xref: /dflybsd-src/sys/netinet/tcp_subr.c (revision 30e3ae034c9501c319c415ada6d5e23372649c88)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
68  * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.63 2008/11/11 10:46:58 sephe Exp $
69  */
70 
71 #include "opt_compat.h"
72 #include "opt_inet.h"
73 #include "opt_inet6.h"
74 #include "opt_ipsec.h"
75 #include "opt_tcpdebug.h"
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/callout.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mpipe.h>
84 #include <sys/mbuf.h>
85 #ifdef INET6
86 #include <sys/domain.h>
87 #endif
88 #include <sys/proc.h>
89 #include <sys/priv.h>
90 #include <sys/socket.h>
91 #include <sys/socketvar.h>
92 #include <sys/protosw.h>
93 #include <sys/random.h>
94 #include <sys/in_cksum.h>
95 #include <sys/ktr.h>
96 
97 #include <net/route.h>
98 #include <net/if.h>
99 #include <net/netisr.h>
100 
101 #define	_IP_VHL
102 #include <netinet/in.h>
103 #include <netinet/in_systm.h>
104 #include <netinet/ip.h>
105 #include <netinet/ip6.h>
106 #include <netinet/in_pcb.h>
107 #include <netinet6/in6_pcb.h>
108 #include <netinet/in_var.h>
109 #include <netinet/ip_var.h>
110 #include <netinet6/ip6_var.h>
111 #include <netinet/ip_icmp.h>
112 #ifdef INET6
113 #include <netinet/icmp6.h>
114 #endif
115 #include <netinet/tcp.h>
116 #include <netinet/tcp_fsm.h>
117 #include <netinet/tcp_seq.h>
118 #include <netinet/tcp_timer.h>
119 #include <netinet/tcp_timer2.h>
120 #include <netinet/tcp_var.h>
121 #include <netinet6/tcp6_var.h>
122 #include <netinet/tcpip.h>
123 #ifdef TCPDEBUG
124 #include <netinet/tcp_debug.h>
125 #endif
126 #include <netinet6/ip6protosw.h>
127 
128 #ifdef IPSEC
129 #include <netinet6/ipsec.h>
130 #include <netproto/key/key.h>
131 #ifdef INET6
132 #include <netinet6/ipsec6.h>
133 #endif
134 #endif
135 
136 #ifdef FAST_IPSEC
137 #include <netproto/ipsec/ipsec.h>
138 #ifdef INET6
139 #include <netproto/ipsec/ipsec6.h>
140 #endif
141 #define	IPSEC
142 #endif
143 
144 #include <sys/md5.h>
145 #include <machine/smp.h>
146 
147 #include <sys/msgport2.h>
148 #include <sys/mplock2.h>
149 #include <net/netmsg2.h>
150 
151 #if !defined(KTR_TCP)
152 #define KTR_TCP		KTR_ALL
153 #endif
154 KTR_INFO_MASTER(tcp);
155 /*
156 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
157 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
158 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
159 */
160 #define logtcp(name)	KTR_LOG(tcp_ ## name)
161 
162 struct inpcbinfo tcbinfo[MAXCPU];
163 struct tcpcbackqhead tcpcbackq[MAXCPU];
164 
165 static struct lwkt_token tcp_port_token =
166 		LWKT_TOKEN_MP_INITIALIZER(tcp_port_token);
167 
168 int tcp_mssdflt = TCP_MSS;
169 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
170     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
171 
172 #ifdef INET6
173 int tcp_v6mssdflt = TCP6_MSS;
174 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
175     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
176 #endif
177 
178 /*
179  * Minimum MSS we accept and use. This prevents DoS attacks where
180  * we are forced to a ridiculous low MSS like 20 and send hundreds
181  * of packets instead of one. The effect scales with the available
182  * bandwidth and quickly saturates the CPU and network interface
183  * with packet generation and sending. Set to zero to disable MINMSS
184  * checking. This setting prevents us from sending too small packets.
185  */
186 int tcp_minmss = TCP_MINMSS;
187 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
188     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
189 
190 #if 0
191 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
192 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
193     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
194 #endif
195 
196 int tcp_do_rfc1323 = 1;
197 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
198     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
199 
200 static int tcp_tcbhashsize = 0;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
202      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
203 
204 static int do_tcpdrain = 1;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
206      "Enable tcp_drain routine for extra help when low on mbufs");
207 
208 static int icmp_may_rst = 1;
209 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
210     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
211 
212 static int tcp_isn_reseed_interval = 0;
213 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
214     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
215 
216 /*
217  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
218  * by default, but with generous values which should allow maximal
219  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
220  *
221  * The reason for doing this is that the limiter is the only mechanism we
222  * have which seems to do a really good job preventing receiver RX rings
223  * on network interfaces from getting blown out.  Even though GigE/10GigE
224  * is supposed to flow control it looks like either it doesn't actually
225  * do it or Open Source drivers do not properly enable it.
226  *
227  * People using the limiter to reduce bottlenecks on slower WAN connections
228  * should set the slop to 20 (2 packets).
229  */
230 static int tcp_inflight_enable = 1;
231 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
232     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
233 
234 static int tcp_inflight_debug = 0;
235 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
236     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
237 
238 static int tcp_inflight_min = 6144;
239 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
240     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
241 
242 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
243 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
244     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
245 
246 static int tcp_inflight_stab = 50;
247 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
248     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
249 
250 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
251 static struct malloc_pipe tcptemp_mpipe;
252 
253 static void tcp_willblock(void);
254 static void tcp_notify (struct inpcb *, int);
255 
256 struct tcp_stats tcpstats_percpu[MAXCPU];
257 #ifdef SMP
258 static int
259 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
260 {
261 	int cpu, error = 0;
262 
263 	for (cpu = 0; cpu < ncpus; ++cpu) {
264 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
265 					sizeof(struct tcp_stats))))
266 			break;
267 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
268 				       sizeof(struct tcp_stats))))
269 			break;
270 	}
271 
272 	return (error);
273 }
274 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
275     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
276 #else
277 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
278     &tcpstat, tcp_stats, "TCP statistics");
279 #endif
280 
281 /*
282  * Target size of TCP PCB hash tables. Must be a power of two.
283  *
284  * Note that this can be overridden by the kernel environment
285  * variable net.inet.tcp.tcbhashsize
286  */
287 #ifndef TCBHASHSIZE
288 #define	TCBHASHSIZE	512
289 #endif
290 
291 /*
292  * This is the actual shape of what we allocate using the zone
293  * allocator.  Doing it this way allows us to protect both structures
294  * using the same generation count, and also eliminates the overhead
295  * of allocating tcpcbs separately.  By hiding the structure here,
296  * we avoid changing most of the rest of the code (although it needs
297  * to be changed, eventually, for greater efficiency).
298  */
299 #define	ALIGNMENT	32
300 #define	ALIGNM1		(ALIGNMENT - 1)
301 struct	inp_tp {
302 	union {
303 		struct	inpcb inp;
304 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
305 	} inp_tp_u;
306 	struct	tcpcb tcb;
307 	struct	tcp_callout inp_tp_rexmt;
308 	struct	tcp_callout inp_tp_persist;
309 	struct	tcp_callout inp_tp_keep;
310 	struct	tcp_callout inp_tp_2msl;
311 	struct	tcp_callout inp_tp_delack;
312 	struct	netmsg_tcp_timer inp_tp_timermsg;
313 };
314 #undef ALIGNMENT
315 #undef ALIGNM1
316 
317 /*
318  * Tcp initialization
319  */
320 void
321 tcp_init(void)
322 {
323 	struct inpcbporthead *porthashbase;
324 	struct inpcbinfo *ticb;
325 	u_long porthashmask;
326 	int hashsize = TCBHASHSIZE;
327 	int cpu;
328 
329 	/*
330 	 * note: tcptemp is used for keepalives, and it is ok for an
331 	 * allocation to fail so do not specify MPF_INT.
332 	 */
333 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
334 		    25, -1, 0, NULL);
335 
336 	tcp_delacktime = TCPTV_DELACK;
337 	tcp_keepinit = TCPTV_KEEP_INIT;
338 	tcp_keepidle = TCPTV_KEEP_IDLE;
339 	tcp_keepintvl = TCPTV_KEEPINTVL;
340 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
341 	tcp_msl = TCPTV_MSL;
342 	tcp_rexmit_min = TCPTV_MIN;
343 	tcp_rexmit_slop = TCPTV_CPU_VAR;
344 
345 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
346 	if (!powerof2(hashsize)) {
347 		kprintf("WARNING: TCB hash size not a power of 2\n");
348 		hashsize = 512; /* safe default */
349 	}
350 	tcp_tcbhashsize = hashsize;
351 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
352 
353 	for (cpu = 0; cpu < ncpus2; cpu++) {
354 		ticb = &tcbinfo[cpu];
355 		in_pcbinfo_init(ticb);
356 		ticb->cpu = cpu;
357 		ticb->hashbase = hashinit(hashsize, M_PCB,
358 					  &ticb->hashmask);
359 		ticb->porthashbase = porthashbase;
360 		ticb->porthashmask = porthashmask;
361 		ticb->porttoken = &tcp_port_token;
362 #if 0
363 		ticb->porthashbase = hashinit(hashsize, M_PCB,
364 					      &ticb->porthashmask);
365 #endif
366 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
367 						  &ticb->wildcardhashmask);
368 		ticb->ipi_size = sizeof(struct inp_tp);
369 		TAILQ_INIT(&tcpcbackq[cpu]);
370 	}
371 
372 	tcp_reass_maxseg = nmbclusters / 16;
373 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
374 
375 #ifdef INET6
376 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
377 #else
378 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
379 #endif
380 	if (max_protohdr < TCP_MINPROTOHDR)
381 		max_protohdr = TCP_MINPROTOHDR;
382 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
383 		panic("tcp_init");
384 #undef TCP_MINPROTOHDR
385 
386 	/*
387 	 * Initialize TCP statistics counters for each CPU.
388 	 */
389 #ifdef SMP
390 	for (cpu = 0; cpu < ncpus; ++cpu) {
391 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
392 	}
393 #else
394 	bzero(&tcpstat, sizeof(struct tcp_stats));
395 #endif
396 
397 	syncache_init();
398 	netisr_register_rollup(tcp_willblock);
399 }
400 
401 static void
402 tcp_willblock(void)
403 {
404 	struct tcpcb *tp;
405 	int cpu = mycpu->gd_cpuid;
406 
407 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
408 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
409 		tp->t_flags &= ~TF_ONOUTPUTQ;
410 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
411 		tcp_output(tp);
412 	}
413 }
414 
415 /*
416  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
417  * tcp_template used to store this data in mbufs, but we now recopy it out
418  * of the tcpcb each time to conserve mbufs.
419  */
420 void
421 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
422 {
423 	struct inpcb *inp = tp->t_inpcb;
424 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
425 
426 #ifdef INET6
427 	if (inp->inp_vflag & INP_IPV6) {
428 		struct ip6_hdr *ip6;
429 
430 		ip6 = (struct ip6_hdr *)ip_ptr;
431 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
432 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
433 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
434 			(IPV6_VERSION & IPV6_VERSION_MASK);
435 		ip6->ip6_nxt = IPPROTO_TCP;
436 		ip6->ip6_plen = sizeof(struct tcphdr);
437 		ip6->ip6_src = inp->in6p_laddr;
438 		ip6->ip6_dst = inp->in6p_faddr;
439 		tcp_hdr->th_sum = 0;
440 	} else
441 #endif
442 	{
443 		struct ip *ip = (struct ip *) ip_ptr;
444 
445 		ip->ip_vhl = IP_VHL_BORING;
446 		ip->ip_tos = 0;
447 		ip->ip_len = 0;
448 		ip->ip_id = 0;
449 		ip->ip_off = 0;
450 		ip->ip_ttl = 0;
451 		ip->ip_sum = 0;
452 		ip->ip_p = IPPROTO_TCP;
453 		ip->ip_src = inp->inp_laddr;
454 		ip->ip_dst = inp->inp_faddr;
455 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
456 				    ip->ip_dst.s_addr,
457 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
458 	}
459 
460 	tcp_hdr->th_sport = inp->inp_lport;
461 	tcp_hdr->th_dport = inp->inp_fport;
462 	tcp_hdr->th_seq = 0;
463 	tcp_hdr->th_ack = 0;
464 	tcp_hdr->th_x2 = 0;
465 	tcp_hdr->th_off = 5;
466 	tcp_hdr->th_flags = 0;
467 	tcp_hdr->th_win = 0;
468 	tcp_hdr->th_urp = 0;
469 }
470 
471 /*
472  * Create template to be used to send tcp packets on a connection.
473  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
474  * use for this function is in keepalives, which use tcp_respond.
475  */
476 struct tcptemp *
477 tcp_maketemplate(struct tcpcb *tp)
478 {
479 	struct tcptemp *tmp;
480 
481 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
482 		return (NULL);
483 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
484 	return (tmp);
485 }
486 
487 void
488 tcp_freetemplate(struct tcptemp *tmp)
489 {
490 	mpipe_free(&tcptemp_mpipe, tmp);
491 }
492 
493 /*
494  * Send a single message to the TCP at address specified by
495  * the given TCP/IP header.  If m == NULL, then we make a copy
496  * of the tcpiphdr at ti and send directly to the addressed host.
497  * This is used to force keep alive messages out using the TCP
498  * template for a connection.  If flags are given then we send
499  * a message back to the TCP which originated the * segment ti,
500  * and discard the mbuf containing it and any other attached mbufs.
501  *
502  * In any case the ack and sequence number of the transmitted
503  * segment are as specified by the parameters.
504  *
505  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
506  */
507 void
508 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
509 	    tcp_seq ack, tcp_seq seq, int flags)
510 {
511 	int tlen;
512 	int win = 0;
513 	struct route *ro = NULL;
514 	struct route sro;
515 	struct ip *ip = ipgen;
516 	struct tcphdr *nth;
517 	int ipflags = 0;
518 	struct route_in6 *ro6 = NULL;
519 	struct route_in6 sro6;
520 	struct ip6_hdr *ip6 = ipgen;
521 	boolean_t use_tmpro = TRUE;
522 #ifdef INET6
523 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
524 #else
525 	const boolean_t isipv6 = FALSE;
526 #endif
527 
528 	if (tp != NULL) {
529 		if (!(flags & TH_RST)) {
530 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
531 			if (win < 0)
532 				win = 0;
533 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
534 				win = (long)TCP_MAXWIN << tp->rcv_scale;
535 		}
536 		/*
537 		 * Don't use the route cache of a listen socket,
538 		 * it is not MPSAFE; use temporary route cache.
539 		 */
540 		if (tp->t_state != TCPS_LISTEN) {
541 			if (isipv6)
542 				ro6 = &tp->t_inpcb->in6p_route;
543 			else
544 				ro = &tp->t_inpcb->inp_route;
545 			use_tmpro = FALSE;
546 		}
547 	}
548 	if (use_tmpro) {
549 		if (isipv6) {
550 			ro6 = &sro6;
551 			bzero(ro6, sizeof *ro6);
552 		} else {
553 			ro = &sro;
554 			bzero(ro, sizeof *ro);
555 		}
556 	}
557 	if (m == NULL) {
558 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
559 		if (m == NULL)
560 			return;
561 		tlen = 0;
562 		m->m_data += max_linkhdr;
563 		if (isipv6) {
564 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
565 			ip6 = mtod(m, struct ip6_hdr *);
566 			nth = (struct tcphdr *)(ip6 + 1);
567 		} else {
568 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
569 			ip = mtod(m, struct ip *);
570 			nth = (struct tcphdr *)(ip + 1);
571 		}
572 		bcopy(th, nth, sizeof(struct tcphdr));
573 		flags = TH_ACK;
574 	} else {
575 		m_freem(m->m_next);
576 		m->m_next = NULL;
577 		m->m_data = (caddr_t)ipgen;
578 		/* m_len is set later */
579 		tlen = 0;
580 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
581 		if (isipv6) {
582 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
583 			nth = (struct tcphdr *)(ip6 + 1);
584 		} else {
585 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
586 			nth = (struct tcphdr *)(ip + 1);
587 		}
588 		if (th != nth) {
589 			/*
590 			 * this is usually a case when an extension header
591 			 * exists between the IPv6 header and the
592 			 * TCP header.
593 			 */
594 			nth->th_sport = th->th_sport;
595 			nth->th_dport = th->th_dport;
596 		}
597 		xchg(nth->th_dport, nth->th_sport, n_short);
598 #undef xchg
599 	}
600 	if (isipv6) {
601 		ip6->ip6_flow = 0;
602 		ip6->ip6_vfc = IPV6_VERSION;
603 		ip6->ip6_nxt = IPPROTO_TCP;
604 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
605 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
606 	} else {
607 		tlen += sizeof(struct tcpiphdr);
608 		ip->ip_len = tlen;
609 		ip->ip_ttl = ip_defttl;
610 	}
611 	m->m_len = tlen;
612 	m->m_pkthdr.len = tlen;
613 	m->m_pkthdr.rcvif = NULL;
614 	nth->th_seq = htonl(seq);
615 	nth->th_ack = htonl(ack);
616 	nth->th_x2 = 0;
617 	nth->th_off = sizeof(struct tcphdr) >> 2;
618 	nth->th_flags = flags;
619 	if (tp != NULL)
620 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
621 	else
622 		nth->th_win = htons((u_short)win);
623 	nth->th_urp = 0;
624 	if (isipv6) {
625 		nth->th_sum = 0;
626 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
627 					sizeof(struct ip6_hdr),
628 					tlen - sizeof(struct ip6_hdr));
629 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
630 					       (ro6 && ro6->ro_rt) ?
631 						ro6->ro_rt->rt_ifp : NULL);
632 	} else {
633 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
634 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
635 		m->m_pkthdr.csum_flags = CSUM_TCP;
636 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
637 	}
638 #ifdef TCPDEBUG
639 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
640 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
641 #endif
642 	if (isipv6) {
643 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
644 			   tp ? tp->t_inpcb : NULL);
645 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
646 			RTFREE(ro6->ro_rt);
647 			ro6->ro_rt = NULL;
648 		}
649 	} else {
650 		ipflags |= IP_DEBUGROUTE;
651 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
652 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
653 			RTFREE(ro->ro_rt);
654 			ro->ro_rt = NULL;
655 		}
656 	}
657 }
658 
659 /*
660  * Create a new TCP control block, making an
661  * empty reassembly queue and hooking it to the argument
662  * protocol control block.  The `inp' parameter must have
663  * come from the zone allocator set up in tcp_init().
664  */
665 struct tcpcb *
666 tcp_newtcpcb(struct inpcb *inp)
667 {
668 	struct inp_tp *it;
669 	struct tcpcb *tp;
670 #ifdef INET6
671 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
672 #else
673 	const boolean_t isipv6 = FALSE;
674 #endif
675 
676 	it = (struct inp_tp *)inp;
677 	tp = &it->tcb;
678 	bzero(tp, sizeof(struct tcpcb));
679 	LIST_INIT(&tp->t_segq);
680 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
681 
682 	/* Set up our timeouts. */
683 	tp->tt_rexmt = &it->inp_tp_rexmt;
684 	tp->tt_persist = &it->inp_tp_persist;
685 	tp->tt_keep = &it->inp_tp_keep;
686 	tp->tt_2msl = &it->inp_tp_2msl;
687 	tp->tt_delack = &it->inp_tp_delack;
688 	tcp_inittimers(tp);
689 
690 	/*
691 	 * Zero out timer message.  We don't create it here,
692 	 * since the current CPU may not be the owner of this
693 	 * inpcb.
694 	 */
695 	tp->tt_msg = &it->inp_tp_timermsg;
696 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
697 
698 	if (tcp_do_rfc1323)
699 		tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
700 	tp->t_inpcb = inp;	/* XXX */
701 	tp->t_state = TCPS_CLOSED;
702 	/*
703 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
704 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
705 	 * reasonable initial retransmit time.
706 	 */
707 	tp->t_srtt = TCPTV_SRTTBASE;
708 	tp->t_rttvar =
709 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
710 	tp->t_rttmin = tcp_rexmit_min;
711 	tp->t_rxtcur = TCPTV_RTOBASE;
712 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
713 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
714 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
715 	tp->t_rcvtime = ticks;
716 	/*
717 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
718 	 * because the socket may be bound to an IPv6 wildcard address,
719 	 * which may match an IPv4-mapped IPv6 address.
720 	 */
721 	inp->inp_ip_ttl = ip_defttl;
722 	inp->inp_ppcb = tp;
723 	tcp_sack_tcpcb_init(tp);
724 	return (tp);		/* XXX */
725 }
726 
727 /*
728  * Drop a TCP connection, reporting the specified error.
729  * If connection is synchronized, then send a RST to peer.
730  */
731 struct tcpcb *
732 tcp_drop(struct tcpcb *tp, int error)
733 {
734 	struct socket *so = tp->t_inpcb->inp_socket;
735 
736 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
737 		tp->t_state = TCPS_CLOSED;
738 		tcp_output(tp);
739 		tcpstat.tcps_drops++;
740 	} else
741 		tcpstat.tcps_conndrops++;
742 	if (error == ETIMEDOUT && tp->t_softerror)
743 		error = tp->t_softerror;
744 	so->so_error = error;
745 	return (tcp_close(tp));
746 }
747 
748 #ifdef SMP
749 
750 struct netmsg_remwildcard {
751 	struct netmsg		nm_netmsg;
752 	struct inpcb		*nm_inp;
753 	struct inpcbinfo	*nm_pcbinfo;
754 #if defined(INET6)
755 	int			nm_isinet6;
756 #else
757 	int			nm_unused01;
758 #endif
759 };
760 
761 /*
762  * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
763  * inp can be detached.  We do this by cycling through the cpus, ending up
764  * on the cpu controlling the inp last and then doing the disconnect.
765  */
766 static void
767 in_pcbremwildcardhash_handler(struct netmsg *msg0)
768 {
769 	struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
770 	int cpu;
771 
772 	cpu = msg->nm_pcbinfo->cpu;
773 
774 	if (cpu == msg->nm_inp->inp_pcbinfo->cpu) {
775 		/* note: detach removes any wildcard hash entry */
776 #ifdef INET6
777 		if (msg->nm_isinet6)
778 			in6_pcbdetach(msg->nm_inp);
779 		else
780 #endif
781 			in_pcbdetach(msg->nm_inp);
782 		lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
783 	} else {
784 		in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
785 		cpu = (cpu + 1) % ncpus2;
786 		msg->nm_pcbinfo = &tcbinfo[cpu];
787 		lwkt_forwardmsg(cpu_portfn(cpu), &msg->nm_netmsg.nm_lmsg);
788 	}
789 }
790 
791 #endif
792 
793 /*
794  * Close a TCP control block:
795  *	discard all space held by the tcp
796  *	discard internet protocol block
797  *	wake up any sleepers
798  */
799 struct tcpcb *
800 tcp_close(struct tcpcb *tp)
801 {
802 	struct tseg_qent *q;
803 	struct inpcb *inp = tp->t_inpcb;
804 	struct socket *so = inp->inp_socket;
805 	struct rtentry *rt;
806 	boolean_t dosavessthresh;
807 #ifdef SMP
808 	int cpu;
809 #endif
810 #ifdef INET6
811 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
812 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
813 #else
814 	const boolean_t isipv6 = FALSE;
815 #endif
816 
817 	/*
818 	 * The tp is not instantly destroyed in the wildcard case.  Setting
819 	 * the state to TCPS_TERMINATING will prevent the TCP stack from
820 	 * messing with it, though it should be noted that this change may
821 	 * not take effect on other cpus until we have chained the wildcard
822 	 * hash removal.
823 	 *
824 	 * XXX we currently depend on the BGL to synchronize the tp->t_state
825 	 * update and prevent other tcp protocol threads from accepting new
826 	 * connections on the listen socket we might be trying to close down.
827 	 */
828 	KKASSERT(tp->t_state != TCPS_TERMINATING);
829 	tp->t_state = TCPS_TERMINATING;
830 
831 	/*
832 	 * Make sure that all of our timers are stopped before we
833 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
834 	 * timers are never used.  If timer message is never created
835 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
836 	 */
837 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
838 		tcp_callout_stop(tp, tp->tt_rexmt);
839 		tcp_callout_stop(tp, tp->tt_persist);
840 		tcp_callout_stop(tp, tp->tt_keep);
841 		tcp_callout_stop(tp, tp->tt_2msl);
842 		tcp_callout_stop(tp, tp->tt_delack);
843 	}
844 
845 	if (tp->t_flags & TF_ONOUTPUTQ) {
846 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
847 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
848 		tp->t_flags &= ~TF_ONOUTPUTQ;
849 	}
850 
851 	/*
852 	 * If we got enough samples through the srtt filter,
853 	 * save the rtt and rttvar in the routing entry.
854 	 * 'Enough' is arbitrarily defined as the 16 samples.
855 	 * 16 samples is enough for the srtt filter to converge
856 	 * to within 5% of the correct value; fewer samples and
857 	 * we could save a very bogus rtt.
858 	 *
859 	 * Don't update the default route's characteristics and don't
860 	 * update anything that the user "locked".
861 	 */
862 	if (tp->t_rttupdated >= 16) {
863 		u_long i = 0;
864 
865 		if (isipv6) {
866 			struct sockaddr_in6 *sin6;
867 
868 			if ((rt = inp->in6p_route.ro_rt) == NULL)
869 				goto no_valid_rt;
870 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
871 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
872 				goto no_valid_rt;
873 		} else
874 			if ((rt = inp->inp_route.ro_rt) == NULL ||
875 			    ((struct sockaddr_in *)rt_key(rt))->
876 			     sin_addr.s_addr == INADDR_ANY)
877 				goto no_valid_rt;
878 
879 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
880 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
881 			if (rt->rt_rmx.rmx_rtt && i)
882 				/*
883 				 * filter this update to half the old & half
884 				 * the new values, converting scale.
885 				 * See route.h and tcp_var.h for a
886 				 * description of the scaling constants.
887 				 */
888 				rt->rt_rmx.rmx_rtt =
889 				    (rt->rt_rmx.rmx_rtt + i) / 2;
890 			else
891 				rt->rt_rmx.rmx_rtt = i;
892 			tcpstat.tcps_cachedrtt++;
893 		}
894 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
895 			i = tp->t_rttvar *
896 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
897 			if (rt->rt_rmx.rmx_rttvar && i)
898 				rt->rt_rmx.rmx_rttvar =
899 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
900 			else
901 				rt->rt_rmx.rmx_rttvar = i;
902 			tcpstat.tcps_cachedrttvar++;
903 		}
904 		/*
905 		 * The old comment here said:
906 		 * update the pipelimit (ssthresh) if it has been updated
907 		 * already or if a pipesize was specified & the threshhold
908 		 * got below half the pipesize.  I.e., wait for bad news
909 		 * before we start updating, then update on both good
910 		 * and bad news.
911 		 *
912 		 * But we want to save the ssthresh even if no pipesize is
913 		 * specified explicitly in the route, because such
914 		 * connections still have an implicit pipesize specified
915 		 * by the global tcp_sendspace.  In the absence of a reliable
916 		 * way to calculate the pipesize, it will have to do.
917 		 */
918 		i = tp->snd_ssthresh;
919 		if (rt->rt_rmx.rmx_sendpipe != 0)
920 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
921 		else
922 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
923 		if (dosavessthresh ||
924 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
925 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
926 			/*
927 			 * convert the limit from user data bytes to
928 			 * packets then to packet data bytes.
929 			 */
930 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
931 			if (i < 2)
932 				i = 2;
933 			i *= tp->t_maxseg +
934 			     (isipv6 ?
935 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
936 			      sizeof(struct tcpiphdr));
937 			if (rt->rt_rmx.rmx_ssthresh)
938 				rt->rt_rmx.rmx_ssthresh =
939 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
940 			else
941 				rt->rt_rmx.rmx_ssthresh = i;
942 			tcpstat.tcps_cachedssthresh++;
943 		}
944 	}
945 
946 no_valid_rt:
947 	/* free the reassembly queue, if any */
948 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
949 		LIST_REMOVE(q, tqe_q);
950 		m_freem(q->tqe_m);
951 		FREE(q, M_TSEGQ);
952 		atomic_add_int(&tcp_reass_qsize, -1);
953 	}
954 	/* throw away SACK blocks in scoreboard*/
955 	if (TCP_DO_SACK(tp))
956 		tcp_sack_cleanup(&tp->scb);
957 
958 	inp->inp_ppcb = NULL;
959 	soisdisconnected(so);
960 	/* note: pcb detached later on */
961 
962 	tcp_destroy_timermsg(tp);
963 	if (tp->t_flags & TF_SYNCACHE)
964 		syncache_destroy(tp);
965 
966 	/*
967 	 * Discard the inp.  In the SMP case a wildcard inp's hash (created
968 	 * by a listen socket or an INADDR_ANY udp socket) is replicated
969 	 * for each protocol thread and must be removed in the context of
970 	 * that thread.  This is accomplished by chaining the message
971 	 * through the cpus.
972 	 *
973 	 * If the inp is not wildcarded we simply detach, which will remove
974 	 * the any hashes still present for this inp.
975 	 */
976 #ifdef SMP
977 	if (inp->inp_flags & INP_WILDCARD_MP) {
978 		struct netmsg_remwildcard *msg;
979 
980 		cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
981 		msg = kmalloc(sizeof(struct netmsg_remwildcard),
982 			      M_LWKTMSG, M_INTWAIT);
983 		netmsg_init(&msg->nm_netmsg, NULL, &netisr_afree_rport,
984 			    0, in_pcbremwildcardhash_handler);
985 #ifdef INET6
986 		msg->nm_isinet6 = isafinet6;
987 #endif
988 		msg->nm_inp = inp;
989 		msg->nm_pcbinfo = &tcbinfo[cpu];
990 		lwkt_sendmsg(cpu_portfn(cpu), &msg->nm_netmsg.nm_lmsg);
991 	} else
992 #endif
993 	{
994 		/* note: detach removes any wildcard hash entry */
995 #ifdef INET6
996 		if (isafinet6)
997 			in6_pcbdetach(inp);
998 		else
999 #endif
1000 			in_pcbdetach(inp);
1001 	}
1002 	tcpstat.tcps_closed++;
1003 	return (NULL);
1004 }
1005 
1006 static __inline void
1007 tcp_drain_oncpu(struct inpcbhead *head)
1008 {
1009 	struct inpcb *marker;
1010 	struct inpcb *inpb;
1011 	struct tcpcb *tcpb;
1012 	struct tseg_qent *te;
1013 
1014 	/*
1015 	 * Allows us to block while running the list
1016 	 */
1017 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1018 	marker->inp_flags |= INP_PLACEMARKER;
1019 	LIST_INSERT_HEAD(head, marker, inp_list);
1020 
1021 	while ((inpb = LIST_NEXT(marker, inp_list)) != NULL) {
1022 		if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1023 		    (tcpb = intotcpcb(inpb)) != NULL &&
1024 		    (te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
1025 			LIST_REMOVE(te, tqe_q);
1026 			m_freem(te->tqe_m);
1027 			FREE(te, M_TSEGQ);
1028 			atomic_add_int(&tcp_reass_qsize, -1);
1029 			/* retry */
1030 		} else {
1031 			LIST_REMOVE(marker, inp_list);
1032 			LIST_INSERT_AFTER(inpb, marker, inp_list);
1033 		}
1034 	}
1035 	LIST_REMOVE(marker, inp_list);
1036 	kfree(marker, M_TEMP);
1037 }
1038 
1039 #ifdef SMP
1040 struct netmsg_tcp_drain {
1041 	struct netmsg		nm_netmsg;
1042 	struct inpcbhead	*nm_head;
1043 };
1044 
1045 static void
1046 tcp_drain_handler(netmsg_t netmsg)
1047 {
1048 	struct netmsg_tcp_drain *nm = (void *)netmsg;
1049 
1050 	tcp_drain_oncpu(nm->nm_head);
1051 	lwkt_replymsg(&nm->nm_netmsg.nm_lmsg, 0);
1052 }
1053 #endif
1054 
1055 void
1056 tcp_drain(void)
1057 {
1058 #ifdef SMP
1059 	int cpu;
1060 #endif
1061 
1062 	if (!do_tcpdrain)
1063 		return;
1064 
1065 	/*
1066 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1067 	 * if there is one...
1068 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1069 	 *	reassembly queue should be flushed, but in a situation
1070 	 *	where we're really low on mbufs, this is potentially
1071 	 *	useful.
1072 	 */
1073 #ifdef SMP
1074 	for (cpu = 0; cpu < ncpus2; cpu++) {
1075 		struct netmsg_tcp_drain *msg;
1076 
1077 		if (cpu == mycpu->gd_cpuid) {
1078 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1079 		} else {
1080 			msg = kmalloc(sizeof(struct netmsg_tcp_drain),
1081 				    M_LWKTMSG, M_NOWAIT);
1082 			if (msg == NULL)
1083 				continue;
1084 			netmsg_init(&msg->nm_netmsg, NULL, &netisr_afree_rport,
1085 				    0, tcp_drain_handler);
1086 			msg->nm_head = &tcbinfo[cpu].pcblisthead;
1087 			lwkt_sendmsg(cpu_portfn(cpu), &msg->nm_netmsg.nm_lmsg);
1088 		}
1089 	}
1090 #else
1091 	tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1092 #endif
1093 }
1094 
1095 /*
1096  * Notify a tcp user of an asynchronous error;
1097  * store error as soft error, but wake up user
1098  * (for now, won't do anything until can select for soft error).
1099  *
1100  * Do not wake up user since there currently is no mechanism for
1101  * reporting soft errors (yet - a kqueue filter may be added).
1102  */
1103 static void
1104 tcp_notify(struct inpcb *inp, int error)
1105 {
1106 	struct tcpcb *tp = intotcpcb(inp);
1107 
1108 	/*
1109 	 * Ignore some errors if we are hooked up.
1110 	 * If connection hasn't completed, has retransmitted several times,
1111 	 * and receives a second error, give up now.  This is better
1112 	 * than waiting a long time to establish a connection that
1113 	 * can never complete.
1114 	 */
1115 	if (tp->t_state == TCPS_ESTABLISHED &&
1116 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1117 	      error == EHOSTDOWN)) {
1118 		return;
1119 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1120 	    tp->t_softerror)
1121 		tcp_drop(tp, error);
1122 	else
1123 		tp->t_softerror = error;
1124 #if 0
1125 	wakeup(&so->so_timeo);
1126 	sorwakeup(so);
1127 	sowwakeup(so);
1128 #endif
1129 }
1130 
1131 static int
1132 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1133 {
1134 	int error, i, n;
1135 	struct inpcb *marker;
1136 	struct inpcb *inp;
1137 	inp_gen_t gencnt;
1138 	globaldata_t gd;
1139 	int origcpu, ccpu;
1140 
1141 	error = 0;
1142 	n = 0;
1143 
1144 	/*
1145 	 * The process of preparing the TCB list is too time-consuming and
1146 	 * resource-intensive to repeat twice on every request.
1147 	 */
1148 	if (req->oldptr == NULL) {
1149 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1150 			gd = globaldata_find(ccpu);
1151 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1152 		}
1153 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1154 		return (0);
1155 	}
1156 
1157 	if (req->newptr != NULL)
1158 		return (EPERM);
1159 
1160 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1161 	marker->inp_flags |= INP_PLACEMARKER;
1162 
1163 	/*
1164 	 * OK, now we're committed to doing something.  Run the inpcb list
1165 	 * for each cpu in the system and construct the output.  Use a
1166 	 * list placemarker to deal with list changes occuring during
1167 	 * copyout blockages (but otherwise depend on being on the correct
1168 	 * cpu to avoid races).
1169 	 */
1170 	origcpu = mycpu->gd_cpuid;
1171 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1172 		globaldata_t rgd;
1173 		caddr_t inp_ppcb;
1174 		struct xtcpcb xt;
1175 		int cpu_id;
1176 
1177 		cpu_id = (origcpu + ccpu) % ncpus;
1178 		if ((smp_active_mask & (1 << cpu_id)) == 0)
1179 			continue;
1180 		rgd = globaldata_find(cpu_id);
1181 		lwkt_setcpu_self(rgd);
1182 
1183 		gencnt = tcbinfo[cpu_id].ipi_gencnt;
1184 		n = tcbinfo[cpu_id].ipi_count;
1185 
1186 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1187 		i = 0;
1188 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1189 			/*
1190 			 * process a snapshot of pcbs, ignoring placemarkers
1191 			 * and using our own to allow SYSCTL_OUT to block.
1192 			 */
1193 			LIST_REMOVE(marker, inp_list);
1194 			LIST_INSERT_AFTER(inp, marker, inp_list);
1195 
1196 			if (inp->inp_flags & INP_PLACEMARKER)
1197 				continue;
1198 			if (inp->inp_gencnt > gencnt)
1199 				continue;
1200 			if (prison_xinpcb(req->td, inp))
1201 				continue;
1202 
1203 			xt.xt_len = sizeof xt;
1204 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1205 			inp_ppcb = inp->inp_ppcb;
1206 			if (inp_ppcb != NULL)
1207 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1208 			else
1209 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1210 			if (inp->inp_socket)
1211 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1212 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1213 				break;
1214 			++i;
1215 		}
1216 		LIST_REMOVE(marker, inp_list);
1217 		if (error == 0 && i < n) {
1218 			bzero(&xt, sizeof xt);
1219 			xt.xt_len = sizeof xt;
1220 			while (i < n) {
1221 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1222 				if (error)
1223 					break;
1224 				++i;
1225 			}
1226 		}
1227 	}
1228 
1229 	/*
1230 	 * Make sure we are on the same cpu we were on originally, since
1231 	 * higher level callers expect this.  Also don't pollute caches with
1232 	 * migrated userland data by (eventually) returning to userland
1233 	 * on a different cpu.
1234 	 */
1235 	lwkt_setcpu_self(globaldata_find(origcpu));
1236 	kfree(marker, M_TEMP);
1237 	return (error);
1238 }
1239 
1240 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1241 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1242 
1243 static int
1244 tcp_getcred(SYSCTL_HANDLER_ARGS)
1245 {
1246 	struct sockaddr_in addrs[2];
1247 	struct inpcb *inp;
1248 	int cpu;
1249 	int error;
1250 
1251 	error = priv_check(req->td, PRIV_ROOT);
1252 	if (error != 0)
1253 		return (error);
1254 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1255 	if (error != 0)
1256 		return (error);
1257 	crit_enter();
1258 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1259 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1260 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1261 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1262 	if (inp == NULL || inp->inp_socket == NULL) {
1263 		error = ENOENT;
1264 		goto out;
1265 	}
1266 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1267 out:
1268 	crit_exit();
1269 	return (error);
1270 }
1271 
1272 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1273     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1274 
1275 #ifdef INET6
1276 static int
1277 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1278 {
1279 	struct sockaddr_in6 addrs[2];
1280 	struct inpcb *inp;
1281 	int error;
1282 	boolean_t mapped = FALSE;
1283 
1284 	error = priv_check(req->td, PRIV_ROOT);
1285 	if (error != 0)
1286 		return (error);
1287 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1288 	if (error != 0)
1289 		return (error);
1290 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1291 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1292 			mapped = TRUE;
1293 		else
1294 			return (EINVAL);
1295 	}
1296 	crit_enter();
1297 	if (mapped) {
1298 		inp = in_pcblookup_hash(&tcbinfo[0],
1299 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1300 		    addrs[1].sin6_port,
1301 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1302 		    addrs[0].sin6_port,
1303 		    0, NULL);
1304 	} else {
1305 		inp = in6_pcblookup_hash(&tcbinfo[0],
1306 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1307 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1308 		    0, NULL);
1309 	}
1310 	if (inp == NULL || inp->inp_socket == NULL) {
1311 		error = ENOENT;
1312 		goto out;
1313 	}
1314 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1315 out:
1316 	crit_exit();
1317 	return (error);
1318 }
1319 
1320 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1321 	    0, 0,
1322 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1323 #endif
1324 
1325 struct netmsg_tcp_notify {
1326 	struct netmsg	nm_nmsg;
1327 	void		(*nm_notify)(struct inpcb *, int);
1328 	struct in_addr	nm_faddr;
1329 	int		nm_arg;
1330 };
1331 
1332 static void
1333 tcp_notifyall_oncpu(struct netmsg *netmsg)
1334 {
1335 	struct netmsg_tcp_notify *nmsg = (struct netmsg_tcp_notify *)netmsg;
1336 	int nextcpu;
1337 
1338 	in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nmsg->nm_faddr,
1339 			nmsg->nm_arg, nmsg->nm_notify);
1340 
1341 	nextcpu = mycpuid + 1;
1342 	if (nextcpu < ncpus2)
1343 		lwkt_forwardmsg(cpu_portfn(nextcpu), &netmsg->nm_lmsg);
1344 	else
1345 		lwkt_replymsg(&netmsg->nm_lmsg, 0);
1346 }
1347 
1348 void
1349 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1350 {
1351 	struct ip *ip = vip;
1352 	struct tcphdr *th;
1353 	struct in_addr faddr;
1354 	struct inpcb *inp;
1355 	struct tcpcb *tp;
1356 	void (*notify)(struct inpcb *, int) = tcp_notify;
1357 	tcp_seq icmpseq;
1358 	int arg, cpu;
1359 
1360 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1361 		return;
1362 	}
1363 
1364 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1365 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1366 		return;
1367 
1368 	arg = inetctlerrmap[cmd];
1369 	if (cmd == PRC_QUENCH) {
1370 		notify = tcp_quench;
1371 	} else if (icmp_may_rst &&
1372 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1373 		    cmd == PRC_UNREACH_PORT ||
1374 		    cmd == PRC_TIMXCEED_INTRANS) &&
1375 		   ip != NULL) {
1376 		notify = tcp_drop_syn_sent;
1377 	} else if (cmd == PRC_MSGSIZE) {
1378 		struct icmp *icmp = (struct icmp *)
1379 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1380 
1381 		arg = ntohs(icmp->icmp_nextmtu);
1382 		notify = tcp_mtudisc;
1383 	} else if (PRC_IS_REDIRECT(cmd)) {
1384 		ip = NULL;
1385 		notify = in_rtchange;
1386 	} else if (cmd == PRC_HOSTDEAD) {
1387 		ip = NULL;
1388 	}
1389 
1390 	if (ip != NULL) {
1391 		crit_enter();
1392 		th = (struct tcphdr *)((caddr_t)ip +
1393 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1394 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1395 				  ip->ip_src.s_addr, th->th_sport);
1396 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1397 					ip->ip_src, th->th_sport, 0, NULL);
1398 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1399 			icmpseq = htonl(th->th_seq);
1400 			tp = intotcpcb(inp);
1401 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1402 			    SEQ_LT(icmpseq, tp->snd_max))
1403 				(*notify)(inp, arg);
1404 		} else {
1405 			struct in_conninfo inc;
1406 
1407 			inc.inc_fport = th->th_dport;
1408 			inc.inc_lport = th->th_sport;
1409 			inc.inc_faddr = faddr;
1410 			inc.inc_laddr = ip->ip_src;
1411 #ifdef INET6
1412 			inc.inc_isipv6 = 0;
1413 #endif
1414 			syncache_unreach(&inc, th);
1415 		}
1416 		crit_exit();
1417 	} else {
1418 		struct netmsg_tcp_notify nmsg;
1419 
1420 		KKASSERT(&curthread->td_msgport == cpu_portfn(0));
1421 		netmsg_init(&nmsg.nm_nmsg, NULL, &curthread->td_msgport,
1422 			    0, tcp_notifyall_oncpu);
1423 		nmsg.nm_faddr = faddr;
1424 		nmsg.nm_arg = arg;
1425 		nmsg.nm_notify = notify;
1426 
1427 		lwkt_domsg(cpu_portfn(0), &nmsg.nm_nmsg.nm_lmsg, 0);
1428 	}
1429 }
1430 
1431 #ifdef INET6
1432 void
1433 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1434 {
1435 	struct tcphdr th;
1436 	void (*notify) (struct inpcb *, int) = tcp_notify;
1437 	struct ip6_hdr *ip6;
1438 	struct mbuf *m;
1439 	struct ip6ctlparam *ip6cp = NULL;
1440 	const struct sockaddr_in6 *sa6_src = NULL;
1441 	int off;
1442 	struct tcp_portonly {
1443 		u_int16_t th_sport;
1444 		u_int16_t th_dport;
1445 	} *thp;
1446 	int arg;
1447 
1448 	if (sa->sa_family != AF_INET6 ||
1449 	    sa->sa_len != sizeof(struct sockaddr_in6))
1450 		return;
1451 
1452 	arg = 0;
1453 	if (cmd == PRC_QUENCH)
1454 		notify = tcp_quench;
1455 	else if (cmd == PRC_MSGSIZE) {
1456 		struct ip6ctlparam *ip6cp = d;
1457 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1458 
1459 		arg = ntohl(icmp6->icmp6_mtu);
1460 		notify = tcp_mtudisc;
1461 	} else if (!PRC_IS_REDIRECT(cmd) &&
1462 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1463 		return;
1464 	}
1465 
1466 	/* if the parameter is from icmp6, decode it. */
1467 	if (d != NULL) {
1468 		ip6cp = (struct ip6ctlparam *)d;
1469 		m = ip6cp->ip6c_m;
1470 		ip6 = ip6cp->ip6c_ip6;
1471 		off = ip6cp->ip6c_off;
1472 		sa6_src = ip6cp->ip6c_src;
1473 	} else {
1474 		m = NULL;
1475 		ip6 = NULL;
1476 		off = 0;	/* fool gcc */
1477 		sa6_src = &sa6_any;
1478 	}
1479 
1480 	if (ip6 != NULL) {
1481 		struct in_conninfo inc;
1482 		/*
1483 		 * XXX: We assume that when IPV6 is non NULL,
1484 		 * M and OFF are valid.
1485 		 */
1486 
1487 		/* check if we can safely examine src and dst ports */
1488 		if (m->m_pkthdr.len < off + sizeof *thp)
1489 			return;
1490 
1491 		bzero(&th, sizeof th);
1492 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1493 
1494 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1495 		    (struct sockaddr *)ip6cp->ip6c_src,
1496 		    th.th_sport, cmd, arg, notify);
1497 
1498 		inc.inc_fport = th.th_dport;
1499 		inc.inc_lport = th.th_sport;
1500 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1501 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1502 		inc.inc_isipv6 = 1;
1503 		syncache_unreach(&inc, &th);
1504 	} else
1505 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1506 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1507 }
1508 #endif
1509 
1510 /*
1511  * Following is where TCP initial sequence number generation occurs.
1512  *
1513  * There are two places where we must use initial sequence numbers:
1514  * 1.  In SYN-ACK packets.
1515  * 2.  In SYN packets.
1516  *
1517  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1518  * tcp_syncache.c for details.
1519  *
1520  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1521  * depends on this property.  In addition, these ISNs should be
1522  * unguessable so as to prevent connection hijacking.  To satisfy
1523  * the requirements of this situation, the algorithm outlined in
1524  * RFC 1948 is used to generate sequence numbers.
1525  *
1526  * Implementation details:
1527  *
1528  * Time is based off the system timer, and is corrected so that it
1529  * increases by one megabyte per second.  This allows for proper
1530  * recycling on high speed LANs while still leaving over an hour
1531  * before rollover.
1532  *
1533  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1534  * between seeding of isn_secret.  This is normally set to zero,
1535  * as reseeding should not be necessary.
1536  *
1537  */
1538 
1539 #define	ISN_BYTES_PER_SECOND 1048576
1540 
1541 u_char isn_secret[32];
1542 int isn_last_reseed;
1543 MD5_CTX isn_ctx;
1544 
1545 tcp_seq
1546 tcp_new_isn(struct tcpcb *tp)
1547 {
1548 	u_int32_t md5_buffer[4];
1549 	tcp_seq new_isn;
1550 
1551 	/* Seed if this is the first use, reseed if requested. */
1552 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1553 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1554 		< (u_int)ticks))) {
1555 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1556 		isn_last_reseed = ticks;
1557 	}
1558 
1559 	/* Compute the md5 hash and return the ISN. */
1560 	MD5Init(&isn_ctx);
1561 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1562 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1563 #ifdef INET6
1564 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1565 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1566 			  sizeof(struct in6_addr));
1567 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1568 			  sizeof(struct in6_addr));
1569 	} else
1570 #endif
1571 	{
1572 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1573 			  sizeof(struct in_addr));
1574 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1575 			  sizeof(struct in_addr));
1576 	}
1577 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1578 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1579 	new_isn = (tcp_seq) md5_buffer[0];
1580 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1581 	return (new_isn);
1582 }
1583 
1584 /*
1585  * When a source quench is received, close congestion window
1586  * to one segment.  We will gradually open it again as we proceed.
1587  */
1588 void
1589 tcp_quench(struct inpcb *inp, int error)
1590 {
1591 	struct tcpcb *tp = intotcpcb(inp);
1592 
1593 	if (tp != NULL) {
1594 		tp->snd_cwnd = tp->t_maxseg;
1595 		tp->snd_wacked = 0;
1596 	}
1597 }
1598 
1599 /*
1600  * When a specific ICMP unreachable message is received and the
1601  * connection state is SYN-SENT, drop the connection.  This behavior
1602  * is controlled by the icmp_may_rst sysctl.
1603  */
1604 void
1605 tcp_drop_syn_sent(struct inpcb *inp, int error)
1606 {
1607 	struct tcpcb *tp = intotcpcb(inp);
1608 
1609 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1610 		tcp_drop(tp, error);
1611 }
1612 
1613 /*
1614  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1615  * based on the new value in the route.  Also nudge TCP to send something,
1616  * since we know the packet we just sent was dropped.
1617  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1618  */
1619 void
1620 tcp_mtudisc(struct inpcb *inp, int mtu)
1621 {
1622 	struct tcpcb *tp = intotcpcb(inp);
1623 	struct rtentry *rt;
1624 	struct socket *so = inp->inp_socket;
1625 	int maxopd, mss;
1626 #ifdef INET6
1627 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1628 #else
1629 	const boolean_t isipv6 = FALSE;
1630 #endif
1631 
1632 	if (tp == NULL)
1633 		return;
1634 
1635 	/*
1636 	 * If no MTU is provided in the ICMP message, use the
1637 	 * next lower likely value, as specified in RFC 1191.
1638 	 */
1639 	if (mtu == 0) {
1640 		int oldmtu;
1641 
1642 		oldmtu = tp->t_maxopd +
1643 		    (isipv6 ?
1644 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1645 		     sizeof(struct tcpiphdr));
1646 		mtu = ip_next_mtu(oldmtu, 0);
1647 	}
1648 
1649 	if (isipv6)
1650 		rt = tcp_rtlookup6(&inp->inp_inc);
1651 	else
1652 		rt = tcp_rtlookup(&inp->inp_inc);
1653 	if (rt != NULL) {
1654 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1655 			mtu = rt->rt_rmx.rmx_mtu;
1656 
1657 		maxopd = mtu -
1658 		    (isipv6 ?
1659 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1660 		     sizeof(struct tcpiphdr));
1661 
1662 		/*
1663 		 * XXX - The following conditional probably violates the TCP
1664 		 * spec.  The problem is that, since we don't know the
1665 		 * other end's MSS, we are supposed to use a conservative
1666 		 * default.  But, if we do that, then MTU discovery will
1667 		 * never actually take place, because the conservative
1668 		 * default is much less than the MTUs typically seen
1669 		 * on the Internet today.  For the moment, we'll sweep
1670 		 * this under the carpet.
1671 		 *
1672 		 * The conservative default might not actually be a problem
1673 		 * if the only case this occurs is when sending an initial
1674 		 * SYN with options and data to a host we've never talked
1675 		 * to before.  Then, they will reply with an MSS value which
1676 		 * will get recorded and the new parameters should get
1677 		 * recomputed.  For Further Study.
1678 		 */
1679 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1680 			maxopd = rt->rt_rmx.rmx_mssopt;
1681 	} else
1682 		maxopd = mtu -
1683 		    (isipv6 ?
1684 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1685 		     sizeof(struct tcpiphdr));
1686 
1687 	if (tp->t_maxopd <= maxopd)
1688 		return;
1689 	tp->t_maxopd = maxopd;
1690 
1691 	mss = maxopd;
1692 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1693 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1694 		mss -= TCPOLEN_TSTAMP_APPA;
1695 
1696 	/* round down to multiple of MCLBYTES */
1697 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1698 	if (mss > MCLBYTES)
1699 		mss &= ~(MCLBYTES - 1);
1700 #else
1701 	if (mss > MCLBYTES)
1702 		mss = (mss / MCLBYTES) * MCLBYTES;
1703 #endif
1704 
1705 	if (so->so_snd.ssb_hiwat < mss)
1706 		mss = so->so_snd.ssb_hiwat;
1707 
1708 	tp->t_maxseg = mss;
1709 	tp->t_rtttime = 0;
1710 	tp->snd_nxt = tp->snd_una;
1711 	tcp_output(tp);
1712 	tcpstat.tcps_mturesent++;
1713 }
1714 
1715 /*
1716  * Look-up the routing entry to the peer of this inpcb.  If no route
1717  * is found and it cannot be allocated the return NULL.  This routine
1718  * is called by TCP routines that access the rmx structure and by tcp_mss
1719  * to get the interface MTU.
1720  */
1721 struct rtentry *
1722 tcp_rtlookup(struct in_conninfo *inc)
1723 {
1724 	struct route *ro = &inc->inc_route;
1725 
1726 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1727 		/* No route yet, so try to acquire one */
1728 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1729 			/*
1730 			 * unused portions of the structure MUST be zero'd
1731 			 * out because rtalloc() treats it as opaque data
1732 			 */
1733 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1734 			ro->ro_dst.sa_family = AF_INET;
1735 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1736 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1737 			    inc->inc_faddr;
1738 			rtalloc(ro);
1739 		}
1740 	}
1741 	return (ro->ro_rt);
1742 }
1743 
1744 #ifdef INET6
1745 struct rtentry *
1746 tcp_rtlookup6(struct in_conninfo *inc)
1747 {
1748 	struct route_in6 *ro6 = &inc->inc6_route;
1749 
1750 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1751 		/* No route yet, so try to acquire one */
1752 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1753 			/*
1754 			 * unused portions of the structure MUST be zero'd
1755 			 * out because rtalloc() treats it as opaque data
1756 			 */
1757 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1758 			ro6->ro_dst.sin6_family = AF_INET6;
1759 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1760 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1761 			rtalloc((struct route *)ro6);
1762 		}
1763 	}
1764 	return (ro6->ro_rt);
1765 }
1766 #endif
1767 
1768 #ifdef IPSEC
1769 /* compute ESP/AH header size for TCP, including outer IP header. */
1770 size_t
1771 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1772 {
1773 	struct inpcb *inp;
1774 	struct mbuf *m;
1775 	size_t hdrsiz;
1776 	struct ip *ip;
1777 	struct tcphdr *th;
1778 
1779 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1780 		return (0);
1781 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1782 	if (!m)
1783 		return (0);
1784 
1785 #ifdef INET6
1786 	if (inp->inp_vflag & INP_IPV6) {
1787 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1788 
1789 		th = (struct tcphdr *)(ip6 + 1);
1790 		m->m_pkthdr.len = m->m_len =
1791 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1792 		tcp_fillheaders(tp, ip6, th);
1793 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1794 	} else
1795 #endif
1796 	{
1797 		ip = mtod(m, struct ip *);
1798 		th = (struct tcphdr *)(ip + 1);
1799 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1800 		tcp_fillheaders(tp, ip, th);
1801 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1802 	}
1803 
1804 	m_free(m);
1805 	return (hdrsiz);
1806 }
1807 #endif
1808 
1809 /*
1810  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1811  *
1812  * This code attempts to calculate the bandwidth-delay product as a
1813  * means of determining the optimal window size to maximize bandwidth,
1814  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1815  * routers.  This code also does a fairly good job keeping RTTs in check
1816  * across slow links like modems.  We implement an algorithm which is very
1817  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1818  * transmitter side of a TCP connection and so only effects the transmit
1819  * side of the connection.
1820  *
1821  * BACKGROUND:  TCP makes no provision for the management of buffer space
1822  * at the end points or at the intermediate routers and switches.  A TCP
1823  * stream, whether using NewReno or not, will eventually buffer as
1824  * many packets as it is able and the only reason this typically works is
1825  * due to the fairly small default buffers made available for a connection
1826  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1827  * scaling it is now fairly easy for even a single TCP connection to blow-out
1828  * all available buffer space not only on the local interface, but on
1829  * intermediate routers and switches as well.  NewReno makes a misguided
1830  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1831  * then backing off, then steadily increasing the window again until another
1832  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1833  * is only made worse as network loads increase and the idea of intentionally
1834  * blowing out network buffers is, frankly, a terrible way to manage network
1835  * resources.
1836  *
1837  * It is far better to limit the transmit window prior to the failure
1838  * condition being achieved.  There are two general ways to do this:  First
1839  * you can 'scan' through different transmit window sizes and locate the
1840  * point where the RTT stops increasing, indicating that you have filled the
1841  * pipe, then scan backwards until you note that RTT stops decreasing, then
1842  * repeat ad-infinitum.  This method works in principle but has severe
1843  * implementation issues due to RTT variances, timer granularity, and
1844  * instability in the algorithm which can lead to many false positives and
1845  * create oscillations as well as interact badly with other TCP streams
1846  * implementing the same algorithm.
1847  *
1848  * The second method is to limit the window to the bandwidth delay product
1849  * of the link.  This is the method we implement.  RTT variances and our
1850  * own manipulation of the congestion window, bwnd, can potentially
1851  * destabilize the algorithm.  For this reason we have to stabilize the
1852  * elements used to calculate the window.  We do this by using the minimum
1853  * observed RTT, the long term average of the observed bandwidth, and
1854  * by adding two segments worth of slop.  It isn't perfect but it is able
1855  * to react to changing conditions and gives us a very stable basis on
1856  * which to extend the algorithm.
1857  */
1858 void
1859 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1860 {
1861 	u_long bw;
1862 	u_long bwnd;
1863 	int save_ticks;
1864 	int delta_ticks;
1865 
1866 	/*
1867 	 * If inflight_enable is disabled in the middle of a tcp connection,
1868 	 * make sure snd_bwnd is effectively disabled.
1869 	 */
1870 	if (!tcp_inflight_enable) {
1871 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1872 		tp->snd_bandwidth = 0;
1873 		return;
1874 	}
1875 
1876 	/*
1877 	 * Validate the delta time.  If a connection is new or has been idle
1878 	 * a long time we have to reset the bandwidth calculator.
1879 	 */
1880 	save_ticks = ticks;
1881 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1882 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1883 		tp->t_bw_rtttime = ticks;
1884 		tp->t_bw_rtseq = ack_seq;
1885 		if (tp->snd_bandwidth == 0)
1886 			tp->snd_bandwidth = tcp_inflight_min;
1887 		return;
1888 	}
1889 	if (delta_ticks == 0)
1890 		return;
1891 
1892 	/*
1893 	 * Sanity check, plus ignore pure window update acks.
1894 	 */
1895 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1896 		return;
1897 
1898 	/*
1899 	 * Figure out the bandwidth.  Due to the tick granularity this
1900 	 * is a very rough number and it MUST be averaged over a fairly
1901 	 * long period of time.  XXX we need to take into account a link
1902 	 * that is not using all available bandwidth, but for now our
1903 	 * slop will ramp us up if this case occurs and the bandwidth later
1904 	 * increases.
1905 	 */
1906 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1907 	tp->t_bw_rtttime = save_ticks;
1908 	tp->t_bw_rtseq = ack_seq;
1909 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1910 
1911 	tp->snd_bandwidth = bw;
1912 
1913 	/*
1914 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1915 	 * segments.  The additional slop puts us squarely in the sweet
1916 	 * spot and also handles the bandwidth run-up case.  Without the
1917 	 * slop we could be locking ourselves into a lower bandwidth.
1918 	 *
1919 	 * Situations Handled:
1920 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1921 	 *	    high speed LANs, allowing larger TCP buffers to be
1922 	 *	    specified, and also does a good job preventing
1923 	 *	    over-queueing of packets over choke points like modems
1924 	 *	    (at least for the transmit side).
1925 	 *
1926 	 *	(2) Is able to handle changing network loads (bandwidth
1927 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1928 	 *	    increases).
1929 	 *
1930 	 *	(3) Theoretically should stabilize in the face of multiple
1931 	 *	    connections implementing the same algorithm (this may need
1932 	 *	    a little work).
1933 	 *
1934 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1935 	 *	    be adjusted with a sysctl but typically only needs to be on
1936 	 *	    very slow connections.  A value no smaller then 5 should
1937 	 *	    be used, but only reduce this default if you have no other
1938 	 *	    choice.
1939 	 */
1940 
1941 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1942 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1943 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1944 #undef USERTT
1945 
1946 	if (tcp_inflight_debug > 0) {
1947 		static int ltime;
1948 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1949 			ltime = ticks;
1950 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1951 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1952 		}
1953 	}
1954 	if ((long)bwnd < tcp_inflight_min)
1955 		bwnd = tcp_inflight_min;
1956 	if (bwnd > tcp_inflight_max)
1957 		bwnd = tcp_inflight_max;
1958 	if ((long)bwnd < tp->t_maxseg * 2)
1959 		bwnd = tp->t_maxseg * 2;
1960 	tp->snd_bwnd = bwnd;
1961 }
1962 
1963 #ifdef TCP_SIGNATURE
1964 /*
1965  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1966  *
1967  * We do this over ip, tcphdr, segment data, and the key in the SADB.
1968  * When called from tcp_input(), we can be sure that th_sum has been
1969  * zeroed out and verified already.
1970  *
1971  * Return 0 if successful, otherwise return -1.
1972  *
1973  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1974  * search with the destination IP address, and a 'magic SPI' to be
1975  * determined by the application. This is hardcoded elsewhere to 1179
1976  * right now. Another branch of this code exists which uses the SPD to
1977  * specify per-application flows but it is unstable.
1978  */
1979 int
1980 tcpsignature_compute(
1981 	struct mbuf *m,		/* mbuf chain */
1982 	int len,		/* length of TCP data */
1983 	int optlen,		/* length of TCP options */
1984 	u_char *buf,		/* storage for MD5 digest */
1985 	u_int direction)	/* direction of flow */
1986 {
1987 	struct ippseudo ippseudo;
1988 	MD5_CTX ctx;
1989 	int doff;
1990 	struct ip *ip;
1991 	struct ipovly *ipovly;
1992 	struct secasvar *sav;
1993 	struct tcphdr *th;
1994 #ifdef INET6
1995 	struct ip6_hdr *ip6;
1996 	struct in6_addr in6;
1997 	uint32_t plen;
1998 	uint16_t nhdr;
1999 #endif /* INET6 */
2000 	u_short savecsum;
2001 
2002 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2003 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2004 	/*
2005 	 * Extract the destination from the IP header in the mbuf.
2006 	 */
2007 	ip = mtod(m, struct ip *);
2008 #ifdef INET6
2009 	ip6 = NULL;     /* Make the compiler happy. */
2010 #endif /* INET6 */
2011 	/*
2012 	 * Look up an SADB entry which matches the address found in
2013 	 * the segment.
2014 	 */
2015 	switch (IP_VHL_V(ip->ip_vhl)) {
2016 	case IPVERSION:
2017 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2018 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2019 		break;
2020 #ifdef INET6
2021 	case (IPV6_VERSION >> 4):
2022 		ip6 = mtod(m, struct ip6_hdr *);
2023 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2024 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2025 		break;
2026 #endif /* INET6 */
2027 	default:
2028 		return (EINVAL);
2029 		/* NOTREACHED */
2030 		break;
2031 	}
2032 	if (sav == NULL) {
2033 		kprintf("%s: SADB lookup failed\n", __func__);
2034 		return (EINVAL);
2035 	}
2036 	MD5Init(&ctx);
2037 
2038 	/*
2039 	 * Step 1: Update MD5 hash with IP pseudo-header.
2040 	 *
2041 	 * XXX The ippseudo header MUST be digested in network byte order,
2042 	 * or else we'll fail the regression test. Assume all fields we've
2043 	 * been doing arithmetic on have been in host byte order.
2044 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2045 	 * tcp_output(), the underlying ip_len member has not yet been set.
2046 	 */
2047 	switch (IP_VHL_V(ip->ip_vhl)) {
2048 	case IPVERSION:
2049 		ipovly = (struct ipovly *)ip;
2050 		ippseudo.ippseudo_src = ipovly->ih_src;
2051 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2052 		ippseudo.ippseudo_pad = 0;
2053 		ippseudo.ippseudo_p = IPPROTO_TCP;
2054 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2055 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2056 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2057 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2058 		break;
2059 #ifdef INET6
2060 	/*
2061 	 * RFC 2385, 2.0  Proposal
2062 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2063 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2064 	 * extended next header value (to form 32 bits), and 32-bit segment
2065 	 * length.
2066 	 * Note: Upper-Layer Packet Length comes before Next Header.
2067 	 */
2068 	case (IPV6_VERSION >> 4):
2069 		in6 = ip6->ip6_src;
2070 		in6_clearscope(&in6);
2071 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2072 		in6 = ip6->ip6_dst;
2073 		in6_clearscope(&in6);
2074 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2075 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2076 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2077 		nhdr = 0;
2078 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2079 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2080 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2081 		nhdr = IPPROTO_TCP;
2082 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2083 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2084 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2085 		break;
2086 #endif /* INET6 */
2087 	default:
2088 		return (EINVAL);
2089 		/* NOTREACHED */
2090 		break;
2091 	}
2092 	/*
2093 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2094 	 * The TCP checksum must be set to zero.
2095 	 */
2096 	savecsum = th->th_sum;
2097 	th->th_sum = 0;
2098 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2099 	th->th_sum = savecsum;
2100 	/*
2101 	 * Step 3: Update MD5 hash with TCP segment data.
2102 	 *         Use m_apply() to avoid an early m_pullup().
2103 	 */
2104 	if (len > 0)
2105 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2106 	/*
2107 	 * Step 4: Update MD5 hash with shared secret.
2108 	 */
2109 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2110 	MD5Final(buf, &ctx);
2111 	key_sa_recordxfer(sav, m);
2112 	key_freesav(sav);
2113 	return (0);
2114 }
2115 
2116 int
2117 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2118 {
2119 
2120 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2121 	return (0);
2122 }
2123 #endif /* TCP_SIGNATURE */
2124