xref: /dflybsd-src/sys/netinet/tcp_subr.c (revision 45be1c61ffc4ced70f698da62c2f88fe6792f339)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
63  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
64  */
65 
66 #include "opt_compat.h"
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 #include "opt_tcpdebug.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/malloc.h>
78 #include <sys/mpipe.h>
79 #include <sys/mbuf.h>
80 #ifdef INET6
81 #include <sys/domain.h>
82 #endif
83 #include <sys/proc.h>
84 #include <sys/priv.h>
85 #include <sys/socket.h>
86 #include <sys/socketops.h>
87 #include <sys/socketvar.h>
88 #include <sys/protosw.h>
89 #include <sys/random.h>
90 #include <sys/in_cksum.h>
91 #include <sys/ktr.h>
92 
93 #include <net/route.h>
94 #include <net/if.h>
95 #include <net/netisr2.h>
96 
97 #define	_IP_VHL
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/ip6.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet6/in6_pcb.h>
104 #include <netinet/in_var.h>
105 #include <netinet/ip_var.h>
106 #include <netinet6/ip6_var.h>
107 #include <netinet/ip_icmp.h>
108 #ifdef INET6
109 #include <netinet/icmp6.h>
110 #endif
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
118 #include <netinet/tcpip.h>
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 #endif
122 #include <netinet6/ip6protosw.h>
123 
124 #ifdef IPSEC
125 #include <netinet6/ipsec.h>
126 #include <netproto/key/key.h>
127 #ifdef INET6
128 #include <netinet6/ipsec6.h>
129 #endif
130 #endif
131 
132 #ifdef FAST_IPSEC
133 #include <netproto/ipsec/ipsec.h>
134 #ifdef INET6
135 #include <netproto/ipsec/ipsec6.h>
136 #endif
137 #define	IPSEC
138 #endif
139 
140 #include <sys/md5.h>
141 #include <machine/smp.h>
142 
143 #include <sys/msgport2.h>
144 #include <sys/mplock2.h>
145 #include <net/netmsg2.h>
146 
147 #if !defined(KTR_TCP)
148 #define KTR_TCP		KTR_ALL
149 #endif
150 /*
151 KTR_INFO_MASTER(tcp);
152 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
153 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
154 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
155 #define logtcp(name)	KTR_LOG(tcp_ ## name)
156 */
157 
158 #define TCP_IW_MAXSEGS_DFLT	4
159 #define TCP_IW_CAPSEGS_DFLT	3
160 
161 struct inpcbinfo tcbinfo[MAXCPU];
162 struct tcpcbackqhead tcpcbackq[MAXCPU];
163 
164 int tcp_mssdflt = TCP_MSS;
165 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
166     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
167 
168 #ifdef INET6
169 int tcp_v6mssdflt = TCP6_MSS;
170 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
171     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
172 #endif
173 
174 /*
175  * Minimum MSS we accept and use. This prevents DoS attacks where
176  * we are forced to a ridiculous low MSS like 20 and send hundreds
177  * of packets instead of one. The effect scales with the available
178  * bandwidth and quickly saturates the CPU and network interface
179  * with packet generation and sending. Set to zero to disable MINMSS
180  * checking. This setting prevents us from sending too small packets.
181  */
182 int tcp_minmss = TCP_MINMSS;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
184     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
185 
186 #if 0
187 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
188 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
189     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
190 #endif
191 
192 int tcp_do_rfc1323 = 1;
193 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
194     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
195 
196 static int tcp_tcbhashsize = 0;
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
198      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
199 
200 static int do_tcpdrain = 1;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
202      "Enable tcp_drain routine for extra help when low on mbufs");
203 
204 static int icmp_may_rst = 1;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
206     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
207 
208 static int tcp_isn_reseed_interval = 0;
209 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
210     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
211 
212 /*
213  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
214  * by default, but with generous values which should allow maximal
215  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
216  *
217  * The reason for doing this is that the limiter is the only mechanism we
218  * have which seems to do a really good job preventing receiver RX rings
219  * on network interfaces from getting blown out.  Even though GigE/10GigE
220  * is supposed to flow control it looks like either it doesn't actually
221  * do it or Open Source drivers do not properly enable it.
222  *
223  * People using the limiter to reduce bottlenecks on slower WAN connections
224  * should set the slop to 20 (2 packets).
225  */
226 static int tcp_inflight_enable = 1;
227 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
228     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
229 
230 static int tcp_inflight_debug = 0;
231 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
232     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
233 
234 static int tcp_inflight_min = 6144;
235 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
236     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
237 
238 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
239 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
240     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
241 
242 static int tcp_inflight_stab = 50;
243 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
244     &tcp_inflight_stab, 0, "Fudge bw 1/10% (50=5%)");
245 
246 static int tcp_inflight_adjrtt = 2;
247 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_adjrtt, CTLFLAG_RW,
248     &tcp_inflight_adjrtt, 0, "Slop for rtt 1/(hz*32)");
249 
250 static int tcp_do_rfc3390 = 1;
251 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
252     &tcp_do_rfc3390, 0,
253     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
254 
255 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
256 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
257     &tcp_iw_maxsegs, 0, "TCP IW segments max");
258 
259 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
260 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
261     &tcp_iw_capsegs, 0, "TCP IW segments");
262 
263 int tcp_low_rtobase = 1;
264 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
265     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
266 
267 static int tcp_do_ncr = 1;
268 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
269     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
270 
271 int tcp_ncr_rxtthresh_max = 16;
272 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr_rxtthresh_max, CTLFLAG_RW,
273     &tcp_ncr_rxtthresh_max, 0,
274     "Non-Congestion Robustness (RFC 4653), DupThresh upper limit");
275 
276 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
277 static struct malloc_pipe tcptemp_mpipe;
278 
279 static void tcp_willblock(void);
280 static void tcp_notify (struct inpcb *, int);
281 
282 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
283 
284 static int
285 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
286 {
287 	int cpu, error = 0;
288 
289 	for (cpu = 0; cpu < ncpus2; ++cpu) {
290 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
291 					sizeof(struct tcp_stats))))
292 			break;
293 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
294 				       sizeof(struct tcp_stats))))
295 			break;
296 	}
297 
298 	return (error);
299 }
300 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
301     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
302 
303 /*
304  * Target size of TCP PCB hash tables. Must be a power of two.
305  *
306  * Note that this can be overridden by the kernel environment
307  * variable net.inet.tcp.tcbhashsize
308  */
309 #ifndef TCBHASHSIZE
310 #define	TCBHASHSIZE	512
311 #endif
312 
313 /*
314  * This is the actual shape of what we allocate using the zone
315  * allocator.  Doing it this way allows us to protect both structures
316  * using the same generation count, and also eliminates the overhead
317  * of allocating tcpcbs separately.  By hiding the structure here,
318  * we avoid changing most of the rest of the code (although it needs
319  * to be changed, eventually, for greater efficiency).
320  */
321 #define	ALIGNMENT	32
322 #define	ALIGNM1		(ALIGNMENT - 1)
323 struct	inp_tp {
324 	union {
325 		struct	inpcb inp;
326 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
327 	} inp_tp_u;
328 	struct	tcpcb tcb;
329 	struct	tcp_callout inp_tp_rexmt;
330 	struct	tcp_callout inp_tp_persist;
331 	struct	tcp_callout inp_tp_keep;
332 	struct	tcp_callout inp_tp_2msl;
333 	struct	tcp_callout inp_tp_delack;
334 	struct	netmsg_tcp_timer inp_tp_timermsg;
335 	struct	netmsg_base inp_tp_sndmore;
336 };
337 #undef ALIGNMENT
338 #undef ALIGNM1
339 
340 /*
341  * Tcp initialization
342  */
343 void
344 tcp_init(void)
345 {
346 	struct inpcbportinfo *portinfo;
347 	struct inpcbinfo *ticb;
348 	int hashsize = TCBHASHSIZE;
349 	int cpu;
350 
351 	/*
352 	 * note: tcptemp is used for keepalives, and it is ok for an
353 	 * allocation to fail so do not specify MPF_INT.
354 	 */
355 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
356 		    25, -1, 0, NULL, NULL, NULL);
357 
358 	tcp_delacktime = TCPTV_DELACK;
359 	tcp_keepinit = TCPTV_KEEP_INIT;
360 	tcp_keepidle = TCPTV_KEEP_IDLE;
361 	tcp_keepintvl = TCPTV_KEEPINTVL;
362 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
363 	tcp_msl = TCPTV_MSL;
364 	tcp_rexmit_min = TCPTV_MIN;
365 	tcp_rexmit_slop = TCPTV_CPU_VAR;
366 
367 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
368 	if (!powerof2(hashsize)) {
369 		kprintf("WARNING: TCB hash size not a power of 2\n");
370 		hashsize = 512; /* safe default */
371 	}
372 	tcp_tcbhashsize = hashsize;
373 
374 	portinfo = kmalloc_cachealign(sizeof(*portinfo) * ncpus2, M_PCB,
375 	    M_WAITOK);
376 
377 	for (cpu = 0; cpu < ncpus2; cpu++) {
378 		ticb = &tcbinfo[cpu];
379 		in_pcbinfo_init(ticb);
380 		ticb->cpu = cpu;
381 		ticb->hashbase = hashinit(hashsize, M_PCB,
382 					  &ticb->hashmask);
383 		in_pcbportinfo_init(&portinfo[cpu], hashsize, TRUE, cpu);
384 		ticb->portinfo = portinfo;
385 		ticb->portinfo_mask = ncpus2_mask;
386 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
387 						  &ticb->wildcardhashmask);
388 		ticb->localgrphashbase = hashinit(hashsize, M_PCB,
389 						  &ticb->localgrphashmask);
390 		ticb->ipi_size = sizeof(struct inp_tp);
391 		TAILQ_INIT(&tcpcbackq[cpu]);
392 	}
393 
394 	tcp_reass_maxseg = nmbclusters / 16;
395 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
396 
397 #ifdef INET6
398 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
399 #else
400 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
401 #endif
402 	if (max_protohdr < TCP_MINPROTOHDR)
403 		max_protohdr = TCP_MINPROTOHDR;
404 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
405 		panic("tcp_init");
406 #undef TCP_MINPROTOHDR
407 
408 	/*
409 	 * Initialize TCP statistics counters for each CPU.
410 	 */
411 	for (cpu = 0; cpu < ncpus2; ++cpu)
412 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
413 
414 	syncache_init();
415 	netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
416 }
417 
418 static void
419 tcp_willblock(void)
420 {
421 	struct tcpcb *tp;
422 	int cpu = mycpu->gd_cpuid;
423 
424 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
425 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
426 		tp->t_flags &= ~TF_ONOUTPUTQ;
427 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
428 		tcp_output(tp);
429 	}
430 }
431 
432 /*
433  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
434  * tcp_template used to store this data in mbufs, but we now recopy it out
435  * of the tcpcb each time to conserve mbufs.
436  */
437 void
438 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
439 {
440 	struct inpcb *inp = tp->t_inpcb;
441 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
442 
443 #ifdef INET6
444 	if (inp->inp_vflag & INP_IPV6) {
445 		struct ip6_hdr *ip6;
446 
447 		ip6 = (struct ip6_hdr *)ip_ptr;
448 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
449 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
450 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
451 			(IPV6_VERSION & IPV6_VERSION_MASK);
452 		ip6->ip6_nxt = IPPROTO_TCP;
453 		ip6->ip6_plen = sizeof(struct tcphdr);
454 		ip6->ip6_src = inp->in6p_laddr;
455 		ip6->ip6_dst = inp->in6p_faddr;
456 		tcp_hdr->th_sum = 0;
457 	} else
458 #endif
459 	{
460 		struct ip *ip = (struct ip *) ip_ptr;
461 		u_int plen;
462 
463 		ip->ip_vhl = IP_VHL_BORING;
464 		ip->ip_tos = 0;
465 		ip->ip_len = 0;
466 		ip->ip_id = 0;
467 		ip->ip_off = 0;
468 		ip->ip_ttl = 0;
469 		ip->ip_sum = 0;
470 		ip->ip_p = IPPROTO_TCP;
471 		ip->ip_src = inp->inp_laddr;
472 		ip->ip_dst = inp->inp_faddr;
473 
474 		if (tso)
475 			plen = htons(IPPROTO_TCP);
476 		else
477 			plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
478 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
479 		    ip->ip_dst.s_addr, plen);
480 	}
481 
482 	tcp_hdr->th_sport = inp->inp_lport;
483 	tcp_hdr->th_dport = inp->inp_fport;
484 	tcp_hdr->th_seq = 0;
485 	tcp_hdr->th_ack = 0;
486 	tcp_hdr->th_x2 = 0;
487 	tcp_hdr->th_off = 5;
488 	tcp_hdr->th_flags = 0;
489 	tcp_hdr->th_win = 0;
490 	tcp_hdr->th_urp = 0;
491 }
492 
493 /*
494  * Create template to be used to send tcp packets on a connection.
495  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
496  * use for this function is in keepalives, which use tcp_respond.
497  */
498 struct tcptemp *
499 tcp_maketemplate(struct tcpcb *tp)
500 {
501 	struct tcptemp *tmp;
502 
503 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
504 		return (NULL);
505 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
506 	return (tmp);
507 }
508 
509 void
510 tcp_freetemplate(struct tcptemp *tmp)
511 {
512 	mpipe_free(&tcptemp_mpipe, tmp);
513 }
514 
515 /*
516  * Send a single message to the TCP at address specified by
517  * the given TCP/IP header.  If m == NULL, then we make a copy
518  * of the tcpiphdr at ti and send directly to the addressed host.
519  * This is used to force keep alive messages out using the TCP
520  * template for a connection.  If flags are given then we send
521  * a message back to the TCP which originated the * segment ti,
522  * and discard the mbuf containing it and any other attached mbufs.
523  *
524  * In any case the ack and sequence number of the transmitted
525  * segment are as specified by the parameters.
526  *
527  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
528  */
529 void
530 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
531 	    tcp_seq ack, tcp_seq seq, int flags)
532 {
533 	int tlen;
534 	long win = 0;
535 	struct route *ro = NULL;
536 	struct route sro;
537 	struct ip *ip = ipgen;
538 	struct tcphdr *nth;
539 	int ipflags = 0;
540 	struct route_in6 *ro6 = NULL;
541 	struct route_in6 sro6;
542 	struct ip6_hdr *ip6 = ipgen;
543 	boolean_t use_tmpro = TRUE;
544 #ifdef INET6
545 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
546 #else
547 	const boolean_t isipv6 = FALSE;
548 #endif
549 
550 	if (tp != NULL) {
551 		if (!(flags & TH_RST)) {
552 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
553 			if (win < 0)
554 				win = 0;
555 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
556 				win = (long)TCP_MAXWIN << tp->rcv_scale;
557 		}
558 		/*
559 		 * Don't use the route cache of a listen socket,
560 		 * it is not MPSAFE; use temporary route cache.
561 		 */
562 		if (tp->t_state != TCPS_LISTEN) {
563 			if (isipv6)
564 				ro6 = &tp->t_inpcb->in6p_route;
565 			else
566 				ro = &tp->t_inpcb->inp_route;
567 			use_tmpro = FALSE;
568 		}
569 	}
570 	if (use_tmpro) {
571 		if (isipv6) {
572 			ro6 = &sro6;
573 			bzero(ro6, sizeof *ro6);
574 		} else {
575 			ro = &sro;
576 			bzero(ro, sizeof *ro);
577 		}
578 	}
579 	if (m == NULL) {
580 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
581 		if (m == NULL)
582 			return;
583 		tlen = 0;
584 		m->m_data += max_linkhdr;
585 		if (isipv6) {
586 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
587 			ip6 = mtod(m, struct ip6_hdr *);
588 			nth = (struct tcphdr *)(ip6 + 1);
589 		} else {
590 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
591 			ip = mtod(m, struct ip *);
592 			nth = (struct tcphdr *)(ip + 1);
593 		}
594 		bcopy(th, nth, sizeof(struct tcphdr));
595 		flags = TH_ACK;
596 	} else {
597 		m_freem(m->m_next);
598 		m->m_next = NULL;
599 		m->m_data = (caddr_t)ipgen;
600 		/* m_len is set later */
601 		tlen = 0;
602 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
603 		if (isipv6) {
604 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
605 			nth = (struct tcphdr *)(ip6 + 1);
606 		} else {
607 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
608 			nth = (struct tcphdr *)(ip + 1);
609 		}
610 		if (th != nth) {
611 			/*
612 			 * this is usually a case when an extension header
613 			 * exists between the IPv6 header and the
614 			 * TCP header.
615 			 */
616 			nth->th_sport = th->th_sport;
617 			nth->th_dport = th->th_dport;
618 		}
619 		xchg(nth->th_dport, nth->th_sport, n_short);
620 #undef xchg
621 	}
622 	if (isipv6) {
623 		ip6->ip6_flow = 0;
624 		ip6->ip6_vfc = IPV6_VERSION;
625 		ip6->ip6_nxt = IPPROTO_TCP;
626 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
627 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
628 	} else {
629 		tlen += sizeof(struct tcpiphdr);
630 		ip->ip_len = tlen;
631 		ip->ip_ttl = ip_defttl;
632 	}
633 	m->m_len = tlen;
634 	m->m_pkthdr.len = tlen;
635 	m->m_pkthdr.rcvif = NULL;
636 	nth->th_seq = htonl(seq);
637 	nth->th_ack = htonl(ack);
638 	nth->th_x2 = 0;
639 	nth->th_off = sizeof(struct tcphdr) >> 2;
640 	nth->th_flags = flags;
641 	if (tp != NULL)
642 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
643 	else
644 		nth->th_win = htons((u_short)win);
645 	nth->th_urp = 0;
646 	if (isipv6) {
647 		nth->th_sum = 0;
648 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
649 					sizeof(struct ip6_hdr),
650 					tlen - sizeof(struct ip6_hdr));
651 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
652 					       (ro6 && ro6->ro_rt) ?
653 						ro6->ro_rt->rt_ifp : NULL);
654 	} else {
655 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
656 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
657 		m->m_pkthdr.csum_flags = CSUM_TCP;
658 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
659 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
660 	}
661 #ifdef TCPDEBUG
662 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
663 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
664 #endif
665 	if (isipv6) {
666 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
667 			   tp ? tp->t_inpcb : NULL);
668 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
669 			RTFREE(ro6->ro_rt);
670 			ro6->ro_rt = NULL;
671 		}
672 	} else {
673 		ipflags |= IP_DEBUGROUTE;
674 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
675 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
676 			RTFREE(ro->ro_rt);
677 			ro->ro_rt = NULL;
678 		}
679 	}
680 }
681 
682 /*
683  * Create a new TCP control block, making an
684  * empty reassembly queue and hooking it to the argument
685  * protocol control block.  The `inp' parameter must have
686  * come from the zone allocator set up in tcp_init().
687  */
688 struct tcpcb *
689 tcp_newtcpcb(struct inpcb *inp)
690 {
691 	struct inp_tp *it;
692 	struct tcpcb *tp;
693 #ifdef INET6
694 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
695 #else
696 	const boolean_t isipv6 = FALSE;
697 #endif
698 
699 	it = (struct inp_tp *)inp;
700 	tp = &it->tcb;
701 	bzero(tp, sizeof(struct tcpcb));
702 	TAILQ_INIT(&tp->t_segq);
703 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
704 	tp->t_rxtthresh = tcprexmtthresh;
705 
706 	/* Set up our timeouts. */
707 	tp->tt_rexmt = &it->inp_tp_rexmt;
708 	tp->tt_persist = &it->inp_tp_persist;
709 	tp->tt_keep = &it->inp_tp_keep;
710 	tp->tt_2msl = &it->inp_tp_2msl;
711 	tp->tt_delack = &it->inp_tp_delack;
712 	tcp_inittimers(tp);
713 
714 	/*
715 	 * Zero out timer message.  We don't create it here,
716 	 * since the current CPU may not be the owner of this
717 	 * inpcb.
718 	 */
719 	tp->tt_msg = &it->inp_tp_timermsg;
720 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
721 
722 	tp->t_keepinit = tcp_keepinit;
723 	tp->t_keepidle = tcp_keepidle;
724 	tp->t_keepintvl = tcp_keepintvl;
725 	tp->t_keepcnt = tcp_keepcnt;
726 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
727 
728 	if (tcp_do_ncr)
729 		tp->t_flags |= TF_NCR;
730 	if (tcp_do_rfc1323)
731 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
732 
733 	tp->t_inpcb = inp;	/* XXX */
734 	tp->t_state = TCPS_CLOSED;
735 	/*
736 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
737 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
738 	 * reasonable initial retransmit time.
739 	 */
740 	tp->t_srtt = TCPTV_SRTTBASE;
741 	tp->t_rttvar =
742 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
743 	tp->t_rttmin = tcp_rexmit_min;
744 	tp->t_rxtcur = TCPTV_RTOBASE;
745 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
746 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
747 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
748 	tp->snd_last = ticks;
749 	tp->t_rcvtime = ticks;
750 	/*
751 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
752 	 * because the socket may be bound to an IPv6 wildcard address,
753 	 * which may match an IPv4-mapped IPv6 address.
754 	 */
755 	inp->inp_ip_ttl = ip_defttl;
756 	inp->inp_ppcb = tp;
757 	tcp_sack_tcpcb_init(tp);
758 
759 	tp->tt_sndmore = &it->inp_tp_sndmore;
760 	tcp_output_init(tp);
761 
762 	return (tp);		/* XXX */
763 }
764 
765 /*
766  * Drop a TCP connection, reporting the specified error.
767  * If connection is synchronized, then send a RST to peer.
768  */
769 struct tcpcb *
770 tcp_drop(struct tcpcb *tp, int error)
771 {
772 	struct socket *so = tp->t_inpcb->inp_socket;
773 
774 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
775 		tp->t_state = TCPS_CLOSED;
776 		tcp_output(tp);
777 		tcpstat.tcps_drops++;
778 	} else
779 		tcpstat.tcps_conndrops++;
780 	if (error == ETIMEDOUT && tp->t_softerror)
781 		error = tp->t_softerror;
782 	so->so_error = error;
783 	return (tcp_close(tp));
784 }
785 
786 struct netmsg_listen_detach {
787 	struct netmsg_base	base;
788 	struct tcpcb		*nm_tp;
789 	struct tcpcb		*nm_tp_inh;
790 };
791 
792 static void
793 tcp_listen_detach_handler(netmsg_t msg)
794 {
795 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
796 	struct tcpcb *tp = nmsg->nm_tp;
797 	int cpu = mycpuid, nextcpu;
798 
799 	if (tp->t_flags & TF_LISTEN)
800 		syncache_destroy(tp, nmsg->nm_tp_inh);
801 
802 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
803 
804 	nextcpu = cpu + 1;
805 	if (nextcpu < ncpus2)
806 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
807 	else
808 		lwkt_replymsg(&nmsg->base.lmsg, 0);
809 }
810 
811 /*
812  * Close a TCP control block:
813  *	discard all space held by the tcp
814  *	discard internet protocol block
815  *	wake up any sleepers
816  */
817 struct tcpcb *
818 tcp_close(struct tcpcb *tp)
819 {
820 	struct tseg_qent *q;
821 	struct inpcb *inp = tp->t_inpcb;
822 	struct inpcb *inp_inh = NULL;
823 	struct tcpcb *tp_inh = NULL;
824 	struct socket *so = inp->inp_socket;
825 	struct rtentry *rt;
826 	boolean_t dosavessthresh;
827 #ifdef INET6
828 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
829 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
830 #else
831 	const boolean_t isipv6 = FALSE;
832 #endif
833 
834 	if (tp->t_flags & TF_LISTEN) {
835 		/*
836 		 * Pending socket/syncache inheritance
837 		 *
838 		 * If this is a listen(2) socket, find another listen(2)
839 		 * socket in the same local group, which could inherit
840 		 * the syncache and sockets pending on the completion
841 		 * and incompletion queues.
842 		 *
843 		 * NOTE:
844 		 * Currently the inheritance could only happen on the
845 		 * listen(2) sockets w/ SO_REUSEPORT set.
846 		 */
847 		KASSERT(&curthread->td_msgport == netisr_cpuport(0),
848 		    ("listen socket close not in netisr0"));
849 		inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
850 		if (inp_inh != NULL)
851 			tp_inh = intotcpcb(inp_inh);
852 	}
853 
854 	/*
855 	 * INP_WILDCARD_MP indicates that listen(2) has been called on
856 	 * this socket.  This implies:
857 	 * - A wildcard inp's hash is replicated for each protocol thread.
858 	 * - Syncache for this inp grows independently in each protocol
859 	 *   thread.
860 	 * - There is more than one cpu
861 	 *
862 	 * We have to chain a message to the rest of the protocol threads
863 	 * to cleanup the wildcard hash and the syncache.  The cleanup
864 	 * in the current protocol thread is defered till the end of this
865 	 * function.
866 	 *
867 	 * NOTE:
868 	 * After cleanup the inp's hash and syncache entries, this inp will
869 	 * no longer be available to the rest of the protocol threads, so we
870 	 * are safe to whack the inp in the following code.
871 	 */
872 	if (inp->inp_flags & INP_WILDCARD_MP) {
873 		struct netmsg_listen_detach nmsg;
874 
875 		KKASSERT(so->so_port == netisr_cpuport(0));
876 		KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
877 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
878 
879 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
880 			    MSGF_PRIORITY, tcp_listen_detach_handler);
881 		nmsg.nm_tp = tp;
882 		nmsg.nm_tp_inh = tp_inh;
883 		lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
884 
885 		inp->inp_flags &= ~INP_WILDCARD_MP;
886 	}
887 
888 	KKASSERT(tp->t_state != TCPS_TERMINATING);
889 	tp->t_state = TCPS_TERMINATING;
890 
891 	/*
892 	 * Make sure that all of our timers are stopped before we
893 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
894 	 * timers are never used.  If timer message is never created
895 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
896 	 */
897 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
898 		tcp_callout_stop(tp, tp->tt_rexmt);
899 		tcp_callout_stop(tp, tp->tt_persist);
900 		tcp_callout_stop(tp, tp->tt_keep);
901 		tcp_callout_stop(tp, tp->tt_2msl);
902 		tcp_callout_stop(tp, tp->tt_delack);
903 	}
904 
905 	if (tp->t_flags & TF_ONOUTPUTQ) {
906 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
907 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
908 		tp->t_flags &= ~TF_ONOUTPUTQ;
909 	}
910 
911 	/*
912 	 * If we got enough samples through the srtt filter,
913 	 * save the rtt and rttvar in the routing entry.
914 	 * 'Enough' is arbitrarily defined as the 16 samples.
915 	 * 16 samples is enough for the srtt filter to converge
916 	 * to within 5% of the correct value; fewer samples and
917 	 * we could save a very bogus rtt.
918 	 *
919 	 * Don't update the default route's characteristics and don't
920 	 * update anything that the user "locked".
921 	 */
922 	if (tp->t_rttupdated >= 16) {
923 		u_long i = 0;
924 
925 		if (isipv6) {
926 			struct sockaddr_in6 *sin6;
927 
928 			if ((rt = inp->in6p_route.ro_rt) == NULL)
929 				goto no_valid_rt;
930 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
931 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
932 				goto no_valid_rt;
933 		} else
934 			if ((rt = inp->inp_route.ro_rt) == NULL ||
935 			    ((struct sockaddr_in *)rt_key(rt))->
936 			     sin_addr.s_addr == INADDR_ANY)
937 				goto no_valid_rt;
938 
939 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
940 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
941 			if (rt->rt_rmx.rmx_rtt && i)
942 				/*
943 				 * filter this update to half the old & half
944 				 * the new values, converting scale.
945 				 * See route.h and tcp_var.h for a
946 				 * description of the scaling constants.
947 				 */
948 				rt->rt_rmx.rmx_rtt =
949 				    (rt->rt_rmx.rmx_rtt + i) / 2;
950 			else
951 				rt->rt_rmx.rmx_rtt = i;
952 			tcpstat.tcps_cachedrtt++;
953 		}
954 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
955 			i = tp->t_rttvar *
956 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
957 			if (rt->rt_rmx.rmx_rttvar && i)
958 				rt->rt_rmx.rmx_rttvar =
959 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
960 			else
961 				rt->rt_rmx.rmx_rttvar = i;
962 			tcpstat.tcps_cachedrttvar++;
963 		}
964 		/*
965 		 * The old comment here said:
966 		 * update the pipelimit (ssthresh) if it has been updated
967 		 * already or if a pipesize was specified & the threshhold
968 		 * got below half the pipesize.  I.e., wait for bad news
969 		 * before we start updating, then update on both good
970 		 * and bad news.
971 		 *
972 		 * But we want to save the ssthresh even if no pipesize is
973 		 * specified explicitly in the route, because such
974 		 * connections still have an implicit pipesize specified
975 		 * by the global tcp_sendspace.  In the absence of a reliable
976 		 * way to calculate the pipesize, it will have to do.
977 		 */
978 		i = tp->snd_ssthresh;
979 		if (rt->rt_rmx.rmx_sendpipe != 0)
980 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
981 		else
982 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
983 		if (dosavessthresh ||
984 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
985 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
986 			/*
987 			 * convert the limit from user data bytes to
988 			 * packets then to packet data bytes.
989 			 */
990 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
991 			if (i < 2)
992 				i = 2;
993 			i *= tp->t_maxseg +
994 			     (isipv6 ?
995 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
996 			      sizeof(struct tcpiphdr));
997 			if (rt->rt_rmx.rmx_ssthresh)
998 				rt->rt_rmx.rmx_ssthresh =
999 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1000 			else
1001 				rt->rt_rmx.rmx_ssthresh = i;
1002 			tcpstat.tcps_cachedssthresh++;
1003 		}
1004 	}
1005 
1006 no_valid_rt:
1007 	/* free the reassembly queue, if any */
1008 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
1009 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
1010 		m_freem(q->tqe_m);
1011 		kfree(q, M_TSEGQ);
1012 		atomic_add_int(&tcp_reass_qsize, -1);
1013 	}
1014 	/* throw away SACK blocks in scoreboard*/
1015 	if (TCP_DO_SACK(tp))
1016 		tcp_sack_destroy(&tp->scb);
1017 
1018 	inp->inp_ppcb = NULL;
1019 	soisdisconnected(so);
1020 	/* note: pcb detached later on */
1021 
1022 	tcp_destroy_timermsg(tp);
1023 	tcp_output_cancel(tp);
1024 
1025 	if (tp->t_flags & TF_LISTEN) {
1026 		syncache_destroy(tp, tp_inh);
1027 		if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
1028 			/*
1029 			 * Pending sockets inheritance only needs
1030 			 * to be done once in the current thread,
1031 			 * i.e. netisr0.
1032 			 */
1033 			soinherit(so, inp_inh->inp_socket);
1034 		}
1035 	}
1036 
1037 	so_async_rcvd_drop(so);
1038 	/* Drop the reference for the asynchronized pru_rcvd */
1039 	sofree(so);
1040 
1041 	/*
1042 	 * NOTE:
1043 	 * pcbdetach removes any wildcard hash entry on the current CPU.
1044 	 */
1045 #ifdef INET6
1046 	if (isafinet6)
1047 		in6_pcbdetach(inp);
1048 	else
1049 #endif
1050 		in_pcbdetach(inp);
1051 
1052 	tcpstat.tcps_closed++;
1053 	return (NULL);
1054 }
1055 
1056 static __inline void
1057 tcp_drain_oncpu(struct inpcbhead *head)
1058 {
1059 	struct inpcb *marker;
1060 	struct inpcb *inpb;
1061 	struct tcpcb *tcpb;
1062 	struct tseg_qent *te;
1063 
1064 	/*
1065 	 * Allows us to block while running the list
1066 	 */
1067 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1068 	marker->inp_flags |= INP_PLACEMARKER;
1069 	LIST_INSERT_HEAD(head, marker, inp_list);
1070 
1071 	while ((inpb = LIST_NEXT(marker, inp_list)) != NULL) {
1072 		if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1073 		    (tcpb = intotcpcb(inpb)) != NULL &&
1074 		    (te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1075 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1076 			if (te->tqe_th->th_flags & TH_FIN)
1077 				tcpb->t_flags &= ~TF_QUEDFIN;
1078 			m_freem(te->tqe_m);
1079 			kfree(te, M_TSEGQ);
1080 			atomic_add_int(&tcp_reass_qsize, -1);
1081 			/* retry */
1082 		} else {
1083 			LIST_REMOVE(marker, inp_list);
1084 			LIST_INSERT_AFTER(inpb, marker, inp_list);
1085 		}
1086 	}
1087 	LIST_REMOVE(marker, inp_list);
1088 	kfree(marker, M_TEMP);
1089 }
1090 
1091 struct netmsg_tcp_drain {
1092 	struct netmsg_base	base;
1093 	struct inpcbhead	*nm_head;
1094 };
1095 
1096 static void
1097 tcp_drain_handler(netmsg_t msg)
1098 {
1099 	struct netmsg_tcp_drain *nm = (void *)msg;
1100 
1101 	tcp_drain_oncpu(nm->nm_head);
1102 	lwkt_replymsg(&nm->base.lmsg, 0);
1103 }
1104 
1105 void
1106 tcp_drain(void)
1107 {
1108 	int cpu;
1109 
1110 	if (!do_tcpdrain)
1111 		return;
1112 
1113 	/*
1114 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1115 	 * if there is one...
1116 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1117 	 *	reassembly queue should be flushed, but in a situation
1118 	 *	where we're really low on mbufs, this is potentially
1119 	 *	useful.
1120 	 */
1121 	for (cpu = 0; cpu < ncpus2; cpu++) {
1122 		struct netmsg_tcp_drain *nm;
1123 
1124 		if (cpu == mycpu->gd_cpuid) {
1125 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1126 		} else {
1127 			nm = kmalloc(sizeof(struct netmsg_tcp_drain),
1128 				     M_LWKTMSG, M_NOWAIT);
1129 			if (nm == NULL)
1130 				continue;
1131 			netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1132 				    0, tcp_drain_handler);
1133 			nm->nm_head = &tcbinfo[cpu].pcblisthead;
1134 			lwkt_sendmsg(netisr_cpuport(cpu), &nm->base.lmsg);
1135 		}
1136 	}
1137 }
1138 
1139 /*
1140  * Notify a tcp user of an asynchronous error;
1141  * store error as soft error, but wake up user
1142  * (for now, won't do anything until can select for soft error).
1143  *
1144  * Do not wake up user since there currently is no mechanism for
1145  * reporting soft errors (yet - a kqueue filter may be added).
1146  */
1147 static void
1148 tcp_notify(struct inpcb *inp, int error)
1149 {
1150 	struct tcpcb *tp = intotcpcb(inp);
1151 
1152 	/*
1153 	 * Ignore some errors if we are hooked up.
1154 	 * If connection hasn't completed, has retransmitted several times,
1155 	 * and receives a second error, give up now.  This is better
1156 	 * than waiting a long time to establish a connection that
1157 	 * can never complete.
1158 	 */
1159 	if (tp->t_state == TCPS_ESTABLISHED &&
1160 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1161 	      error == EHOSTDOWN)) {
1162 		return;
1163 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1164 	    tp->t_softerror)
1165 		tcp_drop(tp, error);
1166 	else
1167 		tp->t_softerror = error;
1168 #if 0
1169 	wakeup(&so->so_timeo);
1170 	sorwakeup(so);
1171 	sowwakeup(so);
1172 #endif
1173 }
1174 
1175 static int
1176 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1177 {
1178 	int error, i, n;
1179 	struct inpcb *marker;
1180 	struct inpcb *inp;
1181 	globaldata_t gd;
1182 	int origcpu, ccpu;
1183 
1184 	error = 0;
1185 	n = 0;
1186 
1187 	/*
1188 	 * The process of preparing the TCB list is too time-consuming and
1189 	 * resource-intensive to repeat twice on every request.
1190 	 */
1191 	if (req->oldptr == NULL) {
1192 		for (ccpu = 0; ccpu < ncpus2; ++ccpu) {
1193 			gd = globaldata_find(ccpu);
1194 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1195 		}
1196 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1197 		return (0);
1198 	}
1199 
1200 	if (req->newptr != NULL)
1201 		return (EPERM);
1202 
1203 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1204 	marker->inp_flags |= INP_PLACEMARKER;
1205 
1206 	/*
1207 	 * OK, now we're committed to doing something.  Run the inpcb list
1208 	 * for each cpu in the system and construct the output.  Use a
1209 	 * list placemarker to deal with list changes occuring during
1210 	 * copyout blockages (but otherwise depend on being on the correct
1211 	 * cpu to avoid races).
1212 	 */
1213 	origcpu = mycpu->gd_cpuid;
1214 	for (ccpu = 0; ccpu < ncpus2 && error == 0; ++ccpu) {
1215 		caddr_t inp_ppcb;
1216 		struct xtcpcb xt;
1217 
1218 		lwkt_migratecpu(ccpu);
1219 
1220 		n = tcbinfo[ccpu].ipi_count;
1221 
1222 		LIST_INSERT_HEAD(&tcbinfo[ccpu].pcblisthead, marker, inp_list);
1223 		i = 0;
1224 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1225 			/*
1226 			 * process a snapshot of pcbs, ignoring placemarkers
1227 			 * and using our own to allow SYSCTL_OUT to block.
1228 			 */
1229 			LIST_REMOVE(marker, inp_list);
1230 			LIST_INSERT_AFTER(inp, marker, inp_list);
1231 
1232 			if (inp->inp_flags & INP_PLACEMARKER)
1233 				continue;
1234 			if (prison_xinpcb(req->td, inp))
1235 				continue;
1236 
1237 			xt.xt_len = sizeof xt;
1238 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1239 			inp_ppcb = inp->inp_ppcb;
1240 			if (inp_ppcb != NULL)
1241 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1242 			else
1243 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1244 			if (inp->inp_socket)
1245 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1246 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1247 				break;
1248 			++i;
1249 		}
1250 		LIST_REMOVE(marker, inp_list);
1251 		if (error == 0 && i < n) {
1252 			bzero(&xt, sizeof xt);
1253 			xt.xt_len = sizeof xt;
1254 			while (i < n) {
1255 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1256 				if (error)
1257 					break;
1258 				++i;
1259 			}
1260 		}
1261 	}
1262 
1263 	/*
1264 	 * Make sure we are on the same cpu we were on originally, since
1265 	 * higher level callers expect this.  Also don't pollute caches with
1266 	 * migrated userland data by (eventually) returning to userland
1267 	 * on a different cpu.
1268 	 */
1269 	lwkt_migratecpu(origcpu);
1270 	kfree(marker, M_TEMP);
1271 	return (error);
1272 }
1273 
1274 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1275 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1276 
1277 static int
1278 tcp_getcred(SYSCTL_HANDLER_ARGS)
1279 {
1280 	struct sockaddr_in addrs[2];
1281 	struct inpcb *inp;
1282 	int cpu;
1283 	int error;
1284 
1285 	error = priv_check(req->td, PRIV_ROOT);
1286 	if (error != 0)
1287 		return (error);
1288 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1289 	if (error != 0)
1290 		return (error);
1291 	crit_enter();
1292 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1293 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1294 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1295 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1296 	if (inp == NULL || inp->inp_socket == NULL) {
1297 		error = ENOENT;
1298 		goto out;
1299 	}
1300 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1301 out:
1302 	crit_exit();
1303 	return (error);
1304 }
1305 
1306 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1307     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1308 
1309 #ifdef INET6
1310 static int
1311 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1312 {
1313 	struct sockaddr_in6 addrs[2];
1314 	struct inpcb *inp;
1315 	int error;
1316 	boolean_t mapped = FALSE;
1317 
1318 	error = priv_check(req->td, PRIV_ROOT);
1319 	if (error != 0)
1320 		return (error);
1321 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1322 	if (error != 0)
1323 		return (error);
1324 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1325 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1326 			mapped = TRUE;
1327 		else
1328 			return (EINVAL);
1329 	}
1330 	crit_enter();
1331 	if (mapped) {
1332 		inp = in_pcblookup_hash(&tcbinfo[0],
1333 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1334 		    addrs[1].sin6_port,
1335 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1336 		    addrs[0].sin6_port,
1337 		    0, NULL);
1338 	} else {
1339 		inp = in6_pcblookup_hash(&tcbinfo[0],
1340 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1341 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1342 		    0, NULL);
1343 	}
1344 	if (inp == NULL || inp->inp_socket == NULL) {
1345 		error = ENOENT;
1346 		goto out;
1347 	}
1348 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1349 out:
1350 	crit_exit();
1351 	return (error);
1352 }
1353 
1354 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1355 	    0, 0,
1356 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1357 #endif
1358 
1359 struct netmsg_tcp_notify {
1360 	struct netmsg_base base;
1361 	void		(*nm_notify)(struct inpcb *, int);
1362 	struct in_addr	nm_faddr;
1363 	int		nm_arg;
1364 };
1365 
1366 static void
1367 tcp_notifyall_oncpu(netmsg_t msg)
1368 {
1369 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1370 	int nextcpu;
1371 
1372 	in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nm->nm_faddr,
1373 			nm->nm_arg, nm->nm_notify);
1374 
1375 	nextcpu = mycpuid + 1;
1376 	if (nextcpu < ncpus2)
1377 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1378 	else
1379 		lwkt_replymsg(&nm->base.lmsg, 0);
1380 }
1381 
1382 void
1383 tcp_ctlinput(netmsg_t msg)
1384 {
1385 	int cmd = msg->ctlinput.nm_cmd;
1386 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1387 	struct ip *ip = msg->ctlinput.nm_extra;
1388 	struct tcphdr *th;
1389 	struct in_addr faddr;
1390 	struct inpcb *inp;
1391 	struct tcpcb *tp;
1392 	void (*notify)(struct inpcb *, int) = tcp_notify;
1393 	tcp_seq icmpseq;
1394 	int arg, cpu;
1395 
1396 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1397 		goto done;
1398 	}
1399 
1400 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1401 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1402 		goto done;
1403 
1404 	arg = inetctlerrmap[cmd];
1405 	if (cmd == PRC_QUENCH) {
1406 		notify = tcp_quench;
1407 	} else if (icmp_may_rst &&
1408 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1409 		    cmd == PRC_UNREACH_PORT ||
1410 		    cmd == PRC_TIMXCEED_INTRANS) &&
1411 		   ip != NULL) {
1412 		notify = tcp_drop_syn_sent;
1413 	} else if (cmd == PRC_MSGSIZE) {
1414 		struct icmp *icmp = (struct icmp *)
1415 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1416 
1417 		arg = ntohs(icmp->icmp_nextmtu);
1418 		notify = tcp_mtudisc;
1419 	} else if (PRC_IS_REDIRECT(cmd)) {
1420 		ip = NULL;
1421 		notify = in_rtchange;
1422 	} else if (cmd == PRC_HOSTDEAD) {
1423 		ip = NULL;
1424 	}
1425 
1426 	if (ip != NULL) {
1427 		crit_enter();
1428 		th = (struct tcphdr *)((caddr_t)ip +
1429 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1430 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1431 				  ip->ip_src.s_addr, th->th_sport);
1432 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1433 					ip->ip_src, th->th_sport, 0, NULL);
1434 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1435 			icmpseq = htonl(th->th_seq);
1436 			tp = intotcpcb(inp);
1437 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1438 			    SEQ_LT(icmpseq, tp->snd_max))
1439 				(*notify)(inp, arg);
1440 		} else {
1441 			struct in_conninfo inc;
1442 
1443 			inc.inc_fport = th->th_dport;
1444 			inc.inc_lport = th->th_sport;
1445 			inc.inc_faddr = faddr;
1446 			inc.inc_laddr = ip->ip_src;
1447 #ifdef INET6
1448 			inc.inc_isipv6 = 0;
1449 #endif
1450 			syncache_unreach(&inc, th);
1451 		}
1452 		crit_exit();
1453 	} else {
1454 		struct netmsg_tcp_notify *nm;
1455 
1456 		KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
1457 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1458 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1459 			    0, tcp_notifyall_oncpu);
1460 		nm->nm_faddr = faddr;
1461 		nm->nm_arg = arg;
1462 		nm->nm_notify = notify;
1463 
1464 		lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1465 	}
1466 done:
1467 	lwkt_replymsg(&msg->lmsg, 0);
1468 }
1469 
1470 #ifdef INET6
1471 
1472 void
1473 tcp6_ctlinput(netmsg_t msg)
1474 {
1475 	int cmd = msg->ctlinput.nm_cmd;
1476 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1477 	void *d = msg->ctlinput.nm_extra;
1478 	struct tcphdr th;
1479 	void (*notify) (struct inpcb *, int) = tcp_notify;
1480 	struct ip6_hdr *ip6;
1481 	struct mbuf *m;
1482 	struct ip6ctlparam *ip6cp = NULL;
1483 	const struct sockaddr_in6 *sa6_src = NULL;
1484 	int off;
1485 	struct tcp_portonly {
1486 		u_int16_t th_sport;
1487 		u_int16_t th_dport;
1488 	} *thp;
1489 	int arg;
1490 
1491 	if (sa->sa_family != AF_INET6 ||
1492 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1493 		goto out;
1494 	}
1495 
1496 	arg = 0;
1497 	if (cmd == PRC_QUENCH)
1498 		notify = tcp_quench;
1499 	else if (cmd == PRC_MSGSIZE) {
1500 		struct ip6ctlparam *ip6cp = d;
1501 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1502 
1503 		arg = ntohl(icmp6->icmp6_mtu);
1504 		notify = tcp_mtudisc;
1505 	} else if (!PRC_IS_REDIRECT(cmd) &&
1506 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1507 		goto out;
1508 	}
1509 
1510 	/* if the parameter is from icmp6, decode it. */
1511 	if (d != NULL) {
1512 		ip6cp = (struct ip6ctlparam *)d;
1513 		m = ip6cp->ip6c_m;
1514 		ip6 = ip6cp->ip6c_ip6;
1515 		off = ip6cp->ip6c_off;
1516 		sa6_src = ip6cp->ip6c_src;
1517 	} else {
1518 		m = NULL;
1519 		ip6 = NULL;
1520 		off = 0;	/* fool gcc */
1521 		sa6_src = &sa6_any;
1522 	}
1523 
1524 	if (ip6 != NULL) {
1525 		struct in_conninfo inc;
1526 		/*
1527 		 * XXX: We assume that when IPV6 is non NULL,
1528 		 * M and OFF are valid.
1529 		 */
1530 
1531 		/* check if we can safely examine src and dst ports */
1532 		if (m->m_pkthdr.len < off + sizeof *thp)
1533 			goto out;
1534 
1535 		bzero(&th, sizeof th);
1536 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1537 
1538 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1539 		    (struct sockaddr *)ip6cp->ip6c_src,
1540 		    th.th_sport, cmd, arg, notify);
1541 
1542 		inc.inc_fport = th.th_dport;
1543 		inc.inc_lport = th.th_sport;
1544 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1545 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1546 		inc.inc_isipv6 = 1;
1547 		syncache_unreach(&inc, &th);
1548 	} else {
1549 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1550 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1551 	}
1552 out:
1553 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1554 }
1555 
1556 #endif
1557 
1558 /*
1559  * Following is where TCP initial sequence number generation occurs.
1560  *
1561  * There are two places where we must use initial sequence numbers:
1562  * 1.  In SYN-ACK packets.
1563  * 2.  In SYN packets.
1564  *
1565  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1566  * tcp_syncache.c for details.
1567  *
1568  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1569  * depends on this property.  In addition, these ISNs should be
1570  * unguessable so as to prevent connection hijacking.  To satisfy
1571  * the requirements of this situation, the algorithm outlined in
1572  * RFC 1948 is used to generate sequence numbers.
1573  *
1574  * Implementation details:
1575  *
1576  * Time is based off the system timer, and is corrected so that it
1577  * increases by one megabyte per second.  This allows for proper
1578  * recycling on high speed LANs while still leaving over an hour
1579  * before rollover.
1580  *
1581  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1582  * between seeding of isn_secret.  This is normally set to zero,
1583  * as reseeding should not be necessary.
1584  *
1585  */
1586 
1587 #define	ISN_BYTES_PER_SECOND 1048576
1588 
1589 u_char isn_secret[32];
1590 int isn_last_reseed;
1591 MD5_CTX isn_ctx;
1592 
1593 tcp_seq
1594 tcp_new_isn(struct tcpcb *tp)
1595 {
1596 	u_int32_t md5_buffer[4];
1597 	tcp_seq new_isn;
1598 
1599 	/* Seed if this is the first use, reseed if requested. */
1600 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1601 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1602 		< (u_int)ticks))) {
1603 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1604 		isn_last_reseed = ticks;
1605 	}
1606 
1607 	/* Compute the md5 hash and return the ISN. */
1608 	MD5Init(&isn_ctx);
1609 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1610 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1611 #ifdef INET6
1612 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1613 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1614 			  sizeof(struct in6_addr));
1615 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1616 			  sizeof(struct in6_addr));
1617 	} else
1618 #endif
1619 	{
1620 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1621 			  sizeof(struct in_addr));
1622 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1623 			  sizeof(struct in_addr));
1624 	}
1625 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1626 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1627 	new_isn = (tcp_seq) md5_buffer[0];
1628 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1629 	return (new_isn);
1630 }
1631 
1632 /*
1633  * When a source quench is received, close congestion window
1634  * to one segment.  We will gradually open it again as we proceed.
1635  */
1636 void
1637 tcp_quench(struct inpcb *inp, int error)
1638 {
1639 	struct tcpcb *tp = intotcpcb(inp);
1640 
1641 	if (tp != NULL) {
1642 		tp->snd_cwnd = tp->t_maxseg;
1643 		tp->snd_wacked = 0;
1644 	}
1645 }
1646 
1647 /*
1648  * When a specific ICMP unreachable message is received and the
1649  * connection state is SYN-SENT, drop the connection.  This behavior
1650  * is controlled by the icmp_may_rst sysctl.
1651  */
1652 void
1653 tcp_drop_syn_sent(struct inpcb *inp, int error)
1654 {
1655 	struct tcpcb *tp = intotcpcb(inp);
1656 
1657 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1658 		tcp_drop(tp, error);
1659 }
1660 
1661 /*
1662  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1663  * based on the new value in the route.  Also nudge TCP to send something,
1664  * since we know the packet we just sent was dropped.
1665  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1666  */
1667 void
1668 tcp_mtudisc(struct inpcb *inp, int mtu)
1669 {
1670 	struct tcpcb *tp = intotcpcb(inp);
1671 	struct rtentry *rt;
1672 	struct socket *so = inp->inp_socket;
1673 	int maxopd, mss;
1674 #ifdef INET6
1675 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1676 #else
1677 	const boolean_t isipv6 = FALSE;
1678 #endif
1679 
1680 	if (tp == NULL)
1681 		return;
1682 
1683 	/*
1684 	 * If no MTU is provided in the ICMP message, use the
1685 	 * next lower likely value, as specified in RFC 1191.
1686 	 */
1687 	if (mtu == 0) {
1688 		int oldmtu;
1689 
1690 		oldmtu = tp->t_maxopd +
1691 		    (isipv6 ?
1692 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1693 		     sizeof(struct tcpiphdr));
1694 		mtu = ip_next_mtu(oldmtu, 0);
1695 	}
1696 
1697 	if (isipv6)
1698 		rt = tcp_rtlookup6(&inp->inp_inc);
1699 	else
1700 		rt = tcp_rtlookup(&inp->inp_inc);
1701 	if (rt != NULL) {
1702 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1703 			mtu = rt->rt_rmx.rmx_mtu;
1704 
1705 		maxopd = mtu -
1706 		    (isipv6 ?
1707 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1708 		     sizeof(struct tcpiphdr));
1709 
1710 		/*
1711 		 * XXX - The following conditional probably violates the TCP
1712 		 * spec.  The problem is that, since we don't know the
1713 		 * other end's MSS, we are supposed to use a conservative
1714 		 * default.  But, if we do that, then MTU discovery will
1715 		 * never actually take place, because the conservative
1716 		 * default is much less than the MTUs typically seen
1717 		 * on the Internet today.  For the moment, we'll sweep
1718 		 * this under the carpet.
1719 		 *
1720 		 * The conservative default might not actually be a problem
1721 		 * if the only case this occurs is when sending an initial
1722 		 * SYN with options and data to a host we've never talked
1723 		 * to before.  Then, they will reply with an MSS value which
1724 		 * will get recorded and the new parameters should get
1725 		 * recomputed.  For Further Study.
1726 		 */
1727 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1728 			maxopd = rt->rt_rmx.rmx_mssopt;
1729 	} else
1730 		maxopd = mtu -
1731 		    (isipv6 ?
1732 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1733 		     sizeof(struct tcpiphdr));
1734 
1735 	if (tp->t_maxopd <= maxopd)
1736 		return;
1737 	tp->t_maxopd = maxopd;
1738 
1739 	mss = maxopd;
1740 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1741 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1742 		mss -= TCPOLEN_TSTAMP_APPA;
1743 
1744 	/* round down to multiple of MCLBYTES */
1745 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1746 	if (mss > MCLBYTES)
1747 		mss &= ~(MCLBYTES - 1);
1748 #else
1749 	if (mss > MCLBYTES)
1750 		mss = (mss / MCLBYTES) * MCLBYTES;
1751 #endif
1752 
1753 	if (so->so_snd.ssb_hiwat < mss)
1754 		mss = so->so_snd.ssb_hiwat;
1755 
1756 	tp->t_maxseg = mss;
1757 	tp->t_rtttime = 0;
1758 	tp->snd_nxt = tp->snd_una;
1759 	tcp_output(tp);
1760 	tcpstat.tcps_mturesent++;
1761 }
1762 
1763 /*
1764  * Look-up the routing entry to the peer of this inpcb.  If no route
1765  * is found and it cannot be allocated the return NULL.  This routine
1766  * is called by TCP routines that access the rmx structure and by tcp_mss
1767  * to get the interface MTU.
1768  */
1769 struct rtentry *
1770 tcp_rtlookup(struct in_conninfo *inc)
1771 {
1772 	struct route *ro = &inc->inc_route;
1773 
1774 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1775 		/* No route yet, so try to acquire one */
1776 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1777 			/*
1778 			 * unused portions of the structure MUST be zero'd
1779 			 * out because rtalloc() treats it as opaque data
1780 			 */
1781 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1782 			ro->ro_dst.sa_family = AF_INET;
1783 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1784 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1785 			    inc->inc_faddr;
1786 			rtalloc(ro);
1787 		}
1788 	}
1789 	return (ro->ro_rt);
1790 }
1791 
1792 #ifdef INET6
1793 struct rtentry *
1794 tcp_rtlookup6(struct in_conninfo *inc)
1795 {
1796 	struct route_in6 *ro6 = &inc->inc6_route;
1797 
1798 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1799 		/* No route yet, so try to acquire one */
1800 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1801 			/*
1802 			 * unused portions of the structure MUST be zero'd
1803 			 * out because rtalloc() treats it as opaque data
1804 			 */
1805 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1806 			ro6->ro_dst.sin6_family = AF_INET6;
1807 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1808 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1809 			rtalloc((struct route *)ro6);
1810 		}
1811 	}
1812 	return (ro6->ro_rt);
1813 }
1814 #endif
1815 
1816 #ifdef IPSEC
1817 /* compute ESP/AH header size for TCP, including outer IP header. */
1818 size_t
1819 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1820 {
1821 	struct inpcb *inp;
1822 	struct mbuf *m;
1823 	size_t hdrsiz;
1824 	struct ip *ip;
1825 	struct tcphdr *th;
1826 
1827 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1828 		return (0);
1829 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1830 	if (!m)
1831 		return (0);
1832 
1833 #ifdef INET6
1834 	if (inp->inp_vflag & INP_IPV6) {
1835 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1836 
1837 		th = (struct tcphdr *)(ip6 + 1);
1838 		m->m_pkthdr.len = m->m_len =
1839 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1840 		tcp_fillheaders(tp, ip6, th, FALSE);
1841 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1842 	} else
1843 #endif
1844 	{
1845 		ip = mtod(m, struct ip *);
1846 		th = (struct tcphdr *)(ip + 1);
1847 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1848 		tcp_fillheaders(tp, ip, th, FALSE);
1849 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1850 	}
1851 
1852 	m_free(m);
1853 	return (hdrsiz);
1854 }
1855 #endif
1856 
1857 /*
1858  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1859  *
1860  * This code attempts to calculate the bandwidth-delay product as a
1861  * means of determining the optimal window size to maximize bandwidth,
1862  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1863  * routers.  This code also does a fairly good job keeping RTTs in check
1864  * across slow links like modems.  We implement an algorithm which is very
1865  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1866  * transmitter side of a TCP connection and so only effects the transmit
1867  * side of the connection.
1868  *
1869  * BACKGROUND:  TCP makes no provision for the management of buffer space
1870  * at the end points or at the intermediate routers and switches.  A TCP
1871  * stream, whether using NewReno or not, will eventually buffer as
1872  * many packets as it is able and the only reason this typically works is
1873  * due to the fairly small default buffers made available for a connection
1874  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1875  * scaling it is now fairly easy for even a single TCP connection to blow-out
1876  * all available buffer space not only on the local interface, but on
1877  * intermediate routers and switches as well.  NewReno makes a misguided
1878  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1879  * then backing off, then steadily increasing the window again until another
1880  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1881  * is only made worse as network loads increase and the idea of intentionally
1882  * blowing out network buffers is, frankly, a terrible way to manage network
1883  * resources.
1884  *
1885  * It is far better to limit the transmit window prior to the failure
1886  * condition being achieved.  There are two general ways to do this:  First
1887  * you can 'scan' through different transmit window sizes and locate the
1888  * point where the RTT stops increasing, indicating that you have filled the
1889  * pipe, then scan backwards until you note that RTT stops decreasing, then
1890  * repeat ad-infinitum.  This method works in principle but has severe
1891  * implementation issues due to RTT variances, timer granularity, and
1892  * instability in the algorithm which can lead to many false positives and
1893  * create oscillations as well as interact badly with other TCP streams
1894  * implementing the same algorithm.
1895  *
1896  * The second method is to limit the window to the bandwidth delay product
1897  * of the link.  This is the method we implement.  RTT variances and our
1898  * own manipulation of the congestion window, bwnd, can potentially
1899  * destabilize the algorithm.  For this reason we have to stabilize the
1900  * elements used to calculate the window.  We do this by using the minimum
1901  * observed RTT, the long term average of the observed bandwidth, and
1902  * by adding two segments worth of slop.  It isn't perfect but it is able
1903  * to react to changing conditions and gives us a very stable basis on
1904  * which to extend the algorithm.
1905  */
1906 void
1907 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1908 {
1909 	u_long bw;
1910 	u_long ibw;
1911 	u_long bwnd;
1912 	int save_ticks;
1913 	int delta_ticks;
1914 
1915 	/*
1916 	 * If inflight_enable is disabled in the middle of a tcp connection,
1917 	 * make sure snd_bwnd is effectively disabled.
1918 	 */
1919 	if (!tcp_inflight_enable) {
1920 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1921 		tp->snd_bandwidth = 0;
1922 		return;
1923 	}
1924 
1925 	/*
1926 	 * Validate the delta time.  If a connection is new or has been idle
1927 	 * a long time we have to reset the bandwidth calculator.
1928 	 */
1929 	save_ticks = ticks;
1930 	cpu_ccfence();
1931 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1932 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1933 		tp->t_bw_rtttime = save_ticks;
1934 		tp->t_bw_rtseq = ack_seq;
1935 		if (tp->snd_bandwidth == 0)
1936 			tp->snd_bandwidth = tcp_inflight_min;
1937 		return;
1938 	}
1939 
1940 	/*
1941 	 * A delta of at least 1 tick is required.  Waiting 2 ticks will
1942 	 * result in better (bw) accuracy.  More than that and the ramp-up
1943 	 * will be too slow.
1944 	 */
1945 	if (delta_ticks == 0 || delta_ticks == 1)
1946 		return;
1947 
1948 	/*
1949 	 * Sanity check, plus ignore pure window update acks.
1950 	 */
1951 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1952 		return;
1953 
1954 	/*
1955 	 * Figure out the bandwidth.  Due to the tick granularity this
1956 	 * is a very rough number and it MUST be averaged over a fairly
1957 	 * long period of time.  XXX we need to take into account a link
1958 	 * that is not using all available bandwidth, but for now our
1959 	 * slop will ramp us up if this case occurs and the bandwidth later
1960 	 * increases.
1961 	 */
1962 	ibw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1963 	tp->t_bw_rtttime = save_ticks;
1964 	tp->t_bw_rtseq = ack_seq;
1965 	bw = ((int64_t)tp->snd_bandwidth * 15 + ibw) >> 4;
1966 
1967 	tp->snd_bandwidth = bw;
1968 
1969 	/*
1970 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1971 	 * segments.  The additional slop puts us squarely in the sweet
1972 	 * spot and also handles the bandwidth run-up case.  Without the
1973 	 * slop we could be locking ourselves into a lower bandwidth.
1974 	 *
1975 	 * At very high speeds the bw calculation can become overly sensitive
1976 	 * and error prone when delta_ticks is low (e.g. usually 1).  To deal
1977 	 * with the problem the stab must be scaled to the bw.  A stab of 50
1978 	 * (the default) increases the bw for the purposes of the bwnd
1979 	 * calculation by 5%.
1980 	 *
1981 	 * Situations Handled:
1982 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1983 	 *	    high speed LANs, allowing larger TCP buffers to be
1984 	 *	    specified, and also does a good job preventing
1985 	 *	    over-queueing of packets over choke points like modems
1986 	 *	    (at least for the transmit side).
1987 	 *
1988 	 *	(2) Is able to handle changing network loads (bandwidth
1989 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1990 	 *	    increases).
1991 	 *
1992 	 *	(3) Theoretically should stabilize in the face of multiple
1993 	 *	    connections implementing the same algorithm (this may need
1994 	 *	    a little work).
1995 	 *
1996 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1997 	 *	    be adjusted with a sysctl but typically only needs to be on
1998 	 *	    very slow connections.  A value no smaller then 5 should
1999 	 *	    be used, but only reduce this default if you have no other
2000 	 *	    choice.
2001 	 */
2002 
2003 #define	USERTT	((tp->t_srtt + tp->t_rttvar) + tcp_inflight_adjrtt)
2004 	bw += bw * tcp_inflight_stab / 1000;
2005 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2006 	       (int)tp->t_maxseg * 2;
2007 #undef USERTT
2008 
2009 	if (tcp_inflight_debug > 0) {
2010 		static int ltime;
2011 		if ((u_int)(save_ticks - ltime) >= hz / tcp_inflight_debug) {
2012 			ltime = save_ticks;
2013 			kprintf("%p ibw %ld bw %ld rttvar %d srtt %d "
2014 				"bwnd %ld delta %d snd_win %ld\n",
2015 				tp, ibw, bw, tp->t_rttvar, tp->t_srtt,
2016 				bwnd, delta_ticks, tp->snd_wnd);
2017 		}
2018 	}
2019 	if ((long)bwnd < tcp_inflight_min)
2020 		bwnd = tcp_inflight_min;
2021 	if (bwnd > tcp_inflight_max)
2022 		bwnd = tcp_inflight_max;
2023 	if ((long)bwnd < tp->t_maxseg * 2)
2024 		bwnd = tp->t_maxseg * 2;
2025 	tp->snd_bwnd = bwnd;
2026 }
2027 
2028 static void
2029 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
2030 {
2031 	struct rtentry *rt;
2032 	struct inpcb *inp = tp->t_inpcb;
2033 #ifdef INET6
2034 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2035 #else
2036 	const boolean_t isipv6 = FALSE;
2037 #endif
2038 
2039 	/* XXX */
2040 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2041 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2042 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2043 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2044 
2045 	if (isipv6)
2046 		rt = tcp_rtlookup6(&inp->inp_inc);
2047 	else
2048 		rt = tcp_rtlookup(&inp->inp_inc);
2049 	if (rt == NULL ||
2050 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2051 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2052 		*maxsegs = tcp_iw_maxsegs;
2053 		*capsegs = tcp_iw_capsegs;
2054 		return;
2055 	}
2056 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2057 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2058 }
2059 
2060 u_long
2061 tcp_initial_window(struct tcpcb *tp)
2062 {
2063 	if (tcp_do_rfc3390) {
2064 		/*
2065 		 * RFC3390:
2066 		 * "If the SYN or SYN/ACK is lost, the initial window
2067 		 *  used by a sender after a correctly transmitted SYN
2068 		 *  MUST be one segment consisting of MSS bytes."
2069 		 *
2070 		 * However, we do something a little bit more aggressive
2071 		 * then RFC3390 here:
2072 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2073 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2074 		 *   because when RFC3390 is published, the initial RTO is
2075 		 *   still 3 seconds (the threshold we test here), while
2076 		 *   after RFC6298, the initial RTO is 1 second.  This
2077 		 *   behaviour probably still falls within the spirit of
2078 		 *   RFC3390.
2079 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2080 		 *   Mainly to avoid sender and receiver deadlock until
2081 		 *   delayed ACK timer expires.  And even RFC2581 does not
2082 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2083 		 *   timeout.
2084 		 *
2085 		 * See also:
2086 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2087 		 */
2088 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2089 			return (2 * tp->t_maxseg);
2090 		} else {
2091 			u_long maxsegs, capsegs;
2092 
2093 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2094 			return min(maxsegs * tp->t_maxseg,
2095 				   max(2 * tp->t_maxseg, capsegs * 1460));
2096 		}
2097 	} else {
2098 		/*
2099 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2100 		 *
2101 		 * Mainly to avoid sender and receiver deadlock
2102 		 * until delayed ACK timer expires.
2103 		 */
2104 		return (2 * tp->t_maxseg);
2105 	}
2106 }
2107 
2108 #ifdef TCP_SIGNATURE
2109 /*
2110  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2111  *
2112  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2113  * When called from tcp_input(), we can be sure that th_sum has been
2114  * zeroed out and verified already.
2115  *
2116  * Return 0 if successful, otherwise return -1.
2117  *
2118  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2119  * search with the destination IP address, and a 'magic SPI' to be
2120  * determined by the application. This is hardcoded elsewhere to 1179
2121  * right now. Another branch of this code exists which uses the SPD to
2122  * specify per-application flows but it is unstable.
2123  */
2124 int
2125 tcpsignature_compute(
2126 	struct mbuf *m,		/* mbuf chain */
2127 	int len,		/* length of TCP data */
2128 	int optlen,		/* length of TCP options */
2129 	u_char *buf,		/* storage for MD5 digest */
2130 	u_int direction)	/* direction of flow */
2131 {
2132 	struct ippseudo ippseudo;
2133 	MD5_CTX ctx;
2134 	int doff;
2135 	struct ip *ip;
2136 	struct ipovly *ipovly;
2137 	struct secasvar *sav;
2138 	struct tcphdr *th;
2139 #ifdef INET6
2140 	struct ip6_hdr *ip6;
2141 	struct in6_addr in6;
2142 	uint32_t plen;
2143 	uint16_t nhdr;
2144 #endif /* INET6 */
2145 	u_short savecsum;
2146 
2147 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2148 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2149 	/*
2150 	 * Extract the destination from the IP header in the mbuf.
2151 	 */
2152 	ip = mtod(m, struct ip *);
2153 #ifdef INET6
2154 	ip6 = NULL;     /* Make the compiler happy. */
2155 #endif /* INET6 */
2156 	/*
2157 	 * Look up an SADB entry which matches the address found in
2158 	 * the segment.
2159 	 */
2160 	switch (IP_VHL_V(ip->ip_vhl)) {
2161 	case IPVERSION:
2162 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2163 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2164 		break;
2165 #ifdef INET6
2166 	case (IPV6_VERSION >> 4):
2167 		ip6 = mtod(m, struct ip6_hdr *);
2168 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2169 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2170 		break;
2171 #endif /* INET6 */
2172 	default:
2173 		return (EINVAL);
2174 		/* NOTREACHED */
2175 		break;
2176 	}
2177 	if (sav == NULL) {
2178 		kprintf("%s: SADB lookup failed\n", __func__);
2179 		return (EINVAL);
2180 	}
2181 	MD5Init(&ctx);
2182 
2183 	/*
2184 	 * Step 1: Update MD5 hash with IP pseudo-header.
2185 	 *
2186 	 * XXX The ippseudo header MUST be digested in network byte order,
2187 	 * or else we'll fail the regression test. Assume all fields we've
2188 	 * been doing arithmetic on have been in host byte order.
2189 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2190 	 * tcp_output(), the underlying ip_len member has not yet been set.
2191 	 */
2192 	switch (IP_VHL_V(ip->ip_vhl)) {
2193 	case IPVERSION:
2194 		ipovly = (struct ipovly *)ip;
2195 		ippseudo.ippseudo_src = ipovly->ih_src;
2196 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2197 		ippseudo.ippseudo_pad = 0;
2198 		ippseudo.ippseudo_p = IPPROTO_TCP;
2199 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2200 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2201 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2202 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2203 		break;
2204 #ifdef INET6
2205 	/*
2206 	 * RFC 2385, 2.0  Proposal
2207 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2208 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2209 	 * extended next header value (to form 32 bits), and 32-bit segment
2210 	 * length.
2211 	 * Note: Upper-Layer Packet Length comes before Next Header.
2212 	 */
2213 	case (IPV6_VERSION >> 4):
2214 		in6 = ip6->ip6_src;
2215 		in6_clearscope(&in6);
2216 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2217 		in6 = ip6->ip6_dst;
2218 		in6_clearscope(&in6);
2219 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2220 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2221 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2222 		nhdr = 0;
2223 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2224 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2225 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2226 		nhdr = IPPROTO_TCP;
2227 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2228 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2229 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2230 		break;
2231 #endif /* INET6 */
2232 	default:
2233 		return (EINVAL);
2234 		/* NOTREACHED */
2235 		break;
2236 	}
2237 	/*
2238 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2239 	 * The TCP checksum must be set to zero.
2240 	 */
2241 	savecsum = th->th_sum;
2242 	th->th_sum = 0;
2243 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2244 	th->th_sum = savecsum;
2245 	/*
2246 	 * Step 3: Update MD5 hash with TCP segment data.
2247 	 *         Use m_apply() to avoid an early m_pullup().
2248 	 */
2249 	if (len > 0)
2250 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2251 	/*
2252 	 * Step 4: Update MD5 hash with shared secret.
2253 	 */
2254 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2255 	MD5Final(buf, &ctx);
2256 	key_sa_recordxfer(sav, m);
2257 	key_freesav(sav);
2258 	return (0);
2259 }
2260 
2261 int
2262 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2263 {
2264 
2265 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2266 	return (0);
2267 }
2268 #endif /* TCP_SIGNATURE */
2269