `inp' parameter must have
648  * come from the zone allocator set up in tcp_init().
649  */
650 struct tcpcb *
651 tcp_newtcpcb(struct inpcb *inp)
652 {
653 	struct inp_tp *it;
654 	struct tcpcb *tp;
655 #ifdef INET6
656 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
657 #else
658 	const boolean_t isipv6 = FALSE;
659 #endif
660 
661 	it = (struct inp_tp *)inp;
662 	tp = &it->tcb;
663 	bzero(tp, sizeof(struct tcpcb));
664 	LIST_INIT(&tp->t_segq);
665 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
666 
667 	/* Set up our timeouts. */
668 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
669 	callout_init(tp->tt_persist = &it->inp_tp_persist);
670 	callout_init(tp->tt_keep = &it->inp_tp_keep);
671 	callout_init(tp->tt_2msl = &it->inp_tp_2msl);
672 	callout_init(tp->tt_delack = &it->inp_tp_delack);
673 
674 	if (tcp_do_rfc1323)
675 		tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
676 	if (tcp_do_rfc1644)
677 		tp->t_flags |= TF_REQ_CC;
678 	tp->t_inpcb = inp;	/* XXX */
679 	tp->t_state = TCPS_CLOSED;
680 	/*
681 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
682 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
683 	 * reasonable initial retransmit time.
684 	 */
685 	tp->t_srtt = TCPTV_SRTTBASE;
686 	tp->t_rttvar =
687 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
688 	tp->t_rttmin = tcp_rexmit_min;
689 	tp->t_rxtcur = TCPTV_RTOBASE;
690 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
691 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
692 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
693 	tp->t_rcvtime = ticks;
694 	/*
695 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
696 	 * because the socket may be bound to an IPv6 wildcard address,
697 	 * which may match an IPv4-mapped IPv6 address.
698 	 */
699 	inp->inp_ip_ttl = ip_defttl;
700 	inp->inp_ppcb = tp;
701 	tcp_sack_tcpcb_init(tp);
702 	return (tp);		/* XXX */
703 }
704 
705 /*
706  * Drop a TCP connection, reporting the specified error.
707  * If connection is synchronized, then send a RST to peer.
708  */
709 struct tcpcb *
710 tcp_drop(struct tcpcb *tp, int errno)
711 {
712 	struct socket *so = tp->t_inpcb->inp_socket;
713 
714 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
715 		tp->t_state = TCPS_CLOSED;
716 		tcp_output(tp);
717 		tcpstat.tcps_drops++;
718 	} else
719 		tcpstat.tcps_conndrops++;
720 	if (errno == ETIMEDOUT && tp->t_softerror)
721 		errno = tp->t_softerror;
722 	so->so_error = errno;
723 	return (tcp_close(tp));
724 }
725 
726 #ifdef SMP
727 
728 struct netmsg_remwildcard {
729 	struct lwkt_msg		nm_lmsg;
730 	struct inpcb		*nm_inp;
731 	struct inpcbinfo	*nm_pcbinfo;
732 #if defined(INET6)
733 	int			nm_isinet6;
734 #else
735 	int			nm_unused01;
736 #endif
737 };
738 
739 /*
740  * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
741  * inp can be detached.  We do this by cycling through the cpus, ending up
742  * on the cpu controlling the inp last and then doing the disconnect.
743  */
744 static int
745 in_pcbremwildcardhash_handler(struct lwkt_msg *msg0)
746 {
747 	struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
748 	int cpu;
749 
750 	cpu = msg->nm_pcbinfo->cpu;
751 
752 	if (cpu == msg->nm_inp->inp_pcbinfo->cpu) {
753 		/* note: detach removes any wildcard hash entry */
754 #ifdef INET6
755 		if (msg->nm_isinet6)
756 			in6_pcbdetach(msg->nm_inp);
757 		else
758 #endif
759 			in_pcbdetach(msg->nm_inp);
760 		lwkt_replymsg(&msg->nm_lmsg, 0);
761 	} else {
762 		in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
763 		cpu = (cpu + 1) % ncpus2;
764 		msg->nm_pcbinfo = &tcbinfo[cpu];
765 		lwkt_forwardmsg(tcp_cport(cpu), &msg->nm_lmsg);
766 	}
767 	return (EASYNC);
768 }
769 
770 #endif
771 
772 /*
773  * Close a TCP control block:
774  *	discard all space held by the tcp
775  *	discard internet protocol block
776  *	wake up any sleepers
777  */
778 struct tcpcb *
779 tcp_close(struct tcpcb *tp)
780 {
781 	struct tseg_qent *q;
782 	struct inpcb *inp = tp->t_inpcb;
783 	struct socket *so = inp->inp_socket;
784 	struct rtentry *rt;
785 	boolean_t dosavessthresh;
786 #ifdef SMP
787 	int cpu;
788 #endif
789 #ifdef INET6
790 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
791 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
792 #else
793 	const boolean_t isipv6 = FALSE;
794 #endif
795 
796 	/*
797 	 * The tp is not instantly destroyed in the wildcard case.  Setting
798 	 * the state to TCPS_TERMINATING will prevent the TCP stack from
799 	 * messing with it, though it should be noted that this change may
800 	 * not take effect on other cpus until we have chained the wildcard
801 	 * hash removal.
802 	 *
803 	 * XXX we currently depend on the BGL to synchronize the tp->t_state
804 	 * update and prevent other tcp protocol threads from accepting new
805 	 * connections on the listen socket we might be trying to close down.
806 	 */
807 	KKASSERT(tp->t_state != TCPS_TERMINATING);
808 	tp->t_state = TCPS_TERMINATING;
809 
810 	/*
811 	 * Make sure that all of our timers are stopped before we
812 	 * delete the PCB.
813 	 */
814 	callout_stop(tp->tt_rexmt);
815 	callout_stop(tp->tt_persist);
816 	callout_stop(tp->tt_keep);
817 	callout_stop(tp->tt_2msl);
818 	callout_stop(tp->tt_delack);
819 
820 	if (tp->t_flags & TF_ONOUTPUTQ) {
821 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
822 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
823 		tp->t_flags &= ~TF_ONOUTPUTQ;
824 	}
825 
826 	/*
827 	 * If we got enough samples through the srtt filter,
828 	 * save the rtt and rttvar in the routing entry.
829 	 * 'Enough' is arbitrarily defined as the 16 samples.
830 	 * 16 samples is enough for the srtt filter to converge
831 	 * to within 5% of the correct value; fewer samples and
832 	 * we could save a very bogus rtt.
833 	 *
834 	 * Don't update the default route's characteristics and don't
835 	 * update anything that the user "locked".
836 	 */
837 	if (tp->t_rttupdated >= 16) {
838 		u_long i = 0;
839 
840 		if (isipv6) {
841 			struct sockaddr_in6 *sin6;
842 
843 			if ((rt = inp->in6p_route.ro_rt) == NULL)
844 				goto no_valid_rt;
845 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
846 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
847 				goto no_valid_rt;
848 		} else
849 			if ((rt = inp->inp_route.ro_rt) == NULL ||
850 			    ((struct sockaddr_in *)rt_key(rt))->
851 			     sin_addr.s_addr == INADDR_ANY)
852 				goto no_valid_rt;
853 
854 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
855 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
856 			if (rt->rt_rmx.rmx_rtt && i)
857 				/*
858 				 * filter this update to half the old & half
859 				 * the new values, converting scale.
860 				 * See route.h and tcp_var.h for a
861 				 * description of the scaling constants.
862 				 */
863 				rt->rt_rmx.rmx_rtt =
864 				    (rt->rt_rmx.rmx_rtt + i) / 2;
865 			else
866 				rt->rt_rmx.rmx_rtt = i;
867 			tcpstat.tcps_cachedrtt++;
868 		}
869 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
870 			i = tp->t_rttvar *
871 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
872 			if (rt->rt_rmx.rmx_rttvar && i)
873 				rt->rt_rmx.rmx_rttvar =
874 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
875 			else
876 				rt->rt_rmx.rmx_rttvar = i;
877 			tcpstat.tcps_cachedrttvar++;
878 		}
879 		/*
880 		 * The old comment here said:
881 		 * update the pipelimit (ssthresh) if it has been updated
882 		 * already or if a pipesize was specified & the threshhold
883 		 * got below half the pipesize.  I.e., wait for bad news
884 		 * before we start updating, then update on both good
885 		 * and bad news.
886 		 *
887 		 * But we want to save the ssthresh even if no pipesize is
888 		 * specified explicitly in the route, because such
889 		 * connections still have an implicit pipesize specified
890 		 * by the global tcp_sendspace.  In the absence of a reliable
891 		 * way to calculate the pipesize, it will have to do.
892 		 */
893 		i = tp->snd_ssthresh;
894 		if (rt->rt_rmx.rmx_sendpipe != 0)
895 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
896 		else
897 			dosavessthresh = (i < so->so_snd.sb_hiwat/2);
898 		if (dosavessthresh ||
899 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
900 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
901 			/*
902 			 * convert the limit from user data bytes to
903 			 * packets then to packet data bytes.
904 			 */
905 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
906 			if (i < 2)
907 				i = 2;
908 			i *= tp->t_maxseg +
909 			     (isipv6 ?
910 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
911 			      sizeof(struct tcpiphdr));
912 			if (rt->rt_rmx.rmx_ssthresh)
913 				rt->rt_rmx.rmx_ssthresh =
914 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
915 			else
916 				rt->rt_rmx.rmx_ssthresh = i;
917 			tcpstat.tcps_cachedssthresh++;
918 		}
919 	}
920 
921 no_valid_rt:
922 	/* free the reassembly queue, if any */
923 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
924 		LIST_REMOVE(q, tqe_q);
925 		m_freem(q->tqe_m);
926 		FREE(q, M_TSEGQ);
927 		tcp_reass_qsize--;
928 	}
929 	/* throw away SACK blocks in scoreboard*/
930 	if (TCP_DO_SACK(tp))
931 		tcp_sack_cleanup(&tp->scb);
932 
933 	inp->inp_ppcb = NULL;
934 	soisdisconnected(so);
935 	/*
936 	 * Discard the inp.  In the SMP case a wildcard inp's hash (created
937 	 * by a listen socket or an INADDR_ANY udp socket) is replicated
938 	 * for each protocol thread and must be removed in the context of
939 	 * that thread.  This is accomplished by chaining the message
940 	 * through the cpus.
941 	 *
942 	 * If the inp is not wildcarded we simply detach, which will remove
943 	 * the any hashes still present for this inp.
944 	 */
945 #ifdef SMP
946 	if (inp->inp_flags & INP_WILDCARD_MP) {
947 		struct netmsg_remwildcard *msg;
948 
949 		cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
950 		msg = malloc(sizeof(struct netmsg_remwildcard),
951 			    M_LWKTMSG, M_INTWAIT);
952 		lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
953 		    lwkt_cmd_func(in_pcbremwildcardhash_handler),
954 		    lwkt_cmd_op_none);
955 #ifdef INET6
956 		msg->nm_isinet6 = isafinet6;
957 #endif
958 		msg->nm_inp = inp;
959 		msg->nm_pcbinfo = &tcbinfo[cpu];
960 		lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
961 	} else
962 #endif
963 	{
964 		/* note: detach removes any wildcard hash entry */
965 #ifdef INET6
966 		if (isafinet6)
967 			in6_pcbdetach(inp);
968 		else
969 #endif
970 			in_pcbdetach(inp);
971 	}
972 	tcpstat.tcps_closed++;
973 	return (NULL);
974 }
975 
976 static __inline void
977 tcp_drain_oncpu(struct inpcbhead *head)
978 {
979 	struct inpcb *inpb;
980 	struct tcpcb *tcpb;
981 	struct tseg_qent *te;
982 
983 	LIST_FOREACH(inpb, head, inp_list) {
984 		if (inpb->inp_flags & INP_PLACEMARKER)
985 			continue;
986 		if ((tcpb = intotcpcb(inpb))) {
987 			while ((te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
988 				LIST_REMOVE(te, tqe_q);
989 				m_freem(te->tqe_m);
990 				FREE(te, M_TSEGQ);
991 				tcp_reass_qsize--;
992 			}
993 		}
994 	}
995 }
996 
997 #ifdef SMP
998 struct netmsg_tcp_drain {
999 	struct lwkt_msg		nm_lmsg;
1000 	struct inpcbhead	*nm_head;
1001 };
1002 
1003 static int
1004 tcp_drain_handler(lwkt_msg_t lmsg)
1005 {
1006 	struct netmsg_tcp_drain *nm = (void *)lmsg;
1007 
1008 	tcp_drain_oncpu(nm->nm_head);
1009 	lwkt_replymsg(lmsg, 0);
1010 	return(EASYNC);
1011 }
1012 #endif
1013 
1014 void
1015 tcp_drain()
1016 {
1017 #ifdef SMP
1018 	int cpu;
1019 #endif
1020 
1021 	if (!do_tcpdrain)
1022 		return;
1023 
1024 	/*
1025 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1026 	 * if there is one...
1027 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1028 	 *	reassembly queue should be flushed, but in a situation
1029 	 *	where we're really low on mbufs, this is potentially
1030 	 *	useful.
1031 	 */
1032 #ifdef SMP
1033 	for (cpu = 0; cpu < ncpus2; cpu++) {
1034 		struct netmsg_tcp_drain *msg;
1035 
1036 		if (cpu == mycpu->gd_cpuid) {
1037 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1038 		} else {
1039 			msg = malloc(sizeof(struct netmsg_tcp_drain),
1040 				    M_LWKTMSG, M_NOWAIT);
1041 			if (msg == NULL)
1042 				continue;
1043 			lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
1044 				lwkt_cmd_func(tcp_drain_handler),
1045 				lwkt_cmd_op_none);
1046 			msg->nm_head = &tcbinfo[cpu].pcblisthead;
1047 			lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
1048 		}
1049 	}
1050 #else
1051 	tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1052 #endif
1053 }
1054 
1055 /*
1056  * Notify a tcp user of an asynchronous error;
1057  * store error as soft error, but wake up user
1058  * (for now, won't do anything until can select for soft error).
1059  *
1060  * Do not wake up user since there currently is no mechanism for
1061  * reporting soft errors (yet - a kqueue filter may be added).
1062  */
1063 static void
1064 tcp_notify(struct inpcb *inp, int error)
1065 {
1066 	struct tcpcb *tp = intotcpcb(inp);
1067 
1068 	/*
1069 	 * Ignore some errors if we are hooked up.
1070 	 * If connection hasn't completed, has retransmitted several times,
1071 	 * and receives a second error, give up now.  This is better
1072 	 * than waiting a long time to establish a connection that
1073 	 * can never complete.
1074 	 */
1075 	if (tp->t_state == TCPS_ESTABLISHED &&
1076 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1077 	      error == EHOSTDOWN)) {
1078 		return;
1079 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1080 	    tp->t_softerror)
1081 		tcp_drop(tp, error);
1082 	else
1083 		tp->t_softerror = error;
1084 #if 0
1085 	wakeup(&so->so_timeo);
1086 	sorwakeup(so);
1087 	sowwakeup(so);
1088 #endif
1089 }
1090 
1091 static int
1092 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1093 {
1094 	int error, i, n;
1095 	struct inpcb *marker;
1096 	struct inpcb *inp;
1097 	inp_gen_t gencnt;
1098 	globaldata_t gd;
1099 	int origcpu, ccpu;
1100 
1101 	error = 0;
1102 	n = 0;
1103 
1104 	/*
1105 	 * The process of preparing the TCB list is too time-consuming and
1106 	 * resource-intensive to repeat twice on every request.
1107 	 */
1108 	if (req->oldptr == NULL) {
1109 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1110 			gd = globaldata_find(ccpu);
1111 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1112 		}
1113 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1114 		return (0);
1115 	}
1116 
1117 	if (req->newptr != NULL)
1118 		return (EPERM);
1119 
1120 	marker = malloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1121 	marker->inp_flags |= INP_PLACEMARKER;
1122 
1123 	/*
1124 	 * OK, now we're committed to doing something.  Run the inpcb list
1125 	 * for each cpu in the system and construct the output.  Use a
1126 	 * list placemarker to deal with list changes occuring during
1127 	 * copyout blockages (but otherwise depend on being on the correct
1128 	 * cpu to avoid races).
1129 	 */
1130 	origcpu = mycpu->gd_cpuid;
1131 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1132 		globaldata_t rgd;
1133 		caddr_t inp_ppcb;
1134 		struct xtcpcb xt;
1135 		int cpu_id;
1136 
1137 		cpu_id = (origcpu + ccpu) % ncpus;
1138 		if ((smp_active_mask & (1 << cpu_id)) == 0)
1139 			continue;
1140 		rgd = globaldata_find(cpu_id);
1141 		lwkt_setcpu_self(rgd);
1142 
1143 		gencnt = tcbinfo[cpu_id].ipi_gencnt;
1144 		n = tcbinfo[cpu_id].ipi_count;
1145 
1146 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1147 		i = 0;
1148 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1149 			/*
1150 			 * process a snapshot of pcbs, ignoring placemarkers
1151 			 * and using our own to allow SYSCTL_OUT to block.
1152 			 */
1153 			LIST_REMOVE(marker, inp_list);
1154 			LIST_INSERT_AFTER(inp, marker, inp_list);
1155 
1156 			if (inp->inp_flags & INP_PLACEMARKER)
1157 				continue;
1158 			if (inp->inp_gencnt > gencnt)
1159 				continue;
1160 			if (prison_xinpcb(req->td, inp))
1161 				continue;
1162 
1163 			xt.xt_len = sizeof xt;
1164 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1165 			inp_ppcb = inp->inp_ppcb;
1166 			if (inp_ppcb != NULL)
1167 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1168 			else
1169 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1170 			if (inp->inp_socket)
1171 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1172 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1173 				break;
1174 			++i;
1175 		}
1176 		LIST_REMOVE(marker, inp_list);
1177 		if (error == 0 && i < n) {
1178 			bzero(&xt, sizeof xt);
1179 			xt.xt_len = sizeof xt;
1180 			while (i < n) {
1181 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1182 				if (error)
1183 					break;
1184 				++i;
1185 			}
1186 		}
1187 	}
1188 
1189 	/*
1190 	 * Make sure we are on the same cpu we were on originally, since
1191 	 * higher level callers expect this.  Also don't pollute caches with
1192 	 * migrated userland data by (eventually) returning to userland
1193 	 * on a different cpu.
1194 	 */
1195 	lwkt_setcpu_self(globaldata_find(origcpu));
1196 	free(marker, M_TEMP);
1197 	return (error);
1198 }
1199 
1200 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1201 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1202 
1203 static int
1204 tcp_getcred(SYSCTL_HANDLER_ARGS)
1205 {
1206 	struct sockaddr_in addrs[2];
1207 	struct inpcb *inp;
1208 	int cpu;
1209 	int error, s;
1210 
1211 	error = suser(req->td);
1212 	if (error != 0)
1213 		return (error);
1214 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1215 	if (error != 0)
1216 		return (error);
1217 	s = splnet();
1218 
1219 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1220 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1221 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1222 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1223 	if (inp == NULL || inp->inp_socket == NULL) {
1224 		error = ENOENT;
1225 		goto out;
1226 	}
1227 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1228 out:
1229 	splx(s);
1230 	return (error);
1231 }
1232 
1233 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1234     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1235 
1236 #ifdef INET6
1237 static int
1238 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1239 {
1240 	struct sockaddr_in6 addrs[2];
1241 	struct inpcb *inp;
1242 	int error, s;
1243 	boolean_t mapped = FALSE;
1244 
1245 	error = suser(req->td);
1246 	if (error != 0)
1247 		return (error);
1248 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1249 	if (error != 0)
1250 		return (error);
1251 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1252 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1253 			mapped = TRUE;
1254 		else
1255 			return (EINVAL);
1256 	}
1257 	s = splnet();
1258 	if (mapped) {
1259 		inp = in_pcblookup_hash(&tcbinfo[0],
1260 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1261 		    addrs[1].sin6_port,
1262 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1263 		    addrs[0].sin6_port,
1264 		    0, NULL);
1265 	} else {
1266 		inp = in6_pcblookup_hash(&tcbinfo[0],
1267 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1268 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1269 		    0, NULL);
1270 	}
1271 	if (inp == NULL || inp->inp_socket == NULL) {
1272 		error = ENOENT;
1273 		goto out;
1274 	}
1275 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1276 out:
1277 	splx(s);
1278 	return (error);
1279 }
1280 
1281 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1282 	    0, 0,
1283 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1284 #endif
1285 
1286 void
1287 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1288 {
1289 	struct ip *ip = vip;
1290 	struct tcphdr *th;
1291 	struct in_addr faddr;
1292 	struct inpcb *inp;
1293 	struct tcpcb *tp;
1294 	void (*notify)(struct inpcb *, int) = tcp_notify;
1295 	tcp_seq icmpseq;
1296 	int arg, cpu, s;
1297 
1298 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1299 		return;
1300 	}
1301 
1302 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1303 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1304 		return;
1305 
1306 	arg = inetctlerrmap[cmd];
1307 	if (cmd == PRC_QUENCH) {
1308 		notify = tcp_quench;
1309 	} else if (icmp_may_rst &&
1310 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1311 		    cmd == PRC_UNREACH_PORT ||
1312 		    cmd == PRC_TIMXCEED_INTRANS) &&
1313 		   ip != NULL) {
1314 		notify = tcp_drop_syn_sent;
1315 	} else if (cmd == PRC_MSGSIZE) {
1316 		struct icmp *icmp = (struct icmp *)
1317 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1318 
1319 		arg = ntohs(icmp->icmp_nextmtu);
1320 		notify = tcp_mtudisc;
1321 	} else if (PRC_IS_REDIRECT(cmd)) {
1322 		ip = NULL;
1323 		notify = in_rtchange;
1324 	} else if (cmd == PRC_HOSTDEAD) {
1325 		ip = NULL;
1326 	}
1327 
1328 	if (ip != NULL) {
1329 		s = splnet();
1330 		th = (struct tcphdr *)((caddr_t)ip +
1331 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1332 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1333 				  ip->ip_src.s_addr, th->th_sport);
1334 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1335 					ip->ip_src, th->th_sport, 0, NULL);
1336 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1337 			icmpseq = htonl(th->th_seq);
1338 			tp = intotcpcb(inp);
1339 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1340 			    SEQ_LT(icmpseq, tp->snd_max))
1341 				(*notify)(inp, arg);
1342 		} else {
1343 			struct in_conninfo inc;
1344 
1345 			inc.inc_fport = th->th_dport;
1346 			inc.inc_lport = th->th_sport;
1347 			inc.inc_faddr = faddr;
1348 			inc.inc_laddr = ip->ip_src;
1349 #ifdef INET6
1350 			inc.inc_isipv6 = 0;
1351 #endif
1352 			syncache_unreach(&inc, th);
1353 		}
1354 		splx(s);
1355 	} else {
1356 		for (cpu = 0; cpu < ncpus2; cpu++) {
1357 			in_pcbnotifyall(&tcbinfo[cpu].pcblisthead, faddr, arg,
1358 					notify);
1359 		}
1360 	}
1361 }
1362 
1363 #ifdef INET6
1364 void
1365 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1366 {
1367 	struct tcphdr th;
1368 	void (*notify) (struct inpcb *, int) = tcp_notify;
1369 	struct ip6_hdr *ip6;
1370 	struct mbuf *m;
1371 	struct ip6ctlparam *ip6cp = NULL;
1372 	const struct sockaddr_in6 *sa6_src = NULL;
1373 	int off;
1374 	struct tcp_portonly {
1375 		u_int16_t th_sport;
1376 		u_int16_t th_dport;
1377 	} *thp;
1378 	int arg;
1379 
1380 	if (sa->sa_family != AF_INET6 ||
1381 	    sa->sa_len != sizeof(struct sockaddr_in6))
1382 		return;
1383 
1384 	arg = 0;
1385 	if (cmd == PRC_QUENCH)
1386 		notify = tcp_quench;
1387 	else if (cmd == PRC_MSGSIZE) {
1388 		struct ip6ctlparam *ip6cp = d;
1389 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1390 
1391 		arg = ntohl(icmp6->icmp6_mtu);
1392 		notify = tcp_mtudisc;
1393 	} else if (!PRC_IS_REDIRECT(cmd) &&
1394 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1395 		return;
1396 	}
1397 
1398 	/* if the parameter is from icmp6, decode it. */
1399 	if (d != NULL) {
1400 		ip6cp = (struct ip6ctlparam *)d;
1401 		m = ip6cp->ip6c_m;
1402 		ip6 = ip6cp->ip6c_ip6;
1403 		off = ip6cp->ip6c_off;
1404 		sa6_src = ip6cp->ip6c_src;
1405 	} else {
1406 		m = NULL;
1407 		ip6 = NULL;
1408 		off = 0;	/* fool gcc */
1409 		sa6_src = &sa6_any;
1410 	}
1411 
1412 	if (ip6 != NULL) {
1413 		struct in_conninfo inc;
1414 		/*
1415 		 * XXX: We assume that when IPV6 is non NULL,
1416 		 * M and OFF are valid.
1417 		 */
1418 
1419 		/* check if we can safely examine src and dst ports */
1420 		if (m->m_pkthdr.len < off + sizeof *thp)
1421 			return;
1422 
1423 		bzero(&th, sizeof th);
1424 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1425 
1426 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1427 		    (struct sockaddr *)ip6cp->ip6c_src,
1428 		    th.th_sport, cmd, arg, notify);
1429 
1430 		inc.inc_fport = th.th_dport;
1431 		inc.inc_lport = th.th_sport;
1432 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1433 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1434 		inc.inc_isipv6 = 1;
1435 		syncache_unreach(&inc, &th);
1436 	} else
1437 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1438 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1439 }
1440 #endif
1441 
1442 /*
1443  * Following is where TCP initial sequence number generation occurs.
1444  *
1445  * There are two places where we must use initial sequence numbers:
1446  * 1.  In SYN-ACK packets.
1447  * 2.  In SYN packets.
1448  *
1449  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1450  * tcp_syncache.c for details.
1451  *
1452  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1453  * depends on this property.  In addition, these ISNs should be
1454  * unguessable so as to prevent connection hijacking.  To satisfy
1455  * the requirements of this situation, the algorithm outlined in
1456  * RFC 1948 is used to generate sequence numbers.
1457  *
1458  * Implementation details:
1459  *
1460  * Time is based off the system timer, and is corrected so that it
1461  * increases by one megabyte per second.  This allows for proper
1462  * recycling on high speed LANs while still leaving over an hour
1463  * before rollover.
1464  *
1465  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1466  * between seeding of isn_secret.  This is normally set to zero,
1467  * as reseeding should not be necessary.
1468  *
1469  */
1470 
1471 #define	ISN_BYTES_PER_SECOND 1048576
1472 
1473 u_char isn_secret[32];
1474 int isn_last_reseed;
1475 MD5_CTX isn_ctx;
1476 
1477 tcp_seq
1478 tcp_new_isn(struct tcpcb *tp)
1479 {
1480 	u_int32_t md5_buffer[4];
1481 	tcp_seq new_isn;
1482 
1483 	/* Seed if this is the first use, reseed if requested. */
1484 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1485 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1486 		< (u_int)ticks))) {
1487 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1488 		isn_last_reseed = ticks;
1489 	}
1490 
1491 	/* Compute the md5 hash and return the ISN. */
1492 	MD5Init(&isn_ctx);
1493 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1494 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1495 #ifdef INET6
1496 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1497 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1498 			  sizeof(struct in6_addr));
1499 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1500 			  sizeof(struct in6_addr));
1501 	} else
1502 #endif
1503 	{
1504 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1505 			  sizeof(struct in_addr));
1506 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1507 			  sizeof(struct in_addr));
1508 	}
1509 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1510 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1511 	new_isn = (tcp_seq) md5_buffer[0];
1512 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1513 	return (new_isn);
1514 }
1515 
1516 /*
1517  * When a source quench is received, close congestion window
1518  * to one segment.  We will gradually open it again as we proceed.
1519  */
1520 void
1521 tcp_quench(struct inpcb *inp, int errno)
1522 {
1523 	struct tcpcb *tp = intotcpcb(inp);
1524 
1525 	if (tp != NULL)
1526 		tp->snd_cwnd = tp->t_maxseg;
1527 }
1528 
1529 /*
1530  * When a specific ICMP unreachable message is received and the
1531  * connection state is SYN-SENT, drop the connection.  This behavior
1532  * is controlled by the icmp_may_rst sysctl.
1533  */
1534 void
1535 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1536 {
1537 	struct tcpcb *tp = intotcpcb(inp);
1538 
1539 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1540 		tcp_drop(tp, errno);
1541 }
1542 
1543 /*
1544  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1545  * based on the new value in the route.  Also nudge TCP to send something,
1546  * since we know the packet we just sent was dropped.
1547  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1548  */
1549 void
1550 tcp_mtudisc(struct inpcb *inp, int mtu)
1551 {
1552 	struct tcpcb *tp = intotcpcb(inp);
1553 	struct rtentry *rt;
1554 	struct socket *so = inp->inp_socket;
1555 	int maxopd, mss;
1556 #ifdef INET6
1557 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1558 #else
1559 	const boolean_t isipv6 = FALSE;
1560 #endif
1561 
1562 	if (tp == NULL)
1563 		return;
1564 
1565 	/*
1566 	 * If no MTU is provided in the ICMP message, use the
1567 	 * next lower likely value, as specified in RFC 1191.
1568 	 */
1569 	if (mtu == 0) {
1570 		int oldmtu;
1571 
1572 		oldmtu = tp->t_maxopd +
1573 		    (isipv6 ?
1574 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1575 		     sizeof(struct tcpiphdr));
1576 		mtu = ip_next_mtu(oldmtu, 0);
1577 	}
1578 
1579 	if (isipv6)
1580 		rt = tcp_rtlookup6(&inp->inp_inc);
1581 	else
1582 		rt = tcp_rtlookup(&inp->inp_inc);
1583 	if (rt != NULL) {
1584 		struct rmxp_tao *taop = rmx_taop(rt->rt_rmx);
1585 
1586 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1587 			mtu = rt->rt_rmx.rmx_mtu;
1588 
1589 		maxopd = mtu -
1590 		    (isipv6 ?
1591 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1592 		     sizeof(struct tcpiphdr));
1593 
1594 		/*
1595 		 * XXX - The following conditional probably violates the TCP
1596 		 * spec.  The problem is that, since we don't know the
1597 		 * other end's MSS, we are supposed to use a conservative
1598 		 * default.  But, if we do that, then MTU discovery will
1599 		 * never actually take place, because the conservative
1600 		 * default is much less than the MTUs typically seen
1601 		 * on the Internet today.  For the moment, we'll sweep
1602 		 * this under the carpet.
1603 		 *
1604 		 * The conservative default might not actually be a problem
1605 		 * if the only case this occurs is when sending an initial
1606 		 * SYN with options and data to a host we've never talked
1607 		 * to before.  Then, they will reply with an MSS value which
1608 		 * will get recorded and the new parameters should get
1609 		 * recomputed.  For Further Study.
1610 		 */
1611 		if (taop->tao_mssopt != 0 && taop->tao_mssopt < maxopd)
1612 			maxopd = taop->tao_mssopt;
1613 	} else
1614 		maxopd = mtu -
1615 		    (isipv6 ?
1616 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1617 		     sizeof(struct tcpiphdr));
1618 
1619 	if (tp->t_maxopd <= maxopd)
1620 		return;
1621 	tp->t_maxopd = maxopd;
1622 
1623 	mss = maxopd;
1624 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1625 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1626 		mss -= TCPOLEN_TSTAMP_APPA;
1627 
1628 	if ((tp->t_flags & (TF_REQ_CC | TF_RCVD_CC | TF_NOOPT)) ==
1629 			   (TF_REQ_CC | TF_RCVD_CC))
1630 		mss -= TCPOLEN_CC_APPA;
1631 
1632 	/* round down to multiple of MCLBYTES */
1633 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1634 	if (mss > MCLBYTES)
1635 		mss &= ~(MCLBYTES - 1);
1636 #else
1637 	if (mss > MCLBYTES)
1638 		mss = (mss / MCLBYTES) * MCLBYTES;
1639 #endif
1640 
1641 	if (so->so_snd.sb_hiwat < mss)
1642 		mss = so->so_snd.sb_hiwat;
1643 
1644 	tp->t_maxseg = mss;
1645 	tp->t_rtttime = 0;
1646 	tp->snd_nxt = tp->snd_una;
1647 	tcp_output(tp);
1648 	tcpstat.tcps_mturesent++;
1649 }
1650 
1651 /*
1652  * Look-up the routing entry to the peer of this inpcb.  If no route
1653  * is found and it cannot be allocated the return NULL.  This routine
1654  * is called by TCP routines that access the rmx structure and by tcp_mss
1655  * to get the interface MTU.
1656  */
1657 struct rtentry *
1658 tcp_rtlookup(struct in_conninfo *inc)
1659 {
1660 	struct route *ro = &inc->inc_route;
1661 
1662 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1663 		/* No route yet, so try to acquire one */
1664 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1665 			/*
1666 			 * unused portions of the structure MUST be zero'd
1667 			 * out because rtalloc() treats it as opaque data
1668 			 */
1669 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1670 			ro->ro_dst.sa_family = AF_INET;
1671 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1672 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1673 			    inc->inc_faddr;
1674 			rtalloc(ro);
1675 		}
1676 	}
1677 	return (ro->ro_rt);
1678 }
1679 
1680 #ifdef INET6
1681 struct rtentry *
1682 tcp_rtlookup6(struct in_conninfo *inc)
1683 {
1684 	struct route_in6 *ro6 = &inc->inc6_route;
1685 
1686 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1687 		/* No route yet, so try to acquire one */
1688 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1689 			/*
1690 			 * unused portions of the structure MUST be zero'd
1691 			 * out because rtalloc() treats it as opaque data
1692 			 */
1693 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1694 			ro6->ro_dst.sin6_family = AF_INET6;
1695 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1696 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1697 			rtalloc((struct route *)ro6);
1698 		}
1699 	}
1700 	return (ro6->ro_rt);
1701 }
1702 #endif
1703 
1704 #ifdef IPSEC
1705 /* compute ESP/AH header size for TCP, including outer IP header. */
1706 size_t
1707 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1708 {
1709 	struct inpcb *inp;
1710 	struct mbuf *m;
1711 	size_t hdrsiz;
1712 	struct ip *ip;
1713 	struct tcphdr *th;
1714 
1715 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1716 		return (0);
1717 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1718 	if (!m)
1719 		return (0);
1720 
1721 #ifdef INET6
1722 	if (inp->inp_vflag & INP_IPV6) {
1723 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1724 
1725 		th = (struct tcphdr *)(ip6 + 1);
1726 		m->m_pkthdr.len = m->m_len =
1727 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1728 		tcp_fillheaders(tp, ip6, th);
1729 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1730 	} else
1731 #endif
1732 	{
1733 		ip = mtod(m, struct ip *);
1734 		th = (struct tcphdr *)(ip + 1);
1735 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1736 		tcp_fillheaders(tp, ip, th);
1737 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1738 	}
1739 
1740 	m_free(m);
1741 	return (hdrsiz);
1742 }
1743 #endif
1744 
1745 /*
1746  * Return a pointer to the cached information about the remote host.
1747  * The cached information is stored in the protocol specific part of
1748  * the route metrics.
1749  */
1750 struct rmxp_tao *
1751 tcp_gettaocache(struct in_conninfo *inc)
1752 {
1753 	struct rtentry *rt;
1754 
1755 #ifdef INET6
1756 	if (inc->inc_isipv6)
1757 		rt = tcp_rtlookup6(inc);
1758 	else
1759 #endif
1760 		rt = tcp_rtlookup(inc);
1761 
1762 	/* Make sure this is a host route and is up. */
1763 	if (rt == NULL ||
1764 	    (rt->rt_flags & (RTF_UP | RTF_HOST)) != (RTF_UP | RTF_HOST))
1765 		return (NULL);
1766 
1767 	return (rmx_taop(rt->rt_rmx));
1768 }
1769 
1770 /*
1771  * Clear all the TAO cache entries, called from tcp_init.
1772  *
1773  * XXX
1774  * This routine is just an empty one, because we assume that the routing
1775  * routing tables are initialized at the same time when TCP, so there is
1776  * nothing in the cache left over.
1777  */
1778 static void
1779 tcp_cleartaocache()
1780 {
1781 }
1782 
1783 /*
1784  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1785  *
1786  * This code attempts to calculate the bandwidth-delay product as a
1787  * means of determining the optimal window size to maximize bandwidth,
1788  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1789  * routers.  This code also does a fairly good job keeping RTTs in check
1790  * across slow links like modems.  We implement an algorithm which is very
1791  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1792  * transmitter side of a TCP connection and so only effects the transmit
1793  * side of the connection.
1794  *
1795  * BACKGROUND:  TCP makes no provision for the management of buffer space
1796  * at the end points or at the intermediate routers and switches.  A TCP
1797  * stream, whether using NewReno or not, will eventually buffer as
1798  * many packets as it is able and the only reason this typically works is
1799  * due to the fairly small default buffers made available for a connection
1800  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1801  * scaling it is now fairly easy for even a single TCP connection to blow-out
1802  * all available buffer space not only on the local interface, but on
1803  * intermediate routers and switches as well.  NewReno makes a misguided
1804  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1805  * then backing off, then steadily increasing the window again until another
1806  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1807  * is only made worse as network loads increase and the idea of intentionally
1808  * blowing out network buffers is, frankly, a terrible way to manage network
1809  * resources.
1810  *
1811  * It is far better to limit the transmit window prior to the failure
1812  * condition being achieved.  There are two general ways to do this:  First
1813  * you can 'scan' through different transmit window sizes and locate the
1814  * point where the RTT stops increasing, indicating that you have filled the
1815  * pipe, then scan backwards until you note that RTT stops decreasing, then
1816  * repeat ad-infinitum.  This method works in principle but has severe
1817  * implementation issues due to RTT variances, timer granularity, and
1818  * instability in the algorithm which can lead to many false positives and
1819  * create oscillations as well as interact badly with other TCP streams
1820  * implementing the same algorithm.
1821  *
1822  * The second method is to limit the window to the bandwidth delay product
1823  * of the link.  This is the method we implement.  RTT variances and our
1824  * own manipulation of the congestion window, bwnd, can potentially
1825  * destabilize the algorithm.  For this reason we have to stabilize the
1826  * elements used to calculate the window.  We do this by using the minimum
1827  * observed RTT, the long term average of the observed bandwidth, and
1828  * by adding two segments worth of slop.  It isn't perfect but it is able
1829  * to react to changing conditions and gives us a very stable basis on
1830  * which to extend the algorithm.
1831  */
1832 void
1833 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1834 {
1835 	u_long bw;
1836 	u_long bwnd;
1837 	int save_ticks;
1838 	int delta_ticks;
1839 
1840 	/*
1841 	 * If inflight_enable is disabled in the middle of a tcp connection,
1842 	 * make sure snd_bwnd is effectively disabled.
1843 	 */
1844 	if (!tcp_inflight_enable) {
1845 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1846 		tp->snd_bandwidth = 0;
1847 		return;
1848 	}
1849 
1850 	/*
1851 	 * Validate the delta time.  If a connection is new or has been idle
1852 	 * a long time we have to reset the bandwidth calculator.
1853 	 */
1854 	save_ticks = ticks;
1855 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1856 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1857 		tp->t_bw_rtttime = ticks;
1858 		tp->t_bw_rtseq = ack_seq;
1859 		if (tp->snd_bandwidth == 0)
1860 			tp->snd_bandwidth = tcp_inflight_min;
1861 		return;
1862 	}
1863 	if (delta_ticks == 0)
1864 		return;
1865 
1866 	/*
1867 	 * Sanity check, plus ignore pure window update acks.
1868 	 */
1869 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1870 		return;
1871 
1872 	/*
1873 	 * Figure out the bandwidth.  Due to the tick granularity this
1874 	 * is a very rough number and it MUST be averaged over a fairly
1875 	 * long period of time.  XXX we need to take into account a link
1876 	 * that is not using all available bandwidth, but for now our
1877 	 * slop will ramp us up if this case occurs and the bandwidth later
1878 	 * increases.
1879 	 */
1880 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1881 	tp->t_bw_rtttime = save_ticks;
1882 	tp->t_bw_rtseq = ack_seq;
1883 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1884 
1885 	tp->snd_bandwidth = bw;
1886 
1887 	/*
1888 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1889 	 * segments.  The additional slop puts us squarely in the sweet
1890 	 * spot and also handles the bandwidth run-up case.  Without the
1891 	 * slop we could be locking ourselves into a lower bandwidth.
1892 	 *
1893 	 * Situations Handled:
1894 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1895 	 *	    high speed LANs, allowing larger TCP buffers to be
1896 	 *	    specified, and also does a good job preventing
1897 	 *	    over-queueing of packets over choke points like modems
1898 	 *	    (at least for the transmit side).
1899 	 *
1900 	 *	(2) Is able to handle changing network loads (bandwidth
1901 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1902 	 *	    increases).
1903 	 *
1904 	 *	(3) Theoretically should stabilize in the face of multiple
1905 	 *	    connections implementing the same algorithm (this may need
1906 	 *	    a little work).
1907 	 *
1908 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1909 	 *	    be adjusted with a sysctl but typically only needs to be on
1910 	 *	    very slow connections.  A value no smaller then 5 should
1911 	 *	    be used, but only reduce this default if you have no other
1912 	 *	    choice.
1913 	 */
1914 
1915 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1916 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1917 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1918 #undef USERTT
1919 
1920 	if (tcp_inflight_debug > 0) {
1921 		static int ltime;
1922 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1923 			ltime = ticks;
1924 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1925 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1926 		}
1927 	}
1928 	if ((long)bwnd < tcp_inflight_min)
1929 		bwnd = tcp_inflight_min;
1930 	if (bwnd > tcp_inflight_max)
1931 		bwnd = tcp_inflight_max;
1932 	if ((long)bwnd < tp->t_maxseg * 2)
1933 		bwnd = tp->t_maxseg * 2;
1934 	tp->snd_bwnd = bwnd;
1935 }
1936