xref: /dflybsd-src/sys/netinet/tcp_input.c (revision dcd5dd2ef4ecd2f3a28a1e860d8852ce68a991ac)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
68  */
69 
70 #include "opt_inet.h"
71 #include "opt_inet6.h"
72 #include "opt_ipsec.h"
73 #include "opt_tcpdebug.h"
74 #include "opt_tcp_input.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/sysctl.h>
80 #include <sys/malloc.h>
81 #include <sys/mbuf.h>
82 #include <sys/proc.h>		/* for proc0 declaration */
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/syslog.h>
87 #include <sys/in_cksum.h>
88 
89 #include <sys/socketvar2.h>
90 
91 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
92 #include <machine/stdarg.h>
93 
94 #include <net/if.h>
95 #include <net/route.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
101 #include <netinet/in_var.h>
102 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
103 #include <netinet/in_pcb.h>
104 #include <netinet/ip_var.h>
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
117 #include <netinet/tcpip.h>
118 
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 
122 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
123 struct tcphdr tcp_savetcp;
124 #endif
125 
126 #ifdef FAST_IPSEC
127 #include <netproto/ipsec/ipsec.h>
128 #include <netproto/ipsec/ipsec6.h>
129 #endif
130 
131 #ifdef IPSEC
132 #include <netinet6/ipsec.h>
133 #include <netinet6/ipsec6.h>
134 #include <netproto/key/key.h>
135 #endif
136 
137 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
138 
139 static int log_in_vain = 0;
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
141     &log_in_vain, 0, "Log all incoming TCP connections");
142 
143 static int blackhole = 0;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
145     &blackhole, 0, "Do not send RST when dropping refused connections");
146 
147 int tcp_delack_enabled = 1;
148 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
149     &tcp_delack_enabled, 0,
150     "Delay ACK to try and piggyback it onto a data packet");
151 
152 #ifdef TCP_DROP_SYNFIN
153 static int drop_synfin = 0;
154 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
155     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
156 #endif
157 
158 static int tcp_do_limitedtransmit = 1;
159 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
160     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
161 
162 static int tcp_do_early_retransmit = 1;
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
164     &tcp_do_early_retransmit, 0, "Early retransmit");
165 
166 int tcp_aggregate_acks = 1;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
168     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
169 
170 static int tcp_do_eifel_detect = 1;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
172     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
173 
174 static int tcp_do_abc = 1;
175 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
176     &tcp_do_abc, 0,
177     "TCP Appropriate Byte Counting (RFC 3465)");
178 
179 /*
180  * Define as tunable for easy testing with SACK on and off.
181  * Warning:  do not change setting in the middle of an existing active TCP flow,
182  *   else strange things might happen to that flow.
183  */
184 int tcp_do_sack = 1;
185 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
186     &tcp_do_sack, 0, "Enable SACK Algorithms");
187 
188 int tcp_do_smartsack = 1;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
190     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
191 
192 int tcp_do_rescuesack = 1;
193 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rescuesack, CTLFLAG_RW,
194     &tcp_do_rescuesack, 0, "Rescue retransmission for SACK");
195 
196 int tcp_aggressive_rescuesack = 0;
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rescuesack_agg, CTLFLAG_RW,
198     &tcp_aggressive_rescuesack, 0, "Aggressive rescue retransmission for SACK");
199 
200 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
201     "TCP Segment Reassembly Queue");
202 
203 int tcp_reass_maxseg = 0;
204 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
205     &tcp_reass_maxseg, 0,
206     "Global maximum number of TCP Segments in Reassembly Queue");
207 
208 int tcp_reass_qsize = 0;
209 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
210     &tcp_reass_qsize, 0,
211     "Global number of TCP Segments currently in Reassembly Queue");
212 
213 static int tcp_reass_overflows = 0;
214 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
215     &tcp_reass_overflows, 0,
216     "Global number of TCP Segment Reassembly Queue Overflows");
217 
218 int tcp_do_autorcvbuf = 1;
219 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
220     &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
221 
222 int tcp_autorcvbuf_inc = 16*1024;
223 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
224     &tcp_autorcvbuf_inc, 0,
225     "Incrementor step size of automatic receive buffer");
226 
227 int tcp_autorcvbuf_max = 2*1024*1024;
228 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
229     &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
230 
231 int tcp_sosend_agglim = 2;
232 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosend_agglim, CTLFLAG_RW,
233     &tcp_sosend_agglim, 0, "TCP sosend mbuf aggregation limit");
234 
235 int tcp_sosend_async = 1;
236 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosend_async, CTLFLAG_RW,
237     &tcp_sosend_async, 0, "TCP asynchronized pru_send");
238 
239 static int tcp_ignore_redun_dsack = 1;
240 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ignore_redun_dsack, CTLFLAG_RW,
241     &tcp_ignore_redun_dsack, 0, "Ignore redundant DSACK");
242 
243 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t,
244 		    tcp_seq);
245 static void	 tcp_pulloutofband(struct socket *,
246 		     struct tcphdr *, struct mbuf *, int);
247 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
248 		     struct mbuf *);
249 static void	 tcp_xmit_timer(struct tcpcb *, int, tcp_seq);
250 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
251 static void	 tcp_sack_rexmt(struct tcpcb *, struct tcphdr *);
252 static int	 tcp_rmx_msl(const struct tcpcb *);
253 static void	 tcp_established(struct tcpcb *);
254 
255 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
256 #ifdef INET6
257 #define ND6_HINT(tp) \
258 do { \
259 	if ((tp) && (tp)->t_inpcb && \
260 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
261 	    (tp)->t_inpcb->in6p_route.ro_rt) \
262 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
263 } while (0)
264 #else
265 #define ND6_HINT(tp)
266 #endif
267 
268 /*
269  * Indicate whether this ack should be delayed.  We can delay the ack if
270  *	- delayed acks are enabled and
271  *	- there is no delayed ack timer in progress and
272  *	- our last ack wasn't a 0-sized window.  We never want to delay
273  *	  the ack that opens up a 0-sized window.
274  */
275 #define DELAY_ACK(tp) \
276 	(tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
277 	!(tp->t_flags & TF_RXWIN0SENT))
278 
279 #define acceptable_window_update(tp, th, tiwin)				\
280     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
281      (tp->snd_wl1 == th->th_seq &&					\
282       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
283        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
284 
285 static int
286 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
287 {
288 	struct tseg_qent *q;
289 	struct tseg_qent *p = NULL;
290 	struct tseg_qent *te;
291 	struct socket *so = tp->t_inpcb->inp_socket;
292 	int flags;
293 
294 	/*
295 	 * Call with th == NULL after become established to
296 	 * force pre-ESTABLISHED data up to user socket.
297 	 */
298 	if (th == NULL)
299 		goto present;
300 
301 	/*
302 	 * Limit the number of segments in the reassembly queue to prevent
303 	 * holding on to too many segments (and thus running out of mbufs).
304 	 * Make sure to let the missing segment through which caused this
305 	 * queue.  Always keep one global queue entry spare to be able to
306 	 * process the missing segment.
307 	 */
308 	if (th->th_seq != tp->rcv_nxt &&
309 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
310 		tcp_reass_overflows++;
311 		tcpstat.tcps_rcvmemdrop++;
312 		m_freem(m);
313 		/* no SACK block to report */
314 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
315 		return (0);
316 	}
317 
318 	/* Allocate a new queue entry. */
319 	te = kmalloc(sizeof(struct tseg_qent), M_TSEGQ, M_INTWAIT | M_NULLOK);
320 	if (te == NULL) {
321 		tcpstat.tcps_rcvmemdrop++;
322 		m_freem(m);
323 		/* no SACK block to report */
324 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
325 		return (0);
326 	}
327 	atomic_add_int(&tcp_reass_qsize, 1);
328 
329 	/*
330 	 * Find a segment which begins after this one does.
331 	 */
332 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
333 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
334 			break;
335 		p = q;
336 	}
337 
338 	/*
339 	 * If there is a preceding segment, it may provide some of
340 	 * our data already.  If so, drop the data from the incoming
341 	 * segment.  If it provides all of our data, drop us.
342 	 */
343 	if (p != NULL) {
344 		tcp_seq_diff_t i;
345 
346 		/* conversion to int (in i) handles seq wraparound */
347 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
348 		if (i > 0) {		/* overlaps preceding segment */
349 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
350 			/* enclosing block starts w/ preceding segment */
351 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
352 			if (i >= *tlenp) {
353 				/* preceding encloses incoming segment */
354 				tp->encloseblk.rblk_end = TCP_SACK_BLKEND(
355 				    p->tqe_th->th_seq + p->tqe_len,
356 				    p->tqe_th->th_flags);
357 				tcpstat.tcps_rcvduppack++;
358 				tcpstat.tcps_rcvdupbyte += *tlenp;
359 				m_freem(m);
360 				kfree(te, M_TSEGQ);
361 				atomic_add_int(&tcp_reass_qsize, -1);
362 				/*
363 				 * Try to present any queued data
364 				 * at the left window edge to the user.
365 				 * This is needed after the 3-WHS
366 				 * completes.
367 				 */
368 				goto present;	/* ??? */
369 			}
370 			m_adj(m, i);
371 			*tlenp -= i;
372 			th->th_seq += i;
373 			/* incoming segment end is enclosing block end */
374 			tp->encloseblk.rblk_end = TCP_SACK_BLKEND(
375 			    th->th_seq + *tlenp, th->th_flags);
376 			/* trim end of reported D-SACK block */
377 			tp->reportblk.rblk_end = th->th_seq;
378 		}
379 	}
380 	tcpstat.tcps_rcvoopack++;
381 	tcpstat.tcps_rcvoobyte += *tlenp;
382 
383 	/*
384 	 * While we overlap succeeding segments trim them or,
385 	 * if they are completely covered, dequeue them.
386 	 */
387 	while (q) {
388 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
389 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
390 		tcp_seq qend_sack = TCP_SACK_BLKEND(qend, q->tqe_th->th_flags);
391 		struct tseg_qent *nq;
392 
393 		if (i <= 0)
394 			break;
395 		if (!(tp->t_flags & TF_DUPSEG)) {    /* first time through */
396 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
397 			tp->encloseblk = tp->reportblk;
398 			/* report trailing duplicate D-SACK segment */
399 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
400 		}
401 		if ((tp->t_flags & TF_ENCLOSESEG) &&
402 		    SEQ_GT(qend_sack, tp->encloseblk.rblk_end)) {
403 			/* extend enclosing block if one exists */
404 			tp->encloseblk.rblk_end = qend_sack;
405 		}
406 		if (i < q->tqe_len) {
407 			q->tqe_th->th_seq += i;
408 			q->tqe_len -= i;
409 			m_adj(q->tqe_m, i);
410 			break;
411 		}
412 
413 		nq = LIST_NEXT(q, tqe_q);
414 		LIST_REMOVE(q, tqe_q);
415 		m_freem(q->tqe_m);
416 		kfree(q, M_TSEGQ);
417 		atomic_add_int(&tcp_reass_qsize, -1);
418 		q = nq;
419 	}
420 
421 	/* Insert the new segment queue entry into place. */
422 	te->tqe_m = m;
423 	te->tqe_th = th;
424 	te->tqe_len = *tlenp;
425 
426 	/* check if can coalesce with following segment */
427 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
428 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
429 		tcp_seq tend_sack = TCP_SACK_BLKEND(tend, te->tqe_th->th_flags);
430 
431 		te->tqe_len += q->tqe_len;
432 		if (q->tqe_th->th_flags & TH_FIN)
433 			te->tqe_th->th_flags |= TH_FIN;
434 		m_cat(te->tqe_m, q->tqe_m);
435 		tp->encloseblk.rblk_end = tend_sack;
436 		/*
437 		 * When not reporting a duplicate segment, use
438 		 * the larger enclosing block as the SACK block.
439 		 */
440 		if (!(tp->t_flags & TF_DUPSEG))
441 			tp->reportblk.rblk_end = tend_sack;
442 		LIST_REMOVE(q, tqe_q);
443 		kfree(q, M_TSEGQ);
444 		atomic_add_int(&tcp_reass_qsize, -1);
445 	}
446 
447 	if (p == NULL) {
448 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
449 	} else {
450 		/* check if can coalesce with preceding segment */
451 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
452 			p->tqe_len += te->tqe_len;
453 			m_cat(p->tqe_m, te->tqe_m);
454 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
455 			/*
456 			 * When not reporting a duplicate segment, use
457 			 * the larger enclosing block as the SACK block.
458 			 */
459 			if (!(tp->t_flags & TF_DUPSEG))
460 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
461 			kfree(te, M_TSEGQ);
462 			atomic_add_int(&tcp_reass_qsize, -1);
463 		} else {
464 			LIST_INSERT_AFTER(p, te, tqe_q);
465 		}
466 	}
467 
468 present:
469 	/*
470 	 * Present data to user, advancing rcv_nxt through
471 	 * completed sequence space.
472 	 */
473 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
474 		return (0);
475 	q = LIST_FIRST(&tp->t_segq);
476 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
477 		return (0);
478 	tp->rcv_nxt += q->tqe_len;
479 	if (!(tp->t_flags & TF_DUPSEG))	{
480 		/* no SACK block to report since ACK advanced */
481 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
482 	}
483 	/* no enclosing block to report since ACK advanced */
484 	tp->t_flags &= ~TF_ENCLOSESEG;
485 	flags = q->tqe_th->th_flags & TH_FIN;
486 	LIST_REMOVE(q, tqe_q);
487 	KASSERT(LIST_EMPTY(&tp->t_segq) ||
488 		LIST_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
489 		("segment not coalesced"));
490 	if (so->so_state & SS_CANTRCVMORE) {
491 		m_freem(q->tqe_m);
492 	} else {
493 		lwkt_gettoken(&so->so_rcv.ssb_token);
494 		ssb_appendstream(&so->so_rcv, q->tqe_m);
495 		lwkt_reltoken(&so->so_rcv.ssb_token);
496 	}
497 	kfree(q, M_TSEGQ);
498 	atomic_add_int(&tcp_reass_qsize, -1);
499 	ND6_HINT(tp);
500 	sorwakeup(so);
501 	return (flags);
502 }
503 
504 /*
505  * TCP input routine, follows pages 65-76 of the
506  * protocol specification dated September, 1981 very closely.
507  */
508 #ifdef INET6
509 int
510 tcp6_input(struct mbuf **mp, int *offp, int proto)
511 {
512 	struct mbuf *m = *mp;
513 	struct in6_ifaddr *ia6;
514 
515 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
516 
517 	/*
518 	 * draft-itojun-ipv6-tcp-to-anycast
519 	 * better place to put this in?
520 	 */
521 	ia6 = ip6_getdstifaddr(m);
522 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
523 		struct ip6_hdr *ip6;
524 
525 		ip6 = mtod(m, struct ip6_hdr *);
526 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
527 			    offsetof(struct ip6_hdr, ip6_dst));
528 		return (IPPROTO_DONE);
529 	}
530 
531 	tcp_input(mp, offp, proto);
532 	return (IPPROTO_DONE);
533 }
534 #endif
535 
536 int
537 tcp_input(struct mbuf **mp, int *offp, int proto)
538 {
539 	int off0;
540 	struct tcphdr *th;
541 	struct ip *ip = NULL;
542 	struct ipovly *ipov;
543 	struct inpcb *inp = NULL;
544 	u_char *optp = NULL;
545 	int optlen = 0;
546 	int tlen, off;
547 	int len = 0;
548 	int drop_hdrlen;
549 	struct tcpcb *tp = NULL;
550 	int thflags;
551 	struct socket *so = NULL;
552 	int todrop, acked;
553 	boolean_t ourfinisacked, needoutput = FALSE;
554 	u_long tiwin;
555 	int recvwin;
556 	struct tcpopt to;		/* options in this segment */
557 	struct sockaddr_in *next_hop = NULL;
558 	int rstreason; /* For badport_bandlim accounting purposes */
559 	int cpu;
560 	struct ip6_hdr *ip6 = NULL;
561 	struct mbuf *m;
562 #ifdef INET6
563 	boolean_t isipv6;
564 #else
565 	const boolean_t isipv6 = FALSE;
566 #endif
567 #ifdef TCPDEBUG
568 	short ostate = 0;
569 #endif
570 
571 	off0 = *offp;
572 	m = *mp;
573 	*mp = NULL;
574 
575 	tcpstat.tcps_rcvtotal++;
576 
577 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
578 		struct m_tag *mtag;
579 
580 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
581 		KKASSERT(mtag != NULL);
582 		next_hop = m_tag_data(mtag);
583 	}
584 
585 #ifdef INET6
586 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
587 #endif
588 
589 	if (isipv6) {
590 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
591 		ip6 = mtod(m, struct ip6_hdr *);
592 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
593 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
594 			tcpstat.tcps_rcvbadsum++;
595 			goto drop;
596 		}
597 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
598 
599 		/*
600 		 * Be proactive about unspecified IPv6 address in source.
601 		 * As we use all-zero to indicate unbounded/unconnected pcb,
602 		 * unspecified IPv6 address can be used to confuse us.
603 		 *
604 		 * Note that packets with unspecified IPv6 destination is
605 		 * already dropped in ip6_input.
606 		 */
607 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
608 			/* XXX stat */
609 			goto drop;
610 		}
611 	} else {
612 		/*
613 		 * Get IP and TCP header together in first mbuf.
614 		 * Note: IP leaves IP header in first mbuf.
615 		 */
616 		if (off0 > sizeof(struct ip)) {
617 			ip_stripoptions(m);
618 			off0 = sizeof(struct ip);
619 		}
620 		/* already checked and pulled up in ip_demux() */
621 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
622 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
623 		ip = mtod(m, struct ip *);
624 		ipov = (struct ipovly *)ip;
625 		th = (struct tcphdr *)((caddr_t)ip + off0);
626 		tlen = ip->ip_len;
627 
628 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
629 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
630 				th->th_sum = m->m_pkthdr.csum_data;
631 			else
632 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
633 						ip->ip_dst.s_addr,
634 						htonl(m->m_pkthdr.csum_data +
635 							ip->ip_len +
636 							IPPROTO_TCP));
637 			th->th_sum ^= 0xffff;
638 		} else {
639 			/*
640 			 * Checksum extended TCP header and data.
641 			 */
642 			len = sizeof(struct ip) + tlen;
643 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
644 			ipov->ih_len = (u_short)tlen;
645 			ipov->ih_len = htons(ipov->ih_len);
646 			th->th_sum = in_cksum(m, len);
647 		}
648 		if (th->th_sum) {
649 			tcpstat.tcps_rcvbadsum++;
650 			goto drop;
651 		}
652 #ifdef INET6
653 		/* Re-initialization for later version check */
654 		ip->ip_v = IPVERSION;
655 #endif
656 	}
657 
658 	/*
659 	 * Check that TCP offset makes sense,
660 	 * pull out TCP options and adjust length.		XXX
661 	 */
662 	off = th->th_off << 2;
663 	/* already checked and pulled up in ip_demux() */
664 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
665 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
666 	tlen -= off;	/* tlen is used instead of ti->ti_len */
667 	if (off > sizeof(struct tcphdr)) {
668 		if (isipv6) {
669 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
670 			ip6 = mtod(m, struct ip6_hdr *);
671 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
672 		} else {
673 			/* already pulled up in ip_demux() */
674 			KASSERT(m->m_len >= sizeof(struct ip) + off,
675 			    ("TCP header and options not in one mbuf: "
676 			     "m_len %d, off %d", m->m_len, off));
677 		}
678 		optlen = off - sizeof(struct tcphdr);
679 		optp = (u_char *)(th + 1);
680 	}
681 	thflags = th->th_flags;
682 
683 #ifdef TCP_DROP_SYNFIN
684 	/*
685 	 * If the drop_synfin option is enabled, drop all packets with
686 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
687 	 * identifying the TCP/IP stack.
688 	 *
689 	 * This is a violation of the TCP specification.
690 	 */
691 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
692 		goto drop;
693 #endif
694 
695 	/*
696 	 * Convert TCP protocol specific fields to host format.
697 	 */
698 	th->th_seq = ntohl(th->th_seq);
699 	th->th_ack = ntohl(th->th_ack);
700 	th->th_win = ntohs(th->th_win);
701 	th->th_urp = ntohs(th->th_urp);
702 
703 	/*
704 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
705 	 * until after ip6_savecontrol() is called and before other functions
706 	 * which don't want those proto headers.
707 	 * Because ip6_savecontrol() is going to parse the mbuf to
708 	 * search for data to be passed up to user-land, it wants mbuf
709 	 * parameters to be unchanged.
710 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
711 	 * latest version of the advanced API (20020110).
712 	 */
713 	drop_hdrlen = off0 + off;
714 
715 	/*
716 	 * Locate pcb for segment.
717 	 */
718 findpcb:
719 	/* IPFIREWALL_FORWARD section */
720 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
721 		/*
722 		 * Transparently forwarded. Pretend to be the destination.
723 		 * already got one like this?
724 		 */
725 		cpu = mycpu->gd_cpuid;
726 		inp = in_pcblookup_hash(&tcbinfo[cpu],
727 					ip->ip_src, th->th_sport,
728 					ip->ip_dst, th->th_dport,
729 					0, m->m_pkthdr.rcvif);
730 		if (!inp) {
731 			/*
732 			 * It's new.  Try to find the ambushing socket.
733 			 */
734 
735 			/*
736 			 * The rest of the ipfw code stores the port in
737 			 * host order.  XXX
738 			 * (The IP address is still in network order.)
739 			 */
740 			in_port_t dport = next_hop->sin_port ?
741 						htons(next_hop->sin_port) :
742 						th->th_dport;
743 
744 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
745 					  next_hop->sin_addr.s_addr, dport);
746 			inp = in_pcblookup_hash(&tcbinfo[cpu],
747 						ip->ip_src, th->th_sport,
748 						next_hop->sin_addr, dport,
749 						1, m->m_pkthdr.rcvif);
750 		}
751 	} else {
752 		if (isipv6) {
753 			inp = in6_pcblookup_hash(&tcbinfo[0],
754 						 &ip6->ip6_src, th->th_sport,
755 						 &ip6->ip6_dst, th->th_dport,
756 						 1, m->m_pkthdr.rcvif);
757 		} else {
758 			cpu = mycpu->gd_cpuid;
759 			inp = in_pcblookup_hash(&tcbinfo[cpu],
760 						ip->ip_src, th->th_sport,
761 						ip->ip_dst, th->th_dport,
762 						1, m->m_pkthdr.rcvif);
763 		}
764 	}
765 
766 	/*
767 	 * If the state is CLOSED (i.e., TCB does not exist) then
768 	 * all data in the incoming segment is discarded.
769 	 * If the TCB exists but is in CLOSED state, it is embryonic,
770 	 * but should either do a listen or a connect soon.
771 	 */
772 	if (inp == NULL) {
773 		if (log_in_vain) {
774 #ifdef INET6
775 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
776 #else
777 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
778 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
779 #endif
780 			if (isipv6) {
781 				strcpy(dbuf, "[");
782 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
783 				strcat(dbuf, "]");
784 				strcpy(sbuf, "[");
785 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
786 				strcat(sbuf, "]");
787 			} else {
788 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
789 				strcpy(sbuf, inet_ntoa(ip->ip_src));
790 			}
791 			switch (log_in_vain) {
792 			case 1:
793 				if (!(thflags & TH_SYN))
794 					break;
795 			case 2:
796 				log(LOG_INFO,
797 				    "Connection attempt to TCP %s:%d "
798 				    "from %s:%d flags:0x%02x\n",
799 				    dbuf, ntohs(th->th_dport), sbuf,
800 				    ntohs(th->th_sport), thflags);
801 				break;
802 			default:
803 				break;
804 			}
805 		}
806 		if (blackhole) {
807 			switch (blackhole) {
808 			case 1:
809 				if (thflags & TH_SYN)
810 					goto drop;
811 				break;
812 			case 2:
813 				goto drop;
814 			default:
815 				goto drop;
816 			}
817 		}
818 		rstreason = BANDLIM_RST_CLOSEDPORT;
819 		goto dropwithreset;
820 	}
821 
822 #ifdef IPSEC
823 	if (isipv6) {
824 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
825 			ipsec6stat.in_polvio++;
826 			goto drop;
827 		}
828 	} else {
829 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
830 			ipsecstat.in_polvio++;
831 			goto drop;
832 		}
833 	}
834 #endif
835 #ifdef FAST_IPSEC
836 	if (isipv6) {
837 		if (ipsec6_in_reject(m, inp))
838 			goto drop;
839 	} else {
840 		if (ipsec4_in_reject(m, inp))
841 			goto drop;
842 	}
843 #endif
844 	/* Check the minimum TTL for socket. */
845 #ifdef INET6
846 	if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
847 		goto drop;
848 #endif
849 
850 	tp = intotcpcb(inp);
851 	if (tp == NULL) {
852 		rstreason = BANDLIM_RST_CLOSEDPORT;
853 		goto dropwithreset;
854 	}
855 	if (tp->t_state <= TCPS_CLOSED)
856 		goto drop;
857 
858 	so = inp->inp_socket;
859 
860 #ifdef TCPDEBUG
861 	if (so->so_options & SO_DEBUG) {
862 		ostate = tp->t_state;
863 		if (isipv6)
864 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
865 		else
866 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
867 		tcp_savetcp = *th;
868 	}
869 #endif
870 
871 	bzero(&to, sizeof to);
872 
873 	if (so->so_options & SO_ACCEPTCONN) {
874 		struct in_conninfo inc;
875 
876 #ifdef INET6
877 		inc.inc_isipv6 = (isipv6 == TRUE);
878 #endif
879 		if (isipv6) {
880 			inc.inc6_faddr = ip6->ip6_src;
881 			inc.inc6_laddr = ip6->ip6_dst;
882 			inc.inc6_route.ro_rt = NULL;		/* XXX */
883 		} else {
884 			inc.inc_faddr = ip->ip_src;
885 			inc.inc_laddr = ip->ip_dst;
886 			inc.inc_route.ro_rt = NULL;		/* XXX */
887 		}
888 		inc.inc_fport = th->th_sport;
889 		inc.inc_lport = th->th_dport;
890 
891 		/*
892 		 * If the state is LISTEN then ignore segment if it contains
893 		 * a RST.  If the segment contains an ACK then it is bad and
894 		 * send a RST.  If it does not contain a SYN then it is not
895 		 * interesting; drop it.
896 		 *
897 		 * If the state is SYN_RECEIVED (syncache) and seg contains
898 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
899 		 * contains a RST, check the sequence number to see if it
900 		 * is a valid reset segment.
901 		 */
902 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
903 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
904 				if (!syncache_expand(&inc, th, &so, m)) {
905 					/*
906 					 * No syncache entry, or ACK was not
907 					 * for our SYN/ACK.  Send a RST.
908 					 */
909 					tcpstat.tcps_badsyn++;
910 					rstreason = BANDLIM_RST_OPENPORT;
911 					goto dropwithreset;
912 				}
913 
914 				/*
915 				 * Could not complete 3-way handshake,
916 				 * connection is being closed down, and
917 				 * syncache will free mbuf.
918 				 */
919 				if (so == NULL)
920 					return(IPPROTO_DONE);
921 
922 				/*
923 				 * We must be in the correct protocol thread
924 				 * for this connection.
925 				 */
926 				KKASSERT(so->so_port == &curthread->td_msgport);
927 
928 				/*
929 				 * Socket is created in state SYN_RECEIVED.
930 				 * Continue processing segment.
931 				 */
932 				inp = so->so_pcb;
933 				tp = intotcpcb(inp);
934 				/*
935 				 * This is what would have happened in
936 				 * tcp_output() when the SYN,ACK was sent.
937 				 */
938 				tp->snd_up = tp->snd_una;
939 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
940 				tp->last_ack_sent = tp->rcv_nxt;
941 
942 				goto after_listen;
943 			}
944 			if (thflags & TH_RST) {
945 				syncache_chkrst(&inc, th);
946 				goto drop;
947 			}
948 			if (thflags & TH_ACK) {
949 				syncache_badack(&inc);
950 				tcpstat.tcps_badsyn++;
951 				rstreason = BANDLIM_RST_OPENPORT;
952 				goto dropwithreset;
953 			}
954 			goto drop;
955 		}
956 
957 		/*
958 		 * Segment's flags are (SYN) or (SYN | FIN).
959 		 */
960 #ifdef INET6
961 		/*
962 		 * If deprecated address is forbidden,
963 		 * we do not accept SYN to deprecated interface
964 		 * address to prevent any new inbound connection from
965 		 * getting established.
966 		 * When we do not accept SYN, we send a TCP RST,
967 		 * with deprecated source address (instead of dropping
968 		 * it).  We compromise it as it is much better for peer
969 		 * to send a RST, and RST will be the final packet
970 		 * for the exchange.
971 		 *
972 		 * If we do not forbid deprecated addresses, we accept
973 		 * the SYN packet.  RFC2462 does not suggest dropping
974 		 * SYN in this case.
975 		 * If we decipher RFC2462 5.5.4, it says like this:
976 		 * 1. use of deprecated addr with existing
977 		 *    communication is okay - "SHOULD continue to be
978 		 *    used"
979 		 * 2. use of it with new communication:
980 		 *   (2a) "SHOULD NOT be used if alternate address
981 		 *	  with sufficient scope is available"
982 		 *   (2b) nothing mentioned otherwise.
983 		 * Here we fall into (2b) case as we have no choice in
984 		 * our source address selection - we must obey the peer.
985 		 *
986 		 * The wording in RFC2462 is confusing, and there are
987 		 * multiple description text for deprecated address
988 		 * handling - worse, they are not exactly the same.
989 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
990 		 */
991 		if (isipv6 && !ip6_use_deprecated) {
992 			struct in6_ifaddr *ia6;
993 
994 			if ((ia6 = ip6_getdstifaddr(m)) &&
995 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
996 				tp = NULL;
997 				rstreason = BANDLIM_RST_OPENPORT;
998 				goto dropwithreset;
999 			}
1000 		}
1001 #endif
1002 		/*
1003 		 * If it is from this socket, drop it, it must be forged.
1004 		 * Don't bother responding if the destination was a broadcast.
1005 		 */
1006 		if (th->th_dport == th->th_sport) {
1007 			if (isipv6) {
1008 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1009 						       &ip6->ip6_src))
1010 					goto drop;
1011 			} else {
1012 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1013 					goto drop;
1014 			}
1015 		}
1016 		/*
1017 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1018 		 *
1019 		 * Note that it is quite possible to receive unicast
1020 		 * link-layer packets with a broadcast IP address. Use
1021 		 * in_broadcast() to find them.
1022 		 */
1023 		if (m->m_flags & (M_BCAST | M_MCAST))
1024 			goto drop;
1025 		if (isipv6) {
1026 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1027 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1028 				goto drop;
1029 		} else {
1030 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1031 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1032 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1033 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1034 				goto drop;
1035 		}
1036 		/*
1037 		 * SYN appears to be valid; create compressed TCP state
1038 		 * for syncache, or perform t/tcp connection.
1039 		 */
1040 		if (so->so_qlen <= so->so_qlimit) {
1041 			tcp_dooptions(&to, optp, optlen, TRUE, th->th_ack);
1042 			if (!syncache_add(&inc, &to, th, so, m))
1043 				goto drop;
1044 
1045 			/*
1046 			 * Entry added to syncache, mbuf used to
1047 			 * send SYN,ACK packet.
1048 			 */
1049 			return(IPPROTO_DONE);
1050 		}
1051 		goto drop;
1052 	}
1053 
1054 after_listen:
1055 	/*
1056 	 * Should not happen - syncache should pick up these connections.
1057 	 *
1058 	 * Once we are past handling listen sockets we must be in the
1059 	 * correct protocol processing thread.
1060 	 */
1061 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1062 	KKASSERT(so->so_port == &curthread->td_msgport);
1063 
1064 	/* Unscale the window into a 32-bit value. */
1065 	if (!(thflags & TH_SYN))
1066 		tiwin = th->th_win << tp->snd_scale;
1067 	else
1068 		tiwin = th->th_win;
1069 
1070 	/*
1071 	 * This is the second part of the MSS DoS prevention code (after
1072 	 * minmss on the sending side) and it deals with too many too small
1073 	 * tcp packets in a too short timeframe (1 second).
1074 	 *
1075 	 * XXX Removed.  This code was crap.  It does not scale to network
1076 	 *     speed, and default values break NFS.  Gone.
1077 	 */
1078 	/* REMOVED */
1079 
1080 	/*
1081 	 * Segment received on connection.
1082 	 *
1083 	 * Reset idle time and keep-alive timer.  Don't waste time if less
1084 	 * then a second has elapsed.
1085 	 */
1086 	if ((int)(ticks - tp->t_rcvtime) > hz)
1087 		tcp_timer_keep_activity(tp, thflags);
1088 
1089 	/*
1090 	 * Process options.
1091 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1092 	 */
1093 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0, th->th_ack);
1094 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1095 		if ((to.to_flags & TOF_SCALE) && (tp->t_flags & TF_REQ_SCALE)) {
1096 			tp->t_flags |= TF_RCVD_SCALE;
1097 			tp->snd_scale = to.to_requested_s_scale;
1098 		}
1099 
1100 		/*
1101 		 * Initial send window; will be updated upon next ACK
1102 		 */
1103 		tp->snd_wnd = th->th_win;
1104 
1105 		if (to.to_flags & TOF_TS) {
1106 			tp->t_flags |= TF_RCVD_TSTMP;
1107 			tp->ts_recent = to.to_tsval;
1108 			tp->ts_recent_age = ticks;
1109 		}
1110 		if (!(to.to_flags & TOF_MSS))
1111 			to.to_mss = 0;
1112 		tcp_mss(tp, to.to_mss);
1113 		/*
1114 		 * Only set the TF_SACK_PERMITTED per-connection flag
1115 		 * if we got a SACK_PERMITTED option from the other side
1116 		 * and the global tcp_do_sack variable is true.
1117 		 */
1118 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1119 			tp->t_flags |= TF_SACK_PERMITTED;
1120 	}
1121 
1122 	/*
1123 	 * Header prediction: check for the two common cases
1124 	 * of a uni-directional data xfer.  If the packet has
1125 	 * no control flags, is in-sequence, the window didn't
1126 	 * change and we're not retransmitting, it's a
1127 	 * candidate.  If the length is zero and the ack moved
1128 	 * forward, we're the sender side of the xfer.  Just
1129 	 * free the data acked & wake any higher level process
1130 	 * that was blocked waiting for space.  If the length
1131 	 * is non-zero and the ack didn't move, we're the
1132 	 * receiver side.  If we're getting packets in-order
1133 	 * (the reassembly queue is empty), add the data to
1134 	 * the socket buffer and note that we need a delayed ack.
1135 	 * Make sure that the hidden state-flags are also off.
1136 	 * Since we check for TCPS_ESTABLISHED above, it can only
1137 	 * be TH_NEEDSYN.
1138 	 */
1139 	if (tp->t_state == TCPS_ESTABLISHED &&
1140 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1141 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1142 	    (!(to.to_flags & TOF_TS) ||
1143 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1144 	    th->th_seq == tp->rcv_nxt &&
1145 	    tp->snd_nxt == tp->snd_max) {
1146 
1147 		/*
1148 		 * If last ACK falls within this segment's sequence numbers,
1149 		 * record the timestamp.
1150 		 * NOTE that the test is modified according to the latest
1151 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1152 		 */
1153 		if ((to.to_flags & TOF_TS) &&
1154 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1155 			tp->ts_recent_age = ticks;
1156 			tp->ts_recent = to.to_tsval;
1157 		}
1158 
1159 		if (tlen == 0) {
1160 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1161 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1162 			    tp->snd_cwnd >= tp->snd_wnd &&
1163 			    !IN_FASTRECOVERY(tp)) {
1164 				/*
1165 				 * This is a pure ack for outstanding data.
1166 				 */
1167 				++tcpstat.tcps_predack;
1168 				/*
1169 				 * "bad retransmit" recovery
1170 				 *
1171 				 * If Eifel detection applies, then
1172 				 * it is deterministic, so use it
1173 				 * unconditionally over the old heuristic.
1174 				 * Otherwise, fall back to the old heuristic.
1175 				 */
1176 				if (tcp_do_eifel_detect &&
1177 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1178 				    (tp->t_flags & TF_FIRSTACCACK)) {
1179 					/* Eifel detection applicable. */
1180 					if (to.to_tsecr < tp->t_rexmtTS) {
1181 						tcp_revert_congestion_state(tp);
1182 						++tcpstat.tcps_eifeldetected;
1183 						if (tp->t_rxtshift != 1 ||
1184 						    ticks >= tp->t_badrxtwin)
1185 							++tcpstat.tcps_rttcantdetect;
1186 					}
1187 				} else if (tp->t_rxtshift == 1 &&
1188 					   ticks < tp->t_badrxtwin) {
1189 					tcp_revert_congestion_state(tp);
1190 					++tcpstat.tcps_rttdetected;
1191 				}
1192 				tp->t_flags &= ~(TF_FIRSTACCACK |
1193 						 TF_FASTREXMT | TF_EARLYREXMT);
1194 				/*
1195 				 * Recalculate the retransmit timer / rtt.
1196 				 *
1197 				 * Some machines (certain windows boxes)
1198 				 * send broken timestamp replies during the
1199 				 * SYN+ACK phase, ignore timestamps of 0.
1200 				 */
1201 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1202 					tcp_xmit_timer(tp,
1203 					    ticks - to.to_tsecr + 1,
1204 					    th->th_ack);
1205 				} else if (tp->t_rtttime &&
1206 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1207 					tcp_xmit_timer(tp,
1208 					    ticks - tp->t_rtttime,
1209 					    th->th_ack);
1210 				}
1211 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1212 				acked = th->th_ack - tp->snd_una;
1213 				tcpstat.tcps_rcvackpack++;
1214 				tcpstat.tcps_rcvackbyte += acked;
1215 				sbdrop(&so->so_snd.sb, acked);
1216 				tp->snd_recover = th->th_ack - 1;
1217 				tp->snd_una = th->th_ack;
1218 				tp->t_dupacks = 0;
1219 				/*
1220 				 * Update window information.
1221 				 */
1222 				if (tiwin != tp->snd_wnd &&
1223 				    acceptable_window_update(tp, th, tiwin)) {
1224 					/* keep track of pure window updates */
1225 					if (tp->snd_wl2 == th->th_ack &&
1226 					    tiwin > tp->snd_wnd)
1227 						tcpstat.tcps_rcvwinupd++;
1228 					tp->snd_wnd = tiwin;
1229 					tp->snd_wl1 = th->th_seq;
1230 					tp->snd_wl2 = th->th_ack;
1231 					if (tp->snd_wnd > tp->max_sndwnd)
1232 						tp->max_sndwnd = tp->snd_wnd;
1233 				}
1234 				m_freem(m);
1235 				ND6_HINT(tp); /* some progress has been done */
1236 				/*
1237 				 * If all outstanding data are acked, stop
1238 				 * retransmit timer, otherwise restart timer
1239 				 * using current (possibly backed-off) value.
1240 				 * If process is waiting for space,
1241 				 * wakeup/selwakeup/signal.  If data
1242 				 * are ready to send, let tcp_output
1243 				 * decide between more output or persist.
1244 				 */
1245 				if (tp->snd_una == tp->snd_max) {
1246 					tcp_callout_stop(tp, tp->tt_rexmt);
1247 				} else if (!tcp_callout_active(tp,
1248 					    tp->tt_persist)) {
1249 					tcp_callout_reset(tp, tp->tt_rexmt,
1250 					    tp->t_rxtcur, tcp_timer_rexmt);
1251 				}
1252 				sowwakeup(so);
1253 				if (so->so_snd.ssb_cc > 0)
1254 					tcp_output(tp);
1255 				return(IPPROTO_DONE);
1256 			}
1257 		} else if (tiwin == tp->snd_wnd &&
1258 		    th->th_ack == tp->snd_una &&
1259 		    LIST_EMPTY(&tp->t_segq) &&
1260 		    tlen <= ssb_space(&so->so_rcv)) {
1261 			u_long newsize = 0;	/* automatic sockbuf scaling */
1262 			/*
1263 			 * This is a pure, in-sequence data packet
1264 			 * with nothing on the reassembly queue and
1265 			 * we have enough buffer space to take it.
1266 			 */
1267 			++tcpstat.tcps_preddat;
1268 			tp->rcv_nxt += tlen;
1269 			tcpstat.tcps_rcvpack++;
1270 			tcpstat.tcps_rcvbyte += tlen;
1271 			ND6_HINT(tp);	/* some progress has been done */
1272 		/*
1273 		 * Automatic sizing of receive socket buffer.  Often the send
1274 		 * buffer size is not optimally adjusted to the actual network
1275 		 * conditions at hand (delay bandwidth product).  Setting the
1276 		 * buffer size too small limits throughput on links with high
1277 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1278 		 *
1279 		 * On the receive side the socket buffer memory is only rarely
1280 		 * used to any significant extent.  This allows us to be much
1281 		 * more aggressive in scaling the receive socket buffer.  For
1282 		 * the case that the buffer space is actually used to a large
1283 		 * extent and we run out of kernel memory we can simply drop
1284 		 * the new segments; TCP on the sender will just retransmit it
1285 		 * later.  Setting the buffer size too big may only consume too
1286 		 * much kernel memory if the application doesn't read() from
1287 		 * the socket or packet loss or reordering makes use of the
1288 		 * reassembly queue.
1289 		 *
1290 		 * The criteria to step up the receive buffer one notch are:
1291 		 *  1. the number of bytes received during the time it takes
1292 		 *     one timestamp to be reflected back to us (the RTT);
1293 		 *  2. received bytes per RTT is within seven eighth of the
1294 		 *     current socket buffer size;
1295 		 *  3. receive buffer size has not hit maximal automatic size;
1296 		 *
1297 		 * This algorithm does one step per RTT at most and only if
1298 		 * we receive a bulk stream w/o packet losses or reorderings.
1299 		 * Shrinking the buffer during idle times is not necessary as
1300 		 * it doesn't consume any memory when idle.
1301 		 *
1302 		 * TODO: Only step up if the application is actually serving
1303 		 * the buffer to better manage the socket buffer resources.
1304 		 */
1305 			if (tcp_do_autorcvbuf &&
1306 			    to.to_tsecr &&
1307 			    (so->so_rcv.ssb_flags & SSB_AUTOSIZE)) {
1308 				if (to.to_tsecr > tp->rfbuf_ts &&
1309 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1310 					if (tp->rfbuf_cnt >
1311 					    (so->so_rcv.ssb_hiwat / 8 * 7) &&
1312 					    so->so_rcv.ssb_hiwat <
1313 					    tcp_autorcvbuf_max) {
1314 						newsize =
1315 						    ulmin(so->so_rcv.ssb_hiwat +
1316 							  tcp_autorcvbuf_inc,
1317 							  tcp_autorcvbuf_max);
1318 					}
1319 					/* Start over with next RTT. */
1320 					tp->rfbuf_ts = 0;
1321 					tp->rfbuf_cnt = 0;
1322 				} else
1323 					tp->rfbuf_cnt += tlen;	/* add up */
1324 			}
1325 			/*
1326 			 * Add data to socket buffer.
1327 			 */
1328 			if (so->so_state & SS_CANTRCVMORE) {
1329 				m_freem(m);
1330 			} else {
1331 				/*
1332 				 * Set new socket buffer size, give up when
1333 				 * limit is reached.
1334 				 *
1335 				 * Adjusting the size can mess up ACK
1336 				 * sequencing when pure window updates are
1337 				 * being avoided (which is the default),
1338 				 * so force an ack.
1339 				 */
1340 				lwkt_gettoken(&so->so_rcv.ssb_token);
1341 				if (newsize) {
1342 					tp->t_flags |= TF_RXRESIZED;
1343 					if (!ssb_reserve(&so->so_rcv, newsize,
1344 							 so, NULL)) {
1345 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1346 					}
1347 					if (newsize >=
1348 					    (TCP_MAXWIN << tp->rcv_scale)) {
1349 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1350 					}
1351 				}
1352 				m_adj(m, drop_hdrlen); /* delayed header drop */
1353 				ssb_appendstream(&so->so_rcv, m);
1354 				lwkt_reltoken(&so->so_rcv.ssb_token);
1355 			}
1356 			sorwakeup(so);
1357 			/*
1358 			 * This code is responsible for most of the ACKs
1359 			 * the TCP stack sends back after receiving a data
1360 			 * packet.  Note that the DELAY_ACK check fails if
1361 			 * the delack timer is already running, which results
1362 			 * in an ack being sent every other packet (which is
1363 			 * what we want).
1364 			 *
1365 			 * We then further aggregate acks by not actually
1366 			 * sending one until the protocol thread has completed
1367 			 * processing the current backlog of packets.  This
1368 			 * does not delay the ack any further, but allows us
1369 			 * to take advantage of the packet aggregation that
1370 			 * high speed NICs do (usually blocks of 8-10 packets)
1371 			 * to send a single ack rather then four or five acks,
1372 			 * greatly reducing the ack rate, the return channel
1373 			 * bandwidth, and the protocol overhead on both ends.
1374 			 *
1375 			 * Since this also has the effect of slowing down
1376 			 * the exponential slow-start ramp-up, systems with
1377 			 * very large bandwidth-delay products might want
1378 			 * to turn the feature off.
1379 			 */
1380 			if (DELAY_ACK(tp)) {
1381 				tcp_callout_reset(tp, tp->tt_delack,
1382 				    tcp_delacktime, tcp_timer_delack);
1383 			} else if (tcp_aggregate_acks) {
1384 				tp->t_flags |= TF_ACKNOW;
1385 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1386 					tp->t_flags |= TF_ONOUTPUTQ;
1387 					tp->tt_cpu = mycpu->gd_cpuid;
1388 					TAILQ_INSERT_TAIL(
1389 					    &tcpcbackq[tp->tt_cpu],
1390 					    tp, t_outputq);
1391 				}
1392 			} else {
1393 				tp->t_flags |= TF_ACKNOW;
1394 				tcp_output(tp);
1395 			}
1396 			return(IPPROTO_DONE);
1397 		}
1398 	}
1399 
1400 	/*
1401 	 * Calculate amount of space in receive window,
1402 	 * and then do TCP input processing.
1403 	 * Receive window is amount of space in rcv queue,
1404 	 * but not less than advertised window.
1405 	 */
1406 	recvwin = ssb_space(&so->so_rcv);
1407 	if (recvwin < 0)
1408 		recvwin = 0;
1409 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1410 
1411 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1412 	tp->rfbuf_ts = 0;
1413 	tp->rfbuf_cnt = 0;
1414 
1415 	switch (tp->t_state) {
1416 	/*
1417 	 * If the state is SYN_RECEIVED:
1418 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1419 	 */
1420 	case TCPS_SYN_RECEIVED:
1421 		if ((thflags & TH_ACK) &&
1422 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1423 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1424 				rstreason = BANDLIM_RST_OPENPORT;
1425 				goto dropwithreset;
1426 		}
1427 		break;
1428 
1429 	/*
1430 	 * If the state is SYN_SENT:
1431 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1432 	 *	if seg contains a RST, then drop the connection.
1433 	 *	if seg does not contain SYN, then drop it.
1434 	 * Otherwise this is an acceptable SYN segment
1435 	 *	initialize tp->rcv_nxt and tp->irs
1436 	 *	if seg contains ack then advance tp->snd_una
1437 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1438 	 *	arrange for segment to be acked (eventually)
1439 	 *	continue processing rest of data/controls, beginning with URG
1440 	 */
1441 	case TCPS_SYN_SENT:
1442 		if ((thflags & TH_ACK) &&
1443 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1444 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1445 			rstreason = BANDLIM_UNLIMITED;
1446 			goto dropwithreset;
1447 		}
1448 		if (thflags & TH_RST) {
1449 			if (thflags & TH_ACK)
1450 				tp = tcp_drop(tp, ECONNREFUSED);
1451 			goto drop;
1452 		}
1453 		if (!(thflags & TH_SYN))
1454 			goto drop;
1455 
1456 		tp->irs = th->th_seq;
1457 		tcp_rcvseqinit(tp);
1458 		if (thflags & TH_ACK) {
1459 			/* Our SYN was acked. */
1460 			tcpstat.tcps_connects++;
1461 			soisconnected(so);
1462 			/* Do window scaling on this connection? */
1463 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1464 			    (TF_RCVD_SCALE | TF_REQ_SCALE))
1465 				tp->rcv_scale = tp->request_r_scale;
1466 			tp->rcv_adv += tp->rcv_wnd;
1467 			tp->snd_una++;		/* SYN is acked */
1468 			tcp_callout_stop(tp, tp->tt_rexmt);
1469 			/*
1470 			 * If there's data, delay ACK; if there's also a FIN
1471 			 * ACKNOW will be turned on later.
1472 			 */
1473 			if (DELAY_ACK(tp) && tlen != 0) {
1474 				tcp_callout_reset(tp, tp->tt_delack,
1475 				    tcp_delacktime, tcp_timer_delack);
1476 			} else {
1477 				tp->t_flags |= TF_ACKNOW;
1478 			}
1479 			/*
1480 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1481 			 * Transitions:
1482 			 *	SYN_SENT  --> ESTABLISHED
1483 			 *	SYN_SENT* --> FIN_WAIT_1
1484 			 */
1485 			tp->t_starttime = ticks;
1486 			if (tp->t_flags & TF_NEEDFIN) {
1487 				tp->t_state = TCPS_FIN_WAIT_1;
1488 				tp->t_flags &= ~TF_NEEDFIN;
1489 				thflags &= ~TH_SYN;
1490 			} else {
1491 				tcp_established(tp);
1492 			}
1493 		} else {
1494 			/*
1495 			 * Received initial SYN in SYN-SENT[*] state =>
1496 			 * simultaneous open.
1497 			 * Do 3-way handshake:
1498 			 *	  SYN-SENT -> SYN-RECEIVED
1499 			 *	  SYN-SENT* -> SYN-RECEIVED*
1500 			 */
1501 			tp->t_flags |= TF_ACKNOW;
1502 			tcp_callout_stop(tp, tp->tt_rexmt);
1503 			tp->t_state = TCPS_SYN_RECEIVED;
1504 		}
1505 
1506 		/*
1507 		 * Advance th->th_seq to correspond to first data byte.
1508 		 * If data, trim to stay within window,
1509 		 * dropping FIN if necessary.
1510 		 */
1511 		th->th_seq++;
1512 		if (tlen > tp->rcv_wnd) {
1513 			todrop = tlen - tp->rcv_wnd;
1514 			m_adj(m, -todrop);
1515 			tlen = tp->rcv_wnd;
1516 			thflags &= ~TH_FIN;
1517 			tcpstat.tcps_rcvpackafterwin++;
1518 			tcpstat.tcps_rcvbyteafterwin += todrop;
1519 		}
1520 		tp->snd_wl1 = th->th_seq - 1;
1521 		tp->rcv_up = th->th_seq;
1522 		/*
1523 		 * Client side of transaction: already sent SYN and data.
1524 		 * If the remote host used T/TCP to validate the SYN,
1525 		 * our data will be ACK'd; if so, enter normal data segment
1526 		 * processing in the middle of step 5, ack processing.
1527 		 * Otherwise, goto step 6.
1528 		 */
1529 		if (thflags & TH_ACK)
1530 			goto process_ACK;
1531 
1532 		goto step6;
1533 
1534 	/*
1535 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1536 	 *	do normal processing (we no longer bother with T/TCP).
1537 	 */
1538 	case TCPS_LAST_ACK:
1539 	case TCPS_CLOSING:
1540 	case TCPS_TIME_WAIT:
1541 		break;  /* continue normal processing */
1542 	}
1543 
1544 	/*
1545 	 * States other than LISTEN or SYN_SENT.
1546 	 * First check the RST flag and sequence number since reset segments
1547 	 * are exempt from the timestamp and connection count tests.  This
1548 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1549 	 * below which allowed reset segments in half the sequence space
1550 	 * to fall though and be processed (which gives forged reset
1551 	 * segments with a random sequence number a 50 percent chance of
1552 	 * killing a connection).
1553 	 * Then check timestamp, if present.
1554 	 * Then check the connection count, if present.
1555 	 * Then check that at least some bytes of segment are within
1556 	 * receive window.  If segment begins before rcv_nxt,
1557 	 * drop leading data (and SYN); if nothing left, just ack.
1558 	 *
1559 	 *
1560 	 * If the RST bit is set, check the sequence number to see
1561 	 * if this is a valid reset segment.
1562 	 * RFC 793 page 37:
1563 	 *   In all states except SYN-SENT, all reset (RST) segments
1564 	 *   are validated by checking their SEQ-fields.  A reset is
1565 	 *   valid if its sequence number is in the window.
1566 	 * Note: this does not take into account delayed ACKs, so
1567 	 *   we should test against last_ack_sent instead of rcv_nxt.
1568 	 *   The sequence number in the reset segment is normally an
1569 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1570 	 *   send a reset with the sequence number at the rightmost edge
1571 	 *   of our receive window, and we have to handle this case.
1572 	 * If we have multiple segments in flight, the intial reset
1573 	 * segment sequence numbers will be to the left of last_ack_sent,
1574 	 * but they will eventually catch up.
1575 	 * In any case, it never made sense to trim reset segments to
1576 	 * fit the receive window since RFC 1122 says:
1577 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1578 	 *
1579 	 *    A TCP SHOULD allow a received RST segment to include data.
1580 	 *
1581 	 *    DISCUSSION
1582 	 *	   It has been suggested that a RST segment could contain
1583 	 *	   ASCII text that encoded and explained the cause of the
1584 	 *	   RST.  No standard has yet been established for such
1585 	 *	   data.
1586 	 *
1587 	 * If the reset segment passes the sequence number test examine
1588 	 * the state:
1589 	 *    SYN_RECEIVED STATE:
1590 	 *	If passive open, return to LISTEN state.
1591 	 *	If active open, inform user that connection was refused.
1592 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1593 	 *	Inform user that connection was reset, and close tcb.
1594 	 *    CLOSING, LAST_ACK STATES:
1595 	 *	Close the tcb.
1596 	 *    TIME_WAIT STATE:
1597 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1598 	 *	RFC 1337.
1599 	 */
1600 	if (thflags & TH_RST) {
1601 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1602 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1603 			switch (tp->t_state) {
1604 
1605 			case TCPS_SYN_RECEIVED:
1606 				so->so_error = ECONNREFUSED;
1607 				goto close;
1608 
1609 			case TCPS_ESTABLISHED:
1610 			case TCPS_FIN_WAIT_1:
1611 			case TCPS_FIN_WAIT_2:
1612 			case TCPS_CLOSE_WAIT:
1613 				so->so_error = ECONNRESET;
1614 			close:
1615 				tp->t_state = TCPS_CLOSED;
1616 				tcpstat.tcps_drops++;
1617 				tp = tcp_close(tp);
1618 				break;
1619 
1620 			case TCPS_CLOSING:
1621 			case TCPS_LAST_ACK:
1622 				tp = tcp_close(tp);
1623 				break;
1624 
1625 			case TCPS_TIME_WAIT:
1626 				break;
1627 			}
1628 		}
1629 		goto drop;
1630 	}
1631 
1632 	/*
1633 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1634 	 * and it's less than ts_recent, drop it.
1635 	 */
1636 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1637 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1638 
1639 		/* Check to see if ts_recent is over 24 days old.  */
1640 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1641 			/*
1642 			 * Invalidate ts_recent.  If this segment updates
1643 			 * ts_recent, the age will be reset later and ts_recent
1644 			 * will get a valid value.  If it does not, setting
1645 			 * ts_recent to zero will at least satisfy the
1646 			 * requirement that zero be placed in the timestamp
1647 			 * echo reply when ts_recent isn't valid.  The
1648 			 * age isn't reset until we get a valid ts_recent
1649 			 * because we don't want out-of-order segments to be
1650 			 * dropped when ts_recent is old.
1651 			 */
1652 			tp->ts_recent = 0;
1653 		} else {
1654 			tcpstat.tcps_rcvduppack++;
1655 			tcpstat.tcps_rcvdupbyte += tlen;
1656 			tcpstat.tcps_pawsdrop++;
1657 			if (tlen)
1658 				goto dropafterack;
1659 			goto drop;
1660 		}
1661 	}
1662 
1663 	/*
1664 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1665 	 * this connection before trimming the data to fit the receive
1666 	 * window.  Check the sequence number versus IRS since we know
1667 	 * the sequence numbers haven't wrapped.  This is a partial fix
1668 	 * for the "LAND" DoS attack.
1669 	 */
1670 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1671 		rstreason = BANDLIM_RST_OPENPORT;
1672 		goto dropwithreset;
1673 	}
1674 
1675 	todrop = tp->rcv_nxt - th->th_seq;
1676 	if (todrop > 0) {
1677 		if (TCP_DO_SACK(tp)) {
1678 			/* Report duplicate segment at head of packet. */
1679 			tp->reportblk.rblk_start = th->th_seq;
1680 			tp->reportblk.rblk_end = TCP_SACK_BLKEND(
1681 			    th->th_seq + tlen, thflags);
1682 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1683 				tp->reportblk.rblk_end = tp->rcv_nxt;
1684 			tp->t_flags |= (TF_DUPSEG | TF_SACKLEFT | TF_ACKNOW);
1685 		}
1686 		if (thflags & TH_SYN) {
1687 			thflags &= ~TH_SYN;
1688 			th->th_seq++;
1689 			if (th->th_urp > 1)
1690 				th->th_urp--;
1691 			else
1692 				thflags &= ~TH_URG;
1693 			todrop--;
1694 		}
1695 		/*
1696 		 * Following if statement from Stevens, vol. 2, p. 960.
1697 		 */
1698 		if (todrop > tlen ||
1699 		    (todrop == tlen && !(thflags & TH_FIN))) {
1700 			/*
1701 			 * Any valid FIN must be to the left of the window.
1702 			 * At this point the FIN must be a duplicate or out
1703 			 * of sequence; drop it.
1704 			 */
1705 			thflags &= ~TH_FIN;
1706 
1707 			/*
1708 			 * Send an ACK to resynchronize and drop any data.
1709 			 * But keep on processing for RST or ACK.
1710 			 */
1711 			tp->t_flags |= TF_ACKNOW;
1712 			todrop = tlen;
1713 			tcpstat.tcps_rcvduppack++;
1714 			tcpstat.tcps_rcvdupbyte += todrop;
1715 		} else {
1716 			tcpstat.tcps_rcvpartduppack++;
1717 			tcpstat.tcps_rcvpartdupbyte += todrop;
1718 		}
1719 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1720 		th->th_seq += todrop;
1721 		tlen -= todrop;
1722 		if (th->th_urp > todrop)
1723 			th->th_urp -= todrop;
1724 		else {
1725 			thflags &= ~TH_URG;
1726 			th->th_urp = 0;
1727 		}
1728 	}
1729 
1730 	/*
1731 	 * If new data are received on a connection after the
1732 	 * user processes are gone, then RST the other end.
1733 	 */
1734 	if ((so->so_state & SS_NOFDREF) &&
1735 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1736 		tp = tcp_close(tp);
1737 		tcpstat.tcps_rcvafterclose++;
1738 		rstreason = BANDLIM_UNLIMITED;
1739 		goto dropwithreset;
1740 	}
1741 
1742 	/*
1743 	 * If segment ends after window, drop trailing data
1744 	 * (and PUSH and FIN); if nothing left, just ACK.
1745 	 */
1746 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1747 	if (todrop > 0) {
1748 		tcpstat.tcps_rcvpackafterwin++;
1749 		if (todrop >= tlen) {
1750 			tcpstat.tcps_rcvbyteafterwin += tlen;
1751 			/*
1752 			 * If a new connection request is received
1753 			 * while in TIME_WAIT, drop the old connection
1754 			 * and start over if the sequence numbers
1755 			 * are above the previous ones.
1756 			 */
1757 			if (thflags & TH_SYN &&
1758 			    tp->t_state == TCPS_TIME_WAIT &&
1759 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1760 				tp = tcp_close(tp);
1761 				goto findpcb;
1762 			}
1763 			/*
1764 			 * If window is closed can only take segments at
1765 			 * window edge, and have to drop data and PUSH from
1766 			 * incoming segments.  Continue processing, but
1767 			 * remember to ack.  Otherwise, drop segment
1768 			 * and ack.
1769 			 */
1770 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1771 				tp->t_flags |= TF_ACKNOW;
1772 				tcpstat.tcps_rcvwinprobe++;
1773 			} else
1774 				goto dropafterack;
1775 		} else
1776 			tcpstat.tcps_rcvbyteafterwin += todrop;
1777 		m_adj(m, -todrop);
1778 		tlen -= todrop;
1779 		thflags &= ~(TH_PUSH | TH_FIN);
1780 	}
1781 
1782 	/*
1783 	 * If last ACK falls within this segment's sequence numbers,
1784 	 * record its timestamp.
1785 	 * NOTE:
1786 	 * 1) That the test incorporates suggestions from the latest
1787 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1788 	 * 2) That updating only on newer timestamps interferes with
1789 	 *    our earlier PAWS tests, so this check should be solely
1790 	 *    predicated on the sequence space of this segment.
1791 	 * 3) That we modify the segment boundary check to be
1792 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1793 	 *    instead of RFC1323's
1794 	 *        Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1795 	 *    This modified check allows us to overcome RFC1323's
1796 	 *    limitations as described in Stevens TCP/IP Illustrated
1797 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1798 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1799 	 */
1800 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1801 	    SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1802 					+ ((thflags & TH_SYN) != 0)
1803 					+ ((thflags & TH_FIN) != 0)))) {
1804 		tp->ts_recent_age = ticks;
1805 		tp->ts_recent = to.to_tsval;
1806 	}
1807 
1808 	/*
1809 	 * If a SYN is in the window, then this is an
1810 	 * error and we send an RST and drop the connection.
1811 	 */
1812 	if (thflags & TH_SYN) {
1813 		tp = tcp_drop(tp, ECONNRESET);
1814 		rstreason = BANDLIM_UNLIMITED;
1815 		goto dropwithreset;
1816 	}
1817 
1818 	/*
1819 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1820 	 * flag is on (half-synchronized state), then queue data for
1821 	 * later processing; else drop segment and return.
1822 	 */
1823 	if (!(thflags & TH_ACK)) {
1824 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1825 		    (tp->t_flags & TF_NEEDSYN))
1826 			goto step6;
1827 		else
1828 			goto drop;
1829 	}
1830 
1831 	/*
1832 	 * Ack processing.
1833 	 */
1834 	switch (tp->t_state) {
1835 	/*
1836 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1837 	 * ESTABLISHED state and continue processing.
1838 	 * The ACK was checked above.
1839 	 */
1840 	case TCPS_SYN_RECEIVED:
1841 
1842 		tcpstat.tcps_connects++;
1843 		soisconnected(so);
1844 		/* Do window scaling? */
1845 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1846 		    (TF_RCVD_SCALE | TF_REQ_SCALE))
1847 			tp->rcv_scale = tp->request_r_scale;
1848 		/*
1849 		 * Make transitions:
1850 		 *      SYN-RECEIVED  -> ESTABLISHED
1851 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1852 		 */
1853 		tp->t_starttime = ticks;
1854 		if (tp->t_flags & TF_NEEDFIN) {
1855 			tp->t_state = TCPS_FIN_WAIT_1;
1856 			tp->t_flags &= ~TF_NEEDFIN;
1857 		} else {
1858 			tcp_established(tp);
1859 		}
1860 		/*
1861 		 * If segment contains data or ACK, will call tcp_reass()
1862 		 * later; if not, do so now to pass queued data to user.
1863 		 */
1864 		if (tlen == 0 && !(thflags & TH_FIN))
1865 			tcp_reass(tp, NULL, NULL, NULL);
1866 		/* fall into ... */
1867 
1868 	/*
1869 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1870 	 * ACKs.  If the ack is in the range
1871 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1872 	 * then advance tp->snd_una to th->th_ack and drop
1873 	 * data from the retransmission queue.  If this ACK reflects
1874 	 * more up to date window information we update our window information.
1875 	 */
1876 	case TCPS_ESTABLISHED:
1877 	case TCPS_FIN_WAIT_1:
1878 	case TCPS_FIN_WAIT_2:
1879 	case TCPS_CLOSE_WAIT:
1880 	case TCPS_CLOSING:
1881 	case TCPS_LAST_ACK:
1882 	case TCPS_TIME_WAIT:
1883 
1884 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1885 			if (TCP_DO_SACK(tp))
1886 				tcp_sack_update_scoreboard(tp, &to);
1887 			if (tlen != 0 || tiwin != tp->snd_wnd) {
1888 				tp->t_dupacks = 0;
1889 				break;
1890 			}
1891 			tcpstat.tcps_rcvdupack++;
1892 			if (!tcp_callout_active(tp, tp->tt_rexmt) ||
1893 			    th->th_ack != tp->snd_una) {
1894 				tp->t_dupacks = 0;
1895 				break;
1896 			}
1897 			/*
1898 			 * We have outstanding data (other than
1899 			 * a window probe), this is a completely
1900 			 * duplicate ack (ie, window info didn't
1901 			 * change), the ack is the biggest we've
1902 			 * seen and we've seen exactly our rexmt
1903 			 * threshhold of them, so assume a packet
1904 			 * has been dropped and retransmit it.
1905 			 * Kludge snd_nxt & the congestion
1906 			 * window so we send only this one
1907 			 * packet.
1908 			 */
1909 			if (IN_FASTRECOVERY(tp)) {
1910 				if (TCP_DO_SACK(tp)) {
1911 					/* No artifical cwnd inflation. */
1912 					tcp_sack_rexmt(tp, th);
1913 				} else {
1914 					/*
1915 					 * Dup acks mean that packets
1916 					 * have left the network
1917 					 * (they're now cached at the
1918 					 * receiver) so bump cwnd by
1919 					 * the amount in the receiver
1920 					 * to keep a constant cwnd
1921 					 * packets in the network.
1922 					 */
1923 					tp->snd_cwnd += tp->t_maxseg;
1924 					tcp_output(tp);
1925 				}
1926 			} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1927 				tp->t_dupacks = 0;
1928 				break;
1929 			} else if (tcp_ignore_redun_dsack && TCP_DO_SACK(tp) &&
1930 			    (to.to_flags & (TOF_DSACK | TOF_SACK_REDUNDANT)) ==
1931 			    (TOF_DSACK | TOF_SACK_REDUNDANT)) {
1932 				/*
1933 				 * If the ACK carries DSACK and other
1934 				 * SACK blocks carry information that
1935 				 * we have already known, don't count
1936 				 * this ACK as duplicate ACK.  This
1937 				 * prevents spurious early retransmit
1938 				 * and fast retransmit.  This also
1939 				 * meets the requirement of RFC3042
1940 				 * that new segments should not be sent
1941 				 * if the SACK blocks do not contain
1942 				 * new information (XXX we actually
1943 				 * loosen the requirment that only DSACK
1944 				 * is checked here).
1945 				 *
1946 				 * This kind of ACKs are usually sent
1947 				 * after spurious retransmit.
1948 				 */
1949 				/* Do nothing; don't change t_dupacks */
1950 			} else if (++tp->t_dupacks == tp->t_rxtthresh) {
1951 				tcp_seq old_snd_nxt;
1952 				u_int win;
1953 
1954 fastretransmit:
1955 				if (tcp_do_eifel_detect &&
1956 				    (tp->t_flags & TF_RCVD_TSTMP)) {
1957 					tcp_save_congestion_state(tp);
1958 					tp->t_flags |= TF_FASTREXMT;
1959 				}
1960 				/*
1961 				 * We know we're losing at the current
1962 				 * window size, so do congestion avoidance:
1963 				 * set ssthresh to half the current window
1964 				 * and pull our congestion window back to the
1965 				 * new ssthresh.
1966 				 */
1967 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1968 				    tp->t_maxseg;
1969 				if (win < 2)
1970 					win = 2;
1971 				tp->snd_ssthresh = win * tp->t_maxseg;
1972 				ENTER_FASTRECOVERY(tp);
1973 				tp->snd_recover = tp->snd_max;
1974 				tcp_callout_stop(tp, tp->tt_rexmt);
1975 				tp->t_rtttime = 0;
1976 				old_snd_nxt = tp->snd_nxt;
1977 				tp->snd_nxt = th->th_ack;
1978 				tp->snd_cwnd = tp->t_maxseg;
1979 				tcp_output(tp);
1980 				++tcpstat.tcps_sndfastrexmit;
1981 				tp->snd_cwnd = tp->snd_ssthresh;
1982 				tp->rexmt_high = tp->snd_nxt;
1983 				tp->t_flags &= ~TF_SACKRESCUED;
1984 				if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
1985 					tp->snd_nxt = old_snd_nxt;
1986 				KASSERT(tp->snd_limited <= 2,
1987 				    ("tp->snd_limited too big"));
1988 				if (TCP_DO_SACK(tp))
1989 					tcp_sack_rexmt(tp, th);
1990 				else
1991 					tp->snd_cwnd += tp->t_maxseg *
1992 					    (tp->t_dupacks - tp->snd_limited);
1993 			} else if (tcp_do_limitedtransmit) {
1994 				u_long oldcwnd = tp->snd_cwnd;
1995 				tcp_seq oldsndmax = tp->snd_max;
1996 				tcp_seq oldsndnxt = tp->snd_nxt;
1997 				/* outstanding data */
1998 				uint32_t ownd = tp->snd_max - tp->snd_una;
1999 				u_int sent;
2000 
2001 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
2002 
2003 				KASSERT(tp->t_dupacks == 1 ||
2004 					tp->t_dupacks == 2,
2005 				    ("dupacks not 1 or 2"));
2006 				if (tp->t_dupacks == 1)
2007 					tp->snd_limited = 0;
2008 				tp->snd_nxt = tp->snd_max;
2009 				tp->snd_cwnd = ownd +
2010 				    (tp->t_dupacks - tp->snd_limited) *
2011 				    tp->t_maxseg;
2012 				tcp_output(tp);
2013 
2014 				if (SEQ_LT(oldsndnxt, oldsndmax)) {
2015 					KASSERT(SEQ_GEQ(oldsndnxt, tp->snd_una),
2016 					    ("snd_una moved in other threads"));
2017 					tp->snd_nxt = oldsndnxt;
2018 				}
2019 				tp->snd_cwnd = oldcwnd;
2020 				sent = tp->snd_max - oldsndmax;
2021 				if (sent > tp->t_maxseg) {
2022 					KASSERT((tp->t_dupacks == 2 &&
2023 						 tp->snd_limited == 0) ||
2024 						(sent == tp->t_maxseg + 1 &&
2025 						 tp->t_flags & TF_SENTFIN),
2026 					    ("sent too much"));
2027 					KASSERT(sent <= tp->t_maxseg * 2,
2028 					    ("sent too many segments"));
2029 					tp->snd_limited = 2;
2030 					tcpstat.tcps_sndlimited += 2;
2031 				} else if (sent > 0) {
2032 					++tp->snd_limited;
2033 					++tcpstat.tcps_sndlimited;
2034 				} else if (tcp_do_early_retransmit &&
2035 				    (tcp_do_eifel_detect &&
2036 				     (tp->t_flags & TF_RCVD_TSTMP)) &&
2037 				    ownd < 4 * tp->t_maxseg &&
2038 				    tp->t_dupacks + 1 >=
2039 				      iceildiv(ownd, tp->t_maxseg) &&
2040 				    (!TCP_DO_SACK(tp) ||
2041 				     ownd <= tp->t_maxseg ||
2042 				     tcp_sack_has_sacked(&tp->scb,
2043 							ownd - tp->t_maxseg))) {
2044 					++tcpstat.tcps_sndearlyrexmit;
2045 					tp->t_flags |= TF_EARLYREXMT;
2046 					goto fastretransmit;
2047 				}
2048 			}
2049 			goto drop;
2050 		}
2051 
2052 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2053 		tp->t_dupacks = 0;
2054 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2055 			/*
2056 			 * Detected optimistic ACK attack.
2057 			 * Force slow-start to de-synchronize attack.
2058 			 */
2059 			tp->snd_cwnd = tp->t_maxseg;
2060 			tp->snd_wacked = 0;
2061 
2062 			tcpstat.tcps_rcvacktoomuch++;
2063 			goto dropafterack;
2064 		}
2065 		/*
2066 		 * If we reach this point, ACK is not a duplicate,
2067 		 *     i.e., it ACKs something we sent.
2068 		 */
2069 		if (tp->t_flags & TF_NEEDSYN) {
2070 			/*
2071 			 * T/TCP: Connection was half-synchronized, and our
2072 			 * SYN has been ACK'd (so connection is now fully
2073 			 * synchronized).  Go to non-starred state,
2074 			 * increment snd_una for ACK of SYN, and check if
2075 			 * we can do window scaling.
2076 			 */
2077 			tp->t_flags &= ~TF_NEEDSYN;
2078 			tp->snd_una++;
2079 			/* Do window scaling? */
2080 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2081 			    (TF_RCVD_SCALE | TF_REQ_SCALE))
2082 				tp->rcv_scale = tp->request_r_scale;
2083 		}
2084 
2085 process_ACK:
2086 		acked = th->th_ack - tp->snd_una;
2087 		tcpstat.tcps_rcvackpack++;
2088 		tcpstat.tcps_rcvackbyte += acked;
2089 
2090 		if (tcp_do_eifel_detect && acked > 0 &&
2091 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2092 		    (tp->t_flags & TF_FIRSTACCACK)) {
2093 			/* Eifel detection applicable. */
2094 			if (to.to_tsecr < tp->t_rexmtTS) {
2095 				++tcpstat.tcps_eifeldetected;
2096 				tcp_revert_congestion_state(tp);
2097 				if (tp->t_rxtshift != 1 ||
2098 				    ticks >= tp->t_badrxtwin)
2099 					++tcpstat.tcps_rttcantdetect;
2100 			}
2101 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2102 			/*
2103 			 * If we just performed our first retransmit,
2104 			 * and the ACK arrives within our recovery window,
2105 			 * then it was a mistake to do the retransmit
2106 			 * in the first place.  Recover our original cwnd
2107 			 * and ssthresh, and proceed to transmit where we
2108 			 * left off.
2109 			 */
2110 			tcp_revert_congestion_state(tp);
2111 			++tcpstat.tcps_rttdetected;
2112 		}
2113 
2114 		/*
2115 		 * If we have a timestamp reply, update smoothed
2116 		 * round trip time.  If no timestamp is present but
2117 		 * transmit timer is running and timed sequence
2118 		 * number was acked, update smoothed round trip time.
2119 		 * Since we now have an rtt measurement, cancel the
2120 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2121 		 * Recompute the initial retransmit timer.
2122 		 *
2123 		 * Some machines (certain windows boxes) send broken
2124 		 * timestamp replies during the SYN+ACK phase, ignore
2125 		 * timestamps of 0.
2126 		 */
2127 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2128 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1, th->th_ack);
2129 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2130 			tcp_xmit_timer(tp, ticks - tp->t_rtttime, th->th_ack);
2131 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2132 
2133 		/*
2134 		 * If no data (only SYN) was ACK'd,
2135 		 *    skip rest of ACK processing.
2136 		 */
2137 		if (acked == 0)
2138 			goto step6;
2139 
2140 		/* Stop looking for an acceptable ACK since one was received. */
2141 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
2142 
2143 		if (acked > so->so_snd.ssb_cc) {
2144 			tp->snd_wnd -= so->so_snd.ssb_cc;
2145 			sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2146 			ourfinisacked = TRUE;
2147 		} else {
2148 			sbdrop(&so->so_snd.sb, acked);
2149 			tp->snd_wnd -= acked;
2150 			ourfinisacked = FALSE;
2151 		}
2152 		sowwakeup(so);
2153 
2154 		/*
2155 		 * Update window information.
2156 		 */
2157 		if (acceptable_window_update(tp, th, tiwin)) {
2158 			/* keep track of pure window updates */
2159 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2160 			    tiwin > tp->snd_wnd)
2161 				tcpstat.tcps_rcvwinupd++;
2162 			tp->snd_wnd = tiwin;
2163 			tp->snd_wl1 = th->th_seq;
2164 			tp->snd_wl2 = th->th_ack;
2165 			if (tp->snd_wnd > tp->max_sndwnd)
2166 				tp->max_sndwnd = tp->snd_wnd;
2167 			needoutput = TRUE;
2168 		}
2169 
2170 		tp->snd_una = th->th_ack;
2171 		if (TCP_DO_SACK(tp))
2172 			tcp_sack_update_scoreboard(tp, &to);
2173 		if (IN_FASTRECOVERY(tp)) {
2174 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2175 				EXIT_FASTRECOVERY(tp);
2176 				needoutput = TRUE;
2177 				/*
2178 				 * If the congestion window was inflated
2179 				 * to account for the other side's
2180 				 * cached packets, retract it.
2181 				 */
2182 				if (!TCP_DO_SACK(tp))
2183 					tp->snd_cwnd = tp->snd_ssthresh;
2184 
2185 				/*
2186 				 * Window inflation should have left us
2187 				 * with approximately snd_ssthresh outstanding
2188 				 * data.  But, in case we would be inclined
2189 				 * to send a burst, better do it using
2190 				 * slow start.
2191 				 */
2192 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2193 					   tp->snd_max + 2 * tp->t_maxseg))
2194 					tp->snd_cwnd =
2195 					    (tp->snd_max - tp->snd_una) +
2196 					    2 * tp->t_maxseg;
2197 
2198 				tp->snd_wacked = 0;
2199 			} else {
2200 				if (TCP_DO_SACK(tp)) {
2201 					tp->snd_max_rexmt = tp->snd_max;
2202 					tcp_sack_rexmt(tp, th);
2203 				} else {
2204 					tcp_newreno_partial_ack(tp, th, acked);
2205 				}
2206 				needoutput = FALSE;
2207 			}
2208 		} else {
2209 			/*
2210 			 * Open the congestion window.  When in slow-start,
2211 			 * open exponentially: maxseg per packet.  Otherwise,
2212 			 * open linearly: maxseg per window.
2213 			 */
2214 			if (tp->snd_cwnd <= tp->snd_ssthresh) {
2215 				u_int abc_sslimit =
2216 				    (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2217 				     tp->t_maxseg : 2 * tp->t_maxseg);
2218 
2219 				/* slow-start */
2220 				tp->snd_cwnd += tcp_do_abc ?
2221 				    min(acked, abc_sslimit) : tp->t_maxseg;
2222 			} else {
2223 				/* linear increase */
2224 				tp->snd_wacked += tcp_do_abc ? acked :
2225 				    tp->t_maxseg;
2226 				if (tp->snd_wacked >= tp->snd_cwnd) {
2227 					tp->snd_wacked -= tp->snd_cwnd;
2228 					tp->snd_cwnd += tp->t_maxseg;
2229 				}
2230 			}
2231 			tp->snd_cwnd = min(tp->snd_cwnd,
2232 					   TCP_MAXWIN << tp->snd_scale);
2233 			tp->snd_recover = th->th_ack - 1;
2234 		}
2235 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2236 			tp->snd_nxt = tp->snd_una;
2237 
2238 		/*
2239 		 * If all outstanding data is acked, stop retransmit
2240 		 * timer and remember to restart (more output or persist).
2241 		 * If there is more data to be acked, restart retransmit
2242 		 * timer, using current (possibly backed-off) value.
2243 		 */
2244 		if (th->th_ack == tp->snd_max) {
2245 			tcp_callout_stop(tp, tp->tt_rexmt);
2246 			needoutput = TRUE;
2247 		} else if (!tcp_callout_active(tp, tp->tt_persist)) {
2248 			tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur,
2249 			    tcp_timer_rexmt);
2250 		}
2251 
2252 		switch (tp->t_state) {
2253 		/*
2254 		 * In FIN_WAIT_1 STATE in addition to the processing
2255 		 * for the ESTABLISHED state if our FIN is now acknowledged
2256 		 * then enter FIN_WAIT_2.
2257 		 */
2258 		case TCPS_FIN_WAIT_1:
2259 			if (ourfinisacked) {
2260 				/*
2261 				 * If we can't receive any more
2262 				 * data, then closing user can proceed.
2263 				 * Starting the timer is contrary to the
2264 				 * specification, but if we don't get a FIN
2265 				 * we'll hang forever.
2266 				 */
2267 				if (so->so_state & SS_CANTRCVMORE) {
2268 					soisdisconnected(so);
2269 					tcp_callout_reset(tp, tp->tt_2msl,
2270 					    tp->t_maxidle, tcp_timer_2msl);
2271 				}
2272 				tp->t_state = TCPS_FIN_WAIT_2;
2273 			}
2274 			break;
2275 
2276 		/*
2277 		 * In CLOSING STATE in addition to the processing for
2278 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2279 		 * then enter the TIME-WAIT state, otherwise ignore
2280 		 * the segment.
2281 		 */
2282 		case TCPS_CLOSING:
2283 			if (ourfinisacked) {
2284 				tp->t_state = TCPS_TIME_WAIT;
2285 				tcp_canceltimers(tp);
2286 				tcp_callout_reset(tp, tp->tt_2msl,
2287 					    2 * tcp_rmx_msl(tp),
2288 					    tcp_timer_2msl);
2289 				soisdisconnected(so);
2290 			}
2291 			break;
2292 
2293 		/*
2294 		 * In LAST_ACK, we may still be waiting for data to drain
2295 		 * and/or to be acked, as well as for the ack of our FIN.
2296 		 * If our FIN is now acknowledged, delete the TCB,
2297 		 * enter the closed state and return.
2298 		 */
2299 		case TCPS_LAST_ACK:
2300 			if (ourfinisacked) {
2301 				tp = tcp_close(tp);
2302 				goto drop;
2303 			}
2304 			break;
2305 
2306 		/*
2307 		 * In TIME_WAIT state the only thing that should arrive
2308 		 * is a retransmission of the remote FIN.  Acknowledge
2309 		 * it and restart the finack timer.
2310 		 */
2311 		case TCPS_TIME_WAIT:
2312 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2313 			    tcp_timer_2msl);
2314 			goto dropafterack;
2315 		}
2316 	}
2317 
2318 step6:
2319 	/*
2320 	 * Update window information.
2321 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2322 	 */
2323 	if ((thflags & TH_ACK) &&
2324 	    acceptable_window_update(tp, th, tiwin)) {
2325 		/* keep track of pure window updates */
2326 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2327 		    tiwin > tp->snd_wnd)
2328 			tcpstat.tcps_rcvwinupd++;
2329 		tp->snd_wnd = tiwin;
2330 		tp->snd_wl1 = th->th_seq;
2331 		tp->snd_wl2 = th->th_ack;
2332 		if (tp->snd_wnd > tp->max_sndwnd)
2333 			tp->max_sndwnd = tp->snd_wnd;
2334 		needoutput = TRUE;
2335 	}
2336 
2337 	/*
2338 	 * Process segments with URG.
2339 	 */
2340 	if ((thflags & TH_URG) && th->th_urp &&
2341 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2342 		/*
2343 		 * This is a kludge, but if we receive and accept
2344 		 * random urgent pointers, we'll crash in
2345 		 * soreceive.  It's hard to imagine someone
2346 		 * actually wanting to send this much urgent data.
2347 		 */
2348 		if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2349 			th->th_urp = 0;			/* XXX */
2350 			thflags &= ~TH_URG;		/* XXX */
2351 			goto dodata;			/* XXX */
2352 		}
2353 		/*
2354 		 * If this segment advances the known urgent pointer,
2355 		 * then mark the data stream.  This should not happen
2356 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2357 		 * a FIN has been received from the remote side.
2358 		 * In these states we ignore the URG.
2359 		 *
2360 		 * According to RFC961 (Assigned Protocols),
2361 		 * the urgent pointer points to the last octet
2362 		 * of urgent data.  We continue, however,
2363 		 * to consider it to indicate the first octet
2364 		 * of data past the urgent section as the original
2365 		 * spec states (in one of two places).
2366 		 */
2367 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2368 			tp->rcv_up = th->th_seq + th->th_urp;
2369 			so->so_oobmark = so->so_rcv.ssb_cc +
2370 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2371 			if (so->so_oobmark == 0)
2372 				sosetstate(so, SS_RCVATMARK);
2373 			sohasoutofband(so);
2374 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2375 		}
2376 		/*
2377 		 * Remove out of band data so doesn't get presented to user.
2378 		 * This can happen independent of advancing the URG pointer,
2379 		 * but if two URG's are pending at once, some out-of-band
2380 		 * data may creep in... ick.
2381 		 */
2382 		if (th->th_urp <= (u_long)tlen &&
2383 		    !(so->so_options & SO_OOBINLINE)) {
2384 			/* hdr drop is delayed */
2385 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2386 		}
2387 	} else {
2388 		/*
2389 		 * If no out of band data is expected,
2390 		 * pull receive urgent pointer along
2391 		 * with the receive window.
2392 		 */
2393 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2394 			tp->rcv_up = tp->rcv_nxt;
2395 	}
2396 
2397 dodata:							/* XXX */
2398 	/*
2399 	 * Process the segment text, merging it into the TCP sequencing queue,
2400 	 * and arranging for acknowledgment of receipt if necessary.
2401 	 * This process logically involves adjusting tp->rcv_wnd as data
2402 	 * is presented to the user (this happens in tcp_usrreq.c,
2403 	 * case PRU_RCVD).  If a FIN has already been received on this
2404 	 * connection then we just ignore the text.
2405 	 */
2406 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2407 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2408 		/*
2409 		 * Insert segment which includes th into TCP reassembly queue
2410 		 * with control block tp.  Set thflags to whether reassembly now
2411 		 * includes a segment with FIN.  This handles the common case
2412 		 * inline (segment is the next to be received on an established
2413 		 * connection, and the queue is empty), avoiding linkage into
2414 		 * and removal from the queue and repetition of various
2415 		 * conversions.
2416 		 * Set DELACK for segments received in order, but ack
2417 		 * immediately when segments are out of order (so
2418 		 * fast retransmit can work).
2419 		 */
2420 		if (th->th_seq == tp->rcv_nxt &&
2421 		    LIST_EMPTY(&tp->t_segq) &&
2422 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2423 			if (DELAY_ACK(tp)) {
2424 				tcp_callout_reset(tp, tp->tt_delack,
2425 				    tcp_delacktime, tcp_timer_delack);
2426 			} else {
2427 				tp->t_flags |= TF_ACKNOW;
2428 			}
2429 			tp->rcv_nxt += tlen;
2430 			thflags = th->th_flags & TH_FIN;
2431 			tcpstat.tcps_rcvpack++;
2432 			tcpstat.tcps_rcvbyte += tlen;
2433 			ND6_HINT(tp);
2434 			if (so->so_state & SS_CANTRCVMORE) {
2435 				m_freem(m);
2436 			} else {
2437 				lwkt_gettoken(&so->so_rcv.ssb_token);
2438 				ssb_appendstream(&so->so_rcv, m);
2439 				lwkt_reltoken(&so->so_rcv.ssb_token);
2440 			}
2441 			sorwakeup(so);
2442 		} else {
2443 			if (!(tp->t_flags & TF_DUPSEG)) {
2444 				/* Initialize SACK report block. */
2445 				tp->reportblk.rblk_start = th->th_seq;
2446 				tp->reportblk.rblk_end = TCP_SACK_BLKEND(
2447 				    th->th_seq + tlen, thflags);
2448 			}
2449 			thflags = tcp_reass(tp, th, &tlen, m);
2450 			tp->t_flags |= TF_ACKNOW;
2451 		}
2452 
2453 		/*
2454 		 * Note the amount of data that peer has sent into
2455 		 * our window, in order to estimate the sender's
2456 		 * buffer size.
2457 		 */
2458 		len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2459 	} else {
2460 		m_freem(m);
2461 		thflags &= ~TH_FIN;
2462 	}
2463 
2464 	/*
2465 	 * If FIN is received ACK the FIN and let the user know
2466 	 * that the connection is closing.
2467 	 */
2468 	if (thflags & TH_FIN) {
2469 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2470 			socantrcvmore(so);
2471 			/*
2472 			 * If connection is half-synchronized
2473 			 * (ie NEEDSYN flag on) then delay ACK,
2474 			 * so it may be piggybacked when SYN is sent.
2475 			 * Otherwise, since we received a FIN then no
2476 			 * more input can be expected, send ACK now.
2477 			 */
2478 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2479 				tcp_callout_reset(tp, tp->tt_delack,
2480 				    tcp_delacktime, tcp_timer_delack);
2481 			} else {
2482 				tp->t_flags |= TF_ACKNOW;
2483 			}
2484 			tp->rcv_nxt++;
2485 		}
2486 
2487 		switch (tp->t_state) {
2488 		/*
2489 		 * In SYN_RECEIVED and ESTABLISHED STATES
2490 		 * enter the CLOSE_WAIT state.
2491 		 */
2492 		case TCPS_SYN_RECEIVED:
2493 			tp->t_starttime = ticks;
2494 			/*FALLTHROUGH*/
2495 		case TCPS_ESTABLISHED:
2496 			tp->t_state = TCPS_CLOSE_WAIT;
2497 			break;
2498 
2499 		/*
2500 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2501 		 * enter the CLOSING state.
2502 		 */
2503 		case TCPS_FIN_WAIT_1:
2504 			tp->t_state = TCPS_CLOSING;
2505 			break;
2506 
2507 		/*
2508 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2509 		 * starting the time-wait timer, turning off the other
2510 		 * standard timers.
2511 		 */
2512 		case TCPS_FIN_WAIT_2:
2513 			tp->t_state = TCPS_TIME_WAIT;
2514 			tcp_canceltimers(tp);
2515 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2516 				    tcp_timer_2msl);
2517 			soisdisconnected(so);
2518 			break;
2519 
2520 		/*
2521 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2522 		 */
2523 		case TCPS_TIME_WAIT:
2524 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2525 			    tcp_timer_2msl);
2526 			break;
2527 		}
2528 	}
2529 
2530 #ifdef TCPDEBUG
2531 	if (so->so_options & SO_DEBUG)
2532 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2533 #endif
2534 
2535 	/*
2536 	 * Return any desired output.
2537 	 */
2538 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2539 		tcp_output(tp);
2540 	tcp_sack_report_cleanup(tp);
2541 	return(IPPROTO_DONE);
2542 
2543 dropafterack:
2544 	/*
2545 	 * Generate an ACK dropping incoming segment if it occupies
2546 	 * sequence space, where the ACK reflects our state.
2547 	 *
2548 	 * We can now skip the test for the RST flag since all
2549 	 * paths to this code happen after packets containing
2550 	 * RST have been dropped.
2551 	 *
2552 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2553 	 * segment we received passes the SYN-RECEIVED ACK test.
2554 	 * If it fails send a RST.  This breaks the loop in the
2555 	 * "LAND" DoS attack, and also prevents an ACK storm
2556 	 * between two listening ports that have been sent forged
2557 	 * SYN segments, each with the source address of the other.
2558 	 */
2559 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2560 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2561 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2562 		rstreason = BANDLIM_RST_OPENPORT;
2563 		goto dropwithreset;
2564 	}
2565 #ifdef TCPDEBUG
2566 	if (so->so_options & SO_DEBUG)
2567 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2568 #endif
2569 	m_freem(m);
2570 	tp->t_flags |= TF_ACKNOW;
2571 	tcp_output(tp);
2572 	tcp_sack_report_cleanup(tp);
2573 	return(IPPROTO_DONE);
2574 
2575 dropwithreset:
2576 	/*
2577 	 * Generate a RST, dropping incoming segment.
2578 	 * Make ACK acceptable to originator of segment.
2579 	 * Don't bother to respond if destination was broadcast/multicast.
2580 	 */
2581 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2582 		goto drop;
2583 	if (isipv6) {
2584 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2585 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2586 			goto drop;
2587 	} else {
2588 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2589 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2590 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2591 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2592 			goto drop;
2593 	}
2594 	/* IPv6 anycast check is done at tcp6_input() */
2595 
2596 	/*
2597 	 * Perform bandwidth limiting.
2598 	 */
2599 #ifdef ICMP_BANDLIM
2600 	if (badport_bandlim(rstreason) < 0)
2601 		goto drop;
2602 #endif
2603 
2604 #ifdef TCPDEBUG
2605 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2606 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2607 #endif
2608 	if (thflags & TH_ACK)
2609 		/* mtod() below is safe as long as hdr dropping is delayed */
2610 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2611 			    TH_RST);
2612 	else {
2613 		if (thflags & TH_SYN)
2614 			tlen++;
2615 		/* mtod() below is safe as long as hdr dropping is delayed */
2616 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2617 			    (tcp_seq)0, TH_RST | TH_ACK);
2618 	}
2619 	if (tp != NULL)
2620 		tcp_sack_report_cleanup(tp);
2621 	return(IPPROTO_DONE);
2622 
2623 drop:
2624 	/*
2625 	 * Drop space held by incoming segment and return.
2626 	 */
2627 #ifdef TCPDEBUG
2628 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2629 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2630 #endif
2631 	m_freem(m);
2632 	if (tp != NULL)
2633 		tcp_sack_report_cleanup(tp);
2634 	return(IPPROTO_DONE);
2635 }
2636 
2637 /*
2638  * Parse TCP options and place in tcpopt.
2639  */
2640 static void
2641 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn,
2642     tcp_seq ack)
2643 {
2644 	int opt, optlen, i;
2645 
2646 	to->to_flags = 0;
2647 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2648 		opt = cp[0];
2649 		if (opt == TCPOPT_EOL)
2650 			break;
2651 		if (opt == TCPOPT_NOP)
2652 			optlen = 1;
2653 		else {
2654 			if (cnt < 2)
2655 				break;
2656 			optlen = cp[1];
2657 			if (optlen < 2 || optlen > cnt)
2658 				break;
2659 		}
2660 		switch (opt) {
2661 		case TCPOPT_MAXSEG:
2662 			if (optlen != TCPOLEN_MAXSEG)
2663 				continue;
2664 			if (!is_syn)
2665 				continue;
2666 			to->to_flags |= TOF_MSS;
2667 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2668 			to->to_mss = ntohs(to->to_mss);
2669 			break;
2670 		case TCPOPT_WINDOW:
2671 			if (optlen != TCPOLEN_WINDOW)
2672 				continue;
2673 			if (!is_syn)
2674 				continue;
2675 			to->to_flags |= TOF_SCALE;
2676 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2677 			break;
2678 		case TCPOPT_TIMESTAMP:
2679 			if (optlen != TCPOLEN_TIMESTAMP)
2680 				continue;
2681 			to->to_flags |= TOF_TS;
2682 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2683 			to->to_tsval = ntohl(to->to_tsval);
2684 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2685 			to->to_tsecr = ntohl(to->to_tsecr);
2686 			/*
2687 			 * If echoed timestamp is later than the current time,
2688 			 * fall back to non RFC1323 RTT calculation.
2689 			 */
2690 			if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2691 				to->to_tsecr = 0;
2692 			break;
2693 		case TCPOPT_SACK_PERMITTED:
2694 			if (optlen != TCPOLEN_SACK_PERMITTED)
2695 				continue;
2696 			if (!is_syn)
2697 				continue;
2698 			to->to_flags |= TOF_SACK_PERMITTED;
2699 			break;
2700 		case TCPOPT_SACK:
2701 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2702 				continue;
2703 			to->to_nsackblocks = (optlen - 2) / 8;
2704 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2705 			to->to_flags |= TOF_SACK;
2706 			for (i = 0; i < to->to_nsackblocks; i++) {
2707 				struct raw_sackblock *r = &to->to_sackblocks[i];
2708 
2709 				r->rblk_start = ntohl(r->rblk_start);
2710 				r->rblk_end = ntohl(r->rblk_end);
2711 
2712 				if (SEQ_LEQ(r->rblk_end, r->rblk_start)) {
2713 					/*
2714 					 * Invalid SACK block; discard all
2715 					 * SACK blocks
2716 					 */
2717 					tcpstat.tcps_rcvbadsackopt++;
2718 					to->to_nsackblocks = 0;
2719 					to->to_sackblocks = NULL;
2720 					to->to_flags &= ~TOF_SACK;
2721 					break;
2722 				}
2723 			}
2724 			if ((to->to_flags & TOF_SACK) &&
2725 			    tcp_sack_ndsack_blocks(to->to_sackblocks,
2726 			    to->to_nsackblocks, ack))
2727 				to->to_flags |= TOF_DSACK;
2728 			break;
2729 #ifdef TCP_SIGNATURE
2730 		/*
2731 		 * XXX In order to reply to a host which has set the
2732 		 * TCP_SIGNATURE option in its initial SYN, we have to
2733 		 * record the fact that the option was observed here
2734 		 * for the syncache code to perform the correct response.
2735 		 */
2736 		case TCPOPT_SIGNATURE:
2737 			if (optlen != TCPOLEN_SIGNATURE)
2738 				continue;
2739 			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2740 			break;
2741 #endif /* TCP_SIGNATURE */
2742 		default:
2743 			continue;
2744 		}
2745 	}
2746 }
2747 
2748 /*
2749  * Pull out of band byte out of a segment so
2750  * it doesn't appear in the user's data queue.
2751  * It is still reflected in the segment length for
2752  * sequencing purposes.
2753  * "off" is the delayed to be dropped hdrlen.
2754  */
2755 static void
2756 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2757 {
2758 	int cnt = off + th->th_urp - 1;
2759 
2760 	while (cnt >= 0) {
2761 		if (m->m_len > cnt) {
2762 			char *cp = mtod(m, caddr_t) + cnt;
2763 			struct tcpcb *tp = sototcpcb(so);
2764 
2765 			tp->t_iobc = *cp;
2766 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2767 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2768 			m->m_len--;
2769 			if (m->m_flags & M_PKTHDR)
2770 				m->m_pkthdr.len--;
2771 			return;
2772 		}
2773 		cnt -= m->m_len;
2774 		m = m->m_next;
2775 		if (m == NULL)
2776 			break;
2777 	}
2778 	panic("tcp_pulloutofband");
2779 }
2780 
2781 /*
2782  * Collect new round-trip time estimate
2783  * and update averages and current timeout.
2784  */
2785 static void
2786 tcp_xmit_timer(struct tcpcb *tp, int rtt, tcp_seq ack)
2787 {
2788 	int rebaserto = 0;
2789 
2790 	tcpstat.tcps_rttupdated++;
2791 	tp->t_rttupdated++;
2792 	if ((tp->t_flags & TF_REBASERTO) && SEQ_GT(ack, tp->snd_max_prev)) {
2793 #ifdef DEBUG_EIFEL_RESPONSE
2794 		kprintf("srtt/rttvar, prev %d/%d, cur %d/%d, ",
2795 		    tp->t_srtt_prev, tp->t_rttvar_prev,
2796 		    tp->t_srtt, tp->t_rttvar);
2797 #endif
2798 
2799 		tcpstat.tcps_eifelresponse++;
2800 		rebaserto = 1;
2801 		tp->t_flags &= ~TF_REBASERTO;
2802 		tp->t_srtt = max(tp->t_srtt_prev, (rtt << TCP_RTT_SHIFT));
2803 		tp->t_rttvar = max(tp->t_rttvar_prev,
2804 		    (rtt << (TCP_RTTVAR_SHIFT - 1)));
2805 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2806 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2807 
2808 #ifdef DEBUG_EIFEL_RESPONSE
2809 		kprintf("new %d/%d ", tp->t_srtt, tp->t_rttvar);
2810 #endif
2811 	} else if (tp->t_srtt != 0) {
2812 		int delta;
2813 
2814 		/*
2815 		 * srtt is stored as fixed point with 5 bits after the
2816 		 * binary point (i.e., scaled by 8).  The following magic
2817 		 * is equivalent to the smoothing algorithm in rfc793 with
2818 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2819 		 * point).  Adjust rtt to origin 0.
2820 		 */
2821 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2822 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2823 
2824 		if ((tp->t_srtt += delta) <= 0)
2825 			tp->t_srtt = 1;
2826 
2827 		/*
2828 		 * We accumulate a smoothed rtt variance (actually, a
2829 		 * smoothed mean difference), then set the retransmit
2830 		 * timer to smoothed rtt + 4 times the smoothed variance.
2831 		 * rttvar is stored as fixed point with 4 bits after the
2832 		 * binary point (scaled by 16).  The following is
2833 		 * equivalent to rfc793 smoothing with an alpha of .75
2834 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2835 		 * rfc793's wired-in beta.
2836 		 */
2837 		if (delta < 0)
2838 			delta = -delta;
2839 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2840 		if ((tp->t_rttvar += delta) <= 0)
2841 			tp->t_rttvar = 1;
2842 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2843 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2844 	} else {
2845 		/*
2846 		 * No rtt measurement yet - use the unsmoothed rtt.
2847 		 * Set the variance to half the rtt (so our first
2848 		 * retransmit happens at 3*rtt).
2849 		 */
2850 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2851 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2852 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2853 	}
2854 	tp->t_rtttime = 0;
2855 	tp->t_rxtshift = 0;
2856 
2857 #ifdef DEBUG_EIFEL_RESPONSE
2858 	if (rebaserto) {
2859 		kprintf("| rxtcur prev %d, old %d, ",
2860 		    tp->t_rxtcur_prev, tp->t_rxtcur);
2861 	}
2862 #endif
2863 
2864 	/*
2865 	 * the retransmit should happen at rtt + 4 * rttvar.
2866 	 * Because of the way we do the smoothing, srtt and rttvar
2867 	 * will each average +1/2 tick of bias.  When we compute
2868 	 * the retransmit timer, we want 1/2 tick of rounding and
2869 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2870 	 * firing of the timer.  The bias will give us exactly the
2871 	 * 1.5 tick we need.  But, because the bias is
2872 	 * statistical, we have to test that we don't drop below
2873 	 * the minimum feasible timer (which is 2 ticks).
2874 	 */
2875 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2876 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2877 
2878 	if (rebaserto) {
2879 		if (tp->t_rxtcur < tp->t_rxtcur_prev + tcp_eifel_rtoinc) {
2880 			/*
2881 			 * RFC4015 requires that the new RTO is at least
2882 			 * 2*G (tcp_eifel_rtoinc) greater then the RTO
2883 			 * (t_rxtcur_prev) when the spurious retransmit
2884 			 * timeout happens.
2885 			 *
2886 			 * The above condition could be true, if the SRTT
2887 			 * and RTTVAR used to calculate t_rxtcur_prev
2888 			 * resulted in a value less than t_rttmin.  So
2889 			 * simply increasing SRTT by tcp_eifel_rtoinc when
2890 			 * preparing for the Eifel response in
2891 			 * tcp_save_congestion_state() could not ensure
2892 			 * that the new RTO will be tcp_eifel_rtoinc greater
2893 			 * t_rxtcur_prev.
2894 			 */
2895 			tp->t_rxtcur = tp->t_rxtcur_prev + tcp_eifel_rtoinc;
2896 		}
2897 #ifdef DEBUG_EIFEL_RESPONSE
2898 		kprintf("new %d\n", tp->t_rxtcur);
2899 #endif
2900 	}
2901 
2902 	/*
2903 	 * We received an ack for a packet that wasn't retransmitted;
2904 	 * it is probably safe to discard any error indications we've
2905 	 * received recently.  This isn't quite right, but close enough
2906 	 * for now (a route might have failed after we sent a segment,
2907 	 * and the return path might not be symmetrical).
2908 	 */
2909 	tp->t_softerror = 0;
2910 }
2911 
2912 /*
2913  * Determine a reasonable value for maxseg size.
2914  * If the route is known, check route for mtu.
2915  * If none, use an mss that can be handled on the outgoing
2916  * interface without forcing IP to fragment; if bigger than
2917  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2918  * to utilize large mbufs.  If no route is found, route has no mtu,
2919  * or the destination isn't local, use a default, hopefully conservative
2920  * size (usually 512 or the default IP max size, but no more than the mtu
2921  * of the interface), as we can't discover anything about intervening
2922  * gateways or networks.  We also initialize the congestion/slow start
2923  * window to be a single segment if the destination isn't local.
2924  * While looking at the routing entry, we also initialize other path-dependent
2925  * parameters from pre-set or cached values in the routing entry.
2926  *
2927  * Also take into account the space needed for options that we
2928  * send regularly.  Make maxseg shorter by that amount to assure
2929  * that we can send maxseg amount of data even when the options
2930  * are present.  Store the upper limit of the length of options plus
2931  * data in maxopd.
2932  *
2933  * NOTE that this routine is only called when we process an incoming
2934  * segment, for outgoing segments only tcp_mssopt is called.
2935  */
2936 void
2937 tcp_mss(struct tcpcb *tp, int offer)
2938 {
2939 	struct rtentry *rt;
2940 	struct ifnet *ifp;
2941 	int rtt, mss;
2942 	u_long bufsize;
2943 	struct inpcb *inp = tp->t_inpcb;
2944 	struct socket *so;
2945 #ifdef INET6
2946 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2947 	size_t min_protoh = isipv6 ?
2948 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2949 			    sizeof(struct tcpiphdr);
2950 #else
2951 	const boolean_t isipv6 = FALSE;
2952 	const size_t min_protoh = sizeof(struct tcpiphdr);
2953 #endif
2954 
2955 	if (isipv6)
2956 		rt = tcp_rtlookup6(&inp->inp_inc);
2957 	else
2958 		rt = tcp_rtlookup(&inp->inp_inc);
2959 	if (rt == NULL) {
2960 		tp->t_maxopd = tp->t_maxseg =
2961 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2962 		return;
2963 	}
2964 	ifp = rt->rt_ifp;
2965 	so = inp->inp_socket;
2966 
2967 	/*
2968 	 * Offer == 0 means that there was no MSS on the SYN segment,
2969 	 * in this case we use either the interface mtu or tcp_mssdflt.
2970 	 *
2971 	 * An offer which is too large will be cut down later.
2972 	 */
2973 	if (offer == 0) {
2974 		if (isipv6) {
2975 			if (in6_localaddr(&inp->in6p_faddr)) {
2976 				offer = ND_IFINFO(rt->rt_ifp)->linkmtu -
2977 					min_protoh;
2978 			} else {
2979 				offer = tcp_v6mssdflt;
2980 			}
2981 		} else {
2982 			if (in_localaddr(inp->inp_faddr))
2983 				offer = ifp->if_mtu - min_protoh;
2984 			else
2985 				offer = tcp_mssdflt;
2986 		}
2987 	}
2988 
2989 	/*
2990 	 * Prevent DoS attack with too small MSS. Round up
2991 	 * to at least minmss.
2992 	 *
2993 	 * Sanity check: make sure that maxopd will be large
2994 	 * enough to allow some data on segments even is the
2995 	 * all the option space is used (40bytes).  Otherwise
2996 	 * funny things may happen in tcp_output.
2997 	 */
2998 	offer = max(offer, tcp_minmss);
2999 	offer = max(offer, 64);
3000 
3001 	rt->rt_rmx.rmx_mssopt = offer;
3002 
3003 	/*
3004 	 * While we're here, check if there's an initial rtt
3005 	 * or rttvar.  Convert from the route-table units
3006 	 * to scaled multiples of the slow timeout timer.
3007 	 */
3008 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
3009 		/*
3010 		 * XXX the lock bit for RTT indicates that the value
3011 		 * is also a minimum value; this is subject to time.
3012 		 */
3013 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
3014 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
3015 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
3016 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
3017 		tcpstat.tcps_usedrtt++;
3018 		if (rt->rt_rmx.rmx_rttvar) {
3019 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
3020 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
3021 			tcpstat.tcps_usedrttvar++;
3022 		} else {
3023 			/* default variation is +- 1 rtt */
3024 			tp->t_rttvar =
3025 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3026 		}
3027 		TCPT_RANGESET(tp->t_rxtcur,
3028 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3029 			      tp->t_rttmin, TCPTV_REXMTMAX);
3030 	}
3031 
3032 	/*
3033 	 * if there's an mtu associated with the route, use it
3034 	 * else, use the link mtu.  Take the smaller of mss or offer
3035 	 * as our final mss.
3036 	 */
3037 	if (rt->rt_rmx.rmx_mtu) {
3038 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
3039 	} else {
3040 		if (isipv6)
3041 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
3042 		else
3043 			mss = ifp->if_mtu - min_protoh;
3044 	}
3045 	mss = min(mss, offer);
3046 
3047 	/*
3048 	 * maxopd stores the maximum length of data AND options
3049 	 * in a segment; maxseg is the amount of data in a normal
3050 	 * segment.  We need to store this value (maxopd) apart
3051 	 * from maxseg, because now every segment carries options
3052 	 * and thus we normally have somewhat less data in segments.
3053 	 */
3054 	tp->t_maxopd = mss;
3055 
3056 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
3057 	    ((tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3058 		mss -= TCPOLEN_TSTAMP_APPA;
3059 
3060 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3061 	if (mss > MCLBYTES)
3062 		mss &= ~(MCLBYTES-1);
3063 #else
3064 	if (mss > MCLBYTES)
3065 		mss = mss / MCLBYTES * MCLBYTES;
3066 #endif
3067 	/*
3068 	 * If there's a pipesize, change the socket buffer
3069 	 * to that size.  Make the socket buffers an integral
3070 	 * number of mss units; if the mss is larger than
3071 	 * the socket buffer, decrease the mss.
3072 	 */
3073 #ifdef RTV_SPIPE
3074 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
3075 #endif
3076 		bufsize = so->so_snd.ssb_hiwat;
3077 	if (bufsize < mss)
3078 		mss = bufsize;
3079 	else {
3080 		bufsize = roundup(bufsize, mss);
3081 		if (bufsize > sb_max)
3082 			bufsize = sb_max;
3083 		if (bufsize > so->so_snd.ssb_hiwat)
3084 			ssb_reserve(&so->so_snd, bufsize, so, NULL);
3085 	}
3086 	tp->t_maxseg = mss;
3087 
3088 #ifdef RTV_RPIPE
3089 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3090 #endif
3091 		bufsize = so->so_rcv.ssb_hiwat;
3092 	if (bufsize > mss) {
3093 		bufsize = roundup(bufsize, mss);
3094 		if (bufsize > sb_max)
3095 			bufsize = sb_max;
3096 		if (bufsize > so->so_rcv.ssb_hiwat) {
3097 			lwkt_gettoken(&so->so_rcv.ssb_token);
3098 			ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3099 			lwkt_reltoken(&so->so_rcv.ssb_token);
3100 		}
3101 	}
3102 
3103 	/*
3104 	 * Set the slow-start flight size
3105 	 *
3106 	 * NOTE: t_maxseg must have been configured!
3107 	 */
3108 	tp->snd_cwnd = tcp_initial_window(tp);
3109 
3110 	if (rt->rt_rmx.rmx_ssthresh) {
3111 		/*
3112 		 * There's some sort of gateway or interface
3113 		 * buffer limit on the path.  Use this to set
3114 		 * the slow start threshhold, but set the
3115 		 * threshold to no less than 2*mss.
3116 		 */
3117 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3118 		tcpstat.tcps_usedssthresh++;
3119 	}
3120 }
3121 
3122 /*
3123  * Determine the MSS option to send on an outgoing SYN.
3124  */
3125 int
3126 tcp_mssopt(struct tcpcb *tp)
3127 {
3128 	struct rtentry *rt;
3129 #ifdef INET6
3130 	boolean_t isipv6 =
3131 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3132 	int min_protoh = isipv6 ?
3133 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3134 			     sizeof(struct tcpiphdr);
3135 #else
3136 	const boolean_t isipv6 = FALSE;
3137 	const size_t min_protoh = sizeof(struct tcpiphdr);
3138 #endif
3139 
3140 	if (isipv6)
3141 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3142 	else
3143 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3144 	if (rt == NULL)
3145 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3146 
3147 	return (rt->rt_ifp->if_mtu - min_protoh);
3148 }
3149 
3150 /*
3151  * When a partial ack arrives, force the retransmission of the
3152  * next unacknowledged segment.  Do not exit Fast Recovery.
3153  *
3154  * Implement the Slow-but-Steady variant of NewReno by restarting the
3155  * the retransmission timer.  Turn it off here so it can be restarted
3156  * later in tcp_output().
3157  */
3158 static void
3159 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3160 {
3161 	tcp_seq old_snd_nxt = tp->snd_nxt;
3162 	u_long ocwnd = tp->snd_cwnd;
3163 
3164 	tcp_callout_stop(tp, tp->tt_rexmt);
3165 	tp->t_rtttime = 0;
3166 	tp->snd_nxt = th->th_ack;
3167 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3168 	tp->snd_cwnd = tp->t_maxseg;
3169 	tp->t_flags |= TF_ACKNOW;
3170 	tcp_output(tp);
3171 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3172 		tp->snd_nxt = old_snd_nxt;
3173 	/* partial window deflation */
3174 	if (ocwnd > acked)
3175 		tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3176 	else
3177 		tp->snd_cwnd = tp->t_maxseg;
3178 }
3179 
3180 /*
3181  * In contrast to the Slow-but-Steady NewReno variant,
3182  * we do not reset the retransmission timer for SACK retransmissions,
3183  * except when retransmitting snd_una.
3184  */
3185 static void
3186 tcp_sack_rexmt(struct tcpcb *tp, struct tcphdr *th)
3187 {
3188 	tcp_seq old_snd_nxt = tp->snd_nxt;
3189 	u_long ocwnd = tp->snd_cwnd;
3190 	uint32_t pipe;
3191 	int nseg = 0;		/* consecutive new segments */
3192 	int nseg_rexmt = 0;	/* retransmitted segments */
3193 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3194 
3195 	tp->t_rtttime = 0;
3196 	pipe = tcp_sack_compute_pipe(tp);
3197 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3198 	    (!tcp_do_smartsack || nseg < MAXBURST)) {
3199 		tcp_seq old_snd_max, old_rexmt_high, nextrexmt;
3200 		uint32_t sent, seglen;
3201 		boolean_t rescue;
3202 		int error;
3203 
3204 		old_rexmt_high = tp->rexmt_high;
3205 	    	if (!tcp_sack_nextseg(tp, &nextrexmt, &seglen, &rescue)) {
3206 			tp->rexmt_high = old_rexmt_high;
3207 			break;
3208 		}
3209 
3210 		/*
3211 		 * If the next tranmission is a rescue retranmission,
3212 		 * we check whether we have already sent some data
3213 		 * (either new segments or retransmitted segments)
3214 		 * into the the network or not.  Since the idea of rescue
3215 		 * retransmission is to sustain ACK clock, as long as
3216 		 * some segments are in the network, ACK clock will be
3217 		 * kept ticking.
3218 		 */
3219 		if (rescue && (nseg_rexmt > 0 || nseg > 0)) {
3220 			tp->rexmt_high = old_rexmt_high;
3221 			break;
3222 		}
3223 
3224 		if (nextrexmt == tp->snd_max)
3225 			++nseg;
3226 		else
3227 			++nseg_rexmt;
3228 		tp->snd_nxt = nextrexmt;
3229 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3230 		old_snd_max = tp->snd_max;
3231 		if (nextrexmt == tp->snd_una)
3232 			tcp_callout_stop(tp, tp->tt_rexmt);
3233 		error = tcp_output(tp);
3234 		if (error != 0) {
3235 			tp->rexmt_high = old_rexmt_high;
3236 			break;
3237 		}
3238 		sent = tp->snd_nxt - nextrexmt;
3239 		if (sent <= 0) {
3240 			tp->rexmt_high = old_rexmt_high;
3241 			break;
3242 		}
3243 		pipe += sent;
3244 		tcpstat.tcps_sndsackpack++;
3245 		tcpstat.tcps_sndsackbyte += sent;
3246 
3247 		if (rescue) {
3248 			tcpstat.tcps_sackrescue++;
3249 			tp->rexmt_rescue = tp->snd_nxt;
3250 			tp->t_flags |= TF_SACKRESCUED;
3251 			break;
3252 		}
3253 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3254 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt)) {
3255 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3256 			if (tcp_aggressive_rescuesack &&
3257 			    (tp->t_flags & TF_SACKRESCUED) &&
3258 			    SEQ_LT(tp->rexmt_rescue, tp->rexmt_high)) {
3259 				/* Drag RescueRxt along with HighRxt */
3260 				tp->rexmt_rescue = tp->rexmt_high;
3261 			}
3262 		}
3263 	}
3264 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3265 		tp->snd_nxt = old_snd_nxt;
3266 	tp->snd_cwnd = ocwnd;
3267 }
3268 
3269 /*
3270  * Reset idle time and keep-alive timer, typically called when a valid
3271  * tcp packet is received but may also be called when FASTKEEP is set
3272  * to prevent the previous long-timeout from calculating to a drop.
3273  *
3274  * Only update t_rcvtime for non-SYN packets.
3275  *
3276  * Handle the case where one side thinks the connection is established
3277  * but the other side has, say, rebooted without cleaning out the
3278  * connection.   The SYNs could be construed as an attack and wind
3279  * up ignored, but in case it isn't an attack we can validate the
3280  * connection by forcing a keepalive.
3281  */
3282 void
3283 tcp_timer_keep_activity(struct tcpcb *tp, int thflags)
3284 {
3285 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3286 		if ((thflags & (TH_SYN | TH_ACK)) == TH_SYN) {
3287 			tp->t_flags |= TF_KEEPALIVE;
3288 			tcp_callout_reset(tp, tp->tt_keep, hz / 2,
3289 					  tcp_timer_keep);
3290 		} else {
3291 			tp->t_rcvtime = ticks;
3292 			tp->t_flags &= ~TF_KEEPALIVE;
3293 			tcp_callout_reset(tp, tp->tt_keep,
3294 					  tp->t_keepidle,
3295 					  tcp_timer_keep);
3296 		}
3297 	}
3298 }
3299 
3300 static int
3301 tcp_rmx_msl(const struct tcpcb *tp)
3302 {
3303 	struct rtentry *rt;
3304 	struct inpcb *inp = tp->t_inpcb;
3305 	int msl;
3306 #ifdef INET6
3307 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3308 #else
3309 	const boolean_t isipv6 = FALSE;
3310 #endif
3311 
3312 	if (isipv6)
3313 		rt = tcp_rtlookup6(&inp->inp_inc);
3314 	else
3315 		rt = tcp_rtlookup(&inp->inp_inc);
3316 	if (rt == NULL || rt->rt_rmx.rmx_msl == 0)
3317 		return tcp_msl;
3318 
3319 	msl = (rt->rt_rmx.rmx_msl * hz) / 1000;
3320 	if (msl == 0)
3321 		msl = 1;
3322 
3323 	return msl;
3324 }
3325 
3326 static void
3327 tcp_established(struct tcpcb *tp)
3328 {
3329 	tp->t_state = TCPS_ESTABLISHED;
3330 	tcp_callout_reset(tp, tp->tt_keep, tp->t_keepidle, tcp_timer_keep);
3331 
3332 	if (tp->t_rxtsyn > 0) {
3333 		/*
3334 		 * RFC6298:
3335 		 * "If the timer expires awaiting the ACK of a SYN segment
3336 		 *  and the TCP implementation is using an RTO less than 3
3337 		 *  seconds, the RTO MUST be re-initialized to 3 seconds
3338 		 *  when data transmission begins"
3339 		 */
3340 		if (tp->t_rxtcur < TCPTV_RTOBASE3)
3341 			tp->t_rxtcur = TCPTV_RTOBASE3;
3342 	}
3343 }
3344