xref: /dflybsd-src/sys/netinet/tcp_subr.c (revision 1093ca8198152f41873a8d1e4af82ccd1b7ac52a)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
63  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
64  */
65 
66 #include "opt_inet.h"
67 #include "opt_inet6.h"
68 #include "opt_ipsec.h"
69 #include "opt_tcpdebug.h"
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/callout.h>
74 #include <sys/kernel.h>
75 #include <sys/sysctl.h>
76 #include <sys/malloc.h>
77 #include <sys/mpipe.h>
78 #include <sys/mbuf.h>
79 #ifdef INET6
80 #include <sys/domain.h>
81 #endif
82 #include <sys/proc.h>
83 #include <sys/priv.h>
84 #include <sys/socket.h>
85 #include <sys/socketops.h>
86 #include <sys/socketvar.h>
87 #include <sys/protosw.h>
88 #include <sys/random.h>
89 #include <sys/in_cksum.h>
90 #include <sys/ktr.h>
91 
92 #include <net/route.h>
93 #include <net/if.h>
94 #include <net/netisr2.h>
95 
96 #define	_IP_VHL
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip6.h>
101 #include <netinet/in_pcb.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet/in_var.h>
104 #include <netinet/ip_var.h>
105 #include <netinet6/ip6_var.h>
106 #include <netinet/ip_icmp.h>
107 #ifdef INET6
108 #include <netinet/icmp6.h>
109 #endif
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
117 #include <netinet/tcpip.h>
118 #ifdef TCPDEBUG
119 #include <netinet/tcp_debug.h>
120 #endif
121 #include <netinet6/ip6protosw.h>
122 
123 #ifdef IPSEC
124 #include <netinet6/ipsec.h>
125 #include <netproto/key/key.h>
126 #ifdef INET6
127 #include <netinet6/ipsec6.h>
128 #endif
129 #endif
130 
131 #ifdef FAST_IPSEC
132 #include <netproto/ipsec/ipsec.h>
133 #ifdef INET6
134 #include <netproto/ipsec/ipsec6.h>
135 #endif
136 #define	IPSEC
137 #endif
138 
139 #include <sys/md5.h>
140 #include <machine/smp.h>
141 
142 #include <sys/msgport2.h>
143 #include <sys/mplock2.h>
144 #include <net/netmsg2.h>
145 
146 #if !defined(KTR_TCP)
147 #define KTR_TCP		KTR_ALL
148 #endif
149 /*
150 KTR_INFO_MASTER(tcp);
151 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
152 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
153 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
154 #define logtcp(name)	KTR_LOG(tcp_ ## name)
155 */
156 
157 #define TCP_IW_MAXSEGS_DFLT	4
158 #define TCP_IW_CAPSEGS_DFLT	4
159 
160 struct inpcbinfo tcbinfo[MAXCPU];
161 struct tcpcbackq tcpcbackq[MAXCPU];
162 
163 int tcp_mssdflt = TCP_MSS;
164 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
165     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
166 
167 #ifdef INET6
168 int tcp_v6mssdflt = TCP6_MSS;
169 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
170     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
171 #endif
172 
173 /*
174  * Minimum MSS we accept and use. This prevents DoS attacks where
175  * we are forced to a ridiculous low MSS like 20 and send hundreds
176  * of packets instead of one. The effect scales with the available
177  * bandwidth and quickly saturates the CPU and network interface
178  * with packet generation and sending. Set to zero to disable MINMSS
179  * checking. This setting prevents us from sending too small packets.
180  */
181 int tcp_minmss = TCP_MINMSS;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
183     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
184 
185 #if 0
186 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
187 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
188     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
189 #endif
190 
191 int tcp_do_rfc1323 = 1;
192 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
193     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
194 
195 static int tcp_tcbhashsize = 0;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
197      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
198 
199 static int do_tcpdrain = 1;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
201      "Enable tcp_drain routine for extra help when low on mbufs");
202 
203 static int icmp_may_rst = 1;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
205     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
206 
207 static int tcp_isn_reseed_interval = 0;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
209     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
210 
211 /*
212  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
213  * by default, but with generous values which should allow maximal
214  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
215  *
216  * The reason for doing this is that the limiter is the only mechanism we
217  * have which seems to do a really good job preventing receiver RX rings
218  * on network interfaces from getting blown out.  Even though GigE/10GigE
219  * is supposed to flow control it looks like either it doesn't actually
220  * do it or Open Source drivers do not properly enable it.
221  *
222  * People using the limiter to reduce bottlenecks on slower WAN connections
223  * should set the slop to 20 (2 packets).
224  */
225 static int tcp_inflight_enable = 1;
226 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
227     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
228 
229 static int tcp_inflight_debug = 0;
230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
231     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
232 
233 /*
234  * NOTE: tcp_inflight_start is essentially the starting receive window
235  *	 for a connection.  If set too low then fetches over tcp
236  *	 connections will take noticably longer to ramp-up over
237  *	 high-latency connections.  6144 is too low for a default,
238  *	 use something more reasonable.
239  */
240 static int tcp_inflight_start = 33792;
241 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_start, CTLFLAG_RW,
242     &tcp_inflight_start, 0, "Start value for TCP inflight window");
243 
244 static int tcp_inflight_min = 6144;
245 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
246     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
247 
248 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
249 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
250     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
251 
252 static int tcp_inflight_stab = 50;
253 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
254     &tcp_inflight_stab, 0, "Fudge bw 1/10% (50=5%)");
255 
256 static int tcp_inflight_adjrtt = 2;
257 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_adjrtt, CTLFLAG_RW,
258     &tcp_inflight_adjrtt, 0, "Slop for rtt 1/(hz*32)");
259 
260 static int tcp_do_rfc3390 = 1;
261 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
262     &tcp_do_rfc3390, 0,
263     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
264 
265 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
266 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
267     &tcp_iw_maxsegs, 0, "TCP IW segments max");
268 
269 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
270 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
271     &tcp_iw_capsegs, 0, "TCP IW segments");
272 
273 int tcp_low_rtobase = 1;
274 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
275     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
276 
277 static int tcp_do_ncr = 1;
278 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
279     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
280 
281 int tcp_ncr_linklocal = 0;
282 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr_linklocal, CTLFLAG_RW,
283     &tcp_ncr_linklocal, 0,
284     "Enable Non-Congestion Robustness (RFC 4653) on link local network");
285 
286 int tcp_ncr_rxtthresh_max = 16;
287 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr_rxtthresh_max, CTLFLAG_RW,
288     &tcp_ncr_rxtthresh_max, 0,
289     "Non-Congestion Robustness (RFC 4653), DupThresh upper limit");
290 
291 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
292 static struct malloc_pipe tcptemp_mpipe;
293 
294 static void tcp_willblock(void);
295 static void tcp_notify (struct inpcb *, int);
296 
297 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
298 struct tcp_state_count tcpstate_count[MAXCPU] __cachealign;
299 
300 static struct netmsg_base tcp_drain_netmsg[MAXCPU];
301 static void	tcp_drain_dispatch(netmsg_t nmsg);
302 
303 static int
304 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
305 {
306 	int cpu, error = 0;
307 
308 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
309 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
310 					sizeof(struct tcp_stats))))
311 			break;
312 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
313 				       sizeof(struct tcp_stats))))
314 			break;
315 	}
316 
317 	return (error);
318 }
319 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
320     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
321 
322 /*
323  * Target size of TCP PCB hash tables. Must be a power of two.
324  *
325  * Note that this can be overridden by the kernel environment
326  * variable net.inet.tcp.tcbhashsize
327  */
328 #ifndef TCBHASHSIZE
329 #define	TCBHASHSIZE	512
330 #endif
331 
332 /*
333  * This is the actual shape of what we allocate using the zone
334  * allocator.  Doing it this way allows us to protect both structures
335  * using the same generation count, and also eliminates the overhead
336  * of allocating tcpcbs separately.  By hiding the structure here,
337  * we avoid changing most of the rest of the code (although it needs
338  * to be changed, eventually, for greater efficiency).
339  */
340 #define	ALIGNMENT	32
341 #define	ALIGNM1		(ALIGNMENT - 1)
342 struct	inp_tp {
343 	union {
344 		struct	inpcb inp;
345 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
346 	} inp_tp_u;
347 	struct	tcpcb tcb;
348 	struct	tcp_callout inp_tp_rexmt;
349 	struct	tcp_callout inp_tp_persist;
350 	struct	tcp_callout inp_tp_keep;
351 	struct	tcp_callout inp_tp_2msl;
352 	struct	tcp_callout inp_tp_delack;
353 	struct	netmsg_tcp_timer inp_tp_timermsg;
354 	struct	netmsg_base inp_tp_sndmore;
355 };
356 #undef ALIGNMENT
357 #undef ALIGNM1
358 
359 /*
360  * Tcp initialization
361  */
362 void
363 tcp_init(void)
364 {
365 	struct inpcbportinfo *portinfo;
366 	struct inpcbinfo *ticb;
367 	int hashsize = TCBHASHSIZE;
368 	int cpu;
369 
370 	/*
371 	 * note: tcptemp is used for keepalives, and it is ok for an
372 	 * allocation to fail so do not specify MPF_INT.
373 	 */
374 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
375 		    25, -1, 0, NULL, NULL, NULL);
376 
377 	tcp_delacktime = TCPTV_DELACK;
378 	tcp_keepinit = TCPTV_KEEP_INIT;
379 	tcp_keepidle = TCPTV_KEEP_IDLE;
380 	tcp_keepintvl = TCPTV_KEEPINTVL;
381 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
382 	tcp_msl = TCPTV_MSL;
383 	tcp_rexmit_min = TCPTV_MIN;
384 	if (tcp_rexmit_min < 1) /* if kern.hz is too low */
385 		tcp_rexmit_min = 1;
386 	tcp_rexmit_slop = TCPTV_CPU_VAR;
387 
388 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
389 	if (!powerof2(hashsize)) {
390 		kprintf("WARNING: TCB hash size not a power of 2\n");
391 		hashsize = 512; /* safe default */
392 	}
393 	tcp_tcbhashsize = hashsize;
394 
395 	portinfo = kmalloc_cachealign(sizeof(*portinfo) * netisr_ncpus, M_PCB,
396 	    M_WAITOK);
397 
398 	for (cpu = 0; cpu < netisr_ncpus; cpu++) {
399 		ticb = &tcbinfo[cpu];
400 		in_pcbinfo_init(ticb, cpu, FALSE);
401 		ticb->hashbase = hashinit(hashsize, M_PCB,
402 					  &ticb->hashmask);
403 		in_pcbportinfo_init(&portinfo[cpu], hashsize, cpu);
404 		in_pcbportinfo_set(ticb, portinfo, netisr_ncpus);
405 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
406 						  &ticb->wildcardhashmask);
407 		ticb->localgrphashbase = hashinit(hashsize, M_PCB,
408 						  &ticb->localgrphashmask);
409 		ticb->ipi_size = sizeof(struct inp_tp);
410 		TAILQ_INIT(&tcpcbackq[cpu].head);
411 	}
412 
413 	tcp_reass_maxseg = nmbclusters / 16;
414 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
415 
416 #ifdef INET6
417 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
418 #else
419 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
420 #endif
421 	if (max_protohdr < TCP_MINPROTOHDR)
422 		max_protohdr = TCP_MINPROTOHDR;
423 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
424 		panic("tcp_init");
425 #undef TCP_MINPROTOHDR
426 
427 	/*
428 	 * Initialize TCP statistics counters for each CPU.
429 	 */
430 	for (cpu = 0; cpu < netisr_ncpus; ++cpu)
431 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
432 
433 	/*
434 	 * Initialize netmsgs for TCP drain
435 	 */
436 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
437 		netmsg_init(&tcp_drain_netmsg[cpu], NULL, &netisr_adone_rport,
438 		    MSGF_PRIORITY, tcp_drain_dispatch);
439 	}
440 
441 	syncache_init();
442 	netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
443 }
444 
445 static void
446 tcp_willblock(void)
447 {
448 	struct tcpcb *tp;
449 	int cpu = mycpuid;
450 
451 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu].head)) != NULL) {
452 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
453 		tp->t_flags &= ~TF_ONOUTPUTQ;
454 		TAILQ_REMOVE(&tcpcbackq[cpu].head, tp, t_outputq);
455 		tcp_output(tp);
456 	}
457 }
458 
459 /*
460  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
461  * tcp_template used to store this data in mbufs, but we now recopy it out
462  * of the tcpcb each time to conserve mbufs.
463  */
464 void
465 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
466 {
467 	struct inpcb *inp = tp->t_inpcb;
468 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
469 
470 #ifdef INET6
471 	if (INP_ISIPV6(inp)) {
472 		struct ip6_hdr *ip6;
473 
474 		ip6 = (struct ip6_hdr *)ip_ptr;
475 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
476 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
477 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
478 			(IPV6_VERSION & IPV6_VERSION_MASK);
479 		ip6->ip6_nxt = IPPROTO_TCP;
480 		ip6->ip6_plen = sizeof(struct tcphdr);
481 		ip6->ip6_src = inp->in6p_laddr;
482 		ip6->ip6_dst = inp->in6p_faddr;
483 		tcp_hdr->th_sum = 0;
484 	} else
485 #endif
486 	{
487 		struct ip *ip = (struct ip *) ip_ptr;
488 		u_int plen;
489 
490 		ip->ip_vhl = IP_VHL_BORING;
491 		ip->ip_tos = 0;
492 		ip->ip_len = 0;
493 		ip->ip_id = 0;
494 		ip->ip_off = 0;
495 		ip->ip_ttl = 0;
496 		ip->ip_sum = 0;
497 		ip->ip_p = IPPROTO_TCP;
498 		ip->ip_src = inp->inp_laddr;
499 		ip->ip_dst = inp->inp_faddr;
500 
501 		if (tso)
502 			plen = htons(IPPROTO_TCP);
503 		else
504 			plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
505 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
506 		    ip->ip_dst.s_addr, plen);
507 	}
508 
509 	tcp_hdr->th_sport = inp->inp_lport;
510 	tcp_hdr->th_dport = inp->inp_fport;
511 	tcp_hdr->th_seq = 0;
512 	tcp_hdr->th_ack = 0;
513 	tcp_hdr->th_x2 = 0;
514 	tcp_hdr->th_off = 5;
515 	tcp_hdr->th_flags = 0;
516 	tcp_hdr->th_win = 0;
517 	tcp_hdr->th_urp = 0;
518 }
519 
520 /*
521  * Create template to be used to send tcp packets on a connection.
522  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
523  * use for this function is in keepalives, which use tcp_respond.
524  */
525 struct tcptemp *
526 tcp_maketemplate(struct tcpcb *tp)
527 {
528 	struct tcptemp *tmp;
529 
530 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
531 		return (NULL);
532 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
533 	return (tmp);
534 }
535 
536 void
537 tcp_freetemplate(struct tcptemp *tmp)
538 {
539 	mpipe_free(&tcptemp_mpipe, tmp);
540 }
541 
542 /*
543  * Send a single message to the TCP at address specified by
544  * the given TCP/IP header.  If m == NULL, then we make a copy
545  * of the tcpiphdr at ti and send directly to the addressed host.
546  * This is used to force keep alive messages out using the TCP
547  * template for a connection.  If flags are given then we send
548  * a message back to the TCP which originated the * segment ti,
549  * and discard the mbuf containing it and any other attached mbufs.
550  *
551  * In any case the ack and sequence number of the transmitted
552  * segment are as specified by the parameters.
553  *
554  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
555  */
556 void
557 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
558 	    tcp_seq ack, tcp_seq seq, int flags)
559 {
560 	int tlen;
561 	long win = 0;
562 	struct route *ro = NULL;
563 	struct route sro;
564 	struct ip *ip = ipgen;
565 	struct tcphdr *nth;
566 	int ipflags = 0;
567 	struct route_in6 *ro6 = NULL;
568 	struct route_in6 sro6;
569 	struct ip6_hdr *ip6 = ipgen;
570 	struct inpcb *inp = NULL;
571 	boolean_t use_tmpro = TRUE;
572 #ifdef INET6
573 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
574 #else
575 	const boolean_t isipv6 = FALSE;
576 #endif
577 
578 	if (tp != NULL) {
579 		inp = tp->t_inpcb;
580 		if (!(flags & TH_RST)) {
581 			win = ssb_space(&inp->inp_socket->so_rcv);
582 			if (win < 0)
583 				win = 0;
584 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
585 				win = (long)TCP_MAXWIN << tp->rcv_scale;
586 		}
587 		/*
588 		 * Don't use the route cache of a listen socket,
589 		 * it is not MPSAFE; use temporary route cache.
590 		 */
591 		if (tp->t_state != TCPS_LISTEN) {
592 			if (isipv6)
593 				ro6 = &inp->in6p_route;
594 			else
595 				ro = &inp->inp_route;
596 			use_tmpro = FALSE;
597 		}
598 	}
599 	if (use_tmpro) {
600 		if (isipv6) {
601 			ro6 = &sro6;
602 			bzero(ro6, sizeof *ro6);
603 		} else {
604 			ro = &sro;
605 			bzero(ro, sizeof *ro);
606 		}
607 	}
608 	if (m == NULL) {
609 		m = m_gethdr(M_NOWAIT, MT_HEADER);
610 		if (m == NULL)
611 			return;
612 		tlen = 0;
613 		m->m_data += max_linkhdr;
614 		if (isipv6) {
615 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
616 			ip6 = mtod(m, struct ip6_hdr *);
617 			nth = (struct tcphdr *)(ip6 + 1);
618 		} else {
619 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
620 			ip = mtod(m, struct ip *);
621 			nth = (struct tcphdr *)(ip + 1);
622 		}
623 		bcopy(th, nth, sizeof(struct tcphdr));
624 		flags = TH_ACK;
625 	} else {
626 		m_freem(m->m_next);
627 		m->m_next = NULL;
628 		m->m_data = (caddr_t)ipgen;
629 		/* m_len is set later */
630 		tlen = 0;
631 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
632 		if (isipv6) {
633 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
634 			nth = (struct tcphdr *)(ip6 + 1);
635 		} else {
636 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
637 			nth = (struct tcphdr *)(ip + 1);
638 		}
639 		if (th != nth) {
640 			/*
641 			 * this is usually a case when an extension header
642 			 * exists between the IPv6 header and the
643 			 * TCP header.
644 			 */
645 			nth->th_sport = th->th_sport;
646 			nth->th_dport = th->th_dport;
647 		}
648 		xchg(nth->th_dport, nth->th_sport, n_short);
649 #undef xchg
650 	}
651 	if (isipv6) {
652 		ip6->ip6_flow = 0;
653 		ip6->ip6_vfc = IPV6_VERSION;
654 		ip6->ip6_nxt = IPPROTO_TCP;
655 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
656 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
657 	} else {
658 		tlen += sizeof(struct tcpiphdr);
659 		ip->ip_len = tlen;
660 		ip->ip_ttl = ip_defttl;
661 	}
662 	m->m_len = tlen;
663 	m->m_pkthdr.len = tlen;
664 	m->m_pkthdr.rcvif = NULL;
665 	nth->th_seq = htonl(seq);
666 	nth->th_ack = htonl(ack);
667 	nth->th_x2 = 0;
668 	nth->th_off = sizeof(struct tcphdr) >> 2;
669 	nth->th_flags = flags;
670 	if (tp != NULL)
671 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
672 	else
673 		nth->th_win = htons((u_short)win);
674 	nth->th_urp = 0;
675 	if (isipv6) {
676 		nth->th_sum = 0;
677 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
678 					sizeof(struct ip6_hdr),
679 					tlen - sizeof(struct ip6_hdr));
680 		ip6->ip6_hlim = in6_selecthlim(inp,
681 		    (ro6 && ro6->ro_rt) ? ro6->ro_rt->rt_ifp : NULL);
682 	} else {
683 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
684 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
685 		m->m_pkthdr.csum_flags = CSUM_TCP;
686 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
687 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
688 	}
689 #ifdef TCPDEBUG
690 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
691 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
692 #endif
693 	if (isipv6) {
694 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL, inp);
695 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
696 			RTFREE(ro6->ro_rt);
697 			ro6->ro_rt = NULL;
698 		}
699 	} else {
700 		if (inp != NULL && (inp->inp_flags & INP_HASH))
701 			m_sethash(m, inp->inp_hashval);
702 		ipflags |= IP_DEBUGROUTE;
703 		ip_output(m, NULL, ro, ipflags, NULL, inp);
704 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
705 			RTFREE(ro->ro_rt);
706 			ro->ro_rt = NULL;
707 		}
708 	}
709 }
710 
711 /*
712  * Create a new TCP control block, making an
713  * empty reassembly queue and hooking it to the argument
714  * protocol control block.  The `inp' parameter must have
715  * come from the zone allocator set up in tcp_init().
716  */
717 void
718 tcp_newtcpcb(struct inpcb *inp)
719 {
720 	struct inp_tp *it;
721 	struct tcpcb *tp;
722 #ifdef INET6
723 	boolean_t isipv6 = INP_ISIPV6(inp);
724 #else
725 	const boolean_t isipv6 = FALSE;
726 #endif
727 
728 	it = (struct inp_tp *)inp;
729 	tp = &it->tcb;
730 	bzero(tp, sizeof(struct tcpcb));
731 	TAILQ_INIT(&tp->t_segq);
732 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
733 	tp->t_rxtthresh = tcprexmtthresh;
734 
735 	/* Set up our timeouts. */
736 	tp->tt_rexmt = &it->inp_tp_rexmt;
737 	tp->tt_persist = &it->inp_tp_persist;
738 	tp->tt_keep = &it->inp_tp_keep;
739 	tp->tt_2msl = &it->inp_tp_2msl;
740 	tp->tt_delack = &it->inp_tp_delack;
741 	tcp_inittimers(tp);
742 
743 	/*
744 	 * Zero out timer message.  We don't create it here,
745 	 * since the current CPU may not be the owner of this
746 	 * inpcb.
747 	 */
748 	tp->tt_msg = &it->inp_tp_timermsg;
749 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
750 
751 	tp->t_keepinit = tcp_keepinit;
752 	tp->t_keepidle = tcp_keepidle;
753 	tp->t_keepintvl = tcp_keepintvl;
754 	tp->t_keepcnt = tcp_keepcnt;
755 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
756 
757 	if (tcp_do_ncr)
758 		tp->t_flags |= TF_NCR;
759 	if (tcp_do_rfc1323)
760 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
761 
762 	tp->t_inpcb = inp;	/* XXX */
763 	TCP_STATE_INIT(tp);
764 	/*
765 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
766 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
767 	 * reasonable initial retransmit time.
768 	 */
769 	tp->t_srtt = TCPTV_SRTTBASE;
770 	tp->t_rttvar =
771 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
772 	tp->t_rttmin = tcp_rexmit_min;
773 	tp->t_rxtcur = TCPTV_RTOBASE;
774 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
775 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
776 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
777 	tp->snd_last = ticks;
778 	tp->t_rcvtime = ticks;
779 	/*
780 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
781 	 * because the socket may be bound to an IPv6 wildcard address,
782 	 * which may match an IPv4-mapped IPv6 address.
783 	 */
784 	inp->inp_ip_ttl = ip_defttl;
785 	inp->inp_ppcb = tp;
786 	tcp_sack_tcpcb_init(tp);
787 
788 	tp->tt_sndmore = &it->inp_tp_sndmore;
789 	tcp_output_init(tp);
790 }
791 
792 /*
793  * Drop a TCP connection, reporting the specified error.
794  * If connection is synchronized, then send a RST to peer.
795  */
796 struct tcpcb *
797 tcp_drop(struct tcpcb *tp, int error)
798 {
799 	struct socket *so = tp->t_inpcb->inp_socket;
800 
801 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
802 		TCP_STATE_CHANGE(tp, TCPS_CLOSED);
803 		tcp_output(tp);
804 		tcpstat.tcps_drops++;
805 	} else
806 		tcpstat.tcps_conndrops++;
807 	if (error == ETIMEDOUT && tp->t_softerror)
808 		error = tp->t_softerror;
809 	so->so_error = error;
810 	return (tcp_close(tp));
811 }
812 
813 struct netmsg_listen_detach {
814 	struct netmsg_base	base;
815 	struct tcpcb		*nm_tp;
816 	struct tcpcb		*nm_tp_inh;
817 };
818 
819 static void
820 tcp_listen_detach_handler(netmsg_t msg)
821 {
822 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
823 	struct tcpcb *tp = nmsg->nm_tp;
824 	int cpu = mycpuid, nextcpu;
825 
826 	if (tp->t_flags & TF_LISTEN) {
827 		syncache_destroy(tp, nmsg->nm_tp_inh);
828 		tcp_pcbport_merge_oncpu(tp);
829 	}
830 
831 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
832 
833 	nextcpu = cpu + 1;
834 	if (nextcpu < netisr_ncpus)
835 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
836 	else
837 		lwkt_replymsg(&nmsg->base.lmsg, 0);
838 }
839 
840 /*
841  * Close a TCP control block:
842  *	discard all space held by the tcp
843  *	discard internet protocol block
844  *	wake up any sleepers
845  */
846 struct tcpcb *
847 tcp_close(struct tcpcb *tp)
848 {
849 	struct tseg_qent *q;
850 	struct inpcb *inp = tp->t_inpcb;
851 	struct inpcb *inp_inh = NULL;
852 	struct tcpcb *tp_inh = NULL;
853 	struct socket *so = inp->inp_socket;
854 	struct rtentry *rt;
855 	boolean_t dosavessthresh;
856 #ifdef INET6
857 	boolean_t isipv6 = INP_ISIPV6(inp);
858 #else
859 	const boolean_t isipv6 = FALSE;
860 #endif
861 
862 	if (tp->t_flags & TF_LISTEN) {
863 		/*
864 		 * Pending socket/syncache inheritance
865 		 *
866 		 * If this is a listen(2) socket, find another listen(2)
867 		 * socket in the same local group, which could inherit
868 		 * the syncache and sockets pending on the completion
869 		 * and incompletion queues.
870 		 *
871 		 * NOTE:
872 		 * Currently the inheritance could only happen on the
873 		 * listen(2) sockets w/ SO_REUSEPORT set.
874 		 */
875 		ASSERT_IN_NETISR(0);
876 		inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
877 		if (inp_inh != NULL)
878 			tp_inh = intotcpcb(inp_inh);
879 	}
880 
881 	/*
882 	 * INP_WILDCARD indicates that listen(2) has been called on
883 	 * this socket.  This implies:
884 	 * - A wildcard inp's hash is replicated for each protocol thread.
885 	 * - Syncache for this inp grows independently in each protocol
886 	 *   thread.
887 	 * - There is more than one cpu
888 	 *
889 	 * We have to chain a message to the rest of the protocol threads
890 	 * to cleanup the wildcard hash and the syncache.  The cleanup
891 	 * in the current protocol thread is defered till the end of this
892 	 * function (syncache_destroy and in_pcbdetach).
893 	 *
894 	 * NOTE:
895 	 * After cleanup the inp's hash and syncache entries, this inp will
896 	 * no longer be available to the rest of the protocol threads, so we
897 	 * are safe to whack the inp in the following code.
898 	 */
899 	if ((inp->inp_flags & INP_WILDCARD) && netisr_ncpus > 1) {
900 		struct netmsg_listen_detach nmsg;
901 
902 		KKASSERT(so->so_port == netisr_cpuport(0));
903 		ASSERT_IN_NETISR(0);
904 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
905 
906 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
907 			    MSGF_PRIORITY, tcp_listen_detach_handler);
908 		nmsg.nm_tp = tp;
909 		nmsg.nm_tp_inh = tp_inh;
910 		lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
911 	}
912 
913 	TCP_STATE_TERM(tp);
914 
915 	/*
916 	 * Make sure that all of our timers are stopped before we
917 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
918 	 * timers are never used.  If timer message is never created
919 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
920 	 */
921 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
922 		tcp_callout_stop(tp, tp->tt_rexmt);
923 		tcp_callout_stop(tp, tp->tt_persist);
924 		tcp_callout_stop(tp, tp->tt_keep);
925 		tcp_callout_stop(tp, tp->tt_2msl);
926 		tcp_callout_stop(tp, tp->tt_delack);
927 	}
928 
929 	if (tp->t_flags & TF_ONOUTPUTQ) {
930 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
931 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu].head, tp, t_outputq);
932 		tp->t_flags &= ~TF_ONOUTPUTQ;
933 	}
934 
935 	/*
936 	 * If we got enough samples through the srtt filter,
937 	 * save the rtt and rttvar in the routing entry.
938 	 * 'Enough' is arbitrarily defined as the 16 samples.
939 	 * 16 samples is enough for the srtt filter to converge
940 	 * to within 5% of the correct value; fewer samples and
941 	 * we could save a very bogus rtt.
942 	 *
943 	 * Don't update the default route's characteristics and don't
944 	 * update anything that the user "locked".
945 	 */
946 	if (tp->t_rttupdated >= 16) {
947 		u_long i = 0;
948 
949 		if (isipv6) {
950 			struct sockaddr_in6 *sin6;
951 
952 			if ((rt = inp->in6p_route.ro_rt) == NULL)
953 				goto no_valid_rt;
954 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
955 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
956 				goto no_valid_rt;
957 		} else
958 			if ((rt = inp->inp_route.ro_rt) == NULL ||
959 			    ((struct sockaddr_in *)rt_key(rt))->
960 			     sin_addr.s_addr == INADDR_ANY)
961 				goto no_valid_rt;
962 
963 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
964 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
965 			if (rt->rt_rmx.rmx_rtt && i)
966 				/*
967 				 * filter this update to half the old & half
968 				 * the new values, converting scale.
969 				 * See route.h and tcp_var.h for a
970 				 * description of the scaling constants.
971 				 */
972 				rt->rt_rmx.rmx_rtt =
973 				    (rt->rt_rmx.rmx_rtt + i) / 2;
974 			else
975 				rt->rt_rmx.rmx_rtt = i;
976 			tcpstat.tcps_cachedrtt++;
977 		}
978 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
979 			i = tp->t_rttvar *
980 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
981 			if (rt->rt_rmx.rmx_rttvar && i)
982 				rt->rt_rmx.rmx_rttvar =
983 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
984 			else
985 				rt->rt_rmx.rmx_rttvar = i;
986 			tcpstat.tcps_cachedrttvar++;
987 		}
988 		/*
989 		 * The old comment here said:
990 		 * update the pipelimit (ssthresh) if it has been updated
991 		 * already or if a pipesize was specified & the threshhold
992 		 * got below half the pipesize.  I.e., wait for bad news
993 		 * before we start updating, then update on both good
994 		 * and bad news.
995 		 *
996 		 * But we want to save the ssthresh even if no pipesize is
997 		 * specified explicitly in the route, because such
998 		 * connections still have an implicit pipesize specified
999 		 * by the global tcp_sendspace.  In the absence of a reliable
1000 		 * way to calculate the pipesize, it will have to do.
1001 		 */
1002 		i = tp->snd_ssthresh;
1003 		if (rt->rt_rmx.rmx_sendpipe != 0)
1004 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
1005 		else
1006 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
1007 		if (dosavessthresh ||
1008 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
1009 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
1010 			/*
1011 			 * convert the limit from user data bytes to
1012 			 * packets then to packet data bytes.
1013 			 */
1014 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
1015 			if (i < 2)
1016 				i = 2;
1017 			i *= tp->t_maxseg +
1018 			     (isipv6 ?
1019 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1020 			      sizeof(struct tcpiphdr));
1021 			if (rt->rt_rmx.rmx_ssthresh)
1022 				rt->rt_rmx.rmx_ssthresh =
1023 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1024 			else
1025 				rt->rt_rmx.rmx_ssthresh = i;
1026 			tcpstat.tcps_cachedssthresh++;
1027 		}
1028 	}
1029 
1030 no_valid_rt:
1031 	/* free the reassembly queue, if any */
1032 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
1033 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
1034 		m_freem(q->tqe_m);
1035 		kfree(q, M_TSEGQ);
1036 		atomic_add_int(&tcp_reass_qsize, -1);
1037 	}
1038 	/* throw away SACK blocks in scoreboard*/
1039 	if (TCP_DO_SACK(tp))
1040 		tcp_sack_destroy(&tp->scb);
1041 
1042 	inp->inp_ppcb = NULL;
1043 	soisdisconnected(so);
1044 	/* note: pcb detached later on */
1045 
1046 	tcp_destroy_timermsg(tp);
1047 	tcp_output_cancel(tp);
1048 
1049 	if (tp->t_flags & TF_LISTEN) {
1050 		syncache_destroy(tp, tp_inh);
1051 		tcp_pcbport_merge_oncpu(tp);
1052 		tcp_pcbport_destroy(tp);
1053 		if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
1054 			/*
1055 			 * Pending sockets inheritance only needs
1056 			 * to be done once in the current thread,
1057 			 * i.e. netisr0.
1058 			 */
1059 			soinherit(so, inp_inh->inp_socket);
1060 		}
1061 	}
1062 	KASSERT(tp->t_pcbport == NULL, ("tcpcb port cache is not destroyed"));
1063 
1064 	so_async_rcvd_drop(so);
1065 	/* Drop the reference for the asynchronized pru_rcvd */
1066 	sofree(so);
1067 
1068 	/*
1069 	 * NOTE:
1070 	 * - Remove self from listen tcpcb per-cpu port cache _before_
1071 	 *   pcbdetach.
1072 	 * - pcbdetach removes any wildcard hash entry on the current CPU.
1073 	 */
1074 	tcp_pcbport_remove(inp);
1075 #ifdef INET6
1076 	if (isipv6)
1077 		in6_pcbdetach(inp);
1078 	else
1079 #endif
1080 		in_pcbdetach(inp);
1081 
1082 	tcpstat.tcps_closed++;
1083 	return (NULL);
1084 }
1085 
1086 static __inline void
1087 tcp_drain_oncpu(struct inpcbinfo *pcbinfo)
1088 {
1089 	struct inpcbhead *head = &pcbinfo->pcblisthead;
1090 	struct inpcb *inpb;
1091 
1092 	/*
1093 	 * Since we run in netisr, it is MP safe, even if
1094 	 * we block during the inpcb list iteration, i.e.
1095 	 * we don't need to use inpcb marker here.
1096 	 */
1097 	ASSERT_IN_NETISR(pcbinfo->cpu);
1098 
1099 	LIST_FOREACH(inpb, head, inp_list) {
1100 		struct tcpcb *tcpb;
1101 		struct tseg_qent *te;
1102 
1103 		if (inpb->inp_flags & INP_PLACEMARKER)
1104 			continue;
1105 
1106 		tcpb = intotcpcb(inpb);
1107 		KASSERT(tcpb != NULL, ("tcp_drain_oncpu: tcpb is NULL"));
1108 
1109 		if ((te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1110 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1111 			if (te->tqe_th->th_flags & TH_FIN)
1112 				tcpb->t_flags &= ~TF_QUEDFIN;
1113 			m_freem(te->tqe_m);
1114 			kfree(te, M_TSEGQ);
1115 			atomic_add_int(&tcp_reass_qsize, -1);
1116 			/* retry */
1117 		}
1118 	}
1119 }
1120 
1121 static void
1122 tcp_drain_dispatch(netmsg_t nmsg)
1123 {
1124 	crit_enter();
1125 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1126 	crit_exit();
1127 
1128 	tcp_drain_oncpu(&tcbinfo[mycpuid]);
1129 }
1130 
1131 static void
1132 tcp_drain_ipi(void *arg __unused)
1133 {
1134 	int cpu = mycpuid;
1135 	struct lwkt_msg *msg = &tcp_drain_netmsg[cpu].lmsg;
1136 
1137 	crit_enter();
1138 	if (msg->ms_flags & MSGF_DONE)
1139 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1140 	crit_exit();
1141 }
1142 
1143 void
1144 tcp_drain(void)
1145 {
1146 	cpumask_t mask;
1147 
1148 	if (!do_tcpdrain)
1149 		return;
1150 
1151 	/*
1152 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1153 	 * if there is one...
1154 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1155 	 *	reassembly queue should be flushed, but in a situation
1156 	 *	where we're really low on mbufs, this is potentially
1157 	 *	useful.
1158 	 * YYY: We may consider run tcp_drain_oncpu directly here,
1159 	 *      however, that will require M_WAITOK memory allocation
1160 	 *      for the inpcb marker.
1161 	 */
1162 	CPUMASK_ASSBMASK(mask, netisr_ncpus);
1163 	CPUMASK_ANDMASK(mask, smp_active_mask);
1164 	if (CPUMASK_TESTNZERO(mask))
1165 		lwkt_send_ipiq_mask(mask, tcp_drain_ipi, NULL);
1166 }
1167 
1168 /*
1169  * Notify a tcp user of an asynchronous error;
1170  * store error as soft error, but wake up user
1171  * (for now, won't do anything until can select for soft error).
1172  *
1173  * Do not wake up user since there currently is no mechanism for
1174  * reporting soft errors (yet - a kqueue filter may be added).
1175  */
1176 static void
1177 tcp_notify(struct inpcb *inp, int error)
1178 {
1179 	struct tcpcb *tp = intotcpcb(inp);
1180 
1181 	/*
1182 	 * Ignore some errors if we are hooked up.
1183 	 * If connection hasn't completed, has retransmitted several times,
1184 	 * and receives a second error, give up now.  This is better
1185 	 * than waiting a long time to establish a connection that
1186 	 * can never complete.
1187 	 */
1188 	if (tp->t_state == TCPS_ESTABLISHED &&
1189 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1190 	      error == EHOSTDOWN)) {
1191 		return;
1192 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1193 	    tp->t_softerror)
1194 		tcp_drop(tp, error);
1195 	else
1196 		tp->t_softerror = error;
1197 #if 0
1198 	wakeup(&so->so_timeo);
1199 	sorwakeup(so);
1200 	sowwakeup(so);
1201 #endif
1202 }
1203 
1204 static int
1205 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1206 {
1207 	int error, i, n;
1208 	struct inpcb *marker;
1209 	struct inpcb *inp;
1210 	int origcpu, ccpu;
1211 
1212 	error = 0;
1213 	n = 0;
1214 
1215 	/*
1216 	 * The process of preparing the TCB list is too time-consuming and
1217 	 * resource-intensive to repeat twice on every request.
1218 	 */
1219 	if (req->oldptr == NULL) {
1220 		for (ccpu = 0; ccpu < netisr_ncpus; ++ccpu)
1221 			n += tcbinfo[ccpu].ipi_count;
1222 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1223 		return (0);
1224 	}
1225 
1226 	if (req->newptr != NULL)
1227 		return (EPERM);
1228 
1229 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1230 	marker->inp_flags |= INP_PLACEMARKER;
1231 
1232 	/*
1233 	 * OK, now we're committed to doing something.  Run the inpcb list
1234 	 * for each cpu in the system and construct the output.  Use a
1235 	 * list placemarker to deal with list changes occuring during
1236 	 * copyout blockages (but otherwise depend on being on the correct
1237 	 * cpu to avoid races).
1238 	 */
1239 	origcpu = mycpu->gd_cpuid;
1240 	for (ccpu = 0; ccpu < netisr_ncpus && error == 0; ++ccpu) {
1241 		caddr_t inp_ppcb;
1242 		struct xtcpcb xt;
1243 
1244 		lwkt_migratecpu(ccpu);
1245 
1246 		n = tcbinfo[ccpu].ipi_count;
1247 
1248 		LIST_INSERT_HEAD(&tcbinfo[ccpu].pcblisthead, marker, inp_list);
1249 		i = 0;
1250 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1251 			/*
1252 			 * process a snapshot of pcbs, ignoring placemarkers
1253 			 * and using our own to allow SYSCTL_OUT to block.
1254 			 */
1255 			LIST_REMOVE(marker, inp_list);
1256 			LIST_INSERT_AFTER(inp, marker, inp_list);
1257 
1258 			if (inp->inp_flags & INP_PLACEMARKER)
1259 				continue;
1260 			if (prison_xinpcb(req->td, inp))
1261 				continue;
1262 
1263 			xt.xt_len = sizeof xt;
1264 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1265 			inp_ppcb = inp->inp_ppcb;
1266 			if (inp_ppcb != NULL)
1267 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1268 			else
1269 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1270 			if (inp->inp_socket)
1271 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1272 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1273 				break;
1274 			++i;
1275 		}
1276 		LIST_REMOVE(marker, inp_list);
1277 		if (error == 0 && i < n) {
1278 			bzero(&xt, sizeof xt);
1279 			xt.xt_len = sizeof xt;
1280 			while (i < n) {
1281 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1282 				if (error)
1283 					break;
1284 				++i;
1285 			}
1286 		}
1287 	}
1288 
1289 	/*
1290 	 * Make sure we are on the same cpu we were on originally, since
1291 	 * higher level callers expect this.  Also don't pollute caches with
1292 	 * migrated userland data by (eventually) returning to userland
1293 	 * on a different cpu.
1294 	 */
1295 	lwkt_migratecpu(origcpu);
1296 	kfree(marker, M_TEMP);
1297 	return (error);
1298 }
1299 
1300 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1301 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1302 
1303 static int
1304 tcp_getcred(SYSCTL_HANDLER_ARGS)
1305 {
1306 	struct sockaddr_in addrs[2];
1307 	struct ucred cred0, *cred = NULL;
1308 	struct inpcb *inp;
1309 	int cpu, origcpu, error;
1310 
1311 	error = priv_check(req->td, PRIV_ROOT);
1312 	if (error != 0)
1313 		return (error);
1314 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1315 	if (error != 0)
1316 		return (error);
1317 
1318 	origcpu = mycpuid;
1319 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1320 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1321 
1322 	lwkt_migratecpu(cpu);
1323 
1324 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1325 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1326 	if (inp == NULL || inp->inp_socket == NULL) {
1327 		error = ENOENT;
1328 	} else if (inp->inp_socket->so_cred != NULL) {
1329 		cred0 = *(inp->inp_socket->so_cred);
1330 		cred = &cred0;
1331 	}
1332 
1333 	lwkt_migratecpu(origcpu);
1334 
1335 	if (error)
1336 		return (error);
1337 
1338 	return SYSCTL_OUT(req, cred, sizeof(struct ucred));
1339 }
1340 
1341 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1342     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1343 
1344 #ifdef INET6
1345 static int
1346 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1347 {
1348 	struct sockaddr_in6 addrs[2];
1349 	struct inpcb *inp;
1350 	int error;
1351 
1352 	error = priv_check(req->td, PRIV_ROOT);
1353 	if (error != 0)
1354 		return (error);
1355 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1356 	if (error != 0)
1357 		return (error);
1358 	crit_enter();
1359 	inp = in6_pcblookup_hash(&tcbinfo[0],
1360 	    &addrs[1].sin6_addr, addrs[1].sin6_port,
1361 	    &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1362 	if (inp == NULL || inp->inp_socket == NULL) {
1363 		error = ENOENT;
1364 		goto out;
1365 	}
1366 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1367 out:
1368 	crit_exit();
1369 	return (error);
1370 }
1371 
1372 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1373 	    0, 0,
1374 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1375 #endif
1376 
1377 struct netmsg_tcp_notify {
1378 	struct netmsg_base base;
1379 	inp_notify_t	nm_notify;
1380 	struct in_addr	nm_faddr;
1381 	int		nm_arg;
1382 };
1383 
1384 static void
1385 tcp_notifyall_oncpu(netmsg_t msg)
1386 {
1387 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1388 	int nextcpu;
1389 
1390 	in_pcbnotifyall(&tcbinfo[mycpuid], nm->nm_faddr,
1391 			nm->nm_arg, nm->nm_notify);
1392 
1393 	nextcpu = mycpuid + 1;
1394 	if (nextcpu < netisr_ncpus)
1395 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1396 	else
1397 		lwkt_replymsg(&nm->base.lmsg, 0);
1398 }
1399 
1400 inp_notify_t
1401 tcp_get_inpnotify(int cmd, const struct sockaddr *sa,
1402     int *arg, struct ip **ip0, int *cpuid)
1403 {
1404 	struct ip *ip = *ip0;
1405 	struct in_addr faddr;
1406 	inp_notify_t notify = tcp_notify;
1407 
1408 	faddr = ((const struct sockaddr_in *)sa)->sin_addr;
1409 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1410 		return NULL;
1411 
1412 	*arg = inetctlerrmap[cmd];
1413 	if (cmd == PRC_QUENCH) {
1414 		notify = tcp_quench;
1415 	} else if (icmp_may_rst &&
1416 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1417 		    cmd == PRC_UNREACH_PORT ||
1418 		    cmd == PRC_TIMXCEED_INTRANS) &&
1419 		   ip != NULL) {
1420 		notify = tcp_drop_syn_sent;
1421 	} else if (cmd == PRC_MSGSIZE) {
1422 		const struct icmp *icmp = (const struct icmp *)
1423 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1424 
1425 		*arg = ntohs(icmp->icmp_nextmtu);
1426 		notify = tcp_mtudisc;
1427 	} else if (PRC_IS_REDIRECT(cmd)) {
1428 		ip = NULL;
1429 		notify = in_rtchange;
1430 	} else if (cmd == PRC_HOSTDEAD) {
1431 		ip = NULL;
1432 	} else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1433 		return NULL;
1434 	}
1435 
1436 	if (cpuid != NULL) {
1437 		if (ip == NULL) {
1438 			/* Go through all CPUs */
1439 			*cpuid = ncpus;
1440 		} else {
1441 			const struct tcphdr *th;
1442 
1443 			th = (const struct tcphdr *)
1444 			    ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1445 			*cpuid = tcp_addrcpu(faddr.s_addr, th->th_dport,
1446 			    ip->ip_src.s_addr, th->th_sport);
1447 		}
1448 	}
1449 
1450 	*ip0 = ip;
1451 	return notify;
1452 }
1453 
1454 void
1455 tcp_ctlinput(netmsg_t msg)
1456 {
1457 	int cmd = msg->ctlinput.nm_cmd;
1458 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1459 	struct ip *ip = msg->ctlinput.nm_extra;
1460 	struct in_addr faddr;
1461 	inp_notify_t notify;
1462 	int arg, cpuid;
1463 
1464 	notify = tcp_get_inpnotify(cmd, sa, &arg, &ip, &cpuid);
1465 	if (notify == NULL)
1466 		goto done;
1467 
1468 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1469 	if (ip != NULL) {
1470 		const struct tcphdr *th;
1471 		struct inpcb *inp;
1472 
1473 		if (cpuid != mycpuid)
1474 			goto done;
1475 
1476 		th = (const struct tcphdr *)
1477 		    ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1478 		inp = in_pcblookup_hash(&tcbinfo[mycpuid], faddr, th->th_dport,
1479 					ip->ip_src, th->th_sport, 0, NULL);
1480 		if (inp != NULL && inp->inp_socket != NULL) {
1481 			tcp_seq icmpseq = htonl(th->th_seq);
1482 			struct tcpcb *tp = intotcpcb(inp);
1483 
1484 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1485 			    SEQ_LT(icmpseq, tp->snd_max))
1486 				notify(inp, arg);
1487 		} else {
1488 			struct in_conninfo inc;
1489 
1490 			inc.inc_fport = th->th_dport;
1491 			inc.inc_lport = th->th_sport;
1492 			inc.inc_faddr = faddr;
1493 			inc.inc_laddr = ip->ip_src;
1494 #ifdef INET6
1495 			inc.inc_isipv6 = 0;
1496 #endif
1497 			syncache_unreach(&inc, th);
1498 		}
1499 	} else if (msg->ctlinput.nm_direct) {
1500 		if (cpuid != ncpus && cpuid != mycpuid)
1501 			goto done;
1502 		if (mycpuid >= netisr_ncpus)
1503 			goto done;
1504 
1505 		in_pcbnotifyall(&tcbinfo[mycpuid], faddr, arg, notify);
1506 	} else {
1507 		struct netmsg_tcp_notify *nm;
1508 
1509 		ASSERT_IN_NETISR(0);
1510 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1511 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1512 			    0, tcp_notifyall_oncpu);
1513 		nm->nm_faddr = faddr;
1514 		nm->nm_arg = arg;
1515 		nm->nm_notify = notify;
1516 
1517 		lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1518 	}
1519 done:
1520 	lwkt_replymsg(&msg->lmsg, 0);
1521 }
1522 
1523 #ifdef INET6
1524 
1525 void
1526 tcp6_ctlinput(netmsg_t msg)
1527 {
1528 	int cmd = msg->ctlinput.nm_cmd;
1529 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1530 	void *d = msg->ctlinput.nm_extra;
1531 	struct tcphdr th;
1532 	inp_notify_t notify = tcp_notify;
1533 	struct ip6_hdr *ip6;
1534 	struct mbuf *m;
1535 	struct ip6ctlparam *ip6cp = NULL;
1536 	const struct sockaddr_in6 *sa6_src = NULL;
1537 	int off;
1538 	struct tcp_portonly {
1539 		u_int16_t th_sport;
1540 		u_int16_t th_dport;
1541 	} *thp;
1542 	int arg;
1543 
1544 	if (sa->sa_family != AF_INET6 ||
1545 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1546 		goto out;
1547 	}
1548 
1549 	arg = 0;
1550 	if (cmd == PRC_QUENCH)
1551 		notify = tcp_quench;
1552 	else if (cmd == PRC_MSGSIZE) {
1553 		struct ip6ctlparam *ip6cp = d;
1554 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1555 
1556 		arg = ntohl(icmp6->icmp6_mtu);
1557 		notify = tcp_mtudisc;
1558 	} else if (!PRC_IS_REDIRECT(cmd) &&
1559 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1560 		goto out;
1561 	}
1562 
1563 	/* if the parameter is from icmp6, decode it. */
1564 	if (d != NULL) {
1565 		ip6cp = (struct ip6ctlparam *)d;
1566 		m = ip6cp->ip6c_m;
1567 		ip6 = ip6cp->ip6c_ip6;
1568 		off = ip6cp->ip6c_off;
1569 		sa6_src = ip6cp->ip6c_src;
1570 	} else {
1571 		m = NULL;
1572 		ip6 = NULL;
1573 		off = 0;	/* fool gcc */
1574 		sa6_src = &sa6_any;
1575 	}
1576 
1577 	if (ip6 != NULL) {
1578 		struct in_conninfo inc;
1579 		/*
1580 		 * XXX: We assume that when IPV6 is non NULL,
1581 		 * M and OFF are valid.
1582 		 */
1583 
1584 		/* check if we can safely examine src and dst ports */
1585 		if (m->m_pkthdr.len < off + sizeof *thp)
1586 			goto out;
1587 
1588 		bzero(&th, sizeof th);
1589 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1590 
1591 		in6_pcbnotify(&tcbinfo[0], sa, th.th_dport,
1592 		    (struct sockaddr *)ip6cp->ip6c_src,
1593 		    th.th_sport, cmd, arg, notify);
1594 
1595 		inc.inc_fport = th.th_dport;
1596 		inc.inc_lport = th.th_sport;
1597 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1598 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1599 		inc.inc_isipv6 = 1;
1600 		syncache_unreach(&inc, &th);
1601 	} else {
1602 		in6_pcbnotify(&tcbinfo[0], sa, 0,
1603 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1604 	}
1605 out:
1606 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1607 }
1608 
1609 #endif
1610 
1611 /*
1612  * Following is where TCP initial sequence number generation occurs.
1613  *
1614  * There are two places where we must use initial sequence numbers:
1615  * 1.  In SYN-ACK packets.
1616  * 2.  In SYN packets.
1617  *
1618  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1619  * tcp_syncache.c for details.
1620  *
1621  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1622  * depends on this property.  In addition, these ISNs should be
1623  * unguessable so as to prevent connection hijacking.  To satisfy
1624  * the requirements of this situation, the algorithm outlined in
1625  * RFC 1948 is used to generate sequence numbers.
1626  *
1627  * Implementation details:
1628  *
1629  * Time is based off the system timer, and is corrected so that it
1630  * increases by one megabyte per second.  This allows for proper
1631  * recycling on high speed LANs while still leaving over an hour
1632  * before rollover.
1633  *
1634  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1635  * between seeding of isn_secret.  This is normally set to zero,
1636  * as reseeding should not be necessary.
1637  *
1638  */
1639 
1640 #define	ISN_BYTES_PER_SECOND 1048576
1641 
1642 u_char isn_secret[32];
1643 int isn_last_reseed;
1644 MD5_CTX isn_ctx;
1645 
1646 tcp_seq
1647 tcp_new_isn(struct tcpcb *tp)
1648 {
1649 	u_int32_t md5_buffer[4];
1650 	tcp_seq new_isn;
1651 
1652 	/* Seed if this is the first use, reseed if requested. */
1653 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1654 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1655 		< (u_int)ticks))) {
1656 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1657 		isn_last_reseed = ticks;
1658 	}
1659 
1660 	/* Compute the md5 hash and return the ISN. */
1661 	MD5Init(&isn_ctx);
1662 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1663 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1664 #ifdef INET6
1665 	if (INP_ISIPV6(tp->t_inpcb)) {
1666 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1667 			  sizeof(struct in6_addr));
1668 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1669 			  sizeof(struct in6_addr));
1670 	} else
1671 #endif
1672 	{
1673 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1674 			  sizeof(struct in_addr));
1675 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1676 			  sizeof(struct in_addr));
1677 	}
1678 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1679 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1680 	new_isn = (tcp_seq) md5_buffer[0];
1681 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1682 	return (new_isn);
1683 }
1684 
1685 /*
1686  * When a source quench is received, close congestion window
1687  * to one segment.  We will gradually open it again as we proceed.
1688  */
1689 void
1690 tcp_quench(struct inpcb *inp, int error)
1691 {
1692 	struct tcpcb *tp = intotcpcb(inp);
1693 
1694 	KASSERT(tp != NULL, ("tcp_quench: tp is NULL"));
1695 	tp->snd_cwnd = tp->t_maxseg;
1696 	tp->snd_wacked = 0;
1697 }
1698 
1699 /*
1700  * When a specific ICMP unreachable message is received and the
1701  * connection state is SYN-SENT, drop the connection.  This behavior
1702  * is controlled by the icmp_may_rst sysctl.
1703  */
1704 void
1705 tcp_drop_syn_sent(struct inpcb *inp, int error)
1706 {
1707 	struct tcpcb *tp = intotcpcb(inp);
1708 
1709 	KASSERT(tp != NULL, ("tcp_drop_syn_sent: tp is NULL"));
1710 	if (tp->t_state == TCPS_SYN_SENT)
1711 		tcp_drop(tp, error);
1712 }
1713 
1714 /*
1715  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1716  * based on the new value in the route.  Also nudge TCP to send something,
1717  * since we know the packet we just sent was dropped.
1718  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1719  */
1720 void
1721 tcp_mtudisc(struct inpcb *inp, int mtu)
1722 {
1723 	struct tcpcb *tp = intotcpcb(inp);
1724 	struct rtentry *rt;
1725 	struct socket *so = inp->inp_socket;
1726 	int maxopd, mss;
1727 #ifdef INET6
1728 	boolean_t isipv6 = INP_ISIPV6(inp);
1729 #else
1730 	const boolean_t isipv6 = FALSE;
1731 #endif
1732 
1733 	KASSERT(tp != NULL, ("tcp_mtudisc: tp is NULL"));
1734 
1735 	/*
1736 	 * If no MTU is provided in the ICMP message, use the
1737 	 * next lower likely value, as specified in RFC 1191.
1738 	 */
1739 	if (mtu == 0) {
1740 		int oldmtu;
1741 
1742 		oldmtu = tp->t_maxopd +
1743 		    (isipv6 ?
1744 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1745 		     sizeof(struct tcpiphdr));
1746 		mtu = ip_next_mtu(oldmtu, 0);
1747 	}
1748 
1749 	if (isipv6)
1750 		rt = tcp_rtlookup6(&inp->inp_inc);
1751 	else
1752 		rt = tcp_rtlookup(&inp->inp_inc);
1753 	if (rt != NULL) {
1754 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1755 			mtu = rt->rt_rmx.rmx_mtu;
1756 
1757 		maxopd = mtu -
1758 		    (isipv6 ?
1759 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1760 		     sizeof(struct tcpiphdr));
1761 
1762 		/*
1763 		 * XXX - The following conditional probably violates the TCP
1764 		 * spec.  The problem is that, since we don't know the
1765 		 * other end's MSS, we are supposed to use a conservative
1766 		 * default.  But, if we do that, then MTU discovery will
1767 		 * never actually take place, because the conservative
1768 		 * default is much less than the MTUs typically seen
1769 		 * on the Internet today.  For the moment, we'll sweep
1770 		 * this under the carpet.
1771 		 *
1772 		 * The conservative default might not actually be a problem
1773 		 * if the only case this occurs is when sending an initial
1774 		 * SYN with options and data to a host we've never talked
1775 		 * to before.  Then, they will reply with an MSS value which
1776 		 * will get recorded and the new parameters should get
1777 		 * recomputed.  For Further Study.
1778 		 */
1779 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1780 			maxopd = rt->rt_rmx.rmx_mssopt;
1781 	} else
1782 		maxopd = mtu -
1783 		    (isipv6 ?
1784 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1785 		     sizeof(struct tcpiphdr));
1786 
1787 	if (tp->t_maxopd <= maxopd)
1788 		return;
1789 	tp->t_maxopd = maxopd;
1790 
1791 	mss = maxopd;
1792 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1793 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1794 		mss -= TCPOLEN_TSTAMP_APPA;
1795 
1796 	/* round down to multiple of MCLBYTES */
1797 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1798 	if (mss > MCLBYTES)
1799 		mss &= ~(MCLBYTES - 1);
1800 #else
1801 	if (mss > MCLBYTES)
1802 		mss = (mss / MCLBYTES) * MCLBYTES;
1803 #endif
1804 
1805 	if (so->so_snd.ssb_hiwat < mss)
1806 		mss = so->so_snd.ssb_hiwat;
1807 
1808 	tp->t_maxseg = mss;
1809 	tp->t_rtttime = 0;
1810 	tp->snd_nxt = tp->snd_una;
1811 	tcp_output(tp);
1812 	tcpstat.tcps_mturesent++;
1813 }
1814 
1815 /*
1816  * Look-up the routing entry to the peer of this inpcb.  If no route
1817  * is found and it cannot be allocated the return NULL.  This routine
1818  * is called by TCP routines that access the rmx structure and by tcp_mss
1819  * to get the interface MTU.
1820  */
1821 struct rtentry *
1822 tcp_rtlookup(struct in_conninfo *inc)
1823 {
1824 	struct route *ro = &inc->inc_route;
1825 
1826 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1827 		/* No route yet, so try to acquire one */
1828 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1829 			/*
1830 			 * unused portions of the structure MUST be zero'd
1831 			 * out because rtalloc() treats it as opaque data
1832 			 */
1833 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1834 			ro->ro_dst.sa_family = AF_INET;
1835 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1836 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1837 			    inc->inc_faddr;
1838 			rtalloc(ro);
1839 		}
1840 	}
1841 	return (ro->ro_rt);
1842 }
1843 
1844 #ifdef INET6
1845 struct rtentry *
1846 tcp_rtlookup6(struct in_conninfo *inc)
1847 {
1848 	struct route_in6 *ro6 = &inc->inc6_route;
1849 
1850 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1851 		/* No route yet, so try to acquire one */
1852 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1853 			/*
1854 			 * unused portions of the structure MUST be zero'd
1855 			 * out because rtalloc() treats it as opaque data
1856 			 */
1857 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1858 			ro6->ro_dst.sin6_family = AF_INET6;
1859 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1860 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1861 			rtalloc((struct route *)ro6);
1862 		}
1863 	}
1864 	return (ro6->ro_rt);
1865 }
1866 #endif
1867 
1868 #ifdef IPSEC
1869 /* compute ESP/AH header size for TCP, including outer IP header. */
1870 size_t
1871 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1872 {
1873 	struct inpcb *inp;
1874 	struct mbuf *m;
1875 	size_t hdrsiz;
1876 	struct ip *ip;
1877 	struct tcphdr *th;
1878 
1879 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1880 		return (0);
1881 	MGETHDR(m, M_NOWAIT, MT_DATA);
1882 	if (!m)
1883 		return (0);
1884 
1885 #ifdef INET6
1886 	if (INP_ISIPV6(inp)) {
1887 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1888 
1889 		th = (struct tcphdr *)(ip6 + 1);
1890 		m->m_pkthdr.len = m->m_len =
1891 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1892 		tcp_fillheaders(tp, ip6, th, FALSE);
1893 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1894 	} else
1895 #endif
1896 	{
1897 		ip = mtod(m, struct ip *);
1898 		th = (struct tcphdr *)(ip + 1);
1899 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1900 		tcp_fillheaders(tp, ip, th, FALSE);
1901 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1902 	}
1903 
1904 	m_free(m);
1905 	return (hdrsiz);
1906 }
1907 #endif
1908 
1909 /*
1910  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1911  *
1912  * This code attempts to calculate the bandwidth-delay product as a
1913  * means of determining the optimal window size to maximize bandwidth,
1914  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1915  * routers.  This code also does a fairly good job keeping RTTs in check
1916  * across slow links like modems.  We implement an algorithm which is very
1917  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1918  * transmitter side of a TCP connection and so only effects the transmit
1919  * side of the connection.
1920  *
1921  * BACKGROUND:  TCP makes no provision for the management of buffer space
1922  * at the end points or at the intermediate routers and switches.  A TCP
1923  * stream, whether using NewReno or not, will eventually buffer as
1924  * many packets as it is able and the only reason this typically works is
1925  * due to the fairly small default buffers made available for a connection
1926  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1927  * scaling it is now fairly easy for even a single TCP connection to blow-out
1928  * all available buffer space not only on the local interface, but on
1929  * intermediate routers and switches as well.  NewReno makes a misguided
1930  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1931  * then backing off, then steadily increasing the window again until another
1932  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1933  * is only made worse as network loads increase and the idea of intentionally
1934  * blowing out network buffers is, frankly, a terrible way to manage network
1935  * resources.
1936  *
1937  * It is far better to limit the transmit window prior to the failure
1938  * condition being achieved.  There are two general ways to do this:  First
1939  * you can 'scan' through different transmit window sizes and locate the
1940  * point where the RTT stops increasing, indicating that you have filled the
1941  * pipe, then scan backwards until you note that RTT stops decreasing, then
1942  * repeat ad-infinitum.  This method works in principle but has severe
1943  * implementation issues due to RTT variances, timer granularity, and
1944  * instability in the algorithm which can lead to many false positives and
1945  * create oscillations as well as interact badly with other TCP streams
1946  * implementing the same algorithm.
1947  *
1948  * The second method is to limit the window to the bandwidth delay product
1949  * of the link.  This is the method we implement.  RTT variances and our
1950  * own manipulation of the congestion window, bwnd, can potentially
1951  * destabilize the algorithm.  For this reason we have to stabilize the
1952  * elements used to calculate the window.  We do this by using the minimum
1953  * observed RTT, the long term average of the observed bandwidth, and
1954  * by adding two segments worth of slop.  It isn't perfect but it is able
1955  * to react to changing conditions and gives us a very stable basis on
1956  * which to extend the algorithm.
1957  */
1958 void
1959 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1960 {
1961 	u_long bw;
1962 	u_long ibw;
1963 	u_long bwnd;
1964 	int save_ticks;
1965 	int delta_ticks;
1966 
1967 	/*
1968 	 * If inflight_enable is disabled in the middle of a tcp connection,
1969 	 * make sure snd_bwnd is effectively disabled.
1970 	 */
1971 	if (!tcp_inflight_enable) {
1972 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1973 		tp->snd_bandwidth = 0;
1974 		return;
1975 	}
1976 
1977 	/*
1978 	 * Validate the delta time.  If a connection is new or has been idle
1979 	 * a long time we have to reset the bandwidth calculator.
1980 	 */
1981 	save_ticks = ticks;
1982 	cpu_ccfence();
1983 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1984 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1985 		tp->t_bw_rtttime = save_ticks;
1986 		tp->t_bw_rtseq = ack_seq;
1987 		if (tp->snd_bandwidth == 0)
1988 			tp->snd_bandwidth = tcp_inflight_start;
1989 		return;
1990 	}
1991 
1992 	/*
1993 	 * A delta of at least 1 tick is required.  Waiting 2 ticks will
1994 	 * result in better (bw) accuracy.  More than that and the ramp-up
1995 	 * will be too slow.
1996 	 */
1997 	if (delta_ticks == 0 || delta_ticks == 1)
1998 		return;
1999 
2000 	/*
2001 	 * Sanity check, plus ignore pure window update acks.
2002 	 */
2003 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
2004 		return;
2005 
2006 	/*
2007 	 * Figure out the bandwidth.  Due to the tick granularity this
2008 	 * is a very rough number and it MUST be averaged over a fairly
2009 	 * long period of time.  XXX we need to take into account a link
2010 	 * that is not using all available bandwidth, but for now our
2011 	 * slop will ramp us up if this case occurs and the bandwidth later
2012 	 * increases.
2013 	 */
2014 	ibw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
2015 	tp->t_bw_rtttime = save_ticks;
2016 	tp->t_bw_rtseq = ack_seq;
2017 	bw = ((int64_t)tp->snd_bandwidth * 15 + ibw) >> 4;
2018 
2019 	tp->snd_bandwidth = bw;
2020 
2021 	/*
2022 	 * Calculate the semi-static bandwidth delay product, plus two maximal
2023 	 * segments.  The additional slop puts us squarely in the sweet
2024 	 * spot and also handles the bandwidth run-up case.  Without the
2025 	 * slop we could be locking ourselves into a lower bandwidth.
2026 	 *
2027 	 * At very high speeds the bw calculation can become overly sensitive
2028 	 * and error prone when delta_ticks is low (e.g. usually 1).  To deal
2029 	 * with the problem the stab must be scaled to the bw.  A stab of 50
2030 	 * (the default) increases the bw for the purposes of the bwnd
2031 	 * calculation by 5%.
2032 	 *
2033 	 * Situations Handled:
2034 	 *	(1) Prevents over-queueing of packets on LANs, especially on
2035 	 *	    high speed LANs, allowing larger TCP buffers to be
2036 	 *	    specified, and also does a good job preventing
2037 	 *	    over-queueing of packets over choke points like modems
2038 	 *	    (at least for the transmit side).
2039 	 *
2040 	 *	(2) Is able to handle changing network loads (bandwidth
2041 	 *	    drops so bwnd drops, bandwidth increases so bwnd
2042 	 *	    increases).
2043 	 *
2044 	 *	(3) Theoretically should stabilize in the face of multiple
2045 	 *	    connections implementing the same algorithm (this may need
2046 	 *	    a little work).
2047 	 *
2048 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2049 	 *	    be adjusted with a sysctl but typically only needs to be on
2050 	 *	    very slow connections.  A value no smaller then 5 should
2051 	 *	    be used, but only reduce this default if you have no other
2052 	 *	    choice.
2053 	 */
2054 
2055 #define	USERTT	((tp->t_srtt + tp->t_rttvar) + tcp_inflight_adjrtt)
2056 	bw += bw * tcp_inflight_stab / 1000;
2057 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2058 	       (int)tp->t_maxseg * 2;
2059 #undef USERTT
2060 
2061 	if (tcp_inflight_debug > 0) {
2062 		static int ltime;
2063 		if ((u_int)(save_ticks - ltime) >= hz / tcp_inflight_debug) {
2064 			ltime = save_ticks;
2065 			kprintf("%p ibw %ld bw %ld rttvar %d srtt %d "
2066 				"bwnd %ld delta %d snd_win %ld\n",
2067 				tp, ibw, bw, tp->t_rttvar, tp->t_srtt,
2068 				bwnd, delta_ticks, tp->snd_wnd);
2069 		}
2070 	}
2071 	if ((long)bwnd < tcp_inflight_min)
2072 		bwnd = tcp_inflight_min;
2073 	if (bwnd > tcp_inflight_max)
2074 		bwnd = tcp_inflight_max;
2075 	if ((long)bwnd < tp->t_maxseg * 2)
2076 		bwnd = tp->t_maxseg * 2;
2077 	tp->snd_bwnd = bwnd;
2078 }
2079 
2080 static void
2081 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
2082 {
2083 	struct rtentry *rt;
2084 	struct inpcb *inp = tp->t_inpcb;
2085 #ifdef INET6
2086 	boolean_t isipv6 = INP_ISIPV6(inp);
2087 #else
2088 	const boolean_t isipv6 = FALSE;
2089 #endif
2090 
2091 	/* XXX */
2092 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2093 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2094 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2095 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2096 
2097 	if (isipv6)
2098 		rt = tcp_rtlookup6(&inp->inp_inc);
2099 	else
2100 		rt = tcp_rtlookup(&inp->inp_inc);
2101 	if (rt == NULL ||
2102 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2103 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2104 		*maxsegs = tcp_iw_maxsegs;
2105 		*capsegs = tcp_iw_capsegs;
2106 		return;
2107 	}
2108 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2109 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2110 }
2111 
2112 u_long
2113 tcp_initial_window(struct tcpcb *tp)
2114 {
2115 	if (tcp_do_rfc3390) {
2116 		/*
2117 		 * RFC3390:
2118 		 * "If the SYN or SYN/ACK is lost, the initial window
2119 		 *  used by a sender after a correctly transmitted SYN
2120 		 *  MUST be one segment consisting of MSS bytes."
2121 		 *
2122 		 * However, we do something a little bit more aggressive
2123 		 * then RFC3390 here:
2124 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2125 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2126 		 *   because when RFC3390 is published, the initial RTO is
2127 		 *   still 3 seconds (the threshold we test here), while
2128 		 *   after RFC6298, the initial RTO is 1 second.  This
2129 		 *   behaviour probably still falls within the spirit of
2130 		 *   RFC3390.
2131 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2132 		 *   Mainly to avoid sender and receiver deadlock until
2133 		 *   delayed ACK timer expires.  And even RFC2581 does not
2134 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2135 		 *   timeout.
2136 		 *
2137 		 * See also:
2138 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2139 		 */
2140 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2141 			return (2 * tp->t_maxseg);
2142 		} else {
2143 			u_long maxsegs, capsegs;
2144 
2145 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2146 			return min(maxsegs * tp->t_maxseg,
2147 				   max(2 * tp->t_maxseg, capsegs * 1460));
2148 		}
2149 	} else {
2150 		/*
2151 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2152 		 *
2153 		 * Mainly to avoid sender and receiver deadlock
2154 		 * until delayed ACK timer expires.
2155 		 */
2156 		return (2 * tp->t_maxseg);
2157 	}
2158 }
2159 
2160 #ifdef TCP_SIGNATURE
2161 /*
2162  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2163  *
2164  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2165  * When called from tcp_input(), we can be sure that th_sum has been
2166  * zeroed out and verified already.
2167  *
2168  * Return 0 if successful, otherwise return -1.
2169  *
2170  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2171  * search with the destination IP address, and a 'magic SPI' to be
2172  * determined by the application. This is hardcoded elsewhere to 1179
2173  * right now. Another branch of this code exists which uses the SPD to
2174  * specify per-application flows but it is unstable.
2175  */
2176 int
2177 tcpsignature_compute(
2178 	struct mbuf *m,		/* mbuf chain */
2179 	int len,		/* length of TCP data */
2180 	int optlen,		/* length of TCP options */
2181 	u_char *buf,		/* storage for MD5 digest */
2182 	u_int direction)	/* direction of flow */
2183 {
2184 	struct ippseudo ippseudo;
2185 	MD5_CTX ctx;
2186 	int doff;
2187 	struct ip *ip;
2188 	struct ipovly *ipovly;
2189 	struct secasvar *sav;
2190 	struct tcphdr *th;
2191 #ifdef INET6
2192 	struct ip6_hdr *ip6;
2193 	struct in6_addr in6;
2194 	uint32_t plen;
2195 	uint16_t nhdr;
2196 #endif /* INET6 */
2197 	u_short savecsum;
2198 
2199 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2200 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2201 	/*
2202 	 * Extract the destination from the IP header in the mbuf.
2203 	 */
2204 	ip = mtod(m, struct ip *);
2205 #ifdef INET6
2206 	ip6 = NULL;     /* Make the compiler happy. */
2207 #endif /* INET6 */
2208 	/*
2209 	 * Look up an SADB entry which matches the address found in
2210 	 * the segment.
2211 	 */
2212 	switch (IP_VHL_V(ip->ip_vhl)) {
2213 	case IPVERSION:
2214 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2215 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2216 		break;
2217 #ifdef INET6
2218 	case (IPV6_VERSION >> 4):
2219 		ip6 = mtod(m, struct ip6_hdr *);
2220 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2221 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2222 		break;
2223 #endif /* INET6 */
2224 	default:
2225 		return (EINVAL);
2226 		/* NOTREACHED */
2227 		break;
2228 	}
2229 	if (sav == NULL) {
2230 		kprintf("%s: SADB lookup failed\n", __func__);
2231 		return (EINVAL);
2232 	}
2233 	MD5Init(&ctx);
2234 
2235 	/*
2236 	 * Step 1: Update MD5 hash with IP pseudo-header.
2237 	 *
2238 	 * XXX The ippseudo header MUST be digested in network byte order,
2239 	 * or else we'll fail the regression test. Assume all fields we've
2240 	 * been doing arithmetic on have been in host byte order.
2241 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2242 	 * tcp_output(), the underlying ip_len member has not yet been set.
2243 	 */
2244 	switch (IP_VHL_V(ip->ip_vhl)) {
2245 	case IPVERSION:
2246 		ipovly = (struct ipovly *)ip;
2247 		ippseudo.ippseudo_src = ipovly->ih_src;
2248 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2249 		ippseudo.ippseudo_pad = 0;
2250 		ippseudo.ippseudo_p = IPPROTO_TCP;
2251 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2252 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2253 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2254 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2255 		break;
2256 #ifdef INET6
2257 	/*
2258 	 * RFC 2385, 2.0  Proposal
2259 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2260 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2261 	 * extended next header value (to form 32 bits), and 32-bit segment
2262 	 * length.
2263 	 * Note: Upper-Layer Packet Length comes before Next Header.
2264 	 */
2265 	case (IPV6_VERSION >> 4):
2266 		in6 = ip6->ip6_src;
2267 		in6_clearscope(&in6);
2268 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2269 		in6 = ip6->ip6_dst;
2270 		in6_clearscope(&in6);
2271 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2272 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2273 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2274 		nhdr = 0;
2275 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2276 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2277 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2278 		nhdr = IPPROTO_TCP;
2279 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2280 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2281 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2282 		break;
2283 #endif /* INET6 */
2284 	default:
2285 		return (EINVAL);
2286 		/* NOTREACHED */
2287 		break;
2288 	}
2289 	/*
2290 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2291 	 * The TCP checksum must be set to zero.
2292 	 */
2293 	savecsum = th->th_sum;
2294 	th->th_sum = 0;
2295 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2296 	th->th_sum = savecsum;
2297 	/*
2298 	 * Step 3: Update MD5 hash with TCP segment data.
2299 	 *         Use m_apply() to avoid an early m_pullup().
2300 	 */
2301 	if (len > 0)
2302 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2303 	/*
2304 	 * Step 4: Update MD5 hash with shared secret.
2305 	 */
2306 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2307 	MD5Final(buf, &ctx);
2308 	key_sa_recordxfer(sav, m);
2309 	key_freesav(sav);
2310 	return (0);
2311 }
2312 
2313 int
2314 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2315 {
2316 
2317 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2318 	return (0);
2319 }
2320 #endif /* TCP_SIGNATURE */
2321 
2322 static void
2323 tcp_drop_sysctl_dispatch(netmsg_t nmsg)
2324 {
2325 	struct lwkt_msg *lmsg = &nmsg->lmsg;
2326 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2327 	struct sockaddr_storage *addrs = lmsg->u.ms_resultp;
2328 	int error;
2329 	struct sockaddr_in *fin, *lin;
2330 #ifdef INET6
2331 	struct sockaddr_in6 *fin6, *lin6;
2332 	struct in6_addr f6, l6;
2333 #endif
2334 	struct inpcb *inp;
2335 
2336 	switch (addrs[0].ss_family) {
2337 #ifdef INET6
2338 	case AF_INET6:
2339 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2340 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2341 		error = in6_embedscope(&f6, fin6, NULL, NULL);
2342 		if (error)
2343 			goto done;
2344 		error = in6_embedscope(&l6, lin6, NULL, NULL);
2345 		if (error)
2346 			goto done;
2347 		inp = in6_pcblookup_hash(&tcbinfo[mycpuid], &f6,
2348 		    fin6->sin6_port, &l6, lin6->sin6_port, FALSE, NULL);
2349 		break;
2350 #endif
2351 #ifdef INET
2352 	case AF_INET:
2353 		fin = (struct sockaddr_in *)&addrs[0];
2354 		lin = (struct sockaddr_in *)&addrs[1];
2355 		inp = in_pcblookup_hash(&tcbinfo[mycpuid], fin->sin_addr,
2356 		    fin->sin_port, lin->sin_addr, lin->sin_port, FALSE, NULL);
2357 		break;
2358 #endif
2359 	default:
2360 		/*
2361 		 * Must not reach here, since the address family was
2362 		 * checked in sysctl handler.
2363 		 */
2364 		panic("unknown address family %d", addrs[0].ss_family);
2365 	}
2366 	if (inp != NULL) {
2367 		struct tcpcb *tp = intotcpcb(inp);
2368 
2369 		KASSERT((inp->inp_flags & INP_WILDCARD) == 0,
2370 		    ("in wildcard hash"));
2371 		KASSERT(tp != NULL, ("tcp_drop_sysctl_dispatch: tp is NULL"));
2372 		KASSERT((tp->t_flags & TF_LISTEN) == 0, ("listen socket"));
2373 		tcp_drop(tp, ECONNABORTED);
2374 		error = 0;
2375 	} else {
2376 		error = ESRCH;
2377 	}
2378 #ifdef INET6
2379 done:
2380 #endif
2381 	lwkt_replymsg(lmsg, error);
2382 }
2383 
2384 static int
2385 sysctl_tcp_drop(SYSCTL_HANDLER_ARGS)
2386 {
2387 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2388 	struct sockaddr_storage addrs[2];
2389 	struct sockaddr_in *fin, *lin;
2390 #ifdef INET6
2391 	struct sockaddr_in6 *fin6, *lin6;
2392 #endif
2393 	struct netmsg_base nmsg;
2394 	struct lwkt_msg *lmsg = &nmsg.lmsg;
2395 	struct lwkt_port *port = NULL;
2396 	int error;
2397 
2398 	fin = lin = NULL;
2399 #ifdef INET6
2400 	fin6 = lin6 = NULL;
2401 #endif
2402 	error = 0;
2403 
2404 	if (req->oldptr != NULL || req->oldlen != 0)
2405 		return (EINVAL);
2406 	if (req->newptr == NULL)
2407 		return (EPERM);
2408 	if (req->newlen < sizeof(addrs))
2409 		return (ENOMEM);
2410 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2411 	if (error)
2412 		return (error);
2413 
2414 	switch (addrs[0].ss_family) {
2415 #ifdef INET6
2416 	case AF_INET6:
2417 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2418 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2419 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2420 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2421 			return (EINVAL);
2422 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr) ||
2423 		    IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2424 			return (EADDRNOTAVAIL);
2425 #if 0
2426 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2427 		if (error)
2428 			return (error);
2429 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2430 		if (error)
2431 			return (error);
2432 #endif
2433 		port = tcp6_addrport();
2434 		break;
2435 #endif
2436 #ifdef INET
2437 	case AF_INET:
2438 		fin = (struct sockaddr_in *)&addrs[0];
2439 		lin = (struct sockaddr_in *)&addrs[1];
2440 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2441 		    lin->sin_len != sizeof(struct sockaddr_in))
2442 			return (EINVAL);
2443 		port = tcp_addrport(fin->sin_addr.s_addr, fin->sin_port,
2444 		    lin->sin_addr.s_addr, lin->sin_port);
2445 		break;
2446 #endif
2447 	default:
2448 		return (EINVAL);
2449 	}
2450 
2451 	netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
2452 	    tcp_drop_sysctl_dispatch);
2453 	lmsg->u.ms_resultp = addrs;
2454 	return lwkt_domsg(port, lmsg, 0);
2455 }
2456 
2457 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, drop,
2458     CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2459     0, sysctl_tcp_drop, "", "Drop TCP connection");
2460 
2461 static int
2462 sysctl_tcps_count(SYSCTL_HANDLER_ARGS)
2463 {
2464 	u_long state_count[TCP_NSTATES];
2465 	int cpu;
2466 
2467 	memset(state_count, 0, sizeof(state_count));
2468 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
2469 		int i;
2470 
2471 		for (i = 0; i < TCP_NSTATES; ++i)
2472 			state_count[i] += tcpstate_count[cpu].tcps_count[i];
2473 	}
2474 
2475 	return sysctl_handle_opaque(oidp, state_count, sizeof(state_count), req);
2476 }
2477 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, state_count,
2478     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
2479     sysctl_tcps_count, "LU", "TCP connection counts by state");
2480 
2481 void
2482 tcp_pcbport_create(struct tcpcb *tp)
2483 {
2484 	int cpu;
2485 
2486 	KASSERT((tp->t_flags & TF_LISTEN) && tp->t_state == TCPS_LISTEN,
2487 	    ("not a listen tcpcb"));
2488 
2489 	KASSERT(tp->t_pcbport == NULL, ("tcpcb port cache was created"));
2490 	tp->t_pcbport = kmalloc_cachealign(
2491 	    sizeof(struct tcp_pcbport) * netisr_ncpus, M_PCB, M_WAITOK);
2492 
2493 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
2494 		struct inpcbport *phd;
2495 
2496 		phd = &tp->t_pcbport[cpu].t_phd;
2497 		LIST_INIT(&phd->phd_pcblist);
2498 		/* Though, not used ... */
2499 		phd->phd_port = tp->t_inpcb->inp_lport;
2500 	}
2501 }
2502 
2503 void
2504 tcp_pcbport_merge_oncpu(struct tcpcb *tp)
2505 {
2506 	struct inpcbport *phd;
2507 	struct inpcb *inp;
2508 	int cpu = mycpuid;
2509 
2510 	KASSERT(cpu < netisr_ncpus, ("invalid cpu%d", cpu));
2511 	phd = &tp->t_pcbport[cpu].t_phd;
2512 
2513 	while ((inp = LIST_FIRST(&phd->phd_pcblist)) != NULL) {
2514 		KASSERT(inp->inp_phd == phd && inp->inp_porthash == NULL,
2515 		    ("not on tcpcb port cache"));
2516 		LIST_REMOVE(inp, inp_portlist);
2517 		in_pcbinsporthash_lport(inp);
2518 		KASSERT(inp->inp_phd == tp->t_inpcb->inp_phd &&
2519 		    inp->inp_porthash == tp->t_inpcb->inp_porthash,
2520 		    ("tcpcb port cache merge failed"));
2521 	}
2522 }
2523 
2524 void
2525 tcp_pcbport_destroy(struct tcpcb *tp)
2526 {
2527 #ifdef INVARIANTS
2528 	int cpu;
2529 
2530 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
2531 		KASSERT(LIST_EMPTY(&tp->t_pcbport[cpu].t_phd.phd_pcblist),
2532 		    ("tcpcb port cache is not empty"));
2533 	}
2534 #endif
2535 	kfree(tp->t_pcbport, M_PCB);
2536 	tp->t_pcbport = NULL;
2537 }
2538