xref: /dflybsd-src/sys/netinet/tcp_input.c (revision e12d3396c777165504d60d2a1408dcd7cb63660d)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
68  */
69 
70 #include "opt_inet.h"
71 #include "opt_inet6.h"
72 #include "opt_ipsec.h"
73 #include "opt_tcpdebug.h"
74 #include "opt_tcp_input.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/sysctl.h>
80 #include <sys/malloc.h>
81 #include <sys/mbuf.h>
82 #include <sys/proc.h>		/* for proc0 declaration */
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/syslog.h>
87 #include <sys/in_cksum.h>
88 
89 #include <sys/socketvar2.h>
90 
91 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
92 #include <machine/stdarg.h>
93 
94 #include <net/if.h>
95 #include <net/route.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
101 #include <netinet/in_var.h>
102 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
103 #include <netinet/in_pcb.h>
104 #include <netinet/ip_var.h>
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
117 #include <netinet/tcpip.h>
118 
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 
122 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
123 struct tcphdr tcp_savetcp;
124 #endif
125 
126 #ifdef FAST_IPSEC
127 #include <netproto/ipsec/ipsec.h>
128 #include <netproto/ipsec/ipsec6.h>
129 #endif
130 
131 #ifdef IPSEC
132 #include <netinet6/ipsec.h>
133 #include <netinet6/ipsec6.h>
134 #include <netproto/key/key.h>
135 #endif
136 
137 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
138 
139 static int log_in_vain = 0;
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
141     &log_in_vain, 0, "Log all incoming TCP connections");
142 
143 static int blackhole = 0;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
145     &blackhole, 0, "Do not send RST when dropping refused connections");
146 
147 int tcp_delack_enabled = 1;
148 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
149     &tcp_delack_enabled, 0,
150     "Delay ACK to try and piggyback it onto a data packet");
151 
152 #ifdef TCP_DROP_SYNFIN
153 static int drop_synfin = 0;
154 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
155     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
156 #endif
157 
158 static int tcp_do_limitedtransmit = 1;
159 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
160     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
161 
162 static int tcp_do_early_retransmit = 1;
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
164     &tcp_do_early_retransmit, 0, "Early retransmit");
165 
166 int tcp_aggregate_acks = 1;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
168     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
169 
170 static int tcp_do_eifel_detect = 1;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
172     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
173 
174 static int tcp_do_abc = 1;
175 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
176     &tcp_do_abc, 0,
177     "TCP Appropriate Byte Counting (RFC 3465)");
178 
179 /*
180  * The following value actually takes range [25ms, 250ms],
181  * given that most modern systems use 1ms ~ 10ms as the unit
182  * of timestamp option.
183  */
184 static u_int tcp_paws_tolerance = 25;
185 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, paws_tolerance, CTLFLAG_RW,
186     &tcp_paws_tolerance, 0, "RFC1323 PAWS tolerance");
187 
188 /*
189  * Define as tunable for easy testing with SACK on and off.
190  * Warning:  do not change setting in the middle of an existing active TCP flow,
191  *   else strange things might happen to that flow.
192  */
193 int tcp_do_sack = 1;
194 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
195     &tcp_do_sack, 0, "Enable SACK Algorithms");
196 
197 int tcp_do_smartsack = 1;
198 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
199     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
200 
201 int tcp_do_rescuesack = 1;
202 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rescuesack, CTLFLAG_RW,
203     &tcp_do_rescuesack, 0, "Rescue retransmission for SACK");
204 
205 int tcp_aggressive_rescuesack = 0;
206 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rescuesack_agg, CTLFLAG_RW,
207     &tcp_aggressive_rescuesack, 0, "Aggressive rescue retransmission for SACK");
208 
209 int tcp_do_rfc3517bis = 0;
210 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3517bis, CTLFLAG_RW,
211     &tcp_do_rfc3517bis, 0, "Enable RFC3517 update");
212 
213 int tcp_rfc3517bis_rxt = 0;
214 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3517bis_rxt, CTLFLAG_RW,
215     &tcp_rfc3517bis_rxt, 0, "Enable RFC3517 retransmit update");
216 
217 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
218     "TCP Segment Reassembly Queue");
219 
220 int tcp_reass_maxseg = 0;
221 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
222     &tcp_reass_maxseg, 0,
223     "Global maximum number of TCP Segments in Reassembly Queue");
224 
225 int tcp_reass_qsize = 0;
226 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
227     &tcp_reass_qsize, 0,
228     "Global number of TCP Segments currently in Reassembly Queue");
229 
230 static int tcp_reass_overflows = 0;
231 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
232     &tcp_reass_overflows, 0,
233     "Global number of TCP Segment Reassembly Queue Overflows");
234 
235 int tcp_do_autorcvbuf = 1;
236 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
237     &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
238 
239 int tcp_autorcvbuf_inc = 16*1024;
240 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
241     &tcp_autorcvbuf_inc, 0,
242     "Incrementor step size of automatic receive buffer");
243 
244 int tcp_autorcvbuf_max = 2*1024*1024;
245 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
246     &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
247 
248 int tcp_sosend_agglim = 2;
249 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosend_agglim, CTLFLAG_RW,
250     &tcp_sosend_agglim, 0, "TCP sosend mbuf aggregation limit");
251 
252 int tcp_sosend_async = 1;
253 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosend_async, CTLFLAG_RW,
254     &tcp_sosend_async, 0, "TCP asynchronized pru_send");
255 
256 static int tcp_ignore_redun_dsack = 1;
257 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ignore_redun_dsack, CTLFLAG_RW,
258     &tcp_ignore_redun_dsack, 0, "Ignore redundant DSACK");
259 
260 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t,
261 		    tcp_seq);
262 static void	 tcp_pulloutofband(struct socket *,
263 		     struct tcphdr *, struct mbuf *, int);
264 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
265 		     struct mbuf *);
266 static void	 tcp_xmit_timer(struct tcpcb *, int, tcp_seq);
267 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
268 static void	 tcp_sack_rexmt(struct tcpcb *);
269 static boolean_t tcp_sack_limitedxmit(struct tcpcb *);
270 static int	 tcp_rmx_msl(const struct tcpcb *);
271 static void	 tcp_established(struct tcpcb *);
272 static boolean_t tcp_fast_recovery(struct tcpcb *, tcp_seq,
273 		     const struct tcpopt *);
274 
275 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
276 #ifdef INET6
277 #define ND6_HINT(tp) \
278 do { \
279 	if ((tp) && (tp)->t_inpcb && \
280 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
281 	    (tp)->t_inpcb->in6p_route.ro_rt) \
282 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
283 } while (0)
284 #else
285 #define ND6_HINT(tp)
286 #endif
287 
288 /*
289  * Indicate whether this ack should be delayed.  We can delay the ack if
290  *	- delayed acks are enabled and
291  *	- there is no delayed ack timer in progress and
292  *	- our last ack wasn't a 0-sized window.  We never want to delay
293  *	  the ack that opens up a 0-sized window.
294  */
295 #define DELAY_ACK(tp) \
296 	(tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
297 	!(tp->t_flags & TF_RXWIN0SENT))
298 
299 #define acceptable_window_update(tp, th, tiwin)				\
300     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
301      (tp->snd_wl1 == th->th_seq &&					\
302       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
303        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
304 
305 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
306 #define need_early_retransmit(tp, ownd) \
307     (tcp_do_early_retransmit && \
308      (tcp_do_eifel_detect && (tp->t_flags & TF_RCVD_TSTMP)) && \
309      ownd < ((tp->t_rxtthresh + 1) * tp->t_maxseg) && \
310      tp->t_dupacks + 1 >= iceildiv(ownd, tp->t_maxseg) && \
311      (!TCP_DO_SACK(tp) || ownd <= tp->t_maxseg || \
312       tcp_sack_has_sacked(&tp->scb, ownd - tp->t_maxseg)))
313 
314 /*
315  * Returns TRUE, if this segment can be merged with the last
316  * pending segment in the reassemble queue and this segment
317  * does not overlap with the pending segment immediately
318  * preceeding the last pending segment.
319  */
320 static __inline boolean_t
321 tcp_paws_canreasslast(const struct tcpcb *tp, const struct tcphdr *th, int tlen)
322 {
323 	const struct tseg_qent *last, *prev;
324 
325 	last = TAILQ_LAST(&tp->t_segq, tsegqe_head);
326 	if (last == NULL)
327 		return FALSE;
328 
329 	/* This segment comes immediately after the last pending segment */
330 	if (last->tqe_th->th_seq + last->tqe_len == th->th_seq)
331 		return TRUE;
332 
333 	if (th->th_seq + tlen != last->tqe_th->th_seq)
334 		return FALSE;
335 	/* This segment comes immediately before the last pending segment */
336 
337 	prev = TAILQ_PREV(last, tsegqe_head, tqe_q);
338 	if (prev == NULL) {
339 		/*
340 		 * No pending preceeding segment, we assume this segment
341 		 * could be reassembled.
342 		 */
343 		return TRUE;
344 	}
345 
346 	/* This segment does not overlap with the preceeding segment */
347 	if (SEQ_GEQ(th->th_seq, prev->tqe_th->th_seq + prev->tqe_len))
348 		return TRUE;
349 
350 	return FALSE;
351 }
352 
353 static __inline void
354 tcp_ncr_update_rxtthresh(struct tcpcb *tp)
355 {
356 	int old_rxtthresh = tp->t_rxtthresh;
357 	uint32_t ownd = tp->snd_max - tp->snd_una;
358 
359 	tp->t_rxtthresh = max(3, ((ownd / tp->t_maxseg) >> 1));
360 	if (tp->t_rxtthresh != old_rxtthresh) {
361 		tcp_sack_update_lostseq(&tp->scb, tp->snd_una,
362 		    tp->t_maxseg, tp->t_rxtthresh);
363 	}
364 }
365 
366 static int
367 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
368 {
369 	struct tseg_qent *q;
370 	struct tseg_qent *p = NULL;
371 	struct tseg_qent *te;
372 	struct socket *so = tp->t_inpcb->inp_socket;
373 	int flags;
374 
375 	/*
376 	 * Call with th == NULL after become established to
377 	 * force pre-ESTABLISHED data up to user socket.
378 	 */
379 	if (th == NULL)
380 		goto present;
381 
382 	/*
383 	 * Limit the number of segments in the reassembly queue to prevent
384 	 * holding on to too many segments (and thus running out of mbufs).
385 	 * Make sure to let the missing segment through which caused this
386 	 * queue.  Always keep one global queue entry spare to be able to
387 	 * process the missing segment.
388 	 */
389 	if (th->th_seq != tp->rcv_nxt &&
390 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
391 		tcp_reass_overflows++;
392 		tcpstat.tcps_rcvmemdrop++;
393 		m_freem(m);
394 		/* no SACK block to report */
395 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
396 		return (0);
397 	}
398 
399 	/* Allocate a new queue entry. */
400 	te = kmalloc(sizeof(struct tseg_qent), M_TSEGQ, M_INTWAIT | M_NULLOK);
401 	if (te == NULL) {
402 		tcpstat.tcps_rcvmemdrop++;
403 		m_freem(m);
404 		/* no SACK block to report */
405 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
406 		return (0);
407 	}
408 	atomic_add_int(&tcp_reass_qsize, 1);
409 
410 	/*
411 	 * Find a segment which begins after this one does.
412 	 */
413 	TAILQ_FOREACH(q, &tp->t_segq, tqe_q) {
414 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
415 			break;
416 		p = q;
417 	}
418 
419 	/*
420 	 * If there is a preceding segment, it may provide some of
421 	 * our data already.  If so, drop the data from the incoming
422 	 * segment.  If it provides all of our data, drop us.
423 	 */
424 	if (p != NULL) {
425 		tcp_seq_diff_t i;
426 
427 		/* conversion to int (in i) handles seq wraparound */
428 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
429 		if (i > 0) {		/* overlaps preceding segment */
430 			tp->sack_flags |=
431 			    (TSACK_F_DUPSEG | TSACK_F_ENCLOSESEG);
432 			/* enclosing block starts w/ preceding segment */
433 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
434 			if (i >= *tlenp) {
435 				/* preceding encloses incoming segment */
436 				tp->encloseblk.rblk_end = TCP_SACK_BLKEND(
437 				    p->tqe_th->th_seq + p->tqe_len,
438 				    p->tqe_th->th_flags);
439 				tcpstat.tcps_rcvduppack++;
440 				tcpstat.tcps_rcvdupbyte += *tlenp;
441 				m_freem(m);
442 				kfree(te, M_TSEGQ);
443 				atomic_add_int(&tcp_reass_qsize, -1);
444 				/*
445 				 * Try to present any queued data
446 				 * at the left window edge to the user.
447 				 * This is needed after the 3-WHS
448 				 * completes.
449 				 */
450 				goto present;	/* ??? */
451 			}
452 			m_adj(m, i);
453 			*tlenp -= i;
454 			th->th_seq += i;
455 			/* incoming segment end is enclosing block end */
456 			tp->encloseblk.rblk_end = TCP_SACK_BLKEND(
457 			    th->th_seq + *tlenp, th->th_flags);
458 			/* trim end of reported D-SACK block */
459 			tp->reportblk.rblk_end = th->th_seq;
460 		}
461 	}
462 	tcpstat.tcps_rcvoopack++;
463 	tcpstat.tcps_rcvoobyte += *tlenp;
464 
465 	/*
466 	 * While we overlap succeeding segments trim them or,
467 	 * if they are completely covered, dequeue them.
468 	 */
469 	while (q) {
470 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
471 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
472 		tcp_seq qend_sack = TCP_SACK_BLKEND(qend, q->tqe_th->th_flags);
473 		struct tseg_qent *nq;
474 
475 		if (i <= 0)
476 			break;
477 		if (!(tp->sack_flags & TSACK_F_DUPSEG)) {
478 			/* first time through */
479 			tp->sack_flags |= (TSACK_F_DUPSEG | TSACK_F_ENCLOSESEG);
480 			tp->encloseblk = tp->reportblk;
481 			/* report trailing duplicate D-SACK segment */
482 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
483 		}
484 		if ((tp->sack_flags & TSACK_F_ENCLOSESEG) &&
485 		    SEQ_GT(qend_sack, tp->encloseblk.rblk_end)) {
486 			/* extend enclosing block if one exists */
487 			tp->encloseblk.rblk_end = qend_sack;
488 		}
489 		if (i < q->tqe_len) {
490 			q->tqe_th->th_seq += i;
491 			q->tqe_len -= i;
492 			m_adj(q->tqe_m, i);
493 			break;
494 		}
495 
496 		nq = TAILQ_NEXT(q, tqe_q);
497 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
498 		m_freem(q->tqe_m);
499 		kfree(q, M_TSEGQ);
500 		atomic_add_int(&tcp_reass_qsize, -1);
501 		q = nq;
502 	}
503 
504 	/* Insert the new segment queue entry into place. */
505 	te->tqe_m = m;
506 	te->tqe_th = th;
507 	te->tqe_len = *tlenp;
508 
509 	/* check if can coalesce with following segment */
510 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
511 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
512 		tcp_seq tend_sack = TCP_SACK_BLKEND(tend, te->tqe_th->th_flags);
513 
514 		te->tqe_len += q->tqe_len;
515 		if (q->tqe_th->th_flags & TH_FIN)
516 			te->tqe_th->th_flags |= TH_FIN;
517 		m_cat(te->tqe_m, q->tqe_m);
518 		tp->encloseblk.rblk_end = tend_sack;
519 		/*
520 		 * When not reporting a duplicate segment, use
521 		 * the larger enclosing block as the SACK block.
522 		 */
523 		if (!(tp->sack_flags & TSACK_F_DUPSEG))
524 			tp->reportblk.rblk_end = tend_sack;
525 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
526 		kfree(q, M_TSEGQ);
527 		atomic_add_int(&tcp_reass_qsize, -1);
528 	}
529 
530 	if (p == NULL) {
531 		TAILQ_INSERT_HEAD(&tp->t_segq, te, tqe_q);
532 	} else {
533 		/* check if can coalesce with preceding segment */
534 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
535 			p->tqe_len += te->tqe_len;
536 			m_cat(p->tqe_m, te->tqe_m);
537 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
538 			/*
539 			 * When not reporting a duplicate segment, use
540 			 * the larger enclosing block as the SACK block.
541 			 */
542 			if (!(tp->sack_flags & TSACK_F_DUPSEG))
543 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
544 			kfree(te, M_TSEGQ);
545 			atomic_add_int(&tcp_reass_qsize, -1);
546 		} else {
547 			TAILQ_INSERT_AFTER(&tp->t_segq, p, te, tqe_q);
548 		}
549 	}
550 
551 present:
552 	/*
553 	 * Present data to user, advancing rcv_nxt through
554 	 * completed sequence space.
555 	 */
556 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
557 		return (0);
558 	q = TAILQ_FIRST(&tp->t_segq);
559 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
560 		return (0);
561 	tp->rcv_nxt += q->tqe_len;
562 	if (!(tp->sack_flags & TSACK_F_DUPSEG))	{
563 		/* no SACK block to report since ACK advanced */
564 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
565 	}
566 	/* no enclosing block to report since ACK advanced */
567 	tp->sack_flags &= ~TSACK_F_ENCLOSESEG;
568 	flags = q->tqe_th->th_flags & TH_FIN;
569 	TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
570 	KASSERT(TAILQ_EMPTY(&tp->t_segq) ||
571 		TAILQ_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
572 		("segment not coalesced"));
573 	if (so->so_state & SS_CANTRCVMORE) {
574 		m_freem(q->tqe_m);
575 	} else {
576 		lwkt_gettoken(&so->so_rcv.ssb_token);
577 		ssb_appendstream(&so->so_rcv, q->tqe_m);
578 		lwkt_reltoken(&so->so_rcv.ssb_token);
579 	}
580 	kfree(q, M_TSEGQ);
581 	atomic_add_int(&tcp_reass_qsize, -1);
582 	ND6_HINT(tp);
583 	sorwakeup(so);
584 	return (flags);
585 }
586 
587 /*
588  * TCP input routine, follows pages 65-76 of the
589  * protocol specification dated September, 1981 very closely.
590  */
591 #ifdef INET6
592 int
593 tcp6_input(struct mbuf **mp, int *offp, int proto)
594 {
595 	struct mbuf *m = *mp;
596 	struct in6_ifaddr *ia6;
597 
598 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
599 
600 	/*
601 	 * draft-itojun-ipv6-tcp-to-anycast
602 	 * better place to put this in?
603 	 */
604 	ia6 = ip6_getdstifaddr(m);
605 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
606 		struct ip6_hdr *ip6;
607 
608 		ip6 = mtod(m, struct ip6_hdr *);
609 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
610 			    offsetof(struct ip6_hdr, ip6_dst));
611 		return (IPPROTO_DONE);
612 	}
613 
614 	tcp_input(mp, offp, proto);
615 	return (IPPROTO_DONE);
616 }
617 #endif
618 
619 int
620 tcp_input(struct mbuf **mp, int *offp, int proto)
621 {
622 	int off0;
623 	struct tcphdr *th;
624 	struct ip *ip = NULL;
625 	struct ipovly *ipov;
626 	struct inpcb *inp = NULL;
627 	u_char *optp = NULL;
628 	int optlen = 0;
629 	int tlen, off;
630 	int len = 0;
631 	int drop_hdrlen;
632 	struct tcpcb *tp = NULL;
633 	int thflags;
634 	struct socket *so = NULL;
635 	int todrop, acked;
636 	boolean_t ourfinisacked, needoutput = FALSE, delayed_dupack = FALSE;
637 	tcp_seq th_dupack = 0; /* XXX gcc warning */
638 	u_long tiwin;
639 	int recvwin;
640 	struct tcpopt to;		/* options in this segment */
641 	struct sockaddr_in *next_hop = NULL;
642 	int rstreason; /* For badport_bandlim accounting purposes */
643 	int cpu;
644 	struct ip6_hdr *ip6 = NULL;
645 	struct mbuf *m;
646 #ifdef INET6
647 	boolean_t isipv6;
648 #else
649 	const boolean_t isipv6 = FALSE;
650 #endif
651 #ifdef TCPDEBUG
652 	short ostate = 0;
653 #endif
654 
655 	off0 = *offp;
656 	m = *mp;
657 	*mp = NULL;
658 
659 	tcpstat.tcps_rcvtotal++;
660 
661 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
662 		struct m_tag *mtag;
663 
664 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
665 		KKASSERT(mtag != NULL);
666 		next_hop = m_tag_data(mtag);
667 	}
668 
669 #ifdef INET6
670 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
671 #endif
672 
673 	if (isipv6) {
674 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
675 		ip6 = mtod(m, struct ip6_hdr *);
676 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
677 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
678 			tcpstat.tcps_rcvbadsum++;
679 			goto drop;
680 		}
681 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
682 
683 		/*
684 		 * Be proactive about unspecified IPv6 address in source.
685 		 * As we use all-zero to indicate unbounded/unconnected pcb,
686 		 * unspecified IPv6 address can be used to confuse us.
687 		 *
688 		 * Note that packets with unspecified IPv6 destination is
689 		 * already dropped in ip6_input.
690 		 */
691 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
692 			/* XXX stat */
693 			goto drop;
694 		}
695 	} else {
696 		/*
697 		 * Get IP and TCP header together in first mbuf.
698 		 * Note: IP leaves IP header in first mbuf.
699 		 */
700 		if (off0 > sizeof(struct ip)) {
701 			ip_stripoptions(m);
702 			off0 = sizeof(struct ip);
703 		}
704 		/* already checked and pulled up in ip_demux() */
705 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
706 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
707 		ip = mtod(m, struct ip *);
708 		ipov = (struct ipovly *)ip;
709 		th = (struct tcphdr *)((caddr_t)ip + off0);
710 		tlen = ip->ip_len;
711 
712 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
713 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
714 				th->th_sum = m->m_pkthdr.csum_data;
715 			else
716 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
717 						ip->ip_dst.s_addr,
718 						htonl(m->m_pkthdr.csum_data +
719 							ip->ip_len +
720 							IPPROTO_TCP));
721 			th->th_sum ^= 0xffff;
722 		} else {
723 			/*
724 			 * Checksum extended TCP header and data.
725 			 */
726 			len = sizeof(struct ip) + tlen;
727 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
728 			ipov->ih_len = (u_short)tlen;
729 			ipov->ih_len = htons(ipov->ih_len);
730 			th->th_sum = in_cksum(m, len);
731 		}
732 		if (th->th_sum) {
733 			tcpstat.tcps_rcvbadsum++;
734 			goto drop;
735 		}
736 #ifdef INET6
737 		/* Re-initialization for later version check */
738 		ip->ip_v = IPVERSION;
739 #endif
740 	}
741 
742 	/*
743 	 * Check that TCP offset makes sense,
744 	 * pull out TCP options and adjust length.		XXX
745 	 */
746 	off = th->th_off << 2;
747 	/* already checked and pulled up in ip_demux() */
748 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
749 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
750 	tlen -= off;	/* tlen is used instead of ti->ti_len */
751 	if (off > sizeof(struct tcphdr)) {
752 		if (isipv6) {
753 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
754 			ip6 = mtod(m, struct ip6_hdr *);
755 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
756 		} else {
757 			/* already pulled up in ip_demux() */
758 			KASSERT(m->m_len >= sizeof(struct ip) + off,
759 			    ("TCP header and options not in one mbuf: "
760 			     "m_len %d, off %d", m->m_len, off));
761 		}
762 		optlen = off - sizeof(struct tcphdr);
763 		optp = (u_char *)(th + 1);
764 	}
765 	thflags = th->th_flags;
766 
767 #ifdef TCP_DROP_SYNFIN
768 	/*
769 	 * If the drop_synfin option is enabled, drop all packets with
770 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
771 	 * identifying the TCP/IP stack.
772 	 *
773 	 * This is a violation of the TCP specification.
774 	 */
775 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
776 		goto drop;
777 #endif
778 
779 	/*
780 	 * Convert TCP protocol specific fields to host format.
781 	 */
782 	th->th_seq = ntohl(th->th_seq);
783 	th->th_ack = ntohl(th->th_ack);
784 	th->th_win = ntohs(th->th_win);
785 	th->th_urp = ntohs(th->th_urp);
786 
787 	/*
788 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
789 	 * until after ip6_savecontrol() is called and before other functions
790 	 * which don't want those proto headers.
791 	 * Because ip6_savecontrol() is going to parse the mbuf to
792 	 * search for data to be passed up to user-land, it wants mbuf
793 	 * parameters to be unchanged.
794 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
795 	 * latest version of the advanced API (20020110).
796 	 */
797 	drop_hdrlen = off0 + off;
798 
799 	/*
800 	 * Locate pcb for segment.
801 	 */
802 findpcb:
803 	/* IPFIREWALL_FORWARD section */
804 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
805 		/*
806 		 * Transparently forwarded. Pretend to be the destination.
807 		 * already got one like this?
808 		 */
809 		cpu = mycpu->gd_cpuid;
810 		inp = in_pcblookup_hash(&tcbinfo[cpu],
811 					ip->ip_src, th->th_sport,
812 					ip->ip_dst, th->th_dport,
813 					0, m->m_pkthdr.rcvif);
814 		if (!inp) {
815 			/*
816 			 * It's new.  Try to find the ambushing socket.
817 			 */
818 
819 			/*
820 			 * The rest of the ipfw code stores the port in
821 			 * host order.  XXX
822 			 * (The IP address is still in network order.)
823 			 */
824 			in_port_t dport = next_hop->sin_port ?
825 						htons(next_hop->sin_port) :
826 						th->th_dport;
827 
828 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
829 					  next_hop->sin_addr.s_addr, dport);
830 			inp = in_pcblookup_hash(&tcbinfo[cpu],
831 						ip->ip_src, th->th_sport,
832 						next_hop->sin_addr, dport,
833 						1, m->m_pkthdr.rcvif);
834 		}
835 	} else {
836 		if (isipv6) {
837 			inp = in6_pcblookup_hash(&tcbinfo[0],
838 						 &ip6->ip6_src, th->th_sport,
839 						 &ip6->ip6_dst, th->th_dport,
840 						 1, m->m_pkthdr.rcvif);
841 		} else {
842 			cpu = mycpu->gd_cpuid;
843 			inp = in_pcblookup_hash(&tcbinfo[cpu],
844 						ip->ip_src, th->th_sport,
845 						ip->ip_dst, th->th_dport,
846 						1, m->m_pkthdr.rcvif);
847 		}
848 	}
849 
850 	/*
851 	 * If the state is CLOSED (i.e., TCB does not exist) then
852 	 * all data in the incoming segment is discarded.
853 	 * If the TCB exists but is in CLOSED state, it is embryonic,
854 	 * but should either do a listen or a connect soon.
855 	 */
856 	if (inp == NULL) {
857 		if (log_in_vain) {
858 #ifdef INET6
859 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
860 #else
861 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
862 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
863 #endif
864 			if (isipv6) {
865 				strcpy(dbuf, "[");
866 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
867 				strcat(dbuf, "]");
868 				strcpy(sbuf, "[");
869 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
870 				strcat(sbuf, "]");
871 			} else {
872 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
873 				strcpy(sbuf, inet_ntoa(ip->ip_src));
874 			}
875 			switch (log_in_vain) {
876 			case 1:
877 				if (!(thflags & TH_SYN))
878 					break;
879 			case 2:
880 				log(LOG_INFO,
881 				    "Connection attempt to TCP %s:%d "
882 				    "from %s:%d flags:0x%02x\n",
883 				    dbuf, ntohs(th->th_dport), sbuf,
884 				    ntohs(th->th_sport), thflags);
885 				break;
886 			default:
887 				break;
888 			}
889 		}
890 		if (blackhole) {
891 			switch (blackhole) {
892 			case 1:
893 				if (thflags & TH_SYN)
894 					goto drop;
895 				break;
896 			case 2:
897 				goto drop;
898 			default:
899 				goto drop;
900 			}
901 		}
902 		rstreason = BANDLIM_RST_CLOSEDPORT;
903 		goto dropwithreset;
904 	}
905 
906 #ifdef IPSEC
907 	if (isipv6) {
908 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
909 			ipsec6stat.in_polvio++;
910 			goto drop;
911 		}
912 	} else {
913 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
914 			ipsecstat.in_polvio++;
915 			goto drop;
916 		}
917 	}
918 #endif
919 #ifdef FAST_IPSEC
920 	if (isipv6) {
921 		if (ipsec6_in_reject(m, inp))
922 			goto drop;
923 	} else {
924 		if (ipsec4_in_reject(m, inp))
925 			goto drop;
926 	}
927 #endif
928 	/* Check the minimum TTL for socket. */
929 #ifdef INET6
930 	if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
931 		goto drop;
932 #endif
933 
934 	tp = intotcpcb(inp);
935 	if (tp == NULL) {
936 		rstreason = BANDLIM_RST_CLOSEDPORT;
937 		goto dropwithreset;
938 	}
939 	if (tp->t_state <= TCPS_CLOSED)
940 		goto drop;
941 
942 	so = inp->inp_socket;
943 
944 #ifdef TCPDEBUG
945 	if (so->so_options & SO_DEBUG) {
946 		ostate = tp->t_state;
947 		if (isipv6)
948 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
949 		else
950 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
951 		tcp_savetcp = *th;
952 	}
953 #endif
954 
955 	bzero(&to, sizeof to);
956 
957 	if (so->so_options & SO_ACCEPTCONN) {
958 		struct in_conninfo inc;
959 
960 #ifdef INET6
961 		inc.inc_isipv6 = (isipv6 == TRUE);
962 #endif
963 		if (isipv6) {
964 			inc.inc6_faddr = ip6->ip6_src;
965 			inc.inc6_laddr = ip6->ip6_dst;
966 			inc.inc6_route.ro_rt = NULL;		/* XXX */
967 		} else {
968 			inc.inc_faddr = ip->ip_src;
969 			inc.inc_laddr = ip->ip_dst;
970 			inc.inc_route.ro_rt = NULL;		/* XXX */
971 		}
972 		inc.inc_fport = th->th_sport;
973 		inc.inc_lport = th->th_dport;
974 
975 		/*
976 		 * If the state is LISTEN then ignore segment if it contains
977 		 * a RST.  If the segment contains an ACK then it is bad and
978 		 * send a RST.  If it does not contain a SYN then it is not
979 		 * interesting; drop it.
980 		 *
981 		 * If the state is SYN_RECEIVED (syncache) and seg contains
982 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
983 		 * contains a RST, check the sequence number to see if it
984 		 * is a valid reset segment.
985 		 */
986 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
987 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
988 				if (!syncache_expand(&inc, th, &so, m)) {
989 					/*
990 					 * No syncache entry, or ACK was not
991 					 * for our SYN/ACK.  Send a RST.
992 					 */
993 					tcpstat.tcps_badsyn++;
994 					rstreason = BANDLIM_RST_OPENPORT;
995 					goto dropwithreset;
996 				}
997 
998 				/*
999 				 * Could not complete 3-way handshake,
1000 				 * connection is being closed down, and
1001 				 * syncache will free mbuf.
1002 				 */
1003 				if (so == NULL)
1004 					return(IPPROTO_DONE);
1005 
1006 				/*
1007 				 * We must be in the correct protocol thread
1008 				 * for this connection.
1009 				 */
1010 				KKASSERT(so->so_port == &curthread->td_msgport);
1011 
1012 				/*
1013 				 * Socket is created in state SYN_RECEIVED.
1014 				 * Continue processing segment.
1015 				 */
1016 				inp = so->so_pcb;
1017 				tp = intotcpcb(inp);
1018 				/*
1019 				 * This is what would have happened in
1020 				 * tcp_output() when the SYN,ACK was sent.
1021 				 */
1022 				tp->snd_up = tp->snd_una;
1023 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
1024 				tp->last_ack_sent = tp->rcv_nxt;
1025 
1026 				goto after_listen;
1027 			}
1028 			if (thflags & TH_RST) {
1029 				syncache_chkrst(&inc, th);
1030 				goto drop;
1031 			}
1032 			if (thflags & TH_ACK) {
1033 				syncache_badack(&inc);
1034 				tcpstat.tcps_badsyn++;
1035 				rstreason = BANDLIM_RST_OPENPORT;
1036 				goto dropwithreset;
1037 			}
1038 			goto drop;
1039 		}
1040 
1041 		/*
1042 		 * Segment's flags are (SYN) or (SYN | FIN).
1043 		 */
1044 #ifdef INET6
1045 		/*
1046 		 * If deprecated address is forbidden,
1047 		 * we do not accept SYN to deprecated interface
1048 		 * address to prevent any new inbound connection from
1049 		 * getting established.
1050 		 * When we do not accept SYN, we send a TCP RST,
1051 		 * with deprecated source address (instead of dropping
1052 		 * it).  We compromise it as it is much better for peer
1053 		 * to send a RST, and RST will be the final packet
1054 		 * for the exchange.
1055 		 *
1056 		 * If we do not forbid deprecated addresses, we accept
1057 		 * the SYN packet.  RFC2462 does not suggest dropping
1058 		 * SYN in this case.
1059 		 * If we decipher RFC2462 5.5.4, it says like this:
1060 		 * 1. use of deprecated addr with existing
1061 		 *    communication is okay - "SHOULD continue to be
1062 		 *    used"
1063 		 * 2. use of it with new communication:
1064 		 *   (2a) "SHOULD NOT be used if alternate address
1065 		 *	  with sufficient scope is available"
1066 		 *   (2b) nothing mentioned otherwise.
1067 		 * Here we fall into (2b) case as we have no choice in
1068 		 * our source address selection - we must obey the peer.
1069 		 *
1070 		 * The wording in RFC2462 is confusing, and there are
1071 		 * multiple description text for deprecated address
1072 		 * handling - worse, they are not exactly the same.
1073 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1074 		 */
1075 		if (isipv6 && !ip6_use_deprecated) {
1076 			struct in6_ifaddr *ia6;
1077 
1078 			if ((ia6 = ip6_getdstifaddr(m)) &&
1079 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1080 				tp = NULL;
1081 				rstreason = BANDLIM_RST_OPENPORT;
1082 				goto dropwithreset;
1083 			}
1084 		}
1085 #endif
1086 		/*
1087 		 * If it is from this socket, drop it, it must be forged.
1088 		 * Don't bother responding if the destination was a broadcast.
1089 		 */
1090 		if (th->th_dport == th->th_sport) {
1091 			if (isipv6) {
1092 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1093 						       &ip6->ip6_src))
1094 					goto drop;
1095 			} else {
1096 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1097 					goto drop;
1098 			}
1099 		}
1100 		/*
1101 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1102 		 *
1103 		 * Note that it is quite possible to receive unicast
1104 		 * link-layer packets with a broadcast IP address. Use
1105 		 * in_broadcast() to find them.
1106 		 */
1107 		if (m->m_flags & (M_BCAST | M_MCAST))
1108 			goto drop;
1109 		if (isipv6) {
1110 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1111 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1112 				goto drop;
1113 		} else {
1114 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1115 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1116 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1117 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1118 				goto drop;
1119 		}
1120 		/*
1121 		 * SYN appears to be valid; create compressed TCP state
1122 		 * for syncache, or perform t/tcp connection.
1123 		 */
1124 		if (so->so_qlen <= so->so_qlimit) {
1125 			tcp_dooptions(&to, optp, optlen, TRUE, th->th_ack);
1126 			if (!syncache_add(&inc, &to, th, so, m))
1127 				goto drop;
1128 
1129 			/*
1130 			 * Entry added to syncache, mbuf used to
1131 			 * send SYN,ACK packet.
1132 			 */
1133 			return(IPPROTO_DONE);
1134 		}
1135 		goto drop;
1136 	}
1137 
1138 after_listen:
1139 	/*
1140 	 * Should not happen - syncache should pick up these connections.
1141 	 *
1142 	 * Once we are past handling listen sockets we must be in the
1143 	 * correct protocol processing thread.
1144 	 */
1145 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1146 	KKASSERT(so->so_port == &curthread->td_msgport);
1147 
1148 	/* Unscale the window into a 32-bit value. */
1149 	if (!(thflags & TH_SYN))
1150 		tiwin = th->th_win << tp->snd_scale;
1151 	else
1152 		tiwin = th->th_win;
1153 
1154 	/*
1155 	 * This is the second part of the MSS DoS prevention code (after
1156 	 * minmss on the sending side) and it deals with too many too small
1157 	 * tcp packets in a too short timeframe (1 second).
1158 	 *
1159 	 * XXX Removed.  This code was crap.  It does not scale to network
1160 	 *     speed, and default values break NFS.  Gone.
1161 	 */
1162 	/* REMOVED */
1163 
1164 	/*
1165 	 * Segment received on connection.
1166 	 *
1167 	 * Reset idle time and keep-alive timer.  Don't waste time if less
1168 	 * then a second has elapsed.
1169 	 */
1170 	if ((int)(ticks - tp->t_rcvtime) > hz)
1171 		tcp_timer_keep_activity(tp, thflags);
1172 
1173 	/*
1174 	 * Process options.
1175 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1176 	 */
1177 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0, th->th_ack);
1178 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1179 		if ((to.to_flags & TOF_SCALE) && (tp->t_flags & TF_REQ_SCALE)) {
1180 			tp->t_flags |= TF_RCVD_SCALE;
1181 			tp->snd_scale = to.to_requested_s_scale;
1182 		}
1183 
1184 		/*
1185 		 * Initial send window; will be updated upon next ACK
1186 		 */
1187 		tp->snd_wnd = th->th_win;
1188 
1189 		if (to.to_flags & TOF_TS) {
1190 			tp->t_flags |= TF_RCVD_TSTMP;
1191 			tp->ts_recent = to.to_tsval;
1192 			tp->ts_recent_age = ticks;
1193 		}
1194 		if (!(to.to_flags & TOF_MSS))
1195 			to.to_mss = 0;
1196 		tcp_mss(tp, to.to_mss);
1197 		/*
1198 		 * Only set the TF_SACK_PERMITTED per-connection flag
1199 		 * if we got a SACK_PERMITTED option from the other side
1200 		 * and the global tcp_do_sack variable is true.
1201 		 */
1202 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1203 			tp->t_flags |= TF_SACK_PERMITTED;
1204 	}
1205 
1206 	/*
1207 	 * Header prediction: check for the two common cases
1208 	 * of a uni-directional data xfer.  If the packet has
1209 	 * no control flags, is in-sequence, the window didn't
1210 	 * change and we're not retransmitting, it's a
1211 	 * candidate.  If the length is zero and the ack moved
1212 	 * forward, we're the sender side of the xfer.  Just
1213 	 * free the data acked & wake any higher level process
1214 	 * that was blocked waiting for space.  If the length
1215 	 * is non-zero and the ack didn't move, we're the
1216 	 * receiver side.  If we're getting packets in-order
1217 	 * (the reassembly queue is empty), add the data to
1218 	 * the socket buffer and note that we need a delayed ack.
1219 	 * Make sure that the hidden state-flags are also off.
1220 	 * Since we check for TCPS_ESTABLISHED above, it can only
1221 	 * be TH_NEEDSYN.
1222 	 */
1223 	if (tp->t_state == TCPS_ESTABLISHED &&
1224 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1225 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1226 	    (!(to.to_flags & TOF_TS) ||
1227 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1228 	    th->th_seq == tp->rcv_nxt &&
1229 	    tp->snd_nxt == tp->snd_max) {
1230 
1231 		/*
1232 		 * If last ACK falls within this segment's sequence numbers,
1233 		 * record the timestamp.
1234 		 * NOTE that the test is modified according to the latest
1235 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1236 		 */
1237 		if ((to.to_flags & TOF_TS) &&
1238 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1239 			tp->ts_recent_age = ticks;
1240 			tp->ts_recent = to.to_tsval;
1241 		}
1242 
1243 		if (tlen == 0) {
1244 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1245 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1246 			    tp->snd_cwnd >= tp->snd_wnd &&
1247 			    !IN_FASTRECOVERY(tp)) {
1248 				/*
1249 				 * This is a pure ack for outstanding data.
1250 				 */
1251 				++tcpstat.tcps_predack;
1252 				/*
1253 				 * "bad retransmit" recovery
1254 				 *
1255 				 * If Eifel detection applies, then
1256 				 * it is deterministic, so use it
1257 				 * unconditionally over the old heuristic.
1258 				 * Otherwise, fall back to the old heuristic.
1259 				 */
1260 				if (tcp_do_eifel_detect &&
1261 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1262 				    (tp->rxt_flags & TRXT_F_FIRSTACCACK)) {
1263 					/* Eifel detection applicable. */
1264 					if (to.to_tsecr < tp->t_rexmtTS) {
1265 						tcp_revert_congestion_state(tp);
1266 						++tcpstat.tcps_eifeldetected;
1267 						if (tp->t_rxtshift != 1 ||
1268 						    ticks >= tp->t_badrxtwin)
1269 							++tcpstat.tcps_rttcantdetect;
1270 					}
1271 				} else if (tp->t_rxtshift == 1 &&
1272 					   ticks < tp->t_badrxtwin) {
1273 					tcp_revert_congestion_state(tp);
1274 					++tcpstat.tcps_rttdetected;
1275 				}
1276 				tp->rxt_flags &= ~(TRXT_F_FIRSTACCACK |
1277 				    TRXT_F_FASTREXMT | TRXT_F_EARLYREXMT);
1278 				/*
1279 				 * Recalculate the retransmit timer / rtt.
1280 				 *
1281 				 * Some machines (certain windows boxes)
1282 				 * send broken timestamp replies during the
1283 				 * SYN+ACK phase, ignore timestamps of 0.
1284 				 */
1285 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1286 					tcp_xmit_timer(tp,
1287 					    ticks - to.to_tsecr + 1,
1288 					    th->th_ack);
1289 				} else if (tp->t_rtttime &&
1290 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1291 					tcp_xmit_timer(tp,
1292 					    ticks - tp->t_rtttime,
1293 					    th->th_ack);
1294 				}
1295 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1296 				acked = th->th_ack - tp->snd_una;
1297 				tcpstat.tcps_rcvackpack++;
1298 				tcpstat.tcps_rcvackbyte += acked;
1299 				sbdrop(&so->so_snd.sb, acked);
1300 				tp->snd_recover = th->th_ack - 1;
1301 				tp->snd_una = th->th_ack;
1302 				tp->t_dupacks = 0;
1303 				/*
1304 				 * Update window information.
1305 				 */
1306 				if (tiwin != tp->snd_wnd &&
1307 				    acceptable_window_update(tp, th, tiwin)) {
1308 					/* keep track of pure window updates */
1309 					if (tp->snd_wl2 == th->th_ack &&
1310 					    tiwin > tp->snd_wnd)
1311 						tcpstat.tcps_rcvwinupd++;
1312 					tp->snd_wnd = tiwin;
1313 					tp->snd_wl1 = th->th_seq;
1314 					tp->snd_wl2 = th->th_ack;
1315 					if (tp->snd_wnd > tp->max_sndwnd)
1316 						tp->max_sndwnd = tp->snd_wnd;
1317 				}
1318 				m_freem(m);
1319 				ND6_HINT(tp); /* some progress has been done */
1320 				/*
1321 				 * If all outstanding data are acked, stop
1322 				 * retransmit timer, otherwise restart timer
1323 				 * using current (possibly backed-off) value.
1324 				 * If process is waiting for space,
1325 				 * wakeup/selwakeup/signal.  If data
1326 				 * are ready to send, let tcp_output
1327 				 * decide between more output or persist.
1328 				 */
1329 				if (tp->snd_una == tp->snd_max) {
1330 					tcp_callout_stop(tp, tp->tt_rexmt);
1331 				} else if (!tcp_callout_active(tp,
1332 					    tp->tt_persist)) {
1333 					tcp_callout_reset(tp, tp->tt_rexmt,
1334 					    tp->t_rxtcur, tcp_timer_rexmt);
1335 				}
1336 				sowwakeup(so);
1337 				if (so->so_snd.ssb_cc > 0)
1338 					tcp_output(tp);
1339 				return(IPPROTO_DONE);
1340 			}
1341 		} else if (tiwin == tp->snd_wnd &&
1342 		    th->th_ack == tp->snd_una &&
1343 		    TAILQ_EMPTY(&tp->t_segq) &&
1344 		    tlen <= ssb_space(&so->so_rcv)) {
1345 			u_long newsize = 0;	/* automatic sockbuf scaling */
1346 			/*
1347 			 * This is a pure, in-sequence data packet
1348 			 * with nothing on the reassembly queue and
1349 			 * we have enough buffer space to take it.
1350 			 */
1351 			++tcpstat.tcps_preddat;
1352 			tp->rcv_nxt += tlen;
1353 			tcpstat.tcps_rcvpack++;
1354 			tcpstat.tcps_rcvbyte += tlen;
1355 			ND6_HINT(tp);	/* some progress has been done */
1356 		/*
1357 		 * Automatic sizing of receive socket buffer.  Often the send
1358 		 * buffer size is not optimally adjusted to the actual network
1359 		 * conditions at hand (delay bandwidth product).  Setting the
1360 		 * buffer size too small limits throughput on links with high
1361 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1362 		 *
1363 		 * On the receive side the socket buffer memory is only rarely
1364 		 * used to any significant extent.  This allows us to be much
1365 		 * more aggressive in scaling the receive socket buffer.  For
1366 		 * the case that the buffer space is actually used to a large
1367 		 * extent and we run out of kernel memory we can simply drop
1368 		 * the new segments; TCP on the sender will just retransmit it
1369 		 * later.  Setting the buffer size too big may only consume too
1370 		 * much kernel memory if the application doesn't read() from
1371 		 * the socket or packet loss or reordering makes use of the
1372 		 * reassembly queue.
1373 		 *
1374 		 * The criteria to step up the receive buffer one notch are:
1375 		 *  1. the number of bytes received during the time it takes
1376 		 *     one timestamp to be reflected back to us (the RTT);
1377 		 *  2. received bytes per RTT is within seven eighth of the
1378 		 *     current socket buffer size;
1379 		 *  3. receive buffer size has not hit maximal automatic size;
1380 		 *
1381 		 * This algorithm does one step per RTT at most and only if
1382 		 * we receive a bulk stream w/o packet losses or reorderings.
1383 		 * Shrinking the buffer during idle times is not necessary as
1384 		 * it doesn't consume any memory when idle.
1385 		 *
1386 		 * TODO: Only step up if the application is actually serving
1387 		 * the buffer to better manage the socket buffer resources.
1388 		 */
1389 			if (tcp_do_autorcvbuf &&
1390 			    to.to_tsecr &&
1391 			    (so->so_rcv.ssb_flags & SSB_AUTOSIZE)) {
1392 				if (to.to_tsecr > tp->rfbuf_ts &&
1393 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1394 					if (tp->rfbuf_cnt >
1395 					    (so->so_rcv.ssb_hiwat / 8 * 7) &&
1396 					    so->so_rcv.ssb_hiwat <
1397 					    tcp_autorcvbuf_max) {
1398 						newsize =
1399 						    ulmin(so->so_rcv.ssb_hiwat +
1400 							  tcp_autorcvbuf_inc,
1401 							  tcp_autorcvbuf_max);
1402 					}
1403 					/* Start over with next RTT. */
1404 					tp->rfbuf_ts = 0;
1405 					tp->rfbuf_cnt = 0;
1406 				} else
1407 					tp->rfbuf_cnt += tlen;	/* add up */
1408 			}
1409 			/*
1410 			 * Add data to socket buffer.
1411 			 */
1412 			if (so->so_state & SS_CANTRCVMORE) {
1413 				m_freem(m);
1414 			} else {
1415 				/*
1416 				 * Set new socket buffer size, give up when
1417 				 * limit is reached.
1418 				 *
1419 				 * Adjusting the size can mess up ACK
1420 				 * sequencing when pure window updates are
1421 				 * being avoided (which is the default),
1422 				 * so force an ack.
1423 				 */
1424 				lwkt_gettoken(&so->so_rcv.ssb_token);
1425 				if (newsize) {
1426 					tp->t_flags |= TF_RXRESIZED;
1427 					if (!ssb_reserve(&so->so_rcv, newsize,
1428 							 so, NULL)) {
1429 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1430 					}
1431 					if (newsize >=
1432 					    (TCP_MAXWIN << tp->rcv_scale)) {
1433 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1434 					}
1435 				}
1436 				m_adj(m, drop_hdrlen); /* delayed header drop */
1437 				ssb_appendstream(&so->so_rcv, m);
1438 				lwkt_reltoken(&so->so_rcv.ssb_token);
1439 			}
1440 			sorwakeup(so);
1441 			/*
1442 			 * This code is responsible for most of the ACKs
1443 			 * the TCP stack sends back after receiving a data
1444 			 * packet.  Note that the DELAY_ACK check fails if
1445 			 * the delack timer is already running, which results
1446 			 * in an ack being sent every other packet (which is
1447 			 * what we want).
1448 			 *
1449 			 * We then further aggregate acks by not actually
1450 			 * sending one until the protocol thread has completed
1451 			 * processing the current backlog of packets.  This
1452 			 * does not delay the ack any further, but allows us
1453 			 * to take advantage of the packet aggregation that
1454 			 * high speed NICs do (usually blocks of 8-10 packets)
1455 			 * to send a single ack rather then four or five acks,
1456 			 * greatly reducing the ack rate, the return channel
1457 			 * bandwidth, and the protocol overhead on both ends.
1458 			 *
1459 			 * Since this also has the effect of slowing down
1460 			 * the exponential slow-start ramp-up, systems with
1461 			 * very large bandwidth-delay products might want
1462 			 * to turn the feature off.
1463 			 */
1464 			if (DELAY_ACK(tp)) {
1465 				tcp_callout_reset(tp, tp->tt_delack,
1466 				    tcp_delacktime, tcp_timer_delack);
1467 			} else if (tcp_aggregate_acks) {
1468 				tp->t_flags |= TF_ACKNOW;
1469 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1470 					tp->t_flags |= TF_ONOUTPUTQ;
1471 					tp->tt_cpu = mycpu->gd_cpuid;
1472 					TAILQ_INSERT_TAIL(
1473 					    &tcpcbackq[tp->tt_cpu],
1474 					    tp, t_outputq);
1475 				}
1476 			} else {
1477 				tp->t_flags |= TF_ACKNOW;
1478 				tcp_output(tp);
1479 			}
1480 			return(IPPROTO_DONE);
1481 		}
1482 	}
1483 
1484 	/*
1485 	 * Calculate amount of space in receive window,
1486 	 * and then do TCP input processing.
1487 	 * Receive window is amount of space in rcv queue,
1488 	 * but not less than advertised window.
1489 	 */
1490 	recvwin = ssb_space(&so->so_rcv);
1491 	if (recvwin < 0)
1492 		recvwin = 0;
1493 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1494 
1495 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1496 	tp->rfbuf_ts = 0;
1497 	tp->rfbuf_cnt = 0;
1498 
1499 	switch (tp->t_state) {
1500 	/*
1501 	 * If the state is SYN_RECEIVED:
1502 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1503 	 */
1504 	case TCPS_SYN_RECEIVED:
1505 		if ((thflags & TH_ACK) &&
1506 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1507 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1508 				rstreason = BANDLIM_RST_OPENPORT;
1509 				goto dropwithreset;
1510 		}
1511 		break;
1512 
1513 	/*
1514 	 * If the state is SYN_SENT:
1515 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1516 	 *	if seg contains a RST, then drop the connection.
1517 	 *	if seg does not contain SYN, then drop it.
1518 	 * Otherwise this is an acceptable SYN segment
1519 	 *	initialize tp->rcv_nxt and tp->irs
1520 	 *	if seg contains ack then advance tp->snd_una
1521 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1522 	 *	arrange for segment to be acked (eventually)
1523 	 *	continue processing rest of data/controls, beginning with URG
1524 	 */
1525 	case TCPS_SYN_SENT:
1526 		if ((thflags & TH_ACK) &&
1527 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1528 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1529 			rstreason = BANDLIM_UNLIMITED;
1530 			goto dropwithreset;
1531 		}
1532 		if (thflags & TH_RST) {
1533 			if (thflags & TH_ACK)
1534 				tp = tcp_drop(tp, ECONNREFUSED);
1535 			goto drop;
1536 		}
1537 		if (!(thflags & TH_SYN))
1538 			goto drop;
1539 
1540 		tp->irs = th->th_seq;
1541 		tcp_rcvseqinit(tp);
1542 		if (thflags & TH_ACK) {
1543 			/* Our SYN was acked. */
1544 			tcpstat.tcps_connects++;
1545 			soisconnected(so);
1546 			/* Do window scaling on this connection? */
1547 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1548 			    (TF_RCVD_SCALE | TF_REQ_SCALE))
1549 				tp->rcv_scale = tp->request_r_scale;
1550 			tp->rcv_adv += tp->rcv_wnd;
1551 			tp->snd_una++;		/* SYN is acked */
1552 			tcp_callout_stop(tp, tp->tt_rexmt);
1553 			/*
1554 			 * If there's data, delay ACK; if there's also a FIN
1555 			 * ACKNOW will be turned on later.
1556 			 */
1557 			if (DELAY_ACK(tp) && tlen != 0) {
1558 				tcp_callout_reset(tp, tp->tt_delack,
1559 				    tcp_delacktime, tcp_timer_delack);
1560 			} else {
1561 				tp->t_flags |= TF_ACKNOW;
1562 			}
1563 			/*
1564 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1565 			 * Transitions:
1566 			 *	SYN_SENT  --> ESTABLISHED
1567 			 *	SYN_SENT* --> FIN_WAIT_1
1568 			 */
1569 			tp->t_starttime = ticks;
1570 			if (tp->t_flags & TF_NEEDFIN) {
1571 				tp->t_state = TCPS_FIN_WAIT_1;
1572 				tp->t_flags &= ~TF_NEEDFIN;
1573 				thflags &= ~TH_SYN;
1574 			} else {
1575 				tcp_established(tp);
1576 			}
1577 		} else {
1578 			/*
1579 			 * Received initial SYN in SYN-SENT[*] state =>
1580 			 * simultaneous open.
1581 			 * Do 3-way handshake:
1582 			 *	  SYN-SENT -> SYN-RECEIVED
1583 			 *	  SYN-SENT* -> SYN-RECEIVED*
1584 			 */
1585 			tp->t_flags |= TF_ACKNOW;
1586 			tcp_callout_stop(tp, tp->tt_rexmt);
1587 			tp->t_state = TCPS_SYN_RECEIVED;
1588 		}
1589 
1590 		/*
1591 		 * Advance th->th_seq to correspond to first data byte.
1592 		 * If data, trim to stay within window,
1593 		 * dropping FIN if necessary.
1594 		 */
1595 		th->th_seq++;
1596 		if (tlen > tp->rcv_wnd) {
1597 			todrop = tlen - tp->rcv_wnd;
1598 			m_adj(m, -todrop);
1599 			tlen = tp->rcv_wnd;
1600 			thflags &= ~TH_FIN;
1601 			tcpstat.tcps_rcvpackafterwin++;
1602 			tcpstat.tcps_rcvbyteafterwin += todrop;
1603 		}
1604 		tp->snd_wl1 = th->th_seq - 1;
1605 		tp->rcv_up = th->th_seq;
1606 		/*
1607 		 * Client side of transaction: already sent SYN and data.
1608 		 * If the remote host used T/TCP to validate the SYN,
1609 		 * our data will be ACK'd; if so, enter normal data segment
1610 		 * processing in the middle of step 5, ack processing.
1611 		 * Otherwise, goto step 6.
1612 		 */
1613 		if (thflags & TH_ACK)
1614 			goto process_ACK;
1615 
1616 		goto step6;
1617 
1618 	/*
1619 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1620 	 *	do normal processing (we no longer bother with T/TCP).
1621 	 */
1622 	case TCPS_LAST_ACK:
1623 	case TCPS_CLOSING:
1624 	case TCPS_TIME_WAIT:
1625 		break;  /* continue normal processing */
1626 	}
1627 
1628 	/*
1629 	 * States other than LISTEN or SYN_SENT.
1630 	 * First check the RST flag and sequence number since reset segments
1631 	 * are exempt from the timestamp and connection count tests.  This
1632 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1633 	 * below which allowed reset segments in half the sequence space
1634 	 * to fall though and be processed (which gives forged reset
1635 	 * segments with a random sequence number a 50 percent chance of
1636 	 * killing a connection).
1637 	 * Then check timestamp, if present.
1638 	 * Then check the connection count, if present.
1639 	 * Then check that at least some bytes of segment are within
1640 	 * receive window.  If segment begins before rcv_nxt,
1641 	 * drop leading data (and SYN); if nothing left, just ack.
1642 	 *
1643 	 *
1644 	 * If the RST bit is set, check the sequence number to see
1645 	 * if this is a valid reset segment.
1646 	 * RFC 793 page 37:
1647 	 *   In all states except SYN-SENT, all reset (RST) segments
1648 	 *   are validated by checking their SEQ-fields.  A reset is
1649 	 *   valid if its sequence number is in the window.
1650 	 * Note: this does not take into account delayed ACKs, so
1651 	 *   we should test against last_ack_sent instead of rcv_nxt.
1652 	 *   The sequence number in the reset segment is normally an
1653 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1654 	 *   send a reset with the sequence number at the rightmost edge
1655 	 *   of our receive window, and we have to handle this case.
1656 	 * If we have multiple segments in flight, the intial reset
1657 	 * segment sequence numbers will be to the left of last_ack_sent,
1658 	 * but they will eventually catch up.
1659 	 * In any case, it never made sense to trim reset segments to
1660 	 * fit the receive window since RFC 1122 says:
1661 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1662 	 *
1663 	 *    A TCP SHOULD allow a received RST segment to include data.
1664 	 *
1665 	 *    DISCUSSION
1666 	 *	   It has been suggested that a RST segment could contain
1667 	 *	   ASCII text that encoded and explained the cause of the
1668 	 *	   RST.  No standard has yet been established for such
1669 	 *	   data.
1670 	 *
1671 	 * If the reset segment passes the sequence number test examine
1672 	 * the state:
1673 	 *    SYN_RECEIVED STATE:
1674 	 *	If passive open, return to LISTEN state.
1675 	 *	If active open, inform user that connection was refused.
1676 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1677 	 *	Inform user that connection was reset, and close tcb.
1678 	 *    CLOSING, LAST_ACK STATES:
1679 	 *	Close the tcb.
1680 	 *    TIME_WAIT STATE:
1681 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1682 	 *	RFC 1337.
1683 	 */
1684 	if (thflags & TH_RST) {
1685 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1686 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1687 			switch (tp->t_state) {
1688 
1689 			case TCPS_SYN_RECEIVED:
1690 				so->so_error = ECONNREFUSED;
1691 				goto close;
1692 
1693 			case TCPS_ESTABLISHED:
1694 			case TCPS_FIN_WAIT_1:
1695 			case TCPS_FIN_WAIT_2:
1696 			case TCPS_CLOSE_WAIT:
1697 				so->so_error = ECONNRESET;
1698 			close:
1699 				tp->t_state = TCPS_CLOSED;
1700 				tcpstat.tcps_drops++;
1701 				tp = tcp_close(tp);
1702 				break;
1703 
1704 			case TCPS_CLOSING:
1705 			case TCPS_LAST_ACK:
1706 				tp = tcp_close(tp);
1707 				break;
1708 
1709 			case TCPS_TIME_WAIT:
1710 				break;
1711 			}
1712 		}
1713 		goto drop;
1714 	}
1715 
1716 	/*
1717 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1718 	 * and it's less than ts_recent, drop it.
1719 	 */
1720 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1721 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1722 		/* Check to see if ts_recent is over 24 days old.  */
1723 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1724 			/*
1725 			 * Invalidate ts_recent.  If this segment updates
1726 			 * ts_recent, the age will be reset later and ts_recent
1727 			 * will get a valid value.  If it does not, setting
1728 			 * ts_recent to zero will at least satisfy the
1729 			 * requirement that zero be placed in the timestamp
1730 			 * echo reply when ts_recent isn't valid.  The
1731 			 * age isn't reset until we get a valid ts_recent
1732 			 * because we don't want out-of-order segments to be
1733 			 * dropped when ts_recent is old.
1734 			 */
1735 			tp->ts_recent = 0;
1736 		} else if (tcp_paws_tolerance && tlen != 0 &&
1737 		    tp->t_state == TCPS_ESTABLISHED &&
1738 		    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK&&
1739 		    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1740 		    th->th_ack == tp->snd_una &&
1741 		    tiwin == tp->snd_wnd &&
1742 		    TSTMP_GEQ(to.to_tsval + tcp_paws_tolerance, tp->ts_recent)&&
1743 		    (th->th_seq == tp->rcv_nxt ||
1744 		     (SEQ_GT(th->th_seq, tp->rcv_nxt) &&
1745 		      tcp_paws_canreasslast(tp, th, tlen)))) {
1746 			/*
1747 			 * This tends to prevent valid new segments from being
1748 			 * dropped by the reordered segments sent by the fast
1749 			 * retransmission algorithm on the sending side, i.e.
1750 			 * the fast retransmitted segment w/ larger timestamp
1751 			 * arrives earlier than the previously sent new segments
1752 			 * w/ smaller timestamp.
1753 			 *
1754 			 * If following conditions are met, the segment is
1755 			 * accepted:
1756 			 * - The segment contains data
1757 			 * - The connection is established
1758 			 * - The header does not contain important flags
1759 			 * - SYN or FIN is not needed
1760 			 * - It does not acknowledge new data
1761 			 * - Receive window is not changed
1762 			 * - The timestamp is within "acceptable" range
1763 			 * - The new segment is what we are expecting or
1764 			 *   the new segment could be merged w/ the last
1765 			 *   pending segment on the reassemble queue
1766 			 */
1767 			tcpstat.tcps_pawsaccept++;
1768 			tcpstat.tcps_pawsdrop++;
1769 		} else {
1770 			tcpstat.tcps_rcvduppack++;
1771 			tcpstat.tcps_rcvdupbyte += tlen;
1772 			tcpstat.tcps_pawsdrop++;
1773 			if (tlen)
1774 				goto dropafterack;
1775 			goto drop;
1776 		}
1777 	}
1778 
1779 	/*
1780 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1781 	 * this connection before trimming the data to fit the receive
1782 	 * window.  Check the sequence number versus IRS since we know
1783 	 * the sequence numbers haven't wrapped.  This is a partial fix
1784 	 * for the "LAND" DoS attack.
1785 	 */
1786 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1787 		rstreason = BANDLIM_RST_OPENPORT;
1788 		goto dropwithreset;
1789 	}
1790 
1791 	todrop = tp->rcv_nxt - th->th_seq;
1792 	if (todrop > 0) {
1793 		if (TCP_DO_SACK(tp)) {
1794 			/* Report duplicate segment at head of packet. */
1795 			tp->reportblk.rblk_start = th->th_seq;
1796 			tp->reportblk.rblk_end = TCP_SACK_BLKEND(
1797 			    th->th_seq + tlen, thflags);
1798 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1799 				tp->reportblk.rblk_end = tp->rcv_nxt;
1800 			tp->sack_flags |= (TSACK_F_DUPSEG | TSACK_F_SACKLEFT);
1801 			tp->t_flags |= TF_ACKNOW;
1802 		}
1803 		if (thflags & TH_SYN) {
1804 			thflags &= ~TH_SYN;
1805 			th->th_seq++;
1806 			if (th->th_urp > 1)
1807 				th->th_urp--;
1808 			else
1809 				thflags &= ~TH_URG;
1810 			todrop--;
1811 		}
1812 		/*
1813 		 * Following if statement from Stevens, vol. 2, p. 960.
1814 		 */
1815 		if (todrop > tlen ||
1816 		    (todrop == tlen && !(thflags & TH_FIN))) {
1817 			/*
1818 			 * Any valid FIN must be to the left of the window.
1819 			 * At this point the FIN must be a duplicate or out
1820 			 * of sequence; drop it.
1821 			 */
1822 			thflags &= ~TH_FIN;
1823 
1824 			/*
1825 			 * Send an ACK to resynchronize and drop any data.
1826 			 * But keep on processing for RST or ACK.
1827 			 */
1828 			tp->t_flags |= TF_ACKNOW;
1829 			todrop = tlen;
1830 			tcpstat.tcps_rcvduppack++;
1831 			tcpstat.tcps_rcvdupbyte += todrop;
1832 		} else {
1833 			tcpstat.tcps_rcvpartduppack++;
1834 			tcpstat.tcps_rcvpartdupbyte += todrop;
1835 		}
1836 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1837 		th->th_seq += todrop;
1838 		tlen -= todrop;
1839 		if (th->th_urp > todrop)
1840 			th->th_urp -= todrop;
1841 		else {
1842 			thflags &= ~TH_URG;
1843 			th->th_urp = 0;
1844 		}
1845 	}
1846 
1847 	/*
1848 	 * If new data are received on a connection after the
1849 	 * user processes are gone, then RST the other end.
1850 	 */
1851 	if ((so->so_state & SS_NOFDREF) &&
1852 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1853 		tp = tcp_close(tp);
1854 		tcpstat.tcps_rcvafterclose++;
1855 		rstreason = BANDLIM_UNLIMITED;
1856 		goto dropwithreset;
1857 	}
1858 
1859 	/*
1860 	 * If segment ends after window, drop trailing data
1861 	 * (and PUSH and FIN); if nothing left, just ACK.
1862 	 */
1863 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1864 	if (todrop > 0) {
1865 		tcpstat.tcps_rcvpackafterwin++;
1866 		if (todrop >= tlen) {
1867 			tcpstat.tcps_rcvbyteafterwin += tlen;
1868 			/*
1869 			 * If a new connection request is received
1870 			 * while in TIME_WAIT, drop the old connection
1871 			 * and start over if the sequence numbers
1872 			 * are above the previous ones.
1873 			 */
1874 			if (thflags & TH_SYN &&
1875 			    tp->t_state == TCPS_TIME_WAIT &&
1876 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1877 				tp = tcp_close(tp);
1878 				goto findpcb;
1879 			}
1880 			/*
1881 			 * If window is closed can only take segments at
1882 			 * window edge, and have to drop data and PUSH from
1883 			 * incoming segments.  Continue processing, but
1884 			 * remember to ack.  Otherwise, drop segment
1885 			 * and ack.
1886 			 */
1887 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1888 				tp->t_flags |= TF_ACKNOW;
1889 				tcpstat.tcps_rcvwinprobe++;
1890 			} else
1891 				goto dropafterack;
1892 		} else
1893 			tcpstat.tcps_rcvbyteafterwin += todrop;
1894 		m_adj(m, -todrop);
1895 		tlen -= todrop;
1896 		thflags &= ~(TH_PUSH | TH_FIN);
1897 	}
1898 
1899 	/*
1900 	 * If last ACK falls within this segment's sequence numbers,
1901 	 * record its timestamp.
1902 	 * NOTE:
1903 	 * 1) That the test incorporates suggestions from the latest
1904 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1905 	 * 2) That updating only on newer timestamps interferes with
1906 	 *    our earlier PAWS tests, so this check should be solely
1907 	 *    predicated on the sequence space of this segment.
1908 	 * 3) That we modify the segment boundary check to be
1909 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1910 	 *    instead of RFC1323's
1911 	 *        Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1912 	 *    This modified check allows us to overcome RFC1323's
1913 	 *    limitations as described in Stevens TCP/IP Illustrated
1914 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1915 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1916 	 */
1917 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1918 	    SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1919 					+ ((thflags & TH_SYN) != 0)
1920 					+ ((thflags & TH_FIN) != 0)))) {
1921 		tp->ts_recent_age = ticks;
1922 		tp->ts_recent = to.to_tsval;
1923 	}
1924 
1925 	/*
1926 	 * If a SYN is in the window, then this is an
1927 	 * error and we send an RST and drop the connection.
1928 	 */
1929 	if (thflags & TH_SYN) {
1930 		tp = tcp_drop(tp, ECONNRESET);
1931 		rstreason = BANDLIM_UNLIMITED;
1932 		goto dropwithreset;
1933 	}
1934 
1935 	/*
1936 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1937 	 * flag is on (half-synchronized state), then queue data for
1938 	 * later processing; else drop segment and return.
1939 	 */
1940 	if (!(thflags & TH_ACK)) {
1941 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1942 		    (tp->t_flags & TF_NEEDSYN))
1943 			goto step6;
1944 		else
1945 			goto drop;
1946 	}
1947 
1948 	/*
1949 	 * Ack processing.
1950 	 */
1951 	switch (tp->t_state) {
1952 	/*
1953 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1954 	 * ESTABLISHED state and continue processing.
1955 	 * The ACK was checked above.
1956 	 */
1957 	case TCPS_SYN_RECEIVED:
1958 
1959 		tcpstat.tcps_connects++;
1960 		soisconnected(so);
1961 		/* Do window scaling? */
1962 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1963 		    (TF_RCVD_SCALE | TF_REQ_SCALE))
1964 			tp->rcv_scale = tp->request_r_scale;
1965 		/*
1966 		 * Make transitions:
1967 		 *      SYN-RECEIVED  -> ESTABLISHED
1968 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1969 		 */
1970 		tp->t_starttime = ticks;
1971 		if (tp->t_flags & TF_NEEDFIN) {
1972 			tp->t_state = TCPS_FIN_WAIT_1;
1973 			tp->t_flags &= ~TF_NEEDFIN;
1974 		} else {
1975 			tcp_established(tp);
1976 		}
1977 		/*
1978 		 * If segment contains data or ACK, will call tcp_reass()
1979 		 * later; if not, do so now to pass queued data to user.
1980 		 */
1981 		if (tlen == 0 && !(thflags & TH_FIN))
1982 			tcp_reass(tp, NULL, NULL, NULL);
1983 		/* fall into ... */
1984 
1985 	/*
1986 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1987 	 * ACKs.  If the ack is in the range
1988 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1989 	 * then advance tp->snd_una to th->th_ack and drop
1990 	 * data from the retransmission queue.  If this ACK reflects
1991 	 * more up to date window information we update our window information.
1992 	 */
1993 	case TCPS_ESTABLISHED:
1994 	case TCPS_FIN_WAIT_1:
1995 	case TCPS_FIN_WAIT_2:
1996 	case TCPS_CLOSE_WAIT:
1997 	case TCPS_CLOSING:
1998 	case TCPS_LAST_ACK:
1999 	case TCPS_TIME_WAIT:
2000 
2001 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2002 			if (TCP_DO_SACK(tp))
2003 				tcp_sack_update_scoreboard(tp, &to);
2004 			if (!tcp_callout_active(tp, tp->tt_rexmt) ||
2005 			    th->th_ack != tp->snd_una) {
2006 				if (tlen == 0 && tiwin == tp->snd_wnd)
2007 					tcpstat.tcps_rcvdupack++;
2008 				tp->t_dupacks = 0;
2009 				break;
2010 			}
2011 			if (tlen != 0 || tiwin != tp->snd_wnd) {
2012 				if (!tcp_do_rfc3517bis ||
2013 				    !TCP_DO_SACK(tp) ||
2014 				    (to.to_flags &
2015 				     (TOF_SACK | TOF_SACK_REDUNDANT))
2016 				     != TOF_SACK) {
2017 					tp->t_dupacks = 0;
2018 				} else {
2019 					delayed_dupack = TRUE;
2020 					th_dupack = th->th_ack;
2021 				}
2022 				break;
2023 			}
2024 			if (tcp_fast_recovery(tp, th->th_ack, &to))
2025 				goto drop;
2026 			else
2027 				break;
2028 		}
2029 
2030 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2031 		tp->t_dupacks = 0;
2032 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2033 			/*
2034 			 * Detected optimistic ACK attack.
2035 			 * Force slow-start to de-synchronize attack.
2036 			 */
2037 			tp->snd_cwnd = tp->t_maxseg;
2038 			tp->snd_wacked = 0;
2039 
2040 			tcpstat.tcps_rcvacktoomuch++;
2041 			goto dropafterack;
2042 		}
2043 		/*
2044 		 * If we reach this point, ACK is not a duplicate,
2045 		 *     i.e., it ACKs something we sent.
2046 		 */
2047 		if (tp->t_flags & TF_NEEDSYN) {
2048 			/*
2049 			 * T/TCP: Connection was half-synchronized, and our
2050 			 * SYN has been ACK'd (so connection is now fully
2051 			 * synchronized).  Go to non-starred state,
2052 			 * increment snd_una for ACK of SYN, and check if
2053 			 * we can do window scaling.
2054 			 */
2055 			tp->t_flags &= ~TF_NEEDSYN;
2056 			tp->snd_una++;
2057 			/* Do window scaling? */
2058 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2059 			    (TF_RCVD_SCALE | TF_REQ_SCALE))
2060 				tp->rcv_scale = tp->request_r_scale;
2061 		}
2062 
2063 process_ACK:
2064 		acked = th->th_ack - tp->snd_una;
2065 		tcpstat.tcps_rcvackpack++;
2066 		tcpstat.tcps_rcvackbyte += acked;
2067 
2068 		if (tcp_do_eifel_detect && acked > 0 &&
2069 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2070 		    (tp->rxt_flags & TRXT_F_FIRSTACCACK)) {
2071 			/* Eifel detection applicable. */
2072 			if (to.to_tsecr < tp->t_rexmtTS) {
2073 				++tcpstat.tcps_eifeldetected;
2074 				tcp_revert_congestion_state(tp);
2075 				if (tp->t_rxtshift != 1 ||
2076 				    ticks >= tp->t_badrxtwin)
2077 					++tcpstat.tcps_rttcantdetect;
2078 			}
2079 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2080 			/*
2081 			 * If we just performed our first retransmit,
2082 			 * and the ACK arrives within our recovery window,
2083 			 * then it was a mistake to do the retransmit
2084 			 * in the first place.  Recover our original cwnd
2085 			 * and ssthresh, and proceed to transmit where we
2086 			 * left off.
2087 			 */
2088 			tcp_revert_congestion_state(tp);
2089 			++tcpstat.tcps_rttdetected;
2090 		}
2091 
2092 		/*
2093 		 * If we have a timestamp reply, update smoothed
2094 		 * round trip time.  If no timestamp is present but
2095 		 * transmit timer is running and timed sequence
2096 		 * number was acked, update smoothed round trip time.
2097 		 * Since we now have an rtt measurement, cancel the
2098 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2099 		 * Recompute the initial retransmit timer.
2100 		 *
2101 		 * Some machines (certain windows boxes) send broken
2102 		 * timestamp replies during the SYN+ACK phase, ignore
2103 		 * timestamps of 0.
2104 		 */
2105 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2106 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1, th->th_ack);
2107 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2108 			tcp_xmit_timer(tp, ticks - tp->t_rtttime, th->th_ack);
2109 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2110 
2111 		/*
2112 		 * If no data (only SYN) was ACK'd,
2113 		 *    skip rest of ACK processing.
2114 		 */
2115 		if (acked == 0)
2116 			goto step6;
2117 
2118 		/* Stop looking for an acceptable ACK since one was received. */
2119 		tp->rxt_flags &= ~(TRXT_F_FIRSTACCACK |
2120 		    TRXT_F_FASTREXMT | TRXT_F_EARLYREXMT);
2121 
2122 		if (acked > so->so_snd.ssb_cc) {
2123 			tp->snd_wnd -= so->so_snd.ssb_cc;
2124 			sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2125 			ourfinisacked = TRUE;
2126 		} else {
2127 			sbdrop(&so->so_snd.sb, acked);
2128 			tp->snd_wnd -= acked;
2129 			ourfinisacked = FALSE;
2130 		}
2131 		sowwakeup(so);
2132 
2133 		/*
2134 		 * Update window information.
2135 		 */
2136 		if (acceptable_window_update(tp, th, tiwin)) {
2137 			/* keep track of pure window updates */
2138 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2139 			    tiwin > tp->snd_wnd)
2140 				tcpstat.tcps_rcvwinupd++;
2141 			tp->snd_wnd = tiwin;
2142 			tp->snd_wl1 = th->th_seq;
2143 			tp->snd_wl2 = th->th_ack;
2144 			if (tp->snd_wnd > tp->max_sndwnd)
2145 				tp->max_sndwnd = tp->snd_wnd;
2146 			needoutput = TRUE;
2147 		}
2148 
2149 		tp->snd_una = th->th_ack;
2150 		if (TCP_DO_SACK(tp))
2151 			tcp_sack_update_scoreboard(tp, &to);
2152 		if (IN_FASTRECOVERY(tp)) {
2153 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2154 				EXIT_FASTRECOVERY(tp);
2155 				needoutput = TRUE;
2156 				/*
2157 				 * If the congestion window was inflated
2158 				 * to account for the other side's
2159 				 * cached packets, retract it.
2160 				 */
2161 				if (!TCP_DO_SACK(tp))
2162 					tp->snd_cwnd = tp->snd_ssthresh;
2163 
2164 				/*
2165 				 * Window inflation should have left us
2166 				 * with approximately snd_ssthresh outstanding
2167 				 * data.  But, in case we would be inclined
2168 				 * to send a burst, better do it using
2169 				 * slow start.
2170 				 */
2171 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2172 					   tp->snd_max + 2 * tp->t_maxseg))
2173 					tp->snd_cwnd =
2174 					    (tp->snd_max - tp->snd_una) +
2175 					    2 * tp->t_maxseg;
2176 
2177 				tp->snd_wacked = 0;
2178 			} else {
2179 				if (TCP_DO_SACK(tp)) {
2180 					tp->snd_max_rexmt = tp->snd_max;
2181 					tcp_sack_rexmt(tp);
2182 				} else {
2183 					tcp_newreno_partial_ack(tp, th, acked);
2184 				}
2185 				needoutput = FALSE;
2186 			}
2187 		} else {
2188 			/*
2189 			 * Open the congestion window.  When in slow-start,
2190 			 * open exponentially: maxseg per packet.  Otherwise,
2191 			 * open linearly: maxseg per window.
2192 			 */
2193 			if (tp->snd_cwnd <= tp->snd_ssthresh) {
2194 				u_int abc_sslimit =
2195 				    (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2196 				     tp->t_maxseg : 2 * tp->t_maxseg);
2197 
2198 				/* slow-start */
2199 				tp->snd_cwnd += tcp_do_abc ?
2200 				    min(acked, abc_sslimit) : tp->t_maxseg;
2201 			} else {
2202 				/* linear increase */
2203 				tp->snd_wacked += tcp_do_abc ? acked :
2204 				    tp->t_maxseg;
2205 				if (tp->snd_wacked >= tp->snd_cwnd) {
2206 					tp->snd_wacked -= tp->snd_cwnd;
2207 					tp->snd_cwnd += tp->t_maxseg;
2208 				}
2209 			}
2210 			tp->snd_cwnd = min(tp->snd_cwnd,
2211 					   TCP_MAXWIN << tp->snd_scale);
2212 			tp->snd_recover = th->th_ack - 1;
2213 		}
2214 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2215 			tp->snd_nxt = tp->snd_una;
2216 
2217 		/*
2218 		 * If all outstanding data is acked, stop retransmit
2219 		 * timer and remember to restart (more output or persist).
2220 		 * If there is more data to be acked, restart retransmit
2221 		 * timer, using current (possibly backed-off) value.
2222 		 */
2223 		if (th->th_ack == tp->snd_max) {
2224 			tcp_callout_stop(tp, tp->tt_rexmt);
2225 			needoutput = TRUE;
2226 		} else if (!tcp_callout_active(tp, tp->tt_persist)) {
2227 			tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur,
2228 			    tcp_timer_rexmt);
2229 		}
2230 
2231 		switch (tp->t_state) {
2232 		/*
2233 		 * In FIN_WAIT_1 STATE in addition to the processing
2234 		 * for the ESTABLISHED state if our FIN is now acknowledged
2235 		 * then enter FIN_WAIT_2.
2236 		 */
2237 		case TCPS_FIN_WAIT_1:
2238 			if (ourfinisacked) {
2239 				/*
2240 				 * If we can't receive any more
2241 				 * data, then closing user can proceed.
2242 				 * Starting the timer is contrary to the
2243 				 * specification, but if we don't get a FIN
2244 				 * we'll hang forever.
2245 				 */
2246 				if (so->so_state & SS_CANTRCVMORE) {
2247 					soisdisconnected(so);
2248 					tcp_callout_reset(tp, tp->tt_2msl,
2249 					    tp->t_maxidle, tcp_timer_2msl);
2250 				}
2251 				tp->t_state = TCPS_FIN_WAIT_2;
2252 			}
2253 			break;
2254 
2255 		/*
2256 		 * In CLOSING STATE in addition to the processing for
2257 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2258 		 * then enter the TIME-WAIT state, otherwise ignore
2259 		 * the segment.
2260 		 */
2261 		case TCPS_CLOSING:
2262 			if (ourfinisacked) {
2263 				tp->t_state = TCPS_TIME_WAIT;
2264 				tcp_canceltimers(tp);
2265 				tcp_callout_reset(tp, tp->tt_2msl,
2266 					    2 * tcp_rmx_msl(tp),
2267 					    tcp_timer_2msl);
2268 				soisdisconnected(so);
2269 			}
2270 			break;
2271 
2272 		/*
2273 		 * In LAST_ACK, we may still be waiting for data to drain
2274 		 * and/or to be acked, as well as for the ack of our FIN.
2275 		 * If our FIN is now acknowledged, delete the TCB,
2276 		 * enter the closed state and return.
2277 		 */
2278 		case TCPS_LAST_ACK:
2279 			if (ourfinisacked) {
2280 				tp = tcp_close(tp);
2281 				goto drop;
2282 			}
2283 			break;
2284 
2285 		/*
2286 		 * In TIME_WAIT state the only thing that should arrive
2287 		 * is a retransmission of the remote FIN.  Acknowledge
2288 		 * it and restart the finack timer.
2289 		 */
2290 		case TCPS_TIME_WAIT:
2291 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2292 			    tcp_timer_2msl);
2293 			goto dropafterack;
2294 		}
2295 	}
2296 
2297 step6:
2298 	/*
2299 	 * Update window information.
2300 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2301 	 */
2302 	if ((thflags & TH_ACK) &&
2303 	    acceptable_window_update(tp, th, tiwin)) {
2304 		/* keep track of pure window updates */
2305 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2306 		    tiwin > tp->snd_wnd)
2307 			tcpstat.tcps_rcvwinupd++;
2308 		tp->snd_wnd = tiwin;
2309 		tp->snd_wl1 = th->th_seq;
2310 		tp->snd_wl2 = th->th_ack;
2311 		if (tp->snd_wnd > tp->max_sndwnd)
2312 			tp->max_sndwnd = tp->snd_wnd;
2313 		needoutput = TRUE;
2314 	}
2315 
2316 	/*
2317 	 * Process segments with URG.
2318 	 */
2319 	if ((thflags & TH_URG) && th->th_urp &&
2320 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2321 		/*
2322 		 * This is a kludge, but if we receive and accept
2323 		 * random urgent pointers, we'll crash in
2324 		 * soreceive.  It's hard to imagine someone
2325 		 * actually wanting to send this much urgent data.
2326 		 */
2327 		if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2328 			th->th_urp = 0;			/* XXX */
2329 			thflags &= ~TH_URG;		/* XXX */
2330 			goto dodata;			/* XXX */
2331 		}
2332 		/*
2333 		 * If this segment advances the known urgent pointer,
2334 		 * then mark the data stream.  This should not happen
2335 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2336 		 * a FIN has been received from the remote side.
2337 		 * In these states we ignore the URG.
2338 		 *
2339 		 * According to RFC961 (Assigned Protocols),
2340 		 * the urgent pointer points to the last octet
2341 		 * of urgent data.  We continue, however,
2342 		 * to consider it to indicate the first octet
2343 		 * of data past the urgent section as the original
2344 		 * spec states (in one of two places).
2345 		 */
2346 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2347 			tp->rcv_up = th->th_seq + th->th_urp;
2348 			so->so_oobmark = so->so_rcv.ssb_cc +
2349 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2350 			if (so->so_oobmark == 0)
2351 				sosetstate(so, SS_RCVATMARK);
2352 			sohasoutofband(so);
2353 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2354 		}
2355 		/*
2356 		 * Remove out of band data so doesn't get presented to user.
2357 		 * This can happen independent of advancing the URG pointer,
2358 		 * but if two URG's are pending at once, some out-of-band
2359 		 * data may creep in... ick.
2360 		 */
2361 		if (th->th_urp <= (u_long)tlen &&
2362 		    !(so->so_options & SO_OOBINLINE)) {
2363 			/* hdr drop is delayed */
2364 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2365 		}
2366 	} else {
2367 		/*
2368 		 * If no out of band data is expected,
2369 		 * pull receive urgent pointer along
2370 		 * with the receive window.
2371 		 */
2372 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2373 			tp->rcv_up = tp->rcv_nxt;
2374 	}
2375 
2376 dodata:							/* XXX */
2377 	/*
2378 	 * Process the segment text, merging it into the TCP sequencing queue,
2379 	 * and arranging for acknowledgment of receipt if necessary.
2380 	 * This process logically involves adjusting tp->rcv_wnd as data
2381 	 * is presented to the user (this happens in tcp_usrreq.c,
2382 	 * case PRU_RCVD).  If a FIN has already been received on this
2383 	 * connection then we just ignore the text.
2384 	 */
2385 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2386 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2387 		/*
2388 		 * Insert segment which includes th into TCP reassembly queue
2389 		 * with control block tp.  Set thflags to whether reassembly now
2390 		 * includes a segment with FIN.  This handles the common case
2391 		 * inline (segment is the next to be received on an established
2392 		 * connection, and the queue is empty), avoiding linkage into
2393 		 * and removal from the queue and repetition of various
2394 		 * conversions.
2395 		 * Set DELACK for segments received in order, but ack
2396 		 * immediately when segments are out of order (so
2397 		 * fast retransmit can work).
2398 		 */
2399 		if (th->th_seq == tp->rcv_nxt &&
2400 		    TAILQ_EMPTY(&tp->t_segq) &&
2401 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2402 			if (DELAY_ACK(tp)) {
2403 				tcp_callout_reset(tp, tp->tt_delack,
2404 				    tcp_delacktime, tcp_timer_delack);
2405 			} else {
2406 				tp->t_flags |= TF_ACKNOW;
2407 			}
2408 			tp->rcv_nxt += tlen;
2409 			thflags = th->th_flags & TH_FIN;
2410 			tcpstat.tcps_rcvpack++;
2411 			tcpstat.tcps_rcvbyte += tlen;
2412 			ND6_HINT(tp);
2413 			if (so->so_state & SS_CANTRCVMORE) {
2414 				m_freem(m);
2415 			} else {
2416 				lwkt_gettoken(&so->so_rcv.ssb_token);
2417 				ssb_appendstream(&so->so_rcv, m);
2418 				lwkt_reltoken(&so->so_rcv.ssb_token);
2419 			}
2420 			sorwakeup(so);
2421 		} else {
2422 			if (!(tp->sack_flags & TSACK_F_DUPSEG)) {
2423 				/* Initialize SACK report block. */
2424 				tp->reportblk.rblk_start = th->th_seq;
2425 				tp->reportblk.rblk_end = TCP_SACK_BLKEND(
2426 				    th->th_seq + tlen, thflags);
2427 			}
2428 			thflags = tcp_reass(tp, th, &tlen, m);
2429 			tp->t_flags |= TF_ACKNOW;
2430 		}
2431 
2432 		/*
2433 		 * Note the amount of data that peer has sent into
2434 		 * our window, in order to estimate the sender's
2435 		 * buffer size.
2436 		 */
2437 		len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2438 	} else {
2439 		m_freem(m);
2440 		thflags &= ~TH_FIN;
2441 	}
2442 
2443 	/*
2444 	 * If FIN is received ACK the FIN and let the user know
2445 	 * that the connection is closing.
2446 	 */
2447 	if (thflags & TH_FIN) {
2448 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2449 			socantrcvmore(so);
2450 			/*
2451 			 * If connection is half-synchronized
2452 			 * (ie NEEDSYN flag on) then delay ACK,
2453 			 * so it may be piggybacked when SYN is sent.
2454 			 * Otherwise, since we received a FIN then no
2455 			 * more input can be expected, send ACK now.
2456 			 */
2457 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2458 				tcp_callout_reset(tp, tp->tt_delack,
2459 				    tcp_delacktime, tcp_timer_delack);
2460 			} else {
2461 				tp->t_flags |= TF_ACKNOW;
2462 			}
2463 			tp->rcv_nxt++;
2464 		}
2465 
2466 		switch (tp->t_state) {
2467 		/*
2468 		 * In SYN_RECEIVED and ESTABLISHED STATES
2469 		 * enter the CLOSE_WAIT state.
2470 		 */
2471 		case TCPS_SYN_RECEIVED:
2472 			tp->t_starttime = ticks;
2473 			/*FALLTHROUGH*/
2474 		case TCPS_ESTABLISHED:
2475 			tp->t_state = TCPS_CLOSE_WAIT;
2476 			break;
2477 
2478 		/*
2479 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2480 		 * enter the CLOSING state.
2481 		 */
2482 		case TCPS_FIN_WAIT_1:
2483 			tp->t_state = TCPS_CLOSING;
2484 			break;
2485 
2486 		/*
2487 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2488 		 * starting the time-wait timer, turning off the other
2489 		 * standard timers.
2490 		 */
2491 		case TCPS_FIN_WAIT_2:
2492 			tp->t_state = TCPS_TIME_WAIT;
2493 			tcp_canceltimers(tp);
2494 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2495 				    tcp_timer_2msl);
2496 			soisdisconnected(so);
2497 			break;
2498 
2499 		/*
2500 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2501 		 */
2502 		case TCPS_TIME_WAIT:
2503 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2504 			    tcp_timer_2msl);
2505 			break;
2506 		}
2507 	}
2508 
2509 #ifdef TCPDEBUG
2510 	if (so->so_options & SO_DEBUG)
2511 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2512 #endif
2513 
2514 	/*
2515 	 * Delayed duplicated ACK processing
2516 	 */
2517 	if (delayed_dupack && tcp_fast_recovery(tp, th_dupack, &to))
2518 		needoutput = FALSE;
2519 
2520 	/*
2521 	 * Return any desired output.
2522 	 */
2523 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2524 		tcp_output(tp);
2525 	tcp_sack_report_cleanup(tp);
2526 	return(IPPROTO_DONE);
2527 
2528 dropafterack:
2529 	/*
2530 	 * Generate an ACK dropping incoming segment if it occupies
2531 	 * sequence space, where the ACK reflects our state.
2532 	 *
2533 	 * We can now skip the test for the RST flag since all
2534 	 * paths to this code happen after packets containing
2535 	 * RST have been dropped.
2536 	 *
2537 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2538 	 * segment we received passes the SYN-RECEIVED ACK test.
2539 	 * If it fails send a RST.  This breaks the loop in the
2540 	 * "LAND" DoS attack, and also prevents an ACK storm
2541 	 * between two listening ports that have been sent forged
2542 	 * SYN segments, each with the source address of the other.
2543 	 */
2544 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2545 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2546 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2547 		rstreason = BANDLIM_RST_OPENPORT;
2548 		goto dropwithreset;
2549 	}
2550 #ifdef TCPDEBUG
2551 	if (so->so_options & SO_DEBUG)
2552 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2553 #endif
2554 	m_freem(m);
2555 	tp->t_flags |= TF_ACKNOW;
2556 	tcp_output(tp);
2557 	tcp_sack_report_cleanup(tp);
2558 	return(IPPROTO_DONE);
2559 
2560 dropwithreset:
2561 	/*
2562 	 * Generate a RST, dropping incoming segment.
2563 	 * Make ACK acceptable to originator of segment.
2564 	 * Don't bother to respond if destination was broadcast/multicast.
2565 	 */
2566 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2567 		goto drop;
2568 	if (isipv6) {
2569 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2570 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2571 			goto drop;
2572 	} else {
2573 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2574 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2575 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2576 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2577 			goto drop;
2578 	}
2579 	/* IPv6 anycast check is done at tcp6_input() */
2580 
2581 	/*
2582 	 * Perform bandwidth limiting.
2583 	 */
2584 #ifdef ICMP_BANDLIM
2585 	if (badport_bandlim(rstreason) < 0)
2586 		goto drop;
2587 #endif
2588 
2589 #ifdef TCPDEBUG
2590 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2591 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2592 #endif
2593 	if (thflags & TH_ACK)
2594 		/* mtod() below is safe as long as hdr dropping is delayed */
2595 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2596 			    TH_RST);
2597 	else {
2598 		if (thflags & TH_SYN)
2599 			tlen++;
2600 		/* mtod() below is safe as long as hdr dropping is delayed */
2601 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2602 			    (tcp_seq)0, TH_RST | TH_ACK);
2603 	}
2604 	if (tp != NULL)
2605 		tcp_sack_report_cleanup(tp);
2606 	return(IPPROTO_DONE);
2607 
2608 drop:
2609 	/*
2610 	 * Drop space held by incoming segment and return.
2611 	 */
2612 #ifdef TCPDEBUG
2613 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2614 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2615 #endif
2616 	m_freem(m);
2617 	if (tp != NULL)
2618 		tcp_sack_report_cleanup(tp);
2619 	return(IPPROTO_DONE);
2620 }
2621 
2622 /*
2623  * Parse TCP options and place in tcpopt.
2624  */
2625 static void
2626 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn,
2627     tcp_seq ack)
2628 {
2629 	int opt, optlen, i;
2630 
2631 	to->to_flags = 0;
2632 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2633 		opt = cp[0];
2634 		if (opt == TCPOPT_EOL)
2635 			break;
2636 		if (opt == TCPOPT_NOP)
2637 			optlen = 1;
2638 		else {
2639 			if (cnt < 2)
2640 				break;
2641 			optlen = cp[1];
2642 			if (optlen < 2 || optlen > cnt)
2643 				break;
2644 		}
2645 		switch (opt) {
2646 		case TCPOPT_MAXSEG:
2647 			if (optlen != TCPOLEN_MAXSEG)
2648 				continue;
2649 			if (!is_syn)
2650 				continue;
2651 			to->to_flags |= TOF_MSS;
2652 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2653 			to->to_mss = ntohs(to->to_mss);
2654 			break;
2655 		case TCPOPT_WINDOW:
2656 			if (optlen != TCPOLEN_WINDOW)
2657 				continue;
2658 			if (!is_syn)
2659 				continue;
2660 			to->to_flags |= TOF_SCALE;
2661 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2662 			break;
2663 		case TCPOPT_TIMESTAMP:
2664 			if (optlen != TCPOLEN_TIMESTAMP)
2665 				continue;
2666 			to->to_flags |= TOF_TS;
2667 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2668 			to->to_tsval = ntohl(to->to_tsval);
2669 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2670 			to->to_tsecr = ntohl(to->to_tsecr);
2671 			/*
2672 			 * If echoed timestamp is later than the current time,
2673 			 * fall back to non RFC1323 RTT calculation.
2674 			 */
2675 			if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2676 				to->to_tsecr = 0;
2677 			break;
2678 		case TCPOPT_SACK_PERMITTED:
2679 			if (optlen != TCPOLEN_SACK_PERMITTED)
2680 				continue;
2681 			if (!is_syn)
2682 				continue;
2683 			to->to_flags |= TOF_SACK_PERMITTED;
2684 			break;
2685 		case TCPOPT_SACK:
2686 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2687 				continue;
2688 			to->to_nsackblocks = (optlen - 2) / 8;
2689 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2690 			to->to_flags |= TOF_SACK;
2691 			for (i = 0; i < to->to_nsackblocks; i++) {
2692 				struct raw_sackblock *r = &to->to_sackblocks[i];
2693 
2694 				r->rblk_start = ntohl(r->rblk_start);
2695 				r->rblk_end = ntohl(r->rblk_end);
2696 
2697 				if (SEQ_LEQ(r->rblk_end, r->rblk_start)) {
2698 					/*
2699 					 * Invalid SACK block; discard all
2700 					 * SACK blocks
2701 					 */
2702 					tcpstat.tcps_rcvbadsackopt++;
2703 					to->to_nsackblocks = 0;
2704 					to->to_sackblocks = NULL;
2705 					to->to_flags &= ~TOF_SACK;
2706 					break;
2707 				}
2708 			}
2709 			if ((to->to_flags & TOF_SACK) &&
2710 			    tcp_sack_ndsack_blocks(to->to_sackblocks,
2711 			    to->to_nsackblocks, ack))
2712 				to->to_flags |= TOF_DSACK;
2713 			break;
2714 #ifdef TCP_SIGNATURE
2715 		/*
2716 		 * XXX In order to reply to a host which has set the
2717 		 * TCP_SIGNATURE option in its initial SYN, we have to
2718 		 * record the fact that the option was observed here
2719 		 * for the syncache code to perform the correct response.
2720 		 */
2721 		case TCPOPT_SIGNATURE:
2722 			if (optlen != TCPOLEN_SIGNATURE)
2723 				continue;
2724 			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2725 			break;
2726 #endif /* TCP_SIGNATURE */
2727 		default:
2728 			continue;
2729 		}
2730 	}
2731 }
2732 
2733 /*
2734  * Pull out of band byte out of a segment so
2735  * it doesn't appear in the user's data queue.
2736  * It is still reflected in the segment length for
2737  * sequencing purposes.
2738  * "off" is the delayed to be dropped hdrlen.
2739  */
2740 static void
2741 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2742 {
2743 	int cnt = off + th->th_urp - 1;
2744 
2745 	while (cnt >= 0) {
2746 		if (m->m_len > cnt) {
2747 			char *cp = mtod(m, caddr_t) + cnt;
2748 			struct tcpcb *tp = sototcpcb(so);
2749 
2750 			tp->t_iobc = *cp;
2751 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2752 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2753 			m->m_len--;
2754 			if (m->m_flags & M_PKTHDR)
2755 				m->m_pkthdr.len--;
2756 			return;
2757 		}
2758 		cnt -= m->m_len;
2759 		m = m->m_next;
2760 		if (m == NULL)
2761 			break;
2762 	}
2763 	panic("tcp_pulloutofband");
2764 }
2765 
2766 /*
2767  * Collect new round-trip time estimate
2768  * and update averages and current timeout.
2769  */
2770 static void
2771 tcp_xmit_timer(struct tcpcb *tp, int rtt, tcp_seq ack)
2772 {
2773 	int rebaserto = 0;
2774 
2775 	tcpstat.tcps_rttupdated++;
2776 	tp->t_rttupdated++;
2777 	if ((tp->rxt_flags & TRXT_F_REBASERTO) &&
2778 	    SEQ_GT(ack, tp->snd_max_prev)) {
2779 #ifdef DEBUG_EIFEL_RESPONSE
2780 		kprintf("srtt/rttvar, prev %d/%d, cur %d/%d, ",
2781 		    tp->t_srtt_prev, tp->t_rttvar_prev,
2782 		    tp->t_srtt, tp->t_rttvar);
2783 #endif
2784 
2785 		tcpstat.tcps_eifelresponse++;
2786 		rebaserto = 1;
2787 		tp->rxt_flags &= ~TRXT_F_REBASERTO;
2788 		tp->t_srtt = max(tp->t_srtt_prev, (rtt << TCP_RTT_SHIFT));
2789 		tp->t_rttvar = max(tp->t_rttvar_prev,
2790 		    (rtt << (TCP_RTTVAR_SHIFT - 1)));
2791 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2792 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2793 
2794 #ifdef DEBUG_EIFEL_RESPONSE
2795 		kprintf("new %d/%d ", tp->t_srtt, tp->t_rttvar);
2796 #endif
2797 	} else if (tp->t_srtt != 0) {
2798 		int delta;
2799 
2800 		/*
2801 		 * srtt is stored as fixed point with 5 bits after the
2802 		 * binary point (i.e., scaled by 8).  The following magic
2803 		 * is equivalent to the smoothing algorithm in rfc793 with
2804 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2805 		 * point).  Adjust rtt to origin 0.
2806 		 */
2807 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2808 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2809 
2810 		if ((tp->t_srtt += delta) <= 0)
2811 			tp->t_srtt = 1;
2812 
2813 		/*
2814 		 * We accumulate a smoothed rtt variance (actually, a
2815 		 * smoothed mean difference), then set the retransmit
2816 		 * timer to smoothed rtt + 4 times the smoothed variance.
2817 		 * rttvar is stored as fixed point with 4 bits after the
2818 		 * binary point (scaled by 16).  The following is
2819 		 * equivalent to rfc793 smoothing with an alpha of .75
2820 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2821 		 * rfc793's wired-in beta.
2822 		 */
2823 		if (delta < 0)
2824 			delta = -delta;
2825 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2826 		if ((tp->t_rttvar += delta) <= 0)
2827 			tp->t_rttvar = 1;
2828 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2829 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2830 	} else {
2831 		/*
2832 		 * No rtt measurement yet - use the unsmoothed rtt.
2833 		 * Set the variance to half the rtt (so our first
2834 		 * retransmit happens at 3*rtt).
2835 		 */
2836 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2837 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2838 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2839 	}
2840 	tp->t_rtttime = 0;
2841 	tp->t_rxtshift = 0;
2842 
2843 #ifdef DEBUG_EIFEL_RESPONSE
2844 	if (rebaserto) {
2845 		kprintf("| rxtcur prev %d, old %d, ",
2846 		    tp->t_rxtcur_prev, tp->t_rxtcur);
2847 	}
2848 #endif
2849 
2850 	/*
2851 	 * the retransmit should happen at rtt + 4 * rttvar.
2852 	 * Because of the way we do the smoothing, srtt and rttvar
2853 	 * will each average +1/2 tick of bias.  When we compute
2854 	 * the retransmit timer, we want 1/2 tick of rounding and
2855 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2856 	 * firing of the timer.  The bias will give us exactly the
2857 	 * 1.5 tick we need.  But, because the bias is
2858 	 * statistical, we have to test that we don't drop below
2859 	 * the minimum feasible timer (which is 2 ticks).
2860 	 */
2861 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2862 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2863 
2864 	if (rebaserto) {
2865 		if (tp->t_rxtcur < tp->t_rxtcur_prev + tcp_eifel_rtoinc) {
2866 			/*
2867 			 * RFC4015 requires that the new RTO is at least
2868 			 * 2*G (tcp_eifel_rtoinc) greater then the RTO
2869 			 * (t_rxtcur_prev) when the spurious retransmit
2870 			 * timeout happens.
2871 			 *
2872 			 * The above condition could be true, if the SRTT
2873 			 * and RTTVAR used to calculate t_rxtcur_prev
2874 			 * resulted in a value less than t_rttmin.  So
2875 			 * simply increasing SRTT by tcp_eifel_rtoinc when
2876 			 * preparing for the Eifel response in
2877 			 * tcp_save_congestion_state() could not ensure
2878 			 * that the new RTO will be tcp_eifel_rtoinc greater
2879 			 * t_rxtcur_prev.
2880 			 */
2881 			tp->t_rxtcur = tp->t_rxtcur_prev + tcp_eifel_rtoinc;
2882 		}
2883 #ifdef DEBUG_EIFEL_RESPONSE
2884 		kprintf("new %d\n", tp->t_rxtcur);
2885 #endif
2886 	}
2887 
2888 	/*
2889 	 * We received an ack for a packet that wasn't retransmitted;
2890 	 * it is probably safe to discard any error indications we've
2891 	 * received recently.  This isn't quite right, but close enough
2892 	 * for now (a route might have failed after we sent a segment,
2893 	 * and the return path might not be symmetrical).
2894 	 */
2895 	tp->t_softerror = 0;
2896 }
2897 
2898 /*
2899  * Determine a reasonable value for maxseg size.
2900  * If the route is known, check route for mtu.
2901  * If none, use an mss that can be handled on the outgoing
2902  * interface without forcing IP to fragment; if bigger than
2903  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2904  * to utilize large mbufs.  If no route is found, route has no mtu,
2905  * or the destination isn't local, use a default, hopefully conservative
2906  * size (usually 512 or the default IP max size, but no more than the mtu
2907  * of the interface), as we can't discover anything about intervening
2908  * gateways or networks.  We also initialize the congestion/slow start
2909  * window to be a single segment if the destination isn't local.
2910  * While looking at the routing entry, we also initialize other path-dependent
2911  * parameters from pre-set or cached values in the routing entry.
2912  *
2913  * Also take into account the space needed for options that we
2914  * send regularly.  Make maxseg shorter by that amount to assure
2915  * that we can send maxseg amount of data even when the options
2916  * are present.  Store the upper limit of the length of options plus
2917  * data in maxopd.
2918  *
2919  * NOTE that this routine is only called when we process an incoming
2920  * segment, for outgoing segments only tcp_mssopt is called.
2921  */
2922 void
2923 tcp_mss(struct tcpcb *tp, int offer)
2924 {
2925 	struct rtentry *rt;
2926 	struct ifnet *ifp;
2927 	int rtt, mss;
2928 	u_long bufsize;
2929 	struct inpcb *inp = tp->t_inpcb;
2930 	struct socket *so;
2931 #ifdef INET6
2932 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2933 	size_t min_protoh = isipv6 ?
2934 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2935 			    sizeof(struct tcpiphdr);
2936 #else
2937 	const boolean_t isipv6 = FALSE;
2938 	const size_t min_protoh = sizeof(struct tcpiphdr);
2939 #endif
2940 
2941 	if (isipv6)
2942 		rt = tcp_rtlookup6(&inp->inp_inc);
2943 	else
2944 		rt = tcp_rtlookup(&inp->inp_inc);
2945 	if (rt == NULL) {
2946 		tp->t_maxopd = tp->t_maxseg =
2947 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2948 		return;
2949 	}
2950 	ifp = rt->rt_ifp;
2951 	so = inp->inp_socket;
2952 
2953 	/*
2954 	 * Offer == 0 means that there was no MSS on the SYN segment,
2955 	 * in this case we use either the interface mtu or tcp_mssdflt.
2956 	 *
2957 	 * An offer which is too large will be cut down later.
2958 	 */
2959 	if (offer == 0) {
2960 		if (isipv6) {
2961 			if (in6_localaddr(&inp->in6p_faddr)) {
2962 				offer = ND_IFINFO(rt->rt_ifp)->linkmtu -
2963 					min_protoh;
2964 			} else {
2965 				offer = tcp_v6mssdflt;
2966 			}
2967 		} else {
2968 			if (in_localaddr(inp->inp_faddr))
2969 				offer = ifp->if_mtu - min_protoh;
2970 			else
2971 				offer = tcp_mssdflt;
2972 		}
2973 	}
2974 
2975 	/*
2976 	 * Prevent DoS attack with too small MSS. Round up
2977 	 * to at least minmss.
2978 	 *
2979 	 * Sanity check: make sure that maxopd will be large
2980 	 * enough to allow some data on segments even is the
2981 	 * all the option space is used (40bytes).  Otherwise
2982 	 * funny things may happen in tcp_output.
2983 	 */
2984 	offer = max(offer, tcp_minmss);
2985 	offer = max(offer, 64);
2986 
2987 	rt->rt_rmx.rmx_mssopt = offer;
2988 
2989 	/*
2990 	 * While we're here, check if there's an initial rtt
2991 	 * or rttvar.  Convert from the route-table units
2992 	 * to scaled multiples of the slow timeout timer.
2993 	 */
2994 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2995 		/*
2996 		 * XXX the lock bit for RTT indicates that the value
2997 		 * is also a minimum value; this is subject to time.
2998 		 */
2999 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
3000 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
3001 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
3002 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
3003 		tcpstat.tcps_usedrtt++;
3004 		if (rt->rt_rmx.rmx_rttvar) {
3005 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
3006 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
3007 			tcpstat.tcps_usedrttvar++;
3008 		} else {
3009 			/* default variation is +- 1 rtt */
3010 			tp->t_rttvar =
3011 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3012 		}
3013 		TCPT_RANGESET(tp->t_rxtcur,
3014 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3015 			      tp->t_rttmin, TCPTV_REXMTMAX);
3016 	}
3017 
3018 	/*
3019 	 * if there's an mtu associated with the route, use it
3020 	 * else, use the link mtu.  Take the smaller of mss or offer
3021 	 * as our final mss.
3022 	 */
3023 	if (rt->rt_rmx.rmx_mtu) {
3024 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
3025 	} else {
3026 		if (isipv6)
3027 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
3028 		else
3029 			mss = ifp->if_mtu - min_protoh;
3030 	}
3031 	mss = min(mss, offer);
3032 
3033 	/*
3034 	 * maxopd stores the maximum length of data AND options
3035 	 * in a segment; maxseg is the amount of data in a normal
3036 	 * segment.  We need to store this value (maxopd) apart
3037 	 * from maxseg, because now every segment carries options
3038 	 * and thus we normally have somewhat less data in segments.
3039 	 */
3040 	tp->t_maxopd = mss;
3041 
3042 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
3043 	    ((tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3044 		mss -= TCPOLEN_TSTAMP_APPA;
3045 
3046 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3047 	if (mss > MCLBYTES)
3048 		mss &= ~(MCLBYTES-1);
3049 #else
3050 	if (mss > MCLBYTES)
3051 		mss = mss / MCLBYTES * MCLBYTES;
3052 #endif
3053 	/*
3054 	 * If there's a pipesize, change the socket buffer
3055 	 * to that size.  Make the socket buffers an integral
3056 	 * number of mss units; if the mss is larger than
3057 	 * the socket buffer, decrease the mss.
3058 	 */
3059 #ifdef RTV_SPIPE
3060 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
3061 #endif
3062 		bufsize = so->so_snd.ssb_hiwat;
3063 	if (bufsize < mss)
3064 		mss = bufsize;
3065 	else {
3066 		bufsize = roundup(bufsize, mss);
3067 		if (bufsize > sb_max)
3068 			bufsize = sb_max;
3069 		if (bufsize > so->so_snd.ssb_hiwat)
3070 			ssb_reserve(&so->so_snd, bufsize, so, NULL);
3071 	}
3072 	tp->t_maxseg = mss;
3073 
3074 #ifdef RTV_RPIPE
3075 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3076 #endif
3077 		bufsize = so->so_rcv.ssb_hiwat;
3078 	if (bufsize > mss) {
3079 		bufsize = roundup(bufsize, mss);
3080 		if (bufsize > sb_max)
3081 			bufsize = sb_max;
3082 		if (bufsize > so->so_rcv.ssb_hiwat) {
3083 			lwkt_gettoken(&so->so_rcv.ssb_token);
3084 			ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3085 			lwkt_reltoken(&so->so_rcv.ssb_token);
3086 		}
3087 	}
3088 
3089 	/*
3090 	 * Set the slow-start flight size
3091 	 *
3092 	 * NOTE: t_maxseg must have been configured!
3093 	 */
3094 	tp->snd_cwnd = tcp_initial_window(tp);
3095 
3096 	if (rt->rt_rmx.rmx_ssthresh) {
3097 		/*
3098 		 * There's some sort of gateway or interface
3099 		 * buffer limit on the path.  Use this to set
3100 		 * the slow start threshhold, but set the
3101 		 * threshold to no less than 2*mss.
3102 		 */
3103 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3104 		tcpstat.tcps_usedssthresh++;
3105 	}
3106 }
3107 
3108 /*
3109  * Determine the MSS option to send on an outgoing SYN.
3110  */
3111 int
3112 tcp_mssopt(struct tcpcb *tp)
3113 {
3114 	struct rtentry *rt;
3115 #ifdef INET6
3116 	boolean_t isipv6 =
3117 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3118 	int min_protoh = isipv6 ?
3119 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3120 			     sizeof(struct tcpiphdr);
3121 #else
3122 	const boolean_t isipv6 = FALSE;
3123 	const size_t min_protoh = sizeof(struct tcpiphdr);
3124 #endif
3125 
3126 	if (isipv6)
3127 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3128 	else
3129 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3130 	if (rt == NULL)
3131 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3132 
3133 	return (rt->rt_ifp->if_mtu - min_protoh);
3134 }
3135 
3136 /*
3137  * When a partial ack arrives, force the retransmission of the
3138  * next unacknowledged segment.  Do not exit Fast Recovery.
3139  *
3140  * Implement the Slow-but-Steady variant of NewReno by restarting the
3141  * the retransmission timer.  Turn it off here so it can be restarted
3142  * later in tcp_output().
3143  */
3144 static void
3145 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3146 {
3147 	tcp_seq old_snd_nxt = tp->snd_nxt;
3148 	u_long ocwnd = tp->snd_cwnd;
3149 
3150 	tcp_callout_stop(tp, tp->tt_rexmt);
3151 	tp->t_rtttime = 0;
3152 	tp->snd_nxt = th->th_ack;
3153 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3154 	tp->snd_cwnd = tp->t_maxseg;
3155 	tp->t_flags |= TF_ACKNOW;
3156 	tcp_output(tp);
3157 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3158 		tp->snd_nxt = old_snd_nxt;
3159 	/* partial window deflation */
3160 	if (ocwnd > acked)
3161 		tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3162 	else
3163 		tp->snd_cwnd = tp->t_maxseg;
3164 }
3165 
3166 /*
3167  * In contrast to the Slow-but-Steady NewReno variant,
3168  * we do not reset the retransmission timer for SACK retransmissions,
3169  * except when retransmitting snd_una.
3170  */
3171 static void
3172 tcp_sack_rexmt(struct tcpcb *tp)
3173 {
3174 	tcp_seq old_snd_nxt = tp->snd_nxt;
3175 	u_long ocwnd = tp->snd_cwnd;
3176 	uint32_t pipe;
3177 	int nseg = 0;		/* consecutive new segments */
3178 	int nseg_rexmt = 0;	/* retransmitted segments */
3179 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3180 
3181 	tp->t_rtttime = 0;
3182 	pipe = tcp_sack_compute_pipe(tp);
3183 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3184 	    (!tcp_do_smartsack || nseg < MAXBURST)) {
3185 		tcp_seq old_snd_max, old_rexmt_high, nextrexmt;
3186 		uint32_t sent, seglen;
3187 		boolean_t rescue;
3188 		int error;
3189 
3190 		old_rexmt_high = tp->rexmt_high;
3191 	    	if (!tcp_sack_nextseg(tp, &nextrexmt, &seglen, &rescue)) {
3192 			tp->rexmt_high = old_rexmt_high;
3193 			break;
3194 		}
3195 
3196 		/*
3197 		 * If the next tranmission is a rescue retranmission,
3198 		 * we check whether we have already sent some data
3199 		 * (either new segments or retransmitted segments)
3200 		 * into the the network or not.  Since the idea of rescue
3201 		 * retransmission is to sustain ACK clock, as long as
3202 		 * some segments are in the network, ACK clock will be
3203 		 * kept ticking.
3204 		 */
3205 		if (rescue && (nseg_rexmt > 0 || nseg > 0)) {
3206 			tp->rexmt_high = old_rexmt_high;
3207 			break;
3208 		}
3209 
3210 		if (nextrexmt == tp->snd_max)
3211 			++nseg;
3212 		else
3213 			++nseg_rexmt;
3214 		tp->snd_nxt = nextrexmt;
3215 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3216 		old_snd_max = tp->snd_max;
3217 		if (nextrexmt == tp->snd_una)
3218 			tcp_callout_stop(tp, tp->tt_rexmt);
3219 		error = tcp_output(tp);
3220 		if (error != 0) {
3221 			tp->rexmt_high = old_rexmt_high;
3222 			break;
3223 		}
3224 		sent = tp->snd_nxt - nextrexmt;
3225 		if (sent <= 0) {
3226 			tp->rexmt_high = old_rexmt_high;
3227 			break;
3228 		}
3229 		pipe += sent;
3230 		tcpstat.tcps_sndsackpack++;
3231 		tcpstat.tcps_sndsackbyte += sent;
3232 
3233 		if (rescue) {
3234 			tcpstat.tcps_sackrescue++;
3235 			tp->rexmt_rescue = tp->snd_nxt;
3236 			tp->sack_flags |= TSACK_F_SACKRESCUED;
3237 			break;
3238 		}
3239 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3240 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt)) {
3241 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3242 			if (tcp_aggressive_rescuesack &&
3243 			    (tp->sack_flags & TSACK_F_SACKRESCUED) &&
3244 			    SEQ_LT(tp->rexmt_rescue, tp->rexmt_high)) {
3245 				/* Drag RescueRxt along with HighRxt */
3246 				tp->rexmt_rescue = tp->rexmt_high;
3247 			}
3248 		}
3249 	}
3250 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3251 		tp->snd_nxt = old_snd_nxt;
3252 	tp->snd_cwnd = ocwnd;
3253 }
3254 
3255 /*
3256  * Return TRUE, if some new segments are sent
3257  */
3258 static boolean_t
3259 tcp_sack_limitedxmit(struct tcpcb *tp)
3260 {
3261 	tcp_seq oldsndnxt = tp->snd_nxt;
3262 	tcp_seq oldsndmax = tp->snd_max;
3263 	u_long ocwnd = tp->snd_cwnd;
3264 	uint32_t pipe;
3265 	boolean_t ret = FALSE;
3266 
3267 	tp->rexmt_high = tp->snd_una - 1;
3268 	pipe = tcp_sack_compute_pipe(tp);
3269 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg) {
3270 		uint32_t sent;
3271 		tcp_seq next;
3272 		int error;
3273 
3274 		next = tp->snd_nxt = tp->snd_max;
3275 		tp->snd_cwnd = tp->snd_nxt - tp->snd_una + tp->t_maxseg;
3276 
3277 		error = tcp_output(tp);
3278 		if (error)
3279 			break;
3280 
3281 		sent = tp->snd_nxt - next;
3282 		if (sent <= 0)
3283 			break;
3284 		pipe += sent;
3285 		++tcpstat.tcps_sndlimited;
3286 		ret = TRUE;
3287 	}
3288 
3289 	if (SEQ_LT(oldsndnxt, oldsndmax)) {
3290 		KASSERT(SEQ_GEQ(oldsndnxt, tp->snd_una),
3291 		    ("snd_una moved in other threads"));
3292 		tp->snd_nxt = oldsndnxt;
3293 	}
3294 	tp->snd_cwnd = ocwnd;
3295 
3296 	if (ret && TCP_DO_NCR(tp))
3297 		tcp_ncr_update_rxtthresh(tp);
3298 
3299 	return ret;
3300 }
3301 
3302 /*
3303  * Reset idle time and keep-alive timer, typically called when a valid
3304  * tcp packet is received but may also be called when FASTKEEP is set
3305  * to prevent the previous long-timeout from calculating to a drop.
3306  *
3307  * Only update t_rcvtime for non-SYN packets.
3308  *
3309  * Handle the case where one side thinks the connection is established
3310  * but the other side has, say, rebooted without cleaning out the
3311  * connection.   The SYNs could be construed as an attack and wind
3312  * up ignored, but in case it isn't an attack we can validate the
3313  * connection by forcing a keepalive.
3314  */
3315 void
3316 tcp_timer_keep_activity(struct tcpcb *tp, int thflags)
3317 {
3318 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3319 		if ((thflags & (TH_SYN | TH_ACK)) == TH_SYN) {
3320 			tp->t_flags |= TF_KEEPALIVE;
3321 			tcp_callout_reset(tp, tp->tt_keep, hz / 2,
3322 					  tcp_timer_keep);
3323 		} else {
3324 			tp->t_rcvtime = ticks;
3325 			tp->t_flags &= ~TF_KEEPALIVE;
3326 			tcp_callout_reset(tp, tp->tt_keep,
3327 					  tp->t_keepidle,
3328 					  tcp_timer_keep);
3329 		}
3330 	}
3331 }
3332 
3333 static int
3334 tcp_rmx_msl(const struct tcpcb *tp)
3335 {
3336 	struct rtentry *rt;
3337 	struct inpcb *inp = tp->t_inpcb;
3338 	int msl;
3339 #ifdef INET6
3340 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3341 #else
3342 	const boolean_t isipv6 = FALSE;
3343 #endif
3344 
3345 	if (isipv6)
3346 		rt = tcp_rtlookup6(&inp->inp_inc);
3347 	else
3348 		rt = tcp_rtlookup(&inp->inp_inc);
3349 	if (rt == NULL || rt->rt_rmx.rmx_msl == 0)
3350 		return tcp_msl;
3351 
3352 	msl = (rt->rt_rmx.rmx_msl * hz) / 1000;
3353 	if (msl == 0)
3354 		msl = 1;
3355 
3356 	return msl;
3357 }
3358 
3359 static void
3360 tcp_established(struct tcpcb *tp)
3361 {
3362 	tp->t_state = TCPS_ESTABLISHED;
3363 	tcp_callout_reset(tp, tp->tt_keep, tp->t_keepidle, tcp_timer_keep);
3364 
3365 	if (tp->t_rxtsyn > 0) {
3366 		/*
3367 		 * RFC6298:
3368 		 * "If the timer expires awaiting the ACK of a SYN segment
3369 		 *  and the TCP implementation is using an RTO less than 3
3370 		 *  seconds, the RTO MUST be re-initialized to 3 seconds
3371 		 *  when data transmission begins"
3372 		 */
3373 		if (tp->t_rxtcur < TCPTV_RTOBASE3)
3374 			tp->t_rxtcur = TCPTV_RTOBASE3;
3375 	}
3376 }
3377 
3378 /*
3379  * Returns TRUE, if the ACK should be dropped
3380  */
3381 static boolean_t
3382 tcp_fast_recovery(struct tcpcb *tp, tcp_seq th_ack, const struct tcpopt *to)
3383 {
3384 	tcpstat.tcps_rcvdupack++;
3385 
3386 	/*
3387 	 * We have outstanding data (other than a window probe),
3388 	 * this is a completely duplicate ack (ie, window info
3389 	 * didn't change), the ack is the biggest we've seen and
3390 	 * we've seen exactly our rexmt threshhold of them, so
3391 	 * assume a packet has been dropped and retransmit it.
3392 	 * Kludge snd_nxt & the congestion window so we send only
3393 	 * this one packet.
3394 	 */
3395 	if (IN_FASTRECOVERY(tp)) {
3396 		if (TCP_DO_SACK(tp)) {
3397 			/* No artifical cwnd inflation. */
3398 			tcp_sack_rexmt(tp);
3399 		} else {
3400 			/*
3401 			 * Dup acks mean that packets have left
3402 			 * the network (they're now cached at the
3403 			 * receiver) so bump cwnd by the amount in
3404 			 * the receiver to keep a constant cwnd
3405 			 * packets in the network.
3406 			 */
3407 			tp->snd_cwnd += tp->t_maxseg;
3408 			tcp_output(tp);
3409 		}
3410 		return TRUE;
3411 	} else if (SEQ_LT(th_ack, tp->snd_recover)) {
3412 		tp->t_dupacks = 0;
3413 		return FALSE;
3414 	} else if (tcp_ignore_redun_dsack && TCP_DO_SACK(tp) &&
3415 	    (to->to_flags & (TOF_DSACK | TOF_SACK_REDUNDANT)) ==
3416 	    (TOF_DSACK | TOF_SACK_REDUNDANT)) {
3417 		/*
3418 		 * If the ACK carries DSACK and other SACK blocks
3419 		 * carry information that we have already known,
3420 		 * don't count this ACK as duplicate ACK.  This
3421 		 * prevents spurious early retransmit and fast
3422 		 * retransmit.  This also meets the requirement of
3423 		 * RFC3042 that new segments should not be sent if
3424 		 * the SACK blocks do not contain new information
3425 		 * (XXX we actually loosen the requirment that only
3426 		 * DSACK is checked here).
3427 		 *
3428 		 * This kind of ACKs are usually sent after spurious
3429 		 * retransmit.
3430 		 */
3431 		/* Do nothing; don't change t_dupacks */
3432 		return TRUE;
3433 	} else if (tp->t_dupacks == 0 && TCP_DO_NCR(tp)) {
3434 		tcp_ncr_update_rxtthresh(tp);
3435 	}
3436 
3437 	if (++tp->t_dupacks == tp->t_rxtthresh) {
3438 		tcp_seq old_snd_nxt;
3439 		u_int win;
3440 
3441 fastretransmit:
3442 		if (tcp_do_eifel_detect && (tp->t_flags & TF_RCVD_TSTMP)) {
3443 			tcp_save_congestion_state(tp);
3444 			tp->rxt_flags |= TRXT_F_FASTREXMT;
3445 		}
3446 		/*
3447 		 * We know we're losing at the current window size,
3448 		 * so do congestion avoidance: set ssthresh to half
3449 		 * the current window and pull our congestion window
3450 		 * back to the new ssthresh.
3451 		 */
3452 		win = min(tp->snd_wnd, tp->snd_cwnd) / 2 / tp->t_maxseg;
3453 		if (win < 2)
3454 			win = 2;
3455 		tp->snd_ssthresh = win * tp->t_maxseg;
3456 		ENTER_FASTRECOVERY(tp);
3457 		tp->snd_recover = tp->snd_max;
3458 		tcp_callout_stop(tp, tp->tt_rexmt);
3459 		tp->t_rtttime = 0;
3460 		old_snd_nxt = tp->snd_nxt;
3461 		tp->snd_nxt = th_ack;
3462 		tp->snd_cwnd = tp->t_maxseg;
3463 		tcp_output(tp);
3464 		++tcpstat.tcps_sndfastrexmit;
3465 		tp->snd_cwnd = tp->snd_ssthresh;
3466 		tp->rexmt_high = tp->snd_nxt;
3467 		tp->sack_flags &= ~TSACK_F_SACKRESCUED;
3468 		if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3469 			tp->snd_nxt = old_snd_nxt;
3470 		KASSERT(tp->snd_limited <= 2, ("tp->snd_limited too big"));
3471 		if (TCP_DO_SACK(tp)) {
3472 			tcp_sack_rexmt(tp);
3473 		} else {
3474 			tp->snd_cwnd += tp->t_maxseg *
3475 			    (tp->t_dupacks - tp->snd_limited);
3476 		}
3477 	} else if ((tcp_do_rfc3517bis && TCP_DO_SACK(tp)) || TCP_DO_NCR(tp)) {
3478 		if (tcp_rfc3517bis_rxt && tcp_do_rfc3517bis &&
3479 		    tcp_sack_islost(&tp->scb, tp->snd_una))
3480 			goto fastretransmit;
3481 		if (tcp_do_limitedtransmit || TCP_DO_NCR(tp)) {
3482 			/* outstanding data */
3483 			uint32_t ownd = tp->snd_max - tp->snd_una;
3484 
3485 			if (!tcp_sack_limitedxmit(tp) &&
3486 			    need_early_retransmit(tp, ownd)) {
3487 				++tcpstat.tcps_sndearlyrexmit;
3488 				tp->rxt_flags |= TRXT_F_EARLYREXMT;
3489 				goto fastretransmit;
3490 			}
3491 		}
3492 	} else if (tcp_do_limitedtransmit) {
3493 		u_long oldcwnd = tp->snd_cwnd;
3494 		tcp_seq oldsndmax = tp->snd_max;
3495 		tcp_seq oldsndnxt = tp->snd_nxt;
3496 		/* outstanding data */
3497 		uint32_t ownd = tp->snd_max - tp->snd_una;
3498 		u_int sent;
3499 
3500 		KASSERT(tp->t_dupacks == 1 || tp->t_dupacks == 2,
3501 		    ("dupacks not 1 or 2"));
3502 		if (tp->t_dupacks == 1)
3503 			tp->snd_limited = 0;
3504 		tp->snd_nxt = tp->snd_max;
3505 		tp->snd_cwnd = ownd +
3506 		    (tp->t_dupacks - tp->snd_limited) * tp->t_maxseg;
3507 		tcp_output(tp);
3508 
3509 		if (SEQ_LT(oldsndnxt, oldsndmax)) {
3510 			KASSERT(SEQ_GEQ(oldsndnxt, tp->snd_una),
3511 			    ("snd_una moved in other threads"));
3512 			tp->snd_nxt = oldsndnxt;
3513 		}
3514 		tp->snd_cwnd = oldcwnd;
3515 		sent = tp->snd_max - oldsndmax;
3516 		if (sent > tp->t_maxseg) {
3517 			KASSERT((tp->t_dupacks == 2 && tp->snd_limited == 0) ||
3518 			    (sent == tp->t_maxseg + 1 &&
3519 			     (tp->t_flags & TF_SENTFIN)),
3520 			    ("sent too much"));
3521 			KASSERT(sent <= tp->t_maxseg * 2,
3522 			    ("sent too many segments"));
3523 			tp->snd_limited = 2;
3524 			tcpstat.tcps_sndlimited += 2;
3525 		} else if (sent > 0) {
3526 			++tp->snd_limited;
3527 			++tcpstat.tcps_sndlimited;
3528 		} else if (need_early_retransmit(tp, ownd)) {
3529 			++tcpstat.tcps_sndearlyrexmit;
3530 			tp->rxt_flags |= TRXT_F_EARLYREXMT;
3531 			goto fastretransmit;
3532 		}
3533 	}
3534 	return TRUE;
3535 }
3536