xref: /dflybsd-src/sys/netinet/tcp_subr.c (revision 653318caa8600d01ee0a9c8acfef377de5ea5e99)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
63  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
64  */
65 
66 #include "opt_compat.h"
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 #include "opt_tcpdebug.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/malloc.h>
78 #include <sys/mpipe.h>
79 #include <sys/mbuf.h>
80 #ifdef INET6
81 #include <sys/domain.h>
82 #endif
83 #include <sys/proc.h>
84 #include <sys/priv.h>
85 #include <sys/socket.h>
86 #include <sys/socketops.h>
87 #include <sys/socketvar.h>
88 #include <sys/protosw.h>
89 #include <sys/random.h>
90 #include <sys/in_cksum.h>
91 #include <sys/ktr.h>
92 
93 #include <net/route.h>
94 #include <net/if.h>
95 #include <net/netisr2.h>
96 
97 #define	_IP_VHL
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/ip6.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet6/in6_pcb.h>
104 #include <netinet/in_var.h>
105 #include <netinet/ip_var.h>
106 #include <netinet6/ip6_var.h>
107 #include <netinet/ip_icmp.h>
108 #ifdef INET6
109 #include <netinet/icmp6.h>
110 #endif
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
118 #include <netinet/tcpip.h>
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 #endif
122 #include <netinet6/ip6protosw.h>
123 
124 #ifdef IPSEC
125 #include <netinet6/ipsec.h>
126 #include <netproto/key/key.h>
127 #ifdef INET6
128 #include <netinet6/ipsec6.h>
129 #endif
130 #endif
131 
132 #ifdef FAST_IPSEC
133 #include <netproto/ipsec/ipsec.h>
134 #ifdef INET6
135 #include <netproto/ipsec/ipsec6.h>
136 #endif
137 #define	IPSEC
138 #endif
139 
140 #include <sys/md5.h>
141 #include <machine/smp.h>
142 
143 #include <sys/msgport2.h>
144 #include <sys/mplock2.h>
145 #include <net/netmsg2.h>
146 
147 #if !defined(KTR_TCP)
148 #define KTR_TCP		KTR_ALL
149 #endif
150 /*
151 KTR_INFO_MASTER(tcp);
152 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
153 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
154 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
155 #define logtcp(name)	KTR_LOG(tcp_ ## name)
156 */
157 
158 #define TCP_IW_MAXSEGS_DFLT	4
159 #define TCP_IW_CAPSEGS_DFLT	3
160 
161 struct inpcbinfo tcbinfo[MAXCPU];
162 struct tcpcbackqhead tcpcbackq[MAXCPU];
163 
164 static struct lwkt_token tcp_port_token =
165 		LWKT_TOKEN_INITIALIZER(tcp_port_token);
166 
167 int tcp_mssdflt = TCP_MSS;
168 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
169     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
170 
171 #ifdef INET6
172 int tcp_v6mssdflt = TCP6_MSS;
173 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
174     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
175 #endif
176 
177 /*
178  * Minimum MSS we accept and use. This prevents DoS attacks where
179  * we are forced to a ridiculous low MSS like 20 and send hundreds
180  * of packets instead of one. The effect scales with the available
181  * bandwidth and quickly saturates the CPU and network interface
182  * with packet generation and sending. Set to zero to disable MINMSS
183  * checking. This setting prevents us from sending too small packets.
184  */
185 int tcp_minmss = TCP_MINMSS;
186 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
187     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
188 
189 #if 0
190 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
191 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
192     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
193 #endif
194 
195 int tcp_do_rfc1323 = 1;
196 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
197     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
198 
199 static int tcp_tcbhashsize = 0;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
201      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
202 
203 static int do_tcpdrain = 1;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
205      "Enable tcp_drain routine for extra help when low on mbufs");
206 
207 static int icmp_may_rst = 1;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
209     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
210 
211 static int tcp_isn_reseed_interval = 0;
212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
213     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
214 
215 /*
216  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
217  * by default, but with generous values which should allow maximal
218  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
219  *
220  * The reason for doing this is that the limiter is the only mechanism we
221  * have which seems to do a really good job preventing receiver RX rings
222  * on network interfaces from getting blown out.  Even though GigE/10GigE
223  * is supposed to flow control it looks like either it doesn't actually
224  * do it or Open Source drivers do not properly enable it.
225  *
226  * People using the limiter to reduce bottlenecks on slower WAN connections
227  * should set the slop to 20 (2 packets).
228  */
229 static int tcp_inflight_enable = 1;
230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
231     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
232 
233 static int tcp_inflight_debug = 0;
234 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
235     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
236 
237 static int tcp_inflight_min = 6144;
238 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
239     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
240 
241 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
242 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
243     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
244 
245 static int tcp_inflight_stab = 50;
246 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
247     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
248 
249 static int tcp_do_rfc3390 = 1;
250 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
251     &tcp_do_rfc3390, 0,
252     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
253 
254 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
255 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
256     &tcp_iw_maxsegs, 0, "TCP IW segments max");
257 
258 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
259 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
260     &tcp_iw_capsegs, 0, "TCP IW segments");
261 
262 int tcp_low_rtobase = 1;
263 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
264     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
265 
266 static int tcp_do_ncr = 1;
267 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
268     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
269 
270 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
271 static struct malloc_pipe tcptemp_mpipe;
272 
273 static void tcp_willblock(void);
274 static void tcp_notify (struct inpcb *, int);
275 
276 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
277 
278 static int
279 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
280 {
281 	int cpu, error = 0;
282 
283 	for (cpu = 0; cpu < ncpus; ++cpu) {
284 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
285 					sizeof(struct tcp_stats))))
286 			break;
287 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
288 				       sizeof(struct tcp_stats))))
289 			break;
290 	}
291 
292 	return (error);
293 }
294 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
295     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
296 
297 /*
298  * Target size of TCP PCB hash tables. Must be a power of two.
299  *
300  * Note that this can be overridden by the kernel environment
301  * variable net.inet.tcp.tcbhashsize
302  */
303 #ifndef TCBHASHSIZE
304 #define	TCBHASHSIZE	512
305 #endif
306 
307 /*
308  * This is the actual shape of what we allocate using the zone
309  * allocator.  Doing it this way allows us to protect both structures
310  * using the same generation count, and also eliminates the overhead
311  * of allocating tcpcbs separately.  By hiding the structure here,
312  * we avoid changing most of the rest of the code (although it needs
313  * to be changed, eventually, for greater efficiency).
314  */
315 #define	ALIGNMENT	32
316 #define	ALIGNM1		(ALIGNMENT - 1)
317 struct	inp_tp {
318 	union {
319 		struct	inpcb inp;
320 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
321 	} inp_tp_u;
322 	struct	tcpcb tcb;
323 	struct	tcp_callout inp_tp_rexmt;
324 	struct	tcp_callout inp_tp_persist;
325 	struct	tcp_callout inp_tp_keep;
326 	struct	tcp_callout inp_tp_2msl;
327 	struct	tcp_callout inp_tp_delack;
328 	struct	netmsg_tcp_timer inp_tp_timermsg;
329 	struct	netmsg_base inp_tp_sndmore;
330 };
331 #undef ALIGNMENT
332 #undef ALIGNM1
333 
334 /*
335  * Tcp initialization
336  */
337 void
338 tcp_init(void)
339 {
340 	struct inpcbporthead *porthashbase;
341 	struct inpcbinfo *ticb;
342 	u_long porthashmask;
343 	int hashsize = TCBHASHSIZE;
344 	int cpu;
345 
346 	/*
347 	 * note: tcptemp is used for keepalives, and it is ok for an
348 	 * allocation to fail so do not specify MPF_INT.
349 	 */
350 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
351 		    25, -1, 0, NULL, NULL, NULL);
352 
353 	tcp_delacktime = TCPTV_DELACK;
354 	tcp_keepinit = TCPTV_KEEP_INIT;
355 	tcp_keepidle = TCPTV_KEEP_IDLE;
356 	tcp_keepintvl = TCPTV_KEEPINTVL;
357 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
358 	tcp_msl = TCPTV_MSL;
359 	tcp_rexmit_min = TCPTV_MIN;
360 	tcp_rexmit_slop = TCPTV_CPU_VAR;
361 
362 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
363 	if (!powerof2(hashsize)) {
364 		kprintf("WARNING: TCB hash size not a power of 2\n");
365 		hashsize = 512; /* safe default */
366 	}
367 	tcp_tcbhashsize = hashsize;
368 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
369 
370 	for (cpu = 0; cpu < ncpus2; cpu++) {
371 		ticb = &tcbinfo[cpu];
372 		in_pcbinfo_init(ticb);
373 		ticb->cpu = cpu;
374 		ticb->hashbase = hashinit(hashsize, M_PCB,
375 					  &ticb->hashmask);
376 		ticb->porthashbase = porthashbase;
377 		ticb->porthashmask = porthashmask;
378 		ticb->porttoken = &tcp_port_token;
379 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
380 						  &ticb->wildcardhashmask);
381 		ticb->localgrphashbase = hashinit(hashsize, M_PCB,
382 						  &ticb->localgrphashmask);
383 		ticb->ipi_size = sizeof(struct inp_tp);
384 		TAILQ_INIT(&tcpcbackq[cpu]);
385 	}
386 
387 	tcp_reass_maxseg = nmbclusters / 16;
388 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
389 
390 #ifdef INET6
391 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
392 #else
393 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
394 #endif
395 	if (max_protohdr < TCP_MINPROTOHDR)
396 		max_protohdr = TCP_MINPROTOHDR;
397 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
398 		panic("tcp_init");
399 #undef TCP_MINPROTOHDR
400 
401 	/*
402 	 * Initialize TCP statistics counters for each CPU.
403 	 */
404 	for (cpu = 0; cpu < ncpus; ++cpu) {
405 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
406 	}
407 
408 	syncache_init();
409 	netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
410 }
411 
412 static void
413 tcp_willblock(void)
414 {
415 	struct tcpcb *tp;
416 	int cpu = mycpu->gd_cpuid;
417 
418 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
419 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
420 		tp->t_flags &= ~TF_ONOUTPUTQ;
421 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
422 		tcp_output(tp);
423 	}
424 }
425 
426 /*
427  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
428  * tcp_template used to store this data in mbufs, but we now recopy it out
429  * of the tcpcb each time to conserve mbufs.
430  */
431 void
432 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
433 {
434 	struct inpcb *inp = tp->t_inpcb;
435 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
436 
437 #ifdef INET6
438 	if (inp->inp_vflag & INP_IPV6) {
439 		struct ip6_hdr *ip6;
440 
441 		ip6 = (struct ip6_hdr *)ip_ptr;
442 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
443 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
444 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
445 			(IPV6_VERSION & IPV6_VERSION_MASK);
446 		ip6->ip6_nxt = IPPROTO_TCP;
447 		ip6->ip6_plen = sizeof(struct tcphdr);
448 		ip6->ip6_src = inp->in6p_laddr;
449 		ip6->ip6_dst = inp->in6p_faddr;
450 		tcp_hdr->th_sum = 0;
451 	} else
452 #endif
453 	{
454 		struct ip *ip = (struct ip *) ip_ptr;
455 		u_int plen;
456 
457 		ip->ip_vhl = IP_VHL_BORING;
458 		ip->ip_tos = 0;
459 		ip->ip_len = 0;
460 		ip->ip_id = 0;
461 		ip->ip_off = 0;
462 		ip->ip_ttl = 0;
463 		ip->ip_sum = 0;
464 		ip->ip_p = IPPROTO_TCP;
465 		ip->ip_src = inp->inp_laddr;
466 		ip->ip_dst = inp->inp_faddr;
467 
468 		if (tso)
469 			plen = htons(IPPROTO_TCP);
470 		else
471 			plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
472 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
473 		    ip->ip_dst.s_addr, plen);
474 	}
475 
476 	tcp_hdr->th_sport = inp->inp_lport;
477 	tcp_hdr->th_dport = inp->inp_fport;
478 	tcp_hdr->th_seq = 0;
479 	tcp_hdr->th_ack = 0;
480 	tcp_hdr->th_x2 = 0;
481 	tcp_hdr->th_off = 5;
482 	tcp_hdr->th_flags = 0;
483 	tcp_hdr->th_win = 0;
484 	tcp_hdr->th_urp = 0;
485 }
486 
487 /*
488  * Create template to be used to send tcp packets on a connection.
489  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
490  * use for this function is in keepalives, which use tcp_respond.
491  */
492 struct tcptemp *
493 tcp_maketemplate(struct tcpcb *tp)
494 {
495 	struct tcptemp *tmp;
496 
497 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
498 		return (NULL);
499 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
500 	return (tmp);
501 }
502 
503 void
504 tcp_freetemplate(struct tcptemp *tmp)
505 {
506 	mpipe_free(&tcptemp_mpipe, tmp);
507 }
508 
509 /*
510  * Send a single message to the TCP at address specified by
511  * the given TCP/IP header.  If m == NULL, then we make a copy
512  * of the tcpiphdr at ti and send directly to the addressed host.
513  * This is used to force keep alive messages out using the TCP
514  * template for a connection.  If flags are given then we send
515  * a message back to the TCP which originated the * segment ti,
516  * and discard the mbuf containing it and any other attached mbufs.
517  *
518  * In any case the ack and sequence number of the transmitted
519  * segment are as specified by the parameters.
520  *
521  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
522  */
523 void
524 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
525 	    tcp_seq ack, tcp_seq seq, int flags)
526 {
527 	int tlen;
528 	int win = 0;
529 	struct route *ro = NULL;
530 	struct route sro;
531 	struct ip *ip = ipgen;
532 	struct tcphdr *nth;
533 	int ipflags = 0;
534 	struct route_in6 *ro6 = NULL;
535 	struct route_in6 sro6;
536 	struct ip6_hdr *ip6 = ipgen;
537 	boolean_t use_tmpro = TRUE;
538 #ifdef INET6
539 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
540 #else
541 	const boolean_t isipv6 = FALSE;
542 #endif
543 
544 	if (tp != NULL) {
545 		if (!(flags & TH_RST)) {
546 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
547 			if (win < 0)
548 				win = 0;
549 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
550 				win = (long)TCP_MAXWIN << tp->rcv_scale;
551 		}
552 		/*
553 		 * Don't use the route cache of a listen socket,
554 		 * it is not MPSAFE; use temporary route cache.
555 		 */
556 		if (tp->t_state != TCPS_LISTEN) {
557 			if (isipv6)
558 				ro6 = &tp->t_inpcb->in6p_route;
559 			else
560 				ro = &tp->t_inpcb->inp_route;
561 			use_tmpro = FALSE;
562 		}
563 	}
564 	if (use_tmpro) {
565 		if (isipv6) {
566 			ro6 = &sro6;
567 			bzero(ro6, sizeof *ro6);
568 		} else {
569 			ro = &sro;
570 			bzero(ro, sizeof *ro);
571 		}
572 	}
573 	if (m == NULL) {
574 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
575 		if (m == NULL)
576 			return;
577 		tlen = 0;
578 		m->m_data += max_linkhdr;
579 		if (isipv6) {
580 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
581 			ip6 = mtod(m, struct ip6_hdr *);
582 			nth = (struct tcphdr *)(ip6 + 1);
583 		} else {
584 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
585 			ip = mtod(m, struct ip *);
586 			nth = (struct tcphdr *)(ip + 1);
587 		}
588 		bcopy(th, nth, sizeof(struct tcphdr));
589 		flags = TH_ACK;
590 	} else {
591 		m_freem(m->m_next);
592 		m->m_next = NULL;
593 		m->m_data = (caddr_t)ipgen;
594 		/* m_len is set later */
595 		tlen = 0;
596 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
597 		if (isipv6) {
598 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
599 			nth = (struct tcphdr *)(ip6 + 1);
600 		} else {
601 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
602 			nth = (struct tcphdr *)(ip + 1);
603 		}
604 		if (th != nth) {
605 			/*
606 			 * this is usually a case when an extension header
607 			 * exists between the IPv6 header and the
608 			 * TCP header.
609 			 */
610 			nth->th_sport = th->th_sport;
611 			nth->th_dport = th->th_dport;
612 		}
613 		xchg(nth->th_dport, nth->th_sport, n_short);
614 #undef xchg
615 	}
616 	if (isipv6) {
617 		ip6->ip6_flow = 0;
618 		ip6->ip6_vfc = IPV6_VERSION;
619 		ip6->ip6_nxt = IPPROTO_TCP;
620 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
621 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
622 	} else {
623 		tlen += sizeof(struct tcpiphdr);
624 		ip->ip_len = tlen;
625 		ip->ip_ttl = ip_defttl;
626 	}
627 	m->m_len = tlen;
628 	m->m_pkthdr.len = tlen;
629 	m->m_pkthdr.rcvif = NULL;
630 	nth->th_seq = htonl(seq);
631 	nth->th_ack = htonl(ack);
632 	nth->th_x2 = 0;
633 	nth->th_off = sizeof(struct tcphdr) >> 2;
634 	nth->th_flags = flags;
635 	if (tp != NULL)
636 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
637 	else
638 		nth->th_win = htons((u_short)win);
639 	nth->th_urp = 0;
640 	if (isipv6) {
641 		nth->th_sum = 0;
642 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
643 					sizeof(struct ip6_hdr),
644 					tlen - sizeof(struct ip6_hdr));
645 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
646 					       (ro6 && ro6->ro_rt) ?
647 						ro6->ro_rt->rt_ifp : NULL);
648 	} else {
649 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
650 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
651 		m->m_pkthdr.csum_flags = CSUM_TCP;
652 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
653 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
654 	}
655 #ifdef TCPDEBUG
656 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
657 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
658 #endif
659 	if (isipv6) {
660 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
661 			   tp ? tp->t_inpcb : NULL);
662 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
663 			RTFREE(ro6->ro_rt);
664 			ro6->ro_rt = NULL;
665 		}
666 	} else {
667 		ipflags |= IP_DEBUGROUTE;
668 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
669 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
670 			RTFREE(ro->ro_rt);
671 			ro->ro_rt = NULL;
672 		}
673 	}
674 }
675 
676 /*
677  * Create a new TCP control block, making an
678  * empty reassembly queue and hooking it to the argument
679  * protocol control block.  The `inp' parameter must have
680  * come from the zone allocator set up in tcp_init().
681  */
682 struct tcpcb *
683 tcp_newtcpcb(struct inpcb *inp)
684 {
685 	struct inp_tp *it;
686 	struct tcpcb *tp;
687 #ifdef INET6
688 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
689 #else
690 	const boolean_t isipv6 = FALSE;
691 #endif
692 
693 	it = (struct inp_tp *)inp;
694 	tp = &it->tcb;
695 	bzero(tp, sizeof(struct tcpcb));
696 	TAILQ_INIT(&tp->t_segq);
697 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
698 	tp->t_rxtthresh = tcprexmtthresh;
699 
700 	/* Set up our timeouts. */
701 	tp->tt_rexmt = &it->inp_tp_rexmt;
702 	tp->tt_persist = &it->inp_tp_persist;
703 	tp->tt_keep = &it->inp_tp_keep;
704 	tp->tt_2msl = &it->inp_tp_2msl;
705 	tp->tt_delack = &it->inp_tp_delack;
706 	tcp_inittimers(tp);
707 
708 	/*
709 	 * Zero out timer message.  We don't create it here,
710 	 * since the current CPU may not be the owner of this
711 	 * inpcb.
712 	 */
713 	tp->tt_msg = &it->inp_tp_timermsg;
714 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
715 
716 	tp->t_keepinit = tcp_keepinit;
717 	tp->t_keepidle = tcp_keepidle;
718 	tp->t_keepintvl = tcp_keepintvl;
719 	tp->t_keepcnt = tcp_keepcnt;
720 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
721 
722 	if (tcp_do_ncr)
723 		tp->t_flags |= TF_NCR;
724 	if (tcp_do_rfc1323)
725 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
726 
727 	tp->t_inpcb = inp;	/* XXX */
728 	tp->t_state = TCPS_CLOSED;
729 	/*
730 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
731 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
732 	 * reasonable initial retransmit time.
733 	 */
734 	tp->t_srtt = TCPTV_SRTTBASE;
735 	tp->t_rttvar =
736 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
737 	tp->t_rttmin = tcp_rexmit_min;
738 	tp->t_rxtcur = TCPTV_RTOBASE;
739 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
740 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
741 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
742 	tp->snd_last = ticks;
743 	tp->t_rcvtime = ticks;
744 	/*
745 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
746 	 * because the socket may be bound to an IPv6 wildcard address,
747 	 * which may match an IPv4-mapped IPv6 address.
748 	 */
749 	inp->inp_ip_ttl = ip_defttl;
750 	inp->inp_ppcb = tp;
751 	tcp_sack_tcpcb_init(tp);
752 
753 	tp->tt_sndmore = &it->inp_tp_sndmore;
754 	tcp_output_init(tp);
755 
756 	return (tp);		/* XXX */
757 }
758 
759 /*
760  * Drop a TCP connection, reporting the specified error.
761  * If connection is synchronized, then send a RST to peer.
762  */
763 struct tcpcb *
764 tcp_drop(struct tcpcb *tp, int error)
765 {
766 	struct socket *so = tp->t_inpcb->inp_socket;
767 
768 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
769 		tp->t_state = TCPS_CLOSED;
770 		tcp_output(tp);
771 		tcpstat.tcps_drops++;
772 	} else
773 		tcpstat.tcps_conndrops++;
774 	if (error == ETIMEDOUT && tp->t_softerror)
775 		error = tp->t_softerror;
776 	so->so_error = error;
777 	return (tcp_close(tp));
778 }
779 
780 struct netmsg_listen_detach {
781 	struct netmsg_base	base;
782 	struct tcpcb		*nm_tp;
783 	struct tcpcb		*nm_tp_inh;
784 };
785 
786 static void
787 tcp_listen_detach_handler(netmsg_t msg)
788 {
789 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
790 	struct tcpcb *tp = nmsg->nm_tp;
791 	int cpu = mycpuid, nextcpu;
792 
793 	if (tp->t_flags & TF_LISTEN)
794 		syncache_destroy(tp, nmsg->nm_tp_inh);
795 
796 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
797 
798 	nextcpu = cpu + 1;
799 	if (nextcpu < ncpus2)
800 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
801 	else
802 		lwkt_replymsg(&nmsg->base.lmsg, 0);
803 }
804 
805 /*
806  * Close a TCP control block:
807  *	discard all space held by the tcp
808  *	discard internet protocol block
809  *	wake up any sleepers
810  */
811 struct tcpcb *
812 tcp_close(struct tcpcb *tp)
813 {
814 	struct tseg_qent *q;
815 	struct inpcb *inp = tp->t_inpcb;
816 	struct inpcb *inp_inh = NULL;
817 	struct tcpcb *tp_inh = NULL;
818 	struct socket *so = inp->inp_socket;
819 	struct rtentry *rt;
820 	boolean_t dosavessthresh;
821 #ifdef INET6
822 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
823 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
824 #else
825 	const boolean_t isipv6 = FALSE;
826 #endif
827 
828 	if (tp->t_flags & TF_LISTEN) {
829 		/*
830 		 * Pending socket/syncache inheritance
831 		 *
832 		 * If this is a listen(2) socket, find another listen(2)
833 		 * socket in the same local group, which could inherit
834 		 * the syncache and sockets pending on the completion
835 		 * and incompletion queues.
836 		 *
837 		 * NOTE:
838 		 * Currently the inheritance could only happen on the
839 		 * listen(2) sockets w/ SO_REUSEPORT set.
840 		 */
841 		KASSERT(&curthread->td_msgport == netisr_cpuport(0),
842 		    ("listen socket close not in netisr0"));
843 		inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
844 		if (inp_inh != NULL)
845 			tp_inh = intotcpcb(inp_inh);
846 	}
847 
848 	/*
849 	 * INP_WILDCARD_MP indicates that listen(2) has been called on
850 	 * this socket.  This implies:
851 	 * - A wildcard inp's hash is replicated for each protocol thread.
852 	 * - Syncache for this inp grows independently in each protocol
853 	 *   thread.
854 	 * - There is more than one cpu
855 	 *
856 	 * We have to chain a message to the rest of the protocol threads
857 	 * to cleanup the wildcard hash and the syncache.  The cleanup
858 	 * in the current protocol thread is defered till the end of this
859 	 * function.
860 	 *
861 	 * NOTE:
862 	 * After cleanup the inp's hash and syncache entries, this inp will
863 	 * no longer be available to the rest of the protocol threads, so we
864 	 * are safe to whack the inp in the following code.
865 	 */
866 	if (inp->inp_flags & INP_WILDCARD_MP) {
867 		struct netmsg_listen_detach nmsg;
868 
869 		KKASSERT(so->so_port == netisr_cpuport(0));
870 		KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
871 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
872 
873 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
874 			    MSGF_PRIORITY, tcp_listen_detach_handler);
875 		nmsg.nm_tp = tp;
876 		nmsg.nm_tp_inh = tp_inh;
877 		lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
878 
879 		inp->inp_flags &= ~INP_WILDCARD_MP;
880 	}
881 
882 	KKASSERT(tp->t_state != TCPS_TERMINATING);
883 	tp->t_state = TCPS_TERMINATING;
884 
885 	/*
886 	 * Make sure that all of our timers are stopped before we
887 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
888 	 * timers are never used.  If timer message is never created
889 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
890 	 */
891 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
892 		tcp_callout_stop(tp, tp->tt_rexmt);
893 		tcp_callout_stop(tp, tp->tt_persist);
894 		tcp_callout_stop(tp, tp->tt_keep);
895 		tcp_callout_stop(tp, tp->tt_2msl);
896 		tcp_callout_stop(tp, tp->tt_delack);
897 	}
898 
899 	if (tp->t_flags & TF_ONOUTPUTQ) {
900 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
901 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
902 		tp->t_flags &= ~TF_ONOUTPUTQ;
903 	}
904 
905 	/*
906 	 * If we got enough samples through the srtt filter,
907 	 * save the rtt and rttvar in the routing entry.
908 	 * 'Enough' is arbitrarily defined as the 16 samples.
909 	 * 16 samples is enough for the srtt filter to converge
910 	 * to within 5% of the correct value; fewer samples and
911 	 * we could save a very bogus rtt.
912 	 *
913 	 * Don't update the default route's characteristics and don't
914 	 * update anything that the user "locked".
915 	 */
916 	if (tp->t_rttupdated >= 16) {
917 		u_long i = 0;
918 
919 		if (isipv6) {
920 			struct sockaddr_in6 *sin6;
921 
922 			if ((rt = inp->in6p_route.ro_rt) == NULL)
923 				goto no_valid_rt;
924 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
925 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
926 				goto no_valid_rt;
927 		} else
928 			if ((rt = inp->inp_route.ro_rt) == NULL ||
929 			    ((struct sockaddr_in *)rt_key(rt))->
930 			     sin_addr.s_addr == INADDR_ANY)
931 				goto no_valid_rt;
932 
933 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
934 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
935 			if (rt->rt_rmx.rmx_rtt && i)
936 				/*
937 				 * filter this update to half the old & half
938 				 * the new values, converting scale.
939 				 * See route.h and tcp_var.h for a
940 				 * description of the scaling constants.
941 				 */
942 				rt->rt_rmx.rmx_rtt =
943 				    (rt->rt_rmx.rmx_rtt + i) / 2;
944 			else
945 				rt->rt_rmx.rmx_rtt = i;
946 			tcpstat.tcps_cachedrtt++;
947 		}
948 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
949 			i = tp->t_rttvar *
950 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
951 			if (rt->rt_rmx.rmx_rttvar && i)
952 				rt->rt_rmx.rmx_rttvar =
953 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
954 			else
955 				rt->rt_rmx.rmx_rttvar = i;
956 			tcpstat.tcps_cachedrttvar++;
957 		}
958 		/*
959 		 * The old comment here said:
960 		 * update the pipelimit (ssthresh) if it has been updated
961 		 * already or if a pipesize was specified & the threshhold
962 		 * got below half the pipesize.  I.e., wait for bad news
963 		 * before we start updating, then update on both good
964 		 * and bad news.
965 		 *
966 		 * But we want to save the ssthresh even if no pipesize is
967 		 * specified explicitly in the route, because such
968 		 * connections still have an implicit pipesize specified
969 		 * by the global tcp_sendspace.  In the absence of a reliable
970 		 * way to calculate the pipesize, it will have to do.
971 		 */
972 		i = tp->snd_ssthresh;
973 		if (rt->rt_rmx.rmx_sendpipe != 0)
974 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
975 		else
976 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
977 		if (dosavessthresh ||
978 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
979 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
980 			/*
981 			 * convert the limit from user data bytes to
982 			 * packets then to packet data bytes.
983 			 */
984 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
985 			if (i < 2)
986 				i = 2;
987 			i *= tp->t_maxseg +
988 			     (isipv6 ?
989 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
990 			      sizeof(struct tcpiphdr));
991 			if (rt->rt_rmx.rmx_ssthresh)
992 				rt->rt_rmx.rmx_ssthresh =
993 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
994 			else
995 				rt->rt_rmx.rmx_ssthresh = i;
996 			tcpstat.tcps_cachedssthresh++;
997 		}
998 	}
999 
1000 no_valid_rt:
1001 	/* free the reassembly queue, if any */
1002 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
1003 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
1004 		m_freem(q->tqe_m);
1005 		kfree(q, M_TSEGQ);
1006 		atomic_add_int(&tcp_reass_qsize, -1);
1007 	}
1008 	/* throw away SACK blocks in scoreboard*/
1009 	if (TCP_DO_SACK(tp))
1010 		tcp_sack_destroy(&tp->scb);
1011 
1012 	inp->inp_ppcb = NULL;
1013 	soisdisconnected(so);
1014 	/* note: pcb detached later on */
1015 
1016 	tcp_destroy_timermsg(tp);
1017 	tcp_output_cancel(tp);
1018 
1019 	if (tp->t_flags & TF_LISTEN) {
1020 		syncache_destroy(tp, tp_inh);
1021 		if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
1022 			/*
1023 			 * Pending sockets inheritance only needs
1024 			 * to be done once in the current thread,
1025 			 * i.e. netisr0.
1026 			 */
1027 			soinherit(so, inp_inh->inp_socket);
1028 		}
1029 	}
1030 
1031 	so_async_rcvd_drop(so);
1032 	/* Drop the reference for the asynchronized pru_rcvd */
1033 	sofree(so);
1034 
1035 	/*
1036 	 * NOTE:
1037 	 * pcbdetach removes any wildcard hash entry on the current CPU.
1038 	 */
1039 #ifdef INET6
1040 	if (isafinet6)
1041 		in6_pcbdetach(inp);
1042 	else
1043 #endif
1044 		in_pcbdetach(inp);
1045 
1046 	tcpstat.tcps_closed++;
1047 	return (NULL);
1048 }
1049 
1050 static __inline void
1051 tcp_drain_oncpu(struct inpcbhead *head)
1052 {
1053 	struct inpcb *marker;
1054 	struct inpcb *inpb;
1055 	struct tcpcb *tcpb;
1056 	struct tseg_qent *te;
1057 
1058 	/*
1059 	 * Allows us to block while running the list
1060 	 */
1061 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1062 	marker->inp_flags |= INP_PLACEMARKER;
1063 	LIST_INSERT_HEAD(head, marker, inp_list);
1064 
1065 	while ((inpb = LIST_NEXT(marker, inp_list)) != NULL) {
1066 		if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1067 		    (tcpb = intotcpcb(inpb)) != NULL &&
1068 		    (te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1069 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1070 			if (te->tqe_th->th_flags & TH_FIN)
1071 				tcpb->t_flags &= ~TF_QUEDFIN;
1072 			m_freem(te->tqe_m);
1073 			kfree(te, M_TSEGQ);
1074 			atomic_add_int(&tcp_reass_qsize, -1);
1075 			/* retry */
1076 		} else {
1077 			LIST_REMOVE(marker, inp_list);
1078 			LIST_INSERT_AFTER(inpb, marker, inp_list);
1079 		}
1080 	}
1081 	LIST_REMOVE(marker, inp_list);
1082 	kfree(marker, M_TEMP);
1083 }
1084 
1085 struct netmsg_tcp_drain {
1086 	struct netmsg_base	base;
1087 	struct inpcbhead	*nm_head;
1088 };
1089 
1090 static void
1091 tcp_drain_handler(netmsg_t msg)
1092 {
1093 	struct netmsg_tcp_drain *nm = (void *)msg;
1094 
1095 	tcp_drain_oncpu(nm->nm_head);
1096 	lwkt_replymsg(&nm->base.lmsg, 0);
1097 }
1098 
1099 void
1100 tcp_drain(void)
1101 {
1102 	int cpu;
1103 
1104 	if (!do_tcpdrain)
1105 		return;
1106 
1107 	/*
1108 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1109 	 * if there is one...
1110 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1111 	 *	reassembly queue should be flushed, but in a situation
1112 	 *	where we're really low on mbufs, this is potentially
1113 	 *	useful.
1114 	 */
1115 	for (cpu = 0; cpu < ncpus2; cpu++) {
1116 		struct netmsg_tcp_drain *nm;
1117 
1118 		if (cpu == mycpu->gd_cpuid) {
1119 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1120 		} else {
1121 			nm = kmalloc(sizeof(struct netmsg_tcp_drain),
1122 				     M_LWKTMSG, M_NOWAIT);
1123 			if (nm == NULL)
1124 				continue;
1125 			netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1126 				    0, tcp_drain_handler);
1127 			nm->nm_head = &tcbinfo[cpu].pcblisthead;
1128 			lwkt_sendmsg(netisr_cpuport(cpu), &nm->base.lmsg);
1129 		}
1130 	}
1131 }
1132 
1133 /*
1134  * Notify a tcp user of an asynchronous error;
1135  * store error as soft error, but wake up user
1136  * (for now, won't do anything until can select for soft error).
1137  *
1138  * Do not wake up user since there currently is no mechanism for
1139  * reporting soft errors (yet - a kqueue filter may be added).
1140  */
1141 static void
1142 tcp_notify(struct inpcb *inp, int error)
1143 {
1144 	struct tcpcb *tp = intotcpcb(inp);
1145 
1146 	/*
1147 	 * Ignore some errors if we are hooked up.
1148 	 * If connection hasn't completed, has retransmitted several times,
1149 	 * and receives a second error, give up now.  This is better
1150 	 * than waiting a long time to establish a connection that
1151 	 * can never complete.
1152 	 */
1153 	if (tp->t_state == TCPS_ESTABLISHED &&
1154 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1155 	      error == EHOSTDOWN)) {
1156 		return;
1157 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1158 	    tp->t_softerror)
1159 		tcp_drop(tp, error);
1160 	else
1161 		tp->t_softerror = error;
1162 #if 0
1163 	wakeup(&so->so_timeo);
1164 	sorwakeup(so);
1165 	sowwakeup(so);
1166 #endif
1167 }
1168 
1169 static int
1170 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1171 {
1172 	int error, i, n;
1173 	struct inpcb *marker;
1174 	struct inpcb *inp;
1175 	globaldata_t gd;
1176 	int origcpu, ccpu;
1177 
1178 	error = 0;
1179 	n = 0;
1180 
1181 	/*
1182 	 * The process of preparing the TCB list is too time-consuming and
1183 	 * resource-intensive to repeat twice on every request.
1184 	 */
1185 	if (req->oldptr == NULL) {
1186 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1187 			gd = globaldata_find(ccpu);
1188 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1189 		}
1190 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1191 		return (0);
1192 	}
1193 
1194 	if (req->newptr != NULL)
1195 		return (EPERM);
1196 
1197 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1198 	marker->inp_flags |= INP_PLACEMARKER;
1199 
1200 	/*
1201 	 * OK, now we're committed to doing something.  Run the inpcb list
1202 	 * for each cpu in the system and construct the output.  Use a
1203 	 * list placemarker to deal with list changes occuring during
1204 	 * copyout blockages (but otherwise depend on being on the correct
1205 	 * cpu to avoid races).
1206 	 */
1207 	origcpu = mycpu->gd_cpuid;
1208 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1209 		globaldata_t rgd;
1210 		caddr_t inp_ppcb;
1211 		struct xtcpcb xt;
1212 		int cpu_id;
1213 
1214 		cpu_id = (origcpu + ccpu) % ncpus;
1215 		if ((smp_active_mask & CPUMASK(cpu_id)) == 0)
1216 			continue;
1217 		rgd = globaldata_find(cpu_id);
1218 		lwkt_setcpu_self(rgd);
1219 
1220 		n = tcbinfo[cpu_id].ipi_count;
1221 
1222 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1223 		i = 0;
1224 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1225 			/*
1226 			 * process a snapshot of pcbs, ignoring placemarkers
1227 			 * and using our own to allow SYSCTL_OUT to block.
1228 			 */
1229 			LIST_REMOVE(marker, inp_list);
1230 			LIST_INSERT_AFTER(inp, marker, inp_list);
1231 
1232 			if (inp->inp_flags & INP_PLACEMARKER)
1233 				continue;
1234 			if (prison_xinpcb(req->td, inp))
1235 				continue;
1236 
1237 			xt.xt_len = sizeof xt;
1238 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1239 			inp_ppcb = inp->inp_ppcb;
1240 			if (inp_ppcb != NULL)
1241 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1242 			else
1243 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1244 			if (inp->inp_socket)
1245 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1246 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1247 				break;
1248 			++i;
1249 		}
1250 		LIST_REMOVE(marker, inp_list);
1251 		if (error == 0 && i < n) {
1252 			bzero(&xt, sizeof xt);
1253 			xt.xt_len = sizeof xt;
1254 			while (i < n) {
1255 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1256 				if (error)
1257 					break;
1258 				++i;
1259 			}
1260 		}
1261 	}
1262 
1263 	/*
1264 	 * Make sure we are on the same cpu we were on originally, since
1265 	 * higher level callers expect this.  Also don't pollute caches with
1266 	 * migrated userland data by (eventually) returning to userland
1267 	 * on a different cpu.
1268 	 */
1269 	lwkt_setcpu_self(globaldata_find(origcpu));
1270 	kfree(marker, M_TEMP);
1271 	return (error);
1272 }
1273 
1274 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1275 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1276 
1277 static int
1278 tcp_getcred(SYSCTL_HANDLER_ARGS)
1279 {
1280 	struct sockaddr_in addrs[2];
1281 	struct inpcb *inp;
1282 	int cpu;
1283 	int error;
1284 
1285 	error = priv_check(req->td, PRIV_ROOT);
1286 	if (error != 0)
1287 		return (error);
1288 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1289 	if (error != 0)
1290 		return (error);
1291 	crit_enter();
1292 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1293 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1294 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1295 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1296 	if (inp == NULL || inp->inp_socket == NULL) {
1297 		error = ENOENT;
1298 		goto out;
1299 	}
1300 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1301 out:
1302 	crit_exit();
1303 	return (error);
1304 }
1305 
1306 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1307     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1308 
1309 #ifdef INET6
1310 static int
1311 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1312 {
1313 	struct sockaddr_in6 addrs[2];
1314 	struct inpcb *inp;
1315 	int error;
1316 	boolean_t mapped = FALSE;
1317 
1318 	error = priv_check(req->td, PRIV_ROOT);
1319 	if (error != 0)
1320 		return (error);
1321 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1322 	if (error != 0)
1323 		return (error);
1324 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1325 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1326 			mapped = TRUE;
1327 		else
1328 			return (EINVAL);
1329 	}
1330 	crit_enter();
1331 	if (mapped) {
1332 		inp = in_pcblookup_hash(&tcbinfo[0],
1333 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1334 		    addrs[1].sin6_port,
1335 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1336 		    addrs[0].sin6_port,
1337 		    0, NULL);
1338 	} else {
1339 		inp = in6_pcblookup_hash(&tcbinfo[0],
1340 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1341 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1342 		    0, NULL);
1343 	}
1344 	if (inp == NULL || inp->inp_socket == NULL) {
1345 		error = ENOENT;
1346 		goto out;
1347 	}
1348 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1349 out:
1350 	crit_exit();
1351 	return (error);
1352 }
1353 
1354 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1355 	    0, 0,
1356 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1357 #endif
1358 
1359 struct netmsg_tcp_notify {
1360 	struct netmsg_base base;
1361 	void		(*nm_notify)(struct inpcb *, int);
1362 	struct in_addr	nm_faddr;
1363 	int		nm_arg;
1364 };
1365 
1366 static void
1367 tcp_notifyall_oncpu(netmsg_t msg)
1368 {
1369 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1370 	int nextcpu;
1371 
1372 	in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nm->nm_faddr,
1373 			nm->nm_arg, nm->nm_notify);
1374 
1375 	nextcpu = mycpuid + 1;
1376 	if (nextcpu < ncpus2)
1377 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1378 	else
1379 		lwkt_replymsg(&nm->base.lmsg, 0);
1380 }
1381 
1382 void
1383 tcp_ctlinput(netmsg_t msg)
1384 {
1385 	int cmd = msg->ctlinput.nm_cmd;
1386 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1387 	struct ip *ip = msg->ctlinput.nm_extra;
1388 	struct tcphdr *th;
1389 	struct in_addr faddr;
1390 	struct inpcb *inp;
1391 	struct tcpcb *tp;
1392 	void (*notify)(struct inpcb *, int) = tcp_notify;
1393 	tcp_seq icmpseq;
1394 	int arg, cpu;
1395 
1396 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1397 		goto done;
1398 	}
1399 
1400 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1401 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1402 		goto done;
1403 
1404 	arg = inetctlerrmap[cmd];
1405 	if (cmd == PRC_QUENCH) {
1406 		notify = tcp_quench;
1407 	} else if (icmp_may_rst &&
1408 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1409 		    cmd == PRC_UNREACH_PORT ||
1410 		    cmd == PRC_TIMXCEED_INTRANS) &&
1411 		   ip != NULL) {
1412 		notify = tcp_drop_syn_sent;
1413 	} else if (cmd == PRC_MSGSIZE) {
1414 		struct icmp *icmp = (struct icmp *)
1415 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1416 
1417 		arg = ntohs(icmp->icmp_nextmtu);
1418 		notify = tcp_mtudisc;
1419 	} else if (PRC_IS_REDIRECT(cmd)) {
1420 		ip = NULL;
1421 		notify = in_rtchange;
1422 	} else if (cmd == PRC_HOSTDEAD) {
1423 		ip = NULL;
1424 	}
1425 
1426 	if (ip != NULL) {
1427 		crit_enter();
1428 		th = (struct tcphdr *)((caddr_t)ip +
1429 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1430 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1431 				  ip->ip_src.s_addr, th->th_sport);
1432 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1433 					ip->ip_src, th->th_sport, 0, NULL);
1434 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1435 			icmpseq = htonl(th->th_seq);
1436 			tp = intotcpcb(inp);
1437 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1438 			    SEQ_LT(icmpseq, tp->snd_max))
1439 				(*notify)(inp, arg);
1440 		} else {
1441 			struct in_conninfo inc;
1442 
1443 			inc.inc_fport = th->th_dport;
1444 			inc.inc_lport = th->th_sport;
1445 			inc.inc_faddr = faddr;
1446 			inc.inc_laddr = ip->ip_src;
1447 #ifdef INET6
1448 			inc.inc_isipv6 = 0;
1449 #endif
1450 			syncache_unreach(&inc, th);
1451 		}
1452 		crit_exit();
1453 	} else {
1454 		struct netmsg_tcp_notify *nm;
1455 
1456 		KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
1457 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1458 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1459 			    0, tcp_notifyall_oncpu);
1460 		nm->nm_faddr = faddr;
1461 		nm->nm_arg = arg;
1462 		nm->nm_notify = notify;
1463 
1464 		lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1465 	}
1466 done:
1467 	lwkt_replymsg(&msg->lmsg, 0);
1468 }
1469 
1470 #ifdef INET6
1471 
1472 void
1473 tcp6_ctlinput(netmsg_t msg)
1474 {
1475 	int cmd = msg->ctlinput.nm_cmd;
1476 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1477 	void *d = msg->ctlinput.nm_extra;
1478 	struct tcphdr th;
1479 	void (*notify) (struct inpcb *, int) = tcp_notify;
1480 	struct ip6_hdr *ip6;
1481 	struct mbuf *m;
1482 	struct ip6ctlparam *ip6cp = NULL;
1483 	const struct sockaddr_in6 *sa6_src = NULL;
1484 	int off;
1485 	struct tcp_portonly {
1486 		u_int16_t th_sport;
1487 		u_int16_t th_dport;
1488 	} *thp;
1489 	int arg;
1490 
1491 	if (sa->sa_family != AF_INET6 ||
1492 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1493 		goto out;
1494 	}
1495 
1496 	arg = 0;
1497 	if (cmd == PRC_QUENCH)
1498 		notify = tcp_quench;
1499 	else if (cmd == PRC_MSGSIZE) {
1500 		struct ip6ctlparam *ip6cp = d;
1501 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1502 
1503 		arg = ntohl(icmp6->icmp6_mtu);
1504 		notify = tcp_mtudisc;
1505 	} else if (!PRC_IS_REDIRECT(cmd) &&
1506 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1507 		goto out;
1508 	}
1509 
1510 	/* if the parameter is from icmp6, decode it. */
1511 	if (d != NULL) {
1512 		ip6cp = (struct ip6ctlparam *)d;
1513 		m = ip6cp->ip6c_m;
1514 		ip6 = ip6cp->ip6c_ip6;
1515 		off = ip6cp->ip6c_off;
1516 		sa6_src = ip6cp->ip6c_src;
1517 	} else {
1518 		m = NULL;
1519 		ip6 = NULL;
1520 		off = 0;	/* fool gcc */
1521 		sa6_src = &sa6_any;
1522 	}
1523 
1524 	if (ip6 != NULL) {
1525 		struct in_conninfo inc;
1526 		/*
1527 		 * XXX: We assume that when IPV6 is non NULL,
1528 		 * M and OFF are valid.
1529 		 */
1530 
1531 		/* check if we can safely examine src and dst ports */
1532 		if (m->m_pkthdr.len < off + sizeof *thp)
1533 			goto out;
1534 
1535 		bzero(&th, sizeof th);
1536 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1537 
1538 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1539 		    (struct sockaddr *)ip6cp->ip6c_src,
1540 		    th.th_sport, cmd, arg, notify);
1541 
1542 		inc.inc_fport = th.th_dport;
1543 		inc.inc_lport = th.th_sport;
1544 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1545 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1546 		inc.inc_isipv6 = 1;
1547 		syncache_unreach(&inc, &th);
1548 	} else {
1549 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1550 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1551 	}
1552 out:
1553 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1554 }
1555 
1556 #endif
1557 
1558 /*
1559  * Following is where TCP initial sequence number generation occurs.
1560  *
1561  * There are two places where we must use initial sequence numbers:
1562  * 1.  In SYN-ACK packets.
1563  * 2.  In SYN packets.
1564  *
1565  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1566  * tcp_syncache.c for details.
1567  *
1568  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1569  * depends on this property.  In addition, these ISNs should be
1570  * unguessable so as to prevent connection hijacking.  To satisfy
1571  * the requirements of this situation, the algorithm outlined in
1572  * RFC 1948 is used to generate sequence numbers.
1573  *
1574  * Implementation details:
1575  *
1576  * Time is based off the system timer, and is corrected so that it
1577  * increases by one megabyte per second.  This allows for proper
1578  * recycling on high speed LANs while still leaving over an hour
1579  * before rollover.
1580  *
1581  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1582  * between seeding of isn_secret.  This is normally set to zero,
1583  * as reseeding should not be necessary.
1584  *
1585  */
1586 
1587 #define	ISN_BYTES_PER_SECOND 1048576
1588 
1589 u_char isn_secret[32];
1590 int isn_last_reseed;
1591 MD5_CTX isn_ctx;
1592 
1593 tcp_seq
1594 tcp_new_isn(struct tcpcb *tp)
1595 {
1596 	u_int32_t md5_buffer[4];
1597 	tcp_seq new_isn;
1598 
1599 	/* Seed if this is the first use, reseed if requested. */
1600 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1601 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1602 		< (u_int)ticks))) {
1603 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1604 		isn_last_reseed = ticks;
1605 	}
1606 
1607 	/* Compute the md5 hash and return the ISN. */
1608 	MD5Init(&isn_ctx);
1609 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1610 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1611 #ifdef INET6
1612 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1613 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1614 			  sizeof(struct in6_addr));
1615 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1616 			  sizeof(struct in6_addr));
1617 	} else
1618 #endif
1619 	{
1620 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1621 			  sizeof(struct in_addr));
1622 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1623 			  sizeof(struct in_addr));
1624 	}
1625 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1626 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1627 	new_isn = (tcp_seq) md5_buffer[0];
1628 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1629 	return (new_isn);
1630 }
1631 
1632 /*
1633  * When a source quench is received, close congestion window
1634  * to one segment.  We will gradually open it again as we proceed.
1635  */
1636 void
1637 tcp_quench(struct inpcb *inp, int error)
1638 {
1639 	struct tcpcb *tp = intotcpcb(inp);
1640 
1641 	if (tp != NULL) {
1642 		tp->snd_cwnd = tp->t_maxseg;
1643 		tp->snd_wacked = 0;
1644 	}
1645 }
1646 
1647 /*
1648  * When a specific ICMP unreachable message is received and the
1649  * connection state is SYN-SENT, drop the connection.  This behavior
1650  * is controlled by the icmp_may_rst sysctl.
1651  */
1652 void
1653 tcp_drop_syn_sent(struct inpcb *inp, int error)
1654 {
1655 	struct tcpcb *tp = intotcpcb(inp);
1656 
1657 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1658 		tcp_drop(tp, error);
1659 }
1660 
1661 /*
1662  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1663  * based on the new value in the route.  Also nudge TCP to send something,
1664  * since we know the packet we just sent was dropped.
1665  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1666  */
1667 void
1668 tcp_mtudisc(struct inpcb *inp, int mtu)
1669 {
1670 	struct tcpcb *tp = intotcpcb(inp);
1671 	struct rtentry *rt;
1672 	struct socket *so = inp->inp_socket;
1673 	int maxopd, mss;
1674 #ifdef INET6
1675 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1676 #else
1677 	const boolean_t isipv6 = FALSE;
1678 #endif
1679 
1680 	if (tp == NULL)
1681 		return;
1682 
1683 	/*
1684 	 * If no MTU is provided in the ICMP message, use the
1685 	 * next lower likely value, as specified in RFC 1191.
1686 	 */
1687 	if (mtu == 0) {
1688 		int oldmtu;
1689 
1690 		oldmtu = tp->t_maxopd +
1691 		    (isipv6 ?
1692 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1693 		     sizeof(struct tcpiphdr));
1694 		mtu = ip_next_mtu(oldmtu, 0);
1695 	}
1696 
1697 	if (isipv6)
1698 		rt = tcp_rtlookup6(&inp->inp_inc);
1699 	else
1700 		rt = tcp_rtlookup(&inp->inp_inc);
1701 	if (rt != NULL) {
1702 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1703 			mtu = rt->rt_rmx.rmx_mtu;
1704 
1705 		maxopd = mtu -
1706 		    (isipv6 ?
1707 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1708 		     sizeof(struct tcpiphdr));
1709 
1710 		/*
1711 		 * XXX - The following conditional probably violates the TCP
1712 		 * spec.  The problem is that, since we don't know the
1713 		 * other end's MSS, we are supposed to use a conservative
1714 		 * default.  But, if we do that, then MTU discovery will
1715 		 * never actually take place, because the conservative
1716 		 * default is much less than the MTUs typically seen
1717 		 * on the Internet today.  For the moment, we'll sweep
1718 		 * this under the carpet.
1719 		 *
1720 		 * The conservative default might not actually be a problem
1721 		 * if the only case this occurs is when sending an initial
1722 		 * SYN with options and data to a host we've never talked
1723 		 * to before.  Then, they will reply with an MSS value which
1724 		 * will get recorded and the new parameters should get
1725 		 * recomputed.  For Further Study.
1726 		 */
1727 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1728 			maxopd = rt->rt_rmx.rmx_mssopt;
1729 	} else
1730 		maxopd = mtu -
1731 		    (isipv6 ?
1732 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1733 		     sizeof(struct tcpiphdr));
1734 
1735 	if (tp->t_maxopd <= maxopd)
1736 		return;
1737 	tp->t_maxopd = maxopd;
1738 
1739 	mss = maxopd;
1740 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1741 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1742 		mss -= TCPOLEN_TSTAMP_APPA;
1743 
1744 	/* round down to multiple of MCLBYTES */
1745 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1746 	if (mss > MCLBYTES)
1747 		mss &= ~(MCLBYTES - 1);
1748 #else
1749 	if (mss > MCLBYTES)
1750 		mss = (mss / MCLBYTES) * MCLBYTES;
1751 #endif
1752 
1753 	if (so->so_snd.ssb_hiwat < mss)
1754 		mss = so->so_snd.ssb_hiwat;
1755 
1756 	tp->t_maxseg = mss;
1757 	tp->t_rtttime = 0;
1758 	tp->snd_nxt = tp->snd_una;
1759 	tcp_output(tp);
1760 	tcpstat.tcps_mturesent++;
1761 }
1762 
1763 /*
1764  * Look-up the routing entry to the peer of this inpcb.  If no route
1765  * is found and it cannot be allocated the return NULL.  This routine
1766  * is called by TCP routines that access the rmx structure and by tcp_mss
1767  * to get the interface MTU.
1768  */
1769 struct rtentry *
1770 tcp_rtlookup(struct in_conninfo *inc)
1771 {
1772 	struct route *ro = &inc->inc_route;
1773 
1774 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1775 		/* No route yet, so try to acquire one */
1776 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1777 			/*
1778 			 * unused portions of the structure MUST be zero'd
1779 			 * out because rtalloc() treats it as opaque data
1780 			 */
1781 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1782 			ro->ro_dst.sa_family = AF_INET;
1783 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1784 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1785 			    inc->inc_faddr;
1786 			rtalloc(ro);
1787 		}
1788 	}
1789 	return (ro->ro_rt);
1790 }
1791 
1792 #ifdef INET6
1793 struct rtentry *
1794 tcp_rtlookup6(struct in_conninfo *inc)
1795 {
1796 	struct route_in6 *ro6 = &inc->inc6_route;
1797 
1798 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1799 		/* No route yet, so try to acquire one */
1800 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1801 			/*
1802 			 * unused portions of the structure MUST be zero'd
1803 			 * out because rtalloc() treats it as opaque data
1804 			 */
1805 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1806 			ro6->ro_dst.sin6_family = AF_INET6;
1807 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1808 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1809 			rtalloc((struct route *)ro6);
1810 		}
1811 	}
1812 	return (ro6->ro_rt);
1813 }
1814 #endif
1815 
1816 #ifdef IPSEC
1817 /* compute ESP/AH header size for TCP, including outer IP header. */
1818 size_t
1819 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1820 {
1821 	struct inpcb *inp;
1822 	struct mbuf *m;
1823 	size_t hdrsiz;
1824 	struct ip *ip;
1825 	struct tcphdr *th;
1826 
1827 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1828 		return (0);
1829 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1830 	if (!m)
1831 		return (0);
1832 
1833 #ifdef INET6
1834 	if (inp->inp_vflag & INP_IPV6) {
1835 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1836 
1837 		th = (struct tcphdr *)(ip6 + 1);
1838 		m->m_pkthdr.len = m->m_len =
1839 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1840 		tcp_fillheaders(tp, ip6, th, FALSE);
1841 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1842 	} else
1843 #endif
1844 	{
1845 		ip = mtod(m, struct ip *);
1846 		th = (struct tcphdr *)(ip + 1);
1847 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1848 		tcp_fillheaders(tp, ip, th, FALSE);
1849 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1850 	}
1851 
1852 	m_free(m);
1853 	return (hdrsiz);
1854 }
1855 #endif
1856 
1857 /*
1858  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1859  *
1860  * This code attempts to calculate the bandwidth-delay product as a
1861  * means of determining the optimal window size to maximize bandwidth,
1862  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1863  * routers.  This code also does a fairly good job keeping RTTs in check
1864  * across slow links like modems.  We implement an algorithm which is very
1865  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1866  * transmitter side of a TCP connection and so only effects the transmit
1867  * side of the connection.
1868  *
1869  * BACKGROUND:  TCP makes no provision for the management of buffer space
1870  * at the end points or at the intermediate routers and switches.  A TCP
1871  * stream, whether using NewReno or not, will eventually buffer as
1872  * many packets as it is able and the only reason this typically works is
1873  * due to the fairly small default buffers made available for a connection
1874  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1875  * scaling it is now fairly easy for even a single TCP connection to blow-out
1876  * all available buffer space not only on the local interface, but on
1877  * intermediate routers and switches as well.  NewReno makes a misguided
1878  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1879  * then backing off, then steadily increasing the window again until another
1880  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1881  * is only made worse as network loads increase and the idea of intentionally
1882  * blowing out network buffers is, frankly, a terrible way to manage network
1883  * resources.
1884  *
1885  * It is far better to limit the transmit window prior to the failure
1886  * condition being achieved.  There are two general ways to do this:  First
1887  * you can 'scan' through different transmit window sizes and locate the
1888  * point where the RTT stops increasing, indicating that you have filled the
1889  * pipe, then scan backwards until you note that RTT stops decreasing, then
1890  * repeat ad-infinitum.  This method works in principle but has severe
1891  * implementation issues due to RTT variances, timer granularity, and
1892  * instability in the algorithm which can lead to many false positives and
1893  * create oscillations as well as interact badly with other TCP streams
1894  * implementing the same algorithm.
1895  *
1896  * The second method is to limit the window to the bandwidth delay product
1897  * of the link.  This is the method we implement.  RTT variances and our
1898  * own manipulation of the congestion window, bwnd, can potentially
1899  * destabilize the algorithm.  For this reason we have to stabilize the
1900  * elements used to calculate the window.  We do this by using the minimum
1901  * observed RTT, the long term average of the observed bandwidth, and
1902  * by adding two segments worth of slop.  It isn't perfect but it is able
1903  * to react to changing conditions and gives us a very stable basis on
1904  * which to extend the algorithm.
1905  */
1906 void
1907 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1908 {
1909 	u_long bw;
1910 	u_long bwnd;
1911 	int save_ticks;
1912 	int delta_ticks;
1913 
1914 	/*
1915 	 * If inflight_enable is disabled in the middle of a tcp connection,
1916 	 * make sure snd_bwnd is effectively disabled.
1917 	 */
1918 	if (!tcp_inflight_enable) {
1919 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1920 		tp->snd_bandwidth = 0;
1921 		return;
1922 	}
1923 
1924 	/*
1925 	 * Validate the delta time.  If a connection is new or has been idle
1926 	 * a long time we have to reset the bandwidth calculator.
1927 	 */
1928 	save_ticks = ticks;
1929 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1930 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1931 		tp->t_bw_rtttime = ticks;
1932 		tp->t_bw_rtseq = ack_seq;
1933 		if (tp->snd_bandwidth == 0)
1934 			tp->snd_bandwidth = tcp_inflight_min;
1935 		return;
1936 	}
1937 	if (delta_ticks == 0)
1938 		return;
1939 
1940 	/*
1941 	 * Sanity check, plus ignore pure window update acks.
1942 	 */
1943 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1944 		return;
1945 
1946 	/*
1947 	 * Figure out the bandwidth.  Due to the tick granularity this
1948 	 * is a very rough number and it MUST be averaged over a fairly
1949 	 * long period of time.  XXX we need to take into account a link
1950 	 * that is not using all available bandwidth, but for now our
1951 	 * slop will ramp us up if this case occurs and the bandwidth later
1952 	 * increases.
1953 	 */
1954 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1955 	tp->t_bw_rtttime = save_ticks;
1956 	tp->t_bw_rtseq = ack_seq;
1957 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1958 
1959 	tp->snd_bandwidth = bw;
1960 
1961 	/*
1962 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1963 	 * segments.  The additional slop puts us squarely in the sweet
1964 	 * spot and also handles the bandwidth run-up case.  Without the
1965 	 * slop we could be locking ourselves into a lower bandwidth.
1966 	 *
1967 	 * Situations Handled:
1968 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1969 	 *	    high speed LANs, allowing larger TCP buffers to be
1970 	 *	    specified, and also does a good job preventing
1971 	 *	    over-queueing of packets over choke points like modems
1972 	 *	    (at least for the transmit side).
1973 	 *
1974 	 *	(2) Is able to handle changing network loads (bandwidth
1975 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1976 	 *	    increases).
1977 	 *
1978 	 *	(3) Theoretically should stabilize in the face of multiple
1979 	 *	    connections implementing the same algorithm (this may need
1980 	 *	    a little work).
1981 	 *
1982 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1983 	 *	    be adjusted with a sysctl but typically only needs to be on
1984 	 *	    very slow connections.  A value no smaller then 5 should
1985 	 *	    be used, but only reduce this default if you have no other
1986 	 *	    choice.
1987 	 */
1988 
1989 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1990 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1991 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1992 #undef USERTT
1993 
1994 	if (tcp_inflight_debug > 0) {
1995 		static int ltime;
1996 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1997 			ltime = ticks;
1998 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1999 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
2000 		}
2001 	}
2002 	if ((long)bwnd < tcp_inflight_min)
2003 		bwnd = tcp_inflight_min;
2004 	if (bwnd > tcp_inflight_max)
2005 		bwnd = tcp_inflight_max;
2006 	if ((long)bwnd < tp->t_maxseg * 2)
2007 		bwnd = tp->t_maxseg * 2;
2008 	tp->snd_bwnd = bwnd;
2009 }
2010 
2011 static void
2012 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
2013 {
2014 	struct rtentry *rt;
2015 	struct inpcb *inp = tp->t_inpcb;
2016 #ifdef INET6
2017 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2018 #else
2019 	const boolean_t isipv6 = FALSE;
2020 #endif
2021 
2022 	/* XXX */
2023 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2024 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2025 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2026 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2027 
2028 	if (isipv6)
2029 		rt = tcp_rtlookup6(&inp->inp_inc);
2030 	else
2031 		rt = tcp_rtlookup(&inp->inp_inc);
2032 	if (rt == NULL ||
2033 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2034 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2035 		*maxsegs = tcp_iw_maxsegs;
2036 		*capsegs = tcp_iw_capsegs;
2037 		return;
2038 	}
2039 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2040 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2041 }
2042 
2043 u_long
2044 tcp_initial_window(struct tcpcb *tp)
2045 {
2046 	if (tcp_do_rfc3390) {
2047 		/*
2048 		 * RFC3390:
2049 		 * "If the SYN or SYN/ACK is lost, the initial window
2050 		 *  used by a sender after a correctly transmitted SYN
2051 		 *  MUST be one segment consisting of MSS bytes."
2052 		 *
2053 		 * However, we do something a little bit more aggressive
2054 		 * then RFC3390 here:
2055 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2056 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2057 		 *   because when RFC3390 is published, the initial RTO is
2058 		 *   still 3 seconds (the threshold we test here), while
2059 		 *   after RFC6298, the initial RTO is 1 second.  This
2060 		 *   behaviour probably still falls within the spirit of
2061 		 *   RFC3390.
2062 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2063 		 *   Mainly to avoid sender and receiver deadlock until
2064 		 *   delayed ACK timer expires.  And even RFC2581 does not
2065 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2066 		 *   timeout.
2067 		 *
2068 		 * See also:
2069 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2070 		 */
2071 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2072 			return (2 * tp->t_maxseg);
2073 		} else {
2074 			u_long maxsegs, capsegs;
2075 
2076 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2077 			return min(maxsegs * tp->t_maxseg,
2078 				   max(2 * tp->t_maxseg, capsegs * 1460));
2079 		}
2080 	} else {
2081 		/*
2082 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2083 		 *
2084 		 * Mainly to avoid sender and receiver deadlock
2085 		 * until delayed ACK timer expires.
2086 		 */
2087 		return (2 * tp->t_maxseg);
2088 	}
2089 }
2090 
2091 #ifdef TCP_SIGNATURE
2092 /*
2093  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2094  *
2095  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2096  * When called from tcp_input(), we can be sure that th_sum has been
2097  * zeroed out and verified already.
2098  *
2099  * Return 0 if successful, otherwise return -1.
2100  *
2101  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2102  * search with the destination IP address, and a 'magic SPI' to be
2103  * determined by the application. This is hardcoded elsewhere to 1179
2104  * right now. Another branch of this code exists which uses the SPD to
2105  * specify per-application flows but it is unstable.
2106  */
2107 int
2108 tcpsignature_compute(
2109 	struct mbuf *m,		/* mbuf chain */
2110 	int len,		/* length of TCP data */
2111 	int optlen,		/* length of TCP options */
2112 	u_char *buf,		/* storage for MD5 digest */
2113 	u_int direction)	/* direction of flow */
2114 {
2115 	struct ippseudo ippseudo;
2116 	MD5_CTX ctx;
2117 	int doff;
2118 	struct ip *ip;
2119 	struct ipovly *ipovly;
2120 	struct secasvar *sav;
2121 	struct tcphdr *th;
2122 #ifdef INET6
2123 	struct ip6_hdr *ip6;
2124 	struct in6_addr in6;
2125 	uint32_t plen;
2126 	uint16_t nhdr;
2127 #endif /* INET6 */
2128 	u_short savecsum;
2129 
2130 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2131 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2132 	/*
2133 	 * Extract the destination from the IP header in the mbuf.
2134 	 */
2135 	ip = mtod(m, struct ip *);
2136 #ifdef INET6
2137 	ip6 = NULL;     /* Make the compiler happy. */
2138 #endif /* INET6 */
2139 	/*
2140 	 * Look up an SADB entry which matches the address found in
2141 	 * the segment.
2142 	 */
2143 	switch (IP_VHL_V(ip->ip_vhl)) {
2144 	case IPVERSION:
2145 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2146 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2147 		break;
2148 #ifdef INET6
2149 	case (IPV6_VERSION >> 4):
2150 		ip6 = mtod(m, struct ip6_hdr *);
2151 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2152 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2153 		break;
2154 #endif /* INET6 */
2155 	default:
2156 		return (EINVAL);
2157 		/* NOTREACHED */
2158 		break;
2159 	}
2160 	if (sav == NULL) {
2161 		kprintf("%s: SADB lookup failed\n", __func__);
2162 		return (EINVAL);
2163 	}
2164 	MD5Init(&ctx);
2165 
2166 	/*
2167 	 * Step 1: Update MD5 hash with IP pseudo-header.
2168 	 *
2169 	 * XXX The ippseudo header MUST be digested in network byte order,
2170 	 * or else we'll fail the regression test. Assume all fields we've
2171 	 * been doing arithmetic on have been in host byte order.
2172 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2173 	 * tcp_output(), the underlying ip_len member has not yet been set.
2174 	 */
2175 	switch (IP_VHL_V(ip->ip_vhl)) {
2176 	case IPVERSION:
2177 		ipovly = (struct ipovly *)ip;
2178 		ippseudo.ippseudo_src = ipovly->ih_src;
2179 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2180 		ippseudo.ippseudo_pad = 0;
2181 		ippseudo.ippseudo_p = IPPROTO_TCP;
2182 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2183 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2184 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2185 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2186 		break;
2187 #ifdef INET6
2188 	/*
2189 	 * RFC 2385, 2.0  Proposal
2190 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2191 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2192 	 * extended next header value (to form 32 bits), and 32-bit segment
2193 	 * length.
2194 	 * Note: Upper-Layer Packet Length comes before Next Header.
2195 	 */
2196 	case (IPV6_VERSION >> 4):
2197 		in6 = ip6->ip6_src;
2198 		in6_clearscope(&in6);
2199 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2200 		in6 = ip6->ip6_dst;
2201 		in6_clearscope(&in6);
2202 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2203 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2204 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2205 		nhdr = 0;
2206 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2207 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2208 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2209 		nhdr = IPPROTO_TCP;
2210 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2211 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2212 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2213 		break;
2214 #endif /* INET6 */
2215 	default:
2216 		return (EINVAL);
2217 		/* NOTREACHED */
2218 		break;
2219 	}
2220 	/*
2221 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2222 	 * The TCP checksum must be set to zero.
2223 	 */
2224 	savecsum = th->th_sum;
2225 	th->th_sum = 0;
2226 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2227 	th->th_sum = savecsum;
2228 	/*
2229 	 * Step 3: Update MD5 hash with TCP segment data.
2230 	 *         Use m_apply() to avoid an early m_pullup().
2231 	 */
2232 	if (len > 0)
2233 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2234 	/*
2235 	 * Step 4: Update MD5 hash with shared secret.
2236 	 */
2237 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2238 	MD5Final(buf, &ctx);
2239 	key_sa_recordxfer(sav, m);
2240 	key_freesav(sav);
2241 	return (0);
2242 }
2243 
2244 int
2245 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2246 {
2247 
2248 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2249 	return (0);
2250 }
2251 #endif /* TCP_SIGNATURE */
2252