xref: /dflybsd-src/sys/netinet/tcp_input.c (revision d2a4c6204a77aaec984b85e9754b5aa783192476)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
53  *	The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *	This product includes software developed by the University of
66  *	California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
84  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
85  * $DragonFly: src/sys/netinet/tcp_input.c,v 1.59 2005/04/18 22:41:23 hsu Exp $
86  */
87 
88 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
89 #include "opt_inet6.h"
90 #include "opt_ipsec.h"
91 #include "opt_tcpdebug.h"
92 #include "opt_tcp_input.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/sysctl.h>
98 #include <sys/malloc.h>
99 #include <sys/mbuf.h>
100 #include <sys/proc.h>		/* for proc0 declaration */
101 #include <sys/protosw.h>
102 #include <sys/socket.h>
103 #include <sys/socketvar.h>
104 #include <sys/syslog.h>
105 #include <sys/in_cksum.h>
106 
107 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
108 #include <machine/stdarg.h>
109 
110 #include <net/if.h>
111 #include <net/route.h>
112 
113 #include <netinet/in.h>
114 #include <netinet/in_systm.h>
115 #include <netinet/ip.h>
116 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
117 #include <netinet/in_var.h>
118 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
119 #include <netinet/in_pcb.h>
120 #include <netinet/ip_var.h>
121 #include <netinet/ip6.h>
122 #include <netinet/icmp6.h>
123 #include <netinet6/nd6.h>
124 #include <netinet6/ip6_var.h>
125 #include <netinet6/in6_pcb.h>
126 #include <netinet/tcp.h>
127 #include <netinet/tcp_fsm.h>
128 #include <netinet/tcp_seq.h>
129 #include <netinet/tcp_timer.h>
130 #include <netinet/tcp_var.h>
131 #include <netinet6/tcp6_var.h>
132 #include <netinet/tcpip.h>
133 
134 #ifdef TCPDEBUG
135 #include <netinet/tcp_debug.h>
136 
137 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
138 struct tcphdr tcp_savetcp;
139 #endif
140 
141 #ifdef FAST_IPSEC
142 #include <netproto/ipsec/ipsec.h>
143 #include <netproto/ipsec/ipsec6.h>
144 #endif
145 
146 #ifdef IPSEC
147 #include <netinet6/ipsec.h>
148 #include <netinet6/ipsec6.h>
149 #include <netproto/key/key.h>
150 #endif
151 
152 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
153 
154 tcp_cc	tcp_ccgen;
155 static int log_in_vain = 0;
156 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
157     &log_in_vain, 0, "Log all incoming TCP connections");
158 
159 static int blackhole = 0;
160 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
161     &blackhole, 0, "Do not send RST when dropping refused connections");
162 
163 int tcp_delack_enabled = 1;
164 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
165     &tcp_delack_enabled, 0,
166     "Delay ACK to try and piggyback it onto a data packet");
167 
168 #ifdef TCP_DROP_SYNFIN
169 static int drop_synfin = 0;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
171     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
172 #endif
173 
174 static int tcp_do_limitedtransmit = 1;
175 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
176     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
177 
178 static int tcp_do_early_retransmit = 1;
179 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
180     &tcp_do_early_retransmit, 0, "Early retransmit");
181 
182 static int tcp_aggregate_acks = 1;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
184     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
185 
186 int tcp_do_rfc3390 = 1;
187 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
188     &tcp_do_rfc3390, 0,
189     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
190 
191 static int tcp_do_eifel_detect = 1;
192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
193     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
194 
195 /*
196  * Define as tunable for easy testing with SACK on and off.
197  * Warning:  do not change setting in the middle of an existing active TCP flow,
198  *   else strange things might happen to that flow.
199  */
200 int tcp_do_sack = 1;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
202     &tcp_do_sack, 0, "Enable SACK Algorithms");
203 
204 int tcp_do_smartsack = 1;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
206     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
207 
208 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
209     "TCP Segment Reassembly Queue");
210 
211 int tcp_reass_maxseg = 0;
212 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
213     &tcp_reass_maxseg, 0,
214     "Global maximum number of TCP Segments in Reassembly Queue");
215 
216 int tcp_reass_qsize = 0;
217 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
218     &tcp_reass_qsize, 0,
219     "Global number of TCP Segments currently in Reassembly Queue");
220 
221 static int tcp_reass_overflows = 0;
222 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
223     &tcp_reass_overflows, 0,
224     "Global number of TCP Segment Reassembly Queue Overflows");
225 
226 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t);
227 static void	 tcp_pulloutofband(struct socket *,
228 		     struct tcphdr *, struct mbuf *, int);
229 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
230 		     struct mbuf *);
231 static void	 tcp_xmit_timer(struct tcpcb *, int);
232 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
233 static void	 tcp_sack_rexmt(struct tcpcb *, struct tcphdr *);
234 
235 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
236 #ifdef INET6
237 #define ND6_HINT(tp) \
238 do { \
239 	if ((tp) && (tp)->t_inpcb && \
240 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
241 	    (tp)->t_inpcb->in6p_route.ro_rt) \
242 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
243 } while (0)
244 #else
245 #define ND6_HINT(tp)
246 #endif
247 
248 /*
249  * Indicate whether this ack should be delayed.  We can delay the ack if
250  *	- delayed acks are enabled and
251  *	- there is no delayed ack timer in progress and
252  *	- our last ack wasn't a 0-sized window.  We never want to delay
253  *	  the ack that opens up a 0-sized window.
254  */
255 #define DELAY_ACK(tp) \
256 	(tcp_delack_enabled && !callout_pending(tp->tt_delack) && \
257 	!(tp->t_flags & TF_RXWIN0SENT))
258 
259 #define acceptable_window_update(tp, th, tiwin)				\
260     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
261      (tp->snd_wl1 == th->th_seq &&					\
262       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
263        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
264 
265 static int
266 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
267 {
268 	struct tseg_qent *q;
269 	struct tseg_qent *p = NULL;
270 	struct tseg_qent *te;
271 	struct socket *so = tp->t_inpcb->inp_socket;
272 	int flags;
273 
274 	/*
275 	 * Call with th == NULL after become established to
276 	 * force pre-ESTABLISHED data up to user socket.
277 	 */
278 	if (th == NULL)
279 		goto present;
280 
281 	/*
282 	 * Limit the number of segments in the reassembly queue to prevent
283 	 * holding on to too many segments (and thus running out of mbufs).
284 	 * Make sure to let the missing segment through which caused this
285 	 * queue.  Always keep one global queue entry spare to be able to
286 	 * process the missing segment.
287 	 */
288 	if (th->th_seq != tp->rcv_nxt &&
289 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
290 		tcp_reass_overflows++;
291 		tcpstat.tcps_rcvmemdrop++;
292 		m_freem(m);
293 		/* no SACK block to report */
294 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
295 		return (0);
296 	}
297 
298 	/* Allocate a new queue entry. */
299 	MALLOC(te, struct tseg_qent *, sizeof(struct tseg_qent), M_TSEGQ,
300 	       M_INTWAIT | M_NULLOK);
301 	if (te == NULL) {
302 		tcpstat.tcps_rcvmemdrop++;
303 		m_freem(m);
304 		/* no SACK block to report */
305 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
306 		return (0);
307 	}
308 	tcp_reass_qsize++;
309 
310 	/*
311 	 * Find a segment which begins after this one does.
312 	 */
313 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
314 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
315 			break;
316 		p = q;
317 	}
318 
319 	/*
320 	 * If there is a preceding segment, it may provide some of
321 	 * our data already.  If so, drop the data from the incoming
322 	 * segment.  If it provides all of our data, drop us.
323 	 */
324 	if (p != NULL) {
325 		tcp_seq_diff_t i;
326 
327 		/* conversion to int (in i) handles seq wraparound */
328 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
329 		if (i > 0) {		/* overlaps preceding segment */
330 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
331 			/* enclosing block starts w/ preceding segment */
332 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
333 			if (i >= *tlenp) {
334 				/* preceding encloses incoming segment */
335 				tp->encloseblk.rblk_end = p->tqe_th->th_seq +
336 				    p->tqe_len;
337 				tcpstat.tcps_rcvduppack++;
338 				tcpstat.tcps_rcvdupbyte += *tlenp;
339 				m_freem(m);
340 				free(te, M_TSEGQ);
341 				tcp_reass_qsize--;
342 				/*
343 				 * Try to present any queued data
344 				 * at the left window edge to the user.
345 				 * This is needed after the 3-WHS
346 				 * completes.
347 				 */
348 				goto present;	/* ??? */
349 			}
350 			m_adj(m, i);
351 			*tlenp -= i;
352 			th->th_seq += i;
353 			/* incoming segment end is enclosing block end */
354 			tp->encloseblk.rblk_end = th->th_seq + *tlenp +
355 			    ((th->th_flags & TH_FIN) != 0);
356 			/* trim end of reported D-SACK block */
357 			tp->reportblk.rblk_end = th->th_seq;
358 		}
359 	}
360 	tcpstat.tcps_rcvoopack++;
361 	tcpstat.tcps_rcvoobyte += *tlenp;
362 
363 	/*
364 	 * While we overlap succeeding segments trim them or,
365 	 * if they are completely covered, dequeue them.
366 	 */
367 	while (q) {
368 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
369 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
370 		struct tseg_qent *nq;
371 
372 		if (i <= 0)
373 			break;
374 		if (!(tp->t_flags & TF_DUPSEG)) {    /* first time through */
375 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
376 			tp->encloseblk = tp->reportblk;
377 			/* report trailing duplicate D-SACK segment */
378 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
379 		}
380 		if ((tp->t_flags & TF_ENCLOSESEG) &&
381 		    SEQ_GT(qend, tp->encloseblk.rblk_end)) {
382 			/* extend enclosing block if one exists */
383 			tp->encloseblk.rblk_end = qend;
384 		}
385 		if (i < q->tqe_len) {
386 			q->tqe_th->th_seq += i;
387 			q->tqe_len -= i;
388 			m_adj(q->tqe_m, i);
389 			break;
390 		}
391 
392 		nq = LIST_NEXT(q, tqe_q);
393 		LIST_REMOVE(q, tqe_q);
394 		m_freem(q->tqe_m);
395 		free(q, M_TSEGQ);
396 		tcp_reass_qsize--;
397 		q = nq;
398 	}
399 
400 	/* Insert the new segment queue entry into place. */
401 	te->tqe_m = m;
402 	te->tqe_th = th;
403 	te->tqe_len = *tlenp;
404 
405 	/* check if can coalesce with following segment */
406 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
407 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
408 
409 		te->tqe_len += q->tqe_len;
410 		if (q->tqe_th->th_flags & TH_FIN)
411 			te->tqe_th->th_flags |= TH_FIN;
412 		m_cat(te->tqe_m, q->tqe_m);
413 		tp->encloseblk.rblk_end = tend;
414 		/*
415 		 * When not reporting a duplicate segment, use
416 		 * the larger enclosing block as the SACK block.
417 		 */
418 		if (!(tp->t_flags & TF_DUPSEG))
419 			tp->reportblk.rblk_end = tend;
420 		LIST_REMOVE(q, tqe_q);
421 		free(q, M_TSEGQ);
422 		tcp_reass_qsize--;
423 	}
424 
425 	if (p == NULL) {
426 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
427 	} else {
428 		/* check if can coalesce with preceding segment */
429 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
430 			p->tqe_len += te->tqe_len;
431 			m_cat(p->tqe_m, te->tqe_m);
432 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
433 			/*
434 			 * When not reporting a duplicate segment, use
435 			 * the larger enclosing block as the SACK block.
436 			 */
437 			if (!(tp->t_flags & TF_DUPSEG))
438 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
439 			free(te, M_TSEGQ);
440 			tcp_reass_qsize--;
441 		} else
442 			LIST_INSERT_AFTER(p, te, tqe_q);
443 	}
444 
445 present:
446 	/*
447 	 * Present data to user, advancing rcv_nxt through
448 	 * completed sequence space.
449 	 */
450 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
451 		return (0);
452 	q = LIST_FIRST(&tp->t_segq);
453 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
454 		return (0);
455 	tp->rcv_nxt += q->tqe_len;
456 	if (!(tp->t_flags & TF_DUPSEG))	{
457 		/* no SACK block to report since ACK advanced */
458 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
459 	}
460 	/* no enclosing block to report since ACK advanced */
461 	tp->t_flags &= ~TF_ENCLOSESEG;
462 	flags = q->tqe_th->th_flags & TH_FIN;
463 	LIST_REMOVE(q, tqe_q);
464 	KASSERT(LIST_EMPTY(&tp->t_segq) ||
465 		LIST_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
466 		("segment not coalesced"));
467 	if (so->so_state & SS_CANTRCVMORE)
468 		m_freem(q->tqe_m);
469 	else
470 		sbappendstream(&so->so_rcv, q->tqe_m);
471 	free(q, M_TSEGQ);
472 	tcp_reass_qsize--;
473 	ND6_HINT(tp);
474 	sorwakeup(so);
475 	return (flags);
476 }
477 
478 /*
479  * TCP input routine, follows pages 65-76 of the
480  * protocol specification dated September, 1981 very closely.
481  */
482 #ifdef INET6
483 int
484 tcp6_input(struct mbuf **mp, int *offp, int proto)
485 {
486 	struct mbuf *m = *mp;
487 	struct in6_ifaddr *ia6;
488 
489 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
490 
491 	/*
492 	 * draft-itojun-ipv6-tcp-to-anycast
493 	 * better place to put this in?
494 	 */
495 	ia6 = ip6_getdstifaddr(m);
496 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
497 		struct ip6_hdr *ip6;
498 
499 		ip6 = mtod(m, struct ip6_hdr *);
500 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
501 			    offsetof(struct ip6_hdr, ip6_dst));
502 		return (IPPROTO_DONE);
503 	}
504 
505 	tcp_input(m, *offp, proto);
506 	return (IPPROTO_DONE);
507 }
508 #endif
509 
510 void
511 tcp_input(struct mbuf *m, ...)
512 {
513 	__va_list ap;
514 	int off0, proto;
515 	struct tcphdr *th;
516 	struct ip *ip = NULL;
517 	struct ipovly *ipov;
518 	struct inpcb *inp = NULL;
519 	u_char *optp = NULL;
520 	int optlen = 0;
521 	int len, tlen, off;
522 	int drop_hdrlen;
523 	struct tcpcb *tp = NULL;
524 	int thflags;
525 	struct socket *so = 0;
526 	int todrop, acked;
527 	boolean_t ourfinisacked, needoutput = FALSE;
528 	u_long tiwin;
529 	int recvwin;
530 	struct tcpopt to;		/* options in this segment */
531 	struct rmxp_tao *taop;		/* pointer to our TAO cache entry */
532 	struct rmxp_tao	tao_noncached;	/* in case there's no cached entry */
533 	struct sockaddr_in *next_hop = NULL;
534 	int rstreason; /* For badport_bandlim accounting purposes */
535 	int cpu;
536 	struct ip6_hdr *ip6 = NULL;
537 #ifdef INET6
538 	boolean_t isipv6;
539 #else
540 	const boolean_t isipv6 = FALSE;
541 #endif
542 #ifdef TCPDEBUG
543 	short ostate = 0;
544 #endif
545 
546 	__va_start(ap, m);
547 	off0 = __va_arg(ap, int);
548 	proto = __va_arg(ap, int);
549 	__va_end(ap);
550 
551 	tcpstat.tcps_rcvtotal++;
552 
553 	/* Grab info from and strip MT_TAG mbufs prepended to the chain. */
554 	while  (m->m_type == MT_TAG) {
555 		if (m->_m_tag_id == PACKET_TAG_IPFORWARD)
556 			next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
557 		m = m->m_next;
558 	}
559 
560 #ifdef INET6
561 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
562 #endif
563 
564 	if (isipv6) {
565 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
566 		ip6 = mtod(m, struct ip6_hdr *);
567 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
568 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
569 			tcpstat.tcps_rcvbadsum++;
570 			goto drop;
571 		}
572 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
573 
574 		/*
575 		 * Be proactive about unspecified IPv6 address in source.
576 		 * As we use all-zero to indicate unbounded/unconnected pcb,
577 		 * unspecified IPv6 address can be used to confuse us.
578 		 *
579 		 * Note that packets with unspecified IPv6 destination is
580 		 * already dropped in ip6_input.
581 		 */
582 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
583 			/* XXX stat */
584 			goto drop;
585 		}
586 	} else {
587 		/*
588 		 * Get IP and TCP header together in first mbuf.
589 		 * Note: IP leaves IP header in first mbuf.
590 		 */
591 		if (off0 > sizeof(struct ip)) {
592 			ip_stripoptions(m);
593 			off0 = sizeof(struct ip);
594 		}
595 		/* already checked and pulled up in ip_demux() */
596 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
597 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
598 		ip = mtod(m, struct ip *);
599 		ipov = (struct ipovly *)ip;
600 		th = (struct tcphdr *)((caddr_t)ip + off0);
601 		tlen = ip->ip_len;
602 
603 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
604 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
605 				th->th_sum = m->m_pkthdr.csum_data;
606 			else
607 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
608 						ip->ip_dst.s_addr,
609 						htonl(m->m_pkthdr.csum_data +
610 							ip->ip_len +
611 							IPPROTO_TCP));
612 			th->th_sum ^= 0xffff;
613 		} else {
614 			/*
615 			 * Checksum extended TCP header and data.
616 			 */
617 			len = sizeof(struct ip) + tlen;
618 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
619 			ipov->ih_len = (u_short)tlen;
620 			ipov->ih_len = htons(ipov->ih_len);
621 			th->th_sum = in_cksum(m, len);
622 		}
623 		if (th->th_sum) {
624 			tcpstat.tcps_rcvbadsum++;
625 			goto drop;
626 		}
627 #ifdef INET6
628 		/* Re-initialization for later version check */
629 		ip->ip_v = IPVERSION;
630 #endif
631 	}
632 
633 	/*
634 	 * Check that TCP offset makes sense,
635 	 * pull out TCP options and adjust length.		XXX
636 	 */
637 	off = th->th_off << 2;
638 	/* already checked and pulled up in ip_demux() */
639 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
640 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
641 	tlen -= off;	/* tlen is used instead of ti->ti_len */
642 	if (off > sizeof(struct tcphdr)) {
643 		if (isipv6) {
644 			IP6_EXTHDR_CHECK(m, off0, off, );
645 			ip6 = mtod(m, struct ip6_hdr *);
646 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
647 		} else {
648 			/* already pulled up in ip_demux() */
649 			KASSERT(m->m_len >= sizeof(struct ip) + off,
650 			    ("TCP header and options not in one mbuf: "
651 			     "m_len %d, off %d", m->m_len, off));
652 		}
653 		optlen = off - sizeof(struct tcphdr);
654 		optp = (u_char *)(th + 1);
655 	}
656 	thflags = th->th_flags;
657 
658 #ifdef TCP_DROP_SYNFIN
659 	/*
660 	 * If the drop_synfin option is enabled, drop all packets with
661 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
662 	 * identifying the TCP/IP stack.
663 	 *
664 	 * This is a violation of the TCP specification.
665 	 */
666 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
667 		goto drop;
668 #endif
669 
670 	/*
671 	 * Convert TCP protocol specific fields to host format.
672 	 */
673 	th->th_seq = ntohl(th->th_seq);
674 	th->th_ack = ntohl(th->th_ack);
675 	th->th_win = ntohs(th->th_win);
676 	th->th_urp = ntohs(th->th_urp);
677 
678 	/*
679 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
680 	 * until after ip6_savecontrol() is called and before other functions
681 	 * which don't want those proto headers.
682 	 * Because ip6_savecontrol() is going to parse the mbuf to
683 	 * search for data to be passed up to user-land, it wants mbuf
684 	 * parameters to be unchanged.
685 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
686 	 * latest version of the advanced API (20020110).
687 	 */
688 	drop_hdrlen = off0 + off;
689 
690 	/*
691 	 * Locate pcb for segment.
692 	 */
693 findpcb:
694 	/* IPFIREWALL_FORWARD section */
695 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
696 		/*
697 		 * Transparently forwarded. Pretend to be the destination.
698 		 * already got one like this?
699 		 */
700 		cpu = mycpu->gd_cpuid;
701 		inp = in_pcblookup_hash(&tcbinfo[cpu],
702 					ip->ip_src, th->th_sport,
703 					ip->ip_dst, th->th_dport,
704 					0, m->m_pkthdr.rcvif);
705 		if (!inp) {
706 			/*
707 			 * It's new.  Try to find the ambushing socket.
708 			 */
709 
710 			/*
711 			 * The rest of the ipfw code stores the port in
712 			 * host order.  XXX
713 			 * (The IP address is still in network order.)
714 			 */
715 			in_port_t dport = next_hop->sin_port ?
716 						htons(next_hop->sin_port) :
717 						th->th_dport;
718 
719 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
720 					  next_hop->sin_addr.s_addr, dport);
721 			inp = in_pcblookup_hash(&tcbinfo[cpu],
722 						ip->ip_src, th->th_sport,
723 						next_hop->sin_addr, dport,
724 						1, m->m_pkthdr.rcvif);
725 		}
726 	} else {
727 		if (isipv6) {
728 			inp = in6_pcblookup_hash(&tcbinfo[0],
729 						 &ip6->ip6_src, th->th_sport,
730 						 &ip6->ip6_dst, th->th_dport,
731 						 1, m->m_pkthdr.rcvif);
732 		} else {
733 			cpu = mycpu->gd_cpuid;
734 			inp = in_pcblookup_hash(&tcbinfo[cpu],
735 						ip->ip_src, th->th_sport,
736 						ip->ip_dst, th->th_dport,
737 						1, m->m_pkthdr.rcvif);
738 		}
739 	}
740 
741 	/*
742 	 * If the state is CLOSED (i.e., TCB does not exist) then
743 	 * all data in the incoming segment is discarded.
744 	 * If the TCB exists but is in CLOSED state, it is embryonic,
745 	 * but should either do a listen or a connect soon.
746 	 */
747 	if (inp == NULL) {
748 		if (log_in_vain) {
749 #ifdef INET6
750 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
751 #else
752 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
753 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
754 #endif
755 			if (isipv6) {
756 				strcpy(dbuf, "[");
757 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
758 				strcat(dbuf, "]");
759 				strcpy(sbuf, "[");
760 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
761 				strcat(sbuf, "]");
762 			} else {
763 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
764 				strcpy(sbuf, inet_ntoa(ip->ip_src));
765 			}
766 			switch (log_in_vain) {
767 			case 1:
768 				if (!(thflags & TH_SYN))
769 					break;
770 			case 2:
771 				log(LOG_INFO,
772 				    "Connection attempt to TCP %s:%d "
773 				    "from %s:%d flags:0x%02x\n",
774 				    dbuf, ntohs(th->th_dport), sbuf,
775 				    ntohs(th->th_sport), thflags);
776 				break;
777 			default:
778 				break;
779 			}
780 		}
781 		if (blackhole) {
782 			switch (blackhole) {
783 			case 1:
784 				if (thflags & TH_SYN)
785 					goto drop;
786 				break;
787 			case 2:
788 				goto drop;
789 			default:
790 				goto drop;
791 			}
792 		}
793 		rstreason = BANDLIM_RST_CLOSEDPORT;
794 		goto dropwithreset;
795 	}
796 
797 #ifdef IPSEC
798 	if (isipv6) {
799 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
800 			ipsec6stat.in_polvio++;
801 			goto drop;
802 		}
803 	} else {
804 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
805 			ipsecstat.in_polvio++;
806 			goto drop;
807 		}
808 	}
809 #endif
810 #ifdef FAST_IPSEC
811 	if (isipv6) {
812 		if (ipsec6_in_reject(m, inp))
813 			goto drop;
814 	} else {
815 		if (ipsec4_in_reject(m, inp))
816 			goto drop;
817 	}
818 #endif
819 
820 	tp = intotcpcb(inp);
821 	if (tp == NULL) {
822 		rstreason = BANDLIM_RST_CLOSEDPORT;
823 		goto dropwithreset;
824 	}
825 	if (tp->t_state <= TCPS_CLOSED)
826 		goto drop;
827 
828 	/* Unscale the window into a 32-bit value. */
829 	if (!(thflags & TH_SYN))
830 		tiwin = th->th_win << tp->snd_scale;
831 	else
832 		tiwin = th->th_win;
833 
834 	so = inp->inp_socket;
835 
836 #ifdef TCPDEBUG
837 	if (so->so_options & SO_DEBUG) {
838 		ostate = tp->t_state;
839 		if (isipv6)
840 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
841 		else
842 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
843 		tcp_savetcp = *th;
844 	}
845 #endif
846 
847 	bzero(&to, sizeof to);
848 
849 	if (so->so_options & SO_ACCEPTCONN) {
850 		struct in_conninfo inc;
851 
852 #ifdef INET6
853 		inc.inc_isipv6 = (isipv6 == TRUE);
854 #endif
855 		if (isipv6) {
856 			inc.inc6_faddr = ip6->ip6_src;
857 			inc.inc6_laddr = ip6->ip6_dst;
858 			inc.inc6_route.ro_rt = NULL;		/* XXX */
859 		} else {
860 			inc.inc_faddr = ip->ip_src;
861 			inc.inc_laddr = ip->ip_dst;
862 			inc.inc_route.ro_rt = NULL;		/* XXX */
863 		}
864 		inc.inc_fport = th->th_sport;
865 		inc.inc_lport = th->th_dport;
866 
867 		/*
868 		 * If the state is LISTEN then ignore segment if it contains
869 		 * a RST.  If the segment contains an ACK then it is bad and
870 		 * send a RST.  If it does not contain a SYN then it is not
871 		 * interesting; drop it.
872 		 *
873 		 * If the state is SYN_RECEIVED (syncache) and seg contains
874 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
875 		 * contains a RST, check the sequence number to see if it
876 		 * is a valid reset segment.
877 		 */
878 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
879 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
880 				if (!syncache_expand(&inc, th, &so, m)) {
881 					/*
882 					 * No syncache entry, or ACK was not
883 					 * for our SYN/ACK.  Send a RST.
884 					 */
885 					tcpstat.tcps_badsyn++;
886 					rstreason = BANDLIM_RST_OPENPORT;
887 					goto dropwithreset;
888 				}
889 				if (so == NULL)
890 					/*
891 					 * Could not complete 3-way handshake,
892 					 * connection is being closed down, and
893 					 * syncache will free mbuf.
894 					 */
895 					return;
896 				/*
897 				 * Socket is created in state SYN_RECEIVED.
898 				 * Continue processing segment.
899 				 */
900 				inp = so->so_pcb;
901 				tp = intotcpcb(inp);
902 				/*
903 				 * This is what would have happened in
904 				 * tcp_output() when the SYN,ACK was sent.
905 				 */
906 				tp->snd_up = tp->snd_una;
907 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
908 				tp->last_ack_sent = tp->rcv_nxt;
909 /*
910  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
911  * until the _second_ ACK is received:
912  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
913  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
914  *	  move to ESTAB, set snd_wnd to tiwin.
915  */
916 				tp->snd_wnd = tiwin;	/* unscaled */
917 				goto after_listen;
918 			}
919 			if (thflags & TH_RST) {
920 				syncache_chkrst(&inc, th);
921 				goto drop;
922 			}
923 			if (thflags & TH_ACK) {
924 				syncache_badack(&inc);
925 				tcpstat.tcps_badsyn++;
926 				rstreason = BANDLIM_RST_OPENPORT;
927 				goto dropwithreset;
928 			}
929 			goto drop;
930 		}
931 
932 		/*
933 		 * Segment's flags are (SYN) or (SYN | FIN).
934 		 */
935 #ifdef INET6
936 		/*
937 		 * If deprecated address is forbidden,
938 		 * we do not accept SYN to deprecated interface
939 		 * address to prevent any new inbound connection from
940 		 * getting established.
941 		 * When we do not accept SYN, we send a TCP RST,
942 		 * with deprecated source address (instead of dropping
943 		 * it).  We compromise it as it is much better for peer
944 		 * to send a RST, and RST will be the final packet
945 		 * for the exchange.
946 		 *
947 		 * If we do not forbid deprecated addresses, we accept
948 		 * the SYN packet.  RFC2462 does not suggest dropping
949 		 * SYN in this case.
950 		 * If we decipher RFC2462 5.5.4, it says like this:
951 		 * 1. use of deprecated addr with existing
952 		 *    communication is okay - "SHOULD continue to be
953 		 *    used"
954 		 * 2. use of it with new communication:
955 		 *   (2a) "SHOULD NOT be used if alternate address
956 		 *	  with sufficient scope is available"
957 		 *   (2b) nothing mentioned otherwise.
958 		 * Here we fall into (2b) case as we have no choice in
959 		 * our source address selection - we must obey the peer.
960 		 *
961 		 * The wording in RFC2462 is confusing, and there are
962 		 * multiple description text for deprecated address
963 		 * handling - worse, they are not exactly the same.
964 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
965 		 */
966 		if (isipv6 && !ip6_use_deprecated) {
967 			struct in6_ifaddr *ia6;
968 
969 			if ((ia6 = ip6_getdstifaddr(m)) &&
970 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
971 				tp = NULL;
972 				rstreason = BANDLIM_RST_OPENPORT;
973 				goto dropwithreset;
974 			}
975 		}
976 #endif
977 		/*
978 		 * If it is from this socket, drop it, it must be forged.
979 		 * Don't bother responding if the destination was a broadcast.
980 		 */
981 		if (th->th_dport == th->th_sport) {
982 			if (isipv6) {
983 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
984 						       &ip6->ip6_src))
985 					goto drop;
986 			} else {
987 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
988 					goto drop;
989 			}
990 		}
991 		/*
992 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
993 		 *
994 		 * Note that it is quite possible to receive unicast
995 		 * link-layer packets with a broadcast IP address. Use
996 		 * in_broadcast() to find them.
997 		 */
998 		if (m->m_flags & (M_BCAST | M_MCAST))
999 			goto drop;
1000 		if (isipv6) {
1001 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1002 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1003 				goto drop;
1004 		} else {
1005 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1006 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1007 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1008 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1009 				goto drop;
1010 		}
1011 		/*
1012 		 * SYN appears to be valid; create compressed TCP state
1013 		 * for syncache, or perform t/tcp connection.
1014 		 */
1015 		if (so->so_qlen <= so->so_qlimit) {
1016 			tcp_dooptions(&to, optp, optlen, TRUE);
1017 			if (!syncache_add(&inc, &to, th, &so, m))
1018 				goto drop;
1019 			if (so == NULL)
1020 				/*
1021 				 * Entry added to syncache, mbuf used to
1022 				 * send SYN,ACK packet.
1023 				 */
1024 				return;
1025 			/*
1026 			 * Segment passed TAO tests.
1027 			 */
1028 			inp = so->so_pcb;
1029 			tp = intotcpcb(inp);
1030 			tp->snd_wnd = tiwin;
1031 			tp->t_starttime = ticks;
1032 			tp->t_state = TCPS_ESTABLISHED;
1033 
1034 			/*
1035 			 * If there is a FIN, or if there is data and the
1036 			 * connection is local, then delay SYN,ACK(SYN) in
1037 			 * the hope of piggy-backing it on a response
1038 			 * segment.  Otherwise must send ACK now in case
1039 			 * the other side is slow starting.
1040 			 */
1041 			if (DELAY_ACK(tp) &&
1042 			    ((thflags & TH_FIN) ||
1043 			     (tlen != 0 &&
1044 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
1045 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
1046 				callout_reset(tp->tt_delack, tcp_delacktime,
1047 						tcp_timer_delack, tp);
1048 				tp->t_flags |= TF_NEEDSYN;
1049 			} else
1050 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1051 
1052 			tcpstat.tcps_connects++;
1053 			soisconnected(so);
1054 			goto trimthenstep6;
1055 		}
1056 		goto drop;
1057 	}
1058 after_listen:
1059 
1060 	/* should not happen - syncache should pick up these connections */
1061 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1062 
1063 	/*
1064 	 * Segment received on connection.
1065 	 * Reset idle time and keep-alive timer.
1066 	 */
1067 	tp->t_rcvtime = ticks;
1068 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1069 		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
1070 
1071 	/*
1072 	 * Process options.
1073 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1074 	 */
1075 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0);
1076 	if (thflags & TH_SYN) {
1077 		if (to.to_flags & TOF_SCALE) {
1078 			tp->t_flags |= TF_RCVD_SCALE;
1079 			tp->requested_s_scale = to.to_requested_s_scale;
1080 		}
1081 		if (to.to_flags & TOF_TS) {
1082 			tp->t_flags |= TF_RCVD_TSTMP;
1083 			tp->ts_recent = to.to_tsval;
1084 			tp->ts_recent_age = ticks;
1085 		}
1086 		if (to.to_flags & (TOF_CC | TOF_CCNEW))
1087 			tp->t_flags |= TF_RCVD_CC;
1088 		if (to.to_flags & TOF_MSS)
1089 			tcp_mss(tp, to.to_mss);
1090 		/*
1091 		 * Only set the TF_SACK_PERMITTED per-connection flag
1092 		 * if we got a SACK_PERMITTED option from the other side
1093 		 * and the global tcp_do_sack variable is true.
1094 		 */
1095 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1096 			tp->t_flags |= TF_SACK_PERMITTED;
1097 	}
1098 
1099 	/*
1100 	 * Header prediction: check for the two common cases
1101 	 * of a uni-directional data xfer.  If the packet has
1102 	 * no control flags, is in-sequence, the window didn't
1103 	 * change and we're not retransmitting, it's a
1104 	 * candidate.  If the length is zero and the ack moved
1105 	 * forward, we're the sender side of the xfer.  Just
1106 	 * free the data acked & wake any higher level process
1107 	 * that was blocked waiting for space.  If the length
1108 	 * is non-zero and the ack didn't move, we're the
1109 	 * receiver side.  If we're getting packets in-order
1110 	 * (the reassembly queue is empty), add the data to
1111 	 * the socket buffer and note that we need a delayed ack.
1112 	 * Make sure that the hidden state-flags are also off.
1113 	 * Since we check for TCPS_ESTABLISHED above, it can only
1114 	 * be TH_NEEDSYN.
1115 	 */
1116 	if (tp->t_state == TCPS_ESTABLISHED &&
1117 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1118 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1119 	    (!(to.to_flags & TOF_TS) ||
1120 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1121 	    /*
1122 	     * Using the CC option is compulsory if once started:
1123 	     *   the segment is OK if no T/TCP was negotiated or
1124 	     *   if the segment has a CC option equal to CCrecv
1125 	     */
1126 	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
1127 	     ((to.to_flags & TOF_CC) && to.to_cc == tp->cc_recv)) &&
1128 	    th->th_seq == tp->rcv_nxt &&
1129 	    tp->snd_nxt == tp->snd_max) {
1130 
1131 		/*
1132 		 * If last ACK falls within this segment's sequence numbers,
1133 		 * record the timestamp.
1134 		 * NOTE that the test is modified according to the latest
1135 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1136 		 */
1137 		if ((to.to_flags & TOF_TS) &&
1138 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1139 			tp->ts_recent_age = ticks;
1140 			tp->ts_recent = to.to_tsval;
1141 		}
1142 
1143 		if (tlen == 0) {
1144 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1145 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1146 			    tp->snd_cwnd >= tp->snd_wnd &&
1147 			    !IN_FASTRECOVERY(tp)) {
1148 				/*
1149 				 * This is a pure ack for outstanding data.
1150 				 */
1151 				++tcpstat.tcps_predack;
1152 				/*
1153 				 * "bad retransmit" recovery
1154 				 *
1155 				 * If Eifel detection applies, then
1156 				 * it is deterministic, so use it
1157 				 * unconditionally over the old heuristic.
1158 				 * Otherwise, fall back to the old heuristic.
1159 				 */
1160 				if (tcp_do_eifel_detect &&
1161 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1162 				    (tp->t_flags & TF_FIRSTACCACK)) {
1163 					/* Eifel detection applicable. */
1164 					if (to.to_tsecr < tp->t_rexmtTS) {
1165 						tcp_revert_congestion_state(tp);
1166 						++tcpstat.tcps_eifeldetected;
1167 					}
1168 				} else if (tp->t_rxtshift == 1 &&
1169 					   ticks < tp->t_badrxtwin) {
1170 					tcp_revert_congestion_state(tp);
1171 					++tcpstat.tcps_rttdetected;
1172 				}
1173 				tp->t_flags &= ~(TF_FIRSTACCACK |
1174 						 TF_FASTREXMT | TF_EARLYREXMT);
1175 				/*
1176 				 * Recalculate the retransmit timer / rtt.
1177 				 *
1178 				 * Some machines (certain windows boxes)
1179 				 * send broken timestamp replies during the
1180 				 * SYN+ACK phase, ignore timestamps of 0.
1181 				 */
1182 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1183 					tcp_xmit_timer(tp,
1184 						       ticks - to.to_tsecr + 1);
1185 				} else if (tp->t_rtttime &&
1186 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1187 					tcp_xmit_timer(tp,
1188 						       ticks - tp->t_rtttime);
1189 				}
1190 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1191 				acked = th->th_ack - tp->snd_una;
1192 				tcpstat.tcps_rcvackpack++;
1193 				tcpstat.tcps_rcvackbyte += acked;
1194 				sbdrop(&so->so_snd, acked);
1195 				tp->snd_recover = th->th_ack - 1;
1196 				tp->snd_una = th->th_ack;
1197 				tp->t_dupacks = 0;
1198 				/*
1199 				 * Update window information.
1200 				 */
1201 				if (tiwin != tp->snd_wnd &&
1202 				    acceptable_window_update(tp, th, tiwin)) {
1203 					/* keep track of pure window updates */
1204 					if (tp->snd_wl2 == th->th_ack &&
1205 					    tiwin > tp->snd_wnd)
1206 						tcpstat.tcps_rcvwinupd++;
1207 					tp->snd_wnd = tiwin;
1208 					tp->snd_wl1 = th->th_seq;
1209 					tp->snd_wl2 = th->th_ack;
1210 					if (tp->snd_wnd > tp->max_sndwnd)
1211 						tp->max_sndwnd = tp->snd_wnd;
1212 				}
1213 				m_freem(m);
1214 				ND6_HINT(tp); /* some progress has been done */
1215 				/*
1216 				 * If all outstanding data are acked, stop
1217 				 * retransmit timer, otherwise restart timer
1218 				 * using current (possibly backed-off) value.
1219 				 * If process is waiting for space,
1220 				 * wakeup/selwakeup/signal.  If data
1221 				 * are ready to send, let tcp_output
1222 				 * decide between more output or persist.
1223 				 */
1224 				if (tp->snd_una == tp->snd_max)
1225 					callout_stop(tp->tt_rexmt);
1226 				else if (!callout_active(tp->tt_persist))
1227 					callout_reset(tp->tt_rexmt,
1228 						      tp->t_rxtcur,
1229 						      tcp_timer_rexmt, tp);
1230 				sowwakeup(so);
1231 				if (so->so_snd.sb_cc > 0)
1232 					tcp_output(tp);
1233 				return;
1234 			}
1235 		} else if (tiwin == tp->snd_wnd &&
1236 		    th->th_ack == tp->snd_una &&
1237 		    LIST_EMPTY(&tp->t_segq) &&
1238 		    tlen <= sbspace(&so->so_rcv)) {
1239 			/*
1240 			 * This is a pure, in-sequence data packet
1241 			 * with nothing on the reassembly queue and
1242 			 * we have enough buffer space to take it.
1243 			 */
1244 			++tcpstat.tcps_preddat;
1245 			tp->rcv_nxt += tlen;
1246 			tcpstat.tcps_rcvpack++;
1247 			tcpstat.tcps_rcvbyte += tlen;
1248 			ND6_HINT(tp);	/* some progress has been done */
1249 			/*
1250 			 * Add data to socket buffer.
1251 			 */
1252 			if (so->so_state & SS_CANTRCVMORE) {
1253 				m_freem(m);
1254 			} else {
1255 				m_adj(m, drop_hdrlen); /* delayed header drop */
1256 				sbappendstream(&so->so_rcv, m);
1257 			}
1258 			sorwakeup(so);
1259 			/*
1260 			 * This code is responsible for most of the ACKs
1261 			 * the TCP stack sends back after receiving a data
1262 			 * packet.  Note that the DELAY_ACK check fails if
1263 			 * the delack timer is already running, which results
1264 			 * in an ack being sent every other packet (which is
1265 			 * what we want).
1266 			 *
1267 			 * We then further aggregate acks by not actually
1268 			 * sending one until the protocol thread has completed
1269 			 * processing the current backlog of packets.  This
1270 			 * does not delay the ack any further, but allows us
1271 			 * to take advantage of the packet aggregation that
1272 			 * high speed NICs do (usually blocks of 8-10 packets)
1273 			 * to send a single ack rather then four or five acks,
1274 			 * greatly reducing the ack rate, the return channel
1275 			 * bandwidth, and the protocol overhead on both ends.
1276 			 *
1277 			 * Since this also has the effect of slowing down
1278 			 * the exponential slow-start ramp-up, systems with
1279 			 * very large bandwidth-delay products might want
1280 			 * to turn the feature off.
1281 			 */
1282 			if (DELAY_ACK(tp)) {
1283 				callout_reset(tp->tt_delack, tcp_delacktime,
1284 				    tcp_timer_delack, tp);
1285 			} else if (tcp_aggregate_acks) {
1286 				tp->t_flags |= TF_ACKNOW;
1287 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1288 					tp->t_flags |= TF_ONOUTPUTQ;
1289 					tp->tt_cpu = mycpu->gd_cpuid;
1290 					TAILQ_INSERT_TAIL(
1291 					    &tcpcbackq[tp->tt_cpu],
1292 					    tp, t_outputq);
1293 				}
1294 			} else {
1295 				tp->t_flags |= TF_ACKNOW;
1296 				tcp_output(tp);
1297 			}
1298 			return;
1299 		}
1300 	}
1301 
1302 	/*
1303 	 * Calculate amount of space in receive window,
1304 	 * and then do TCP input processing.
1305 	 * Receive window is amount of space in rcv queue,
1306 	 * but not less than advertised window.
1307 	 */
1308 	recvwin = sbspace(&so->so_rcv);
1309 	if (recvwin < 0)
1310 		recvwin = 0;
1311 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1312 
1313 	switch (tp->t_state) {
1314 	/*
1315 	 * If the state is SYN_RECEIVED:
1316 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1317 	 */
1318 	case TCPS_SYN_RECEIVED:
1319 		if ((thflags & TH_ACK) &&
1320 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1321 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1322 				rstreason = BANDLIM_RST_OPENPORT;
1323 				goto dropwithreset;
1324 		}
1325 		break;
1326 
1327 	/*
1328 	 * If the state is SYN_SENT:
1329 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1330 	 *	if seg contains a RST, then drop the connection.
1331 	 *	if seg does not contain SYN, then drop it.
1332 	 * Otherwise this is an acceptable SYN segment
1333 	 *	initialize tp->rcv_nxt and tp->irs
1334 	 *	if seg contains ack then advance tp->snd_una
1335 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1336 	 *	arrange for segment to be acked (eventually)
1337 	 *	continue processing rest of data/controls, beginning with URG
1338 	 */
1339 	case TCPS_SYN_SENT:
1340 		if ((taop = tcp_gettaocache(&inp->inp_inc)) == NULL) {
1341 			taop = &tao_noncached;
1342 			bzero(taop, sizeof *taop);
1343 		}
1344 
1345 		if ((thflags & TH_ACK) &&
1346 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1347 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1348 			/*
1349 			 * If we have a cached CCsent for the remote host,
1350 			 * hence we haven't just crashed and restarted,
1351 			 * do not send a RST.  This may be a retransmission
1352 			 * from the other side after our earlier ACK was lost.
1353 			 * Our new SYN, when it arrives, will serve as the
1354 			 * needed ACK.
1355 			 */
1356 			if (taop->tao_ccsent != 0)
1357 				goto drop;
1358 			else {
1359 				rstreason = BANDLIM_UNLIMITED;
1360 				goto dropwithreset;
1361 			}
1362 		}
1363 		if (thflags & TH_RST) {
1364 			if (thflags & TH_ACK)
1365 				tp = tcp_drop(tp, ECONNREFUSED);
1366 			goto drop;
1367 		}
1368 		if (!(thflags & TH_SYN))
1369 			goto drop;
1370 		tp->snd_wnd = th->th_win;	/* initial send window */
1371 		tp->cc_recv = to.to_cc;		/* foreign CC */
1372 
1373 		tp->irs = th->th_seq;
1374 		tcp_rcvseqinit(tp);
1375 		if (thflags & TH_ACK) {
1376 			/*
1377 			 * Our SYN was acked.  If segment contains CC.ECHO
1378 			 * option, check it to make sure this segment really
1379 			 * matches our SYN.  If not, just drop it as old
1380 			 * duplicate, but send an RST if we're still playing
1381 			 * by the old rules.  If no CC.ECHO option, make sure
1382 			 * we don't get fooled into using T/TCP.
1383 			 */
1384 			if (to.to_flags & TOF_CCECHO) {
1385 				if (tp->cc_send != to.to_ccecho) {
1386 					if (taop->tao_ccsent != 0)
1387 						goto drop;
1388 					else {
1389 						rstreason = BANDLIM_UNLIMITED;
1390 						goto dropwithreset;
1391 					}
1392 				}
1393 			} else
1394 				tp->t_flags &= ~TF_RCVD_CC;
1395 			tcpstat.tcps_connects++;
1396 			soisconnected(so);
1397 			/* Do window scaling on this connection? */
1398 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1399 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1400 				tp->snd_scale = tp->requested_s_scale;
1401 				tp->rcv_scale = tp->request_r_scale;
1402 			}
1403 			/* Segment is acceptable, update cache if undefined. */
1404 			if (taop->tao_ccsent == 0)
1405 				taop->tao_ccsent = to.to_ccecho;
1406 
1407 			tp->rcv_adv += tp->rcv_wnd;
1408 			tp->snd_una++;		/* SYN is acked */
1409 			callout_stop(tp->tt_rexmt);
1410 			/*
1411 			 * If there's data, delay ACK; if there's also a FIN
1412 			 * ACKNOW will be turned on later.
1413 			 */
1414 			if (DELAY_ACK(tp) && tlen != 0)
1415 				callout_reset(tp->tt_delack, tcp_delacktime,
1416 				    tcp_timer_delack, tp);
1417 			else
1418 				tp->t_flags |= TF_ACKNOW;
1419 			/*
1420 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1421 			 * Transitions:
1422 			 *	SYN_SENT  --> ESTABLISHED
1423 			 *	SYN_SENT* --> FIN_WAIT_1
1424 			 */
1425 			tp->t_starttime = ticks;
1426 			if (tp->t_flags & TF_NEEDFIN) {
1427 				tp->t_state = TCPS_FIN_WAIT_1;
1428 				tp->t_flags &= ~TF_NEEDFIN;
1429 				thflags &= ~TH_SYN;
1430 			} else {
1431 				tp->t_state = TCPS_ESTABLISHED;
1432 				callout_reset(tp->tt_keep, tcp_keepidle,
1433 					      tcp_timer_keep, tp);
1434 			}
1435 		} else {
1436 			/*
1437 			 * Received initial SYN in SYN-SENT[*] state =>
1438 			 * simultaneous open.  If segment contains CC option
1439 			 * and there is a cached CC, apply TAO test.
1440 			 * If it succeeds, connection is * half-synchronized.
1441 			 * Otherwise, do 3-way handshake:
1442 			 *	  SYN-SENT -> SYN-RECEIVED
1443 			 *	  SYN-SENT* -> SYN-RECEIVED*
1444 			 * If there was no CC option, clear cached CC value.
1445 			 */
1446 			tp->t_flags |= TF_ACKNOW;
1447 			callout_stop(tp->tt_rexmt);
1448 			if (to.to_flags & TOF_CC) {
1449 				if (taop->tao_cc != 0 &&
1450 				    CC_GT(to.to_cc, taop->tao_cc)) {
1451 					/*
1452 					 * update cache and make transition:
1453 					 *	  SYN-SENT -> ESTABLISHED*
1454 					 *	  SYN-SENT* -> FIN-WAIT-1*
1455 					 */
1456 					taop->tao_cc = to.to_cc;
1457 					tp->t_starttime = ticks;
1458 					if (tp->t_flags & TF_NEEDFIN) {
1459 						tp->t_state = TCPS_FIN_WAIT_1;
1460 						tp->t_flags &= ~TF_NEEDFIN;
1461 					} else {
1462 						tp->t_state = TCPS_ESTABLISHED;
1463 						callout_reset(tp->tt_keep,
1464 							      tcp_keepidle,
1465 							      tcp_timer_keep,
1466 							      tp);
1467 					}
1468 					tp->t_flags |= TF_NEEDSYN;
1469 				} else
1470 					tp->t_state = TCPS_SYN_RECEIVED;
1471 			} else {
1472 				/* CC.NEW or no option => invalidate cache */
1473 				taop->tao_cc = 0;
1474 				tp->t_state = TCPS_SYN_RECEIVED;
1475 			}
1476 		}
1477 
1478 trimthenstep6:
1479 		/*
1480 		 * Advance th->th_seq to correspond to first data byte.
1481 		 * If data, trim to stay within window,
1482 		 * dropping FIN if necessary.
1483 		 */
1484 		th->th_seq++;
1485 		if (tlen > tp->rcv_wnd) {
1486 			todrop = tlen - tp->rcv_wnd;
1487 			m_adj(m, -todrop);
1488 			tlen = tp->rcv_wnd;
1489 			thflags &= ~TH_FIN;
1490 			tcpstat.tcps_rcvpackafterwin++;
1491 			tcpstat.tcps_rcvbyteafterwin += todrop;
1492 		}
1493 		tp->snd_wl1 = th->th_seq - 1;
1494 		tp->rcv_up = th->th_seq;
1495 		/*
1496 		 * Client side of transaction: already sent SYN and data.
1497 		 * If the remote host used T/TCP to validate the SYN,
1498 		 * our data will be ACK'd; if so, enter normal data segment
1499 		 * processing in the middle of step 5, ack processing.
1500 		 * Otherwise, goto step 6.
1501 		 */
1502 		if (thflags & TH_ACK)
1503 			goto process_ACK;
1504 
1505 		goto step6;
1506 
1507 	/*
1508 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1509 	 *	if segment contains a SYN and CC [not CC.NEW] option:
1510 	 *		if state == TIME_WAIT and connection duration > MSL,
1511 	 *		    drop packet and send RST;
1512 	 *
1513 	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
1514 	 *		    ack the FIN (and data) in retransmission queue.
1515 	 *		    Complete close and delete TCPCB.  Then reprocess
1516 	 *		    segment, hoping to find new TCPCB in LISTEN state;
1517 	 *
1518 	 *		else must be old SYN; drop it.
1519 	 *	else do normal processing.
1520 	 */
1521 	case TCPS_LAST_ACK:
1522 	case TCPS_CLOSING:
1523 	case TCPS_TIME_WAIT:
1524 		if ((thflags & TH_SYN) &&
1525 		    (to.to_flags & TOF_CC) && tp->cc_recv != 0) {
1526 			if (tp->t_state == TCPS_TIME_WAIT &&
1527 					(ticks - tp->t_starttime) > tcp_msl) {
1528 				rstreason = BANDLIM_UNLIMITED;
1529 				goto dropwithreset;
1530 			}
1531 			if (CC_GT(to.to_cc, tp->cc_recv)) {
1532 				tp = tcp_close(tp);
1533 				goto findpcb;
1534 			}
1535 			else
1536 				goto drop;
1537 		}
1538 		break;  /* continue normal processing */
1539 	}
1540 
1541 	/*
1542 	 * States other than LISTEN or SYN_SENT.
1543 	 * First check the RST flag and sequence number since reset segments
1544 	 * are exempt from the timestamp and connection count tests.  This
1545 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1546 	 * below which allowed reset segments in half the sequence space
1547 	 * to fall though and be processed (which gives forged reset
1548 	 * segments with a random sequence number a 50 percent chance of
1549 	 * killing a connection).
1550 	 * Then check timestamp, if present.
1551 	 * Then check the connection count, if present.
1552 	 * Then check that at least some bytes of segment are within
1553 	 * receive window.  If segment begins before rcv_nxt,
1554 	 * drop leading data (and SYN); if nothing left, just ack.
1555 	 *
1556 	 *
1557 	 * If the RST bit is set, check the sequence number to see
1558 	 * if this is a valid reset segment.
1559 	 * RFC 793 page 37:
1560 	 *   In all states except SYN-SENT, all reset (RST) segments
1561 	 *   are validated by checking their SEQ-fields.  A reset is
1562 	 *   valid if its sequence number is in the window.
1563 	 * Note: this does not take into account delayed ACKs, so
1564 	 *   we should test against last_ack_sent instead of rcv_nxt.
1565 	 *   The sequence number in the reset segment is normally an
1566 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1567 	 *   send a reset with the sequence number at the rightmost edge
1568 	 *   of our receive window, and we have to handle this case.
1569 	 * If we have multiple segments in flight, the intial reset
1570 	 * segment sequence numbers will be to the left of last_ack_sent,
1571 	 * but they will eventually catch up.
1572 	 * In any case, it never made sense to trim reset segments to
1573 	 * fit the receive window since RFC 1122 says:
1574 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1575 	 *
1576 	 *    A TCP SHOULD allow a received RST segment to include data.
1577 	 *
1578 	 *    DISCUSSION
1579 	 *	   It has been suggested that a RST segment could contain
1580 	 *	   ASCII text that encoded and explained the cause of the
1581 	 *	   RST.  No standard has yet been established for such
1582 	 *	   data.
1583 	 *
1584 	 * If the reset segment passes the sequence number test examine
1585 	 * the state:
1586 	 *    SYN_RECEIVED STATE:
1587 	 *	If passive open, return to LISTEN state.
1588 	 *	If active open, inform user that connection was refused.
1589 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1590 	 *	Inform user that connection was reset, and close tcb.
1591 	 *    CLOSING, LAST_ACK STATES:
1592 	 *	Close the tcb.
1593 	 *    TIME_WAIT STATE:
1594 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1595 	 *	RFC 1337.
1596 	 */
1597 	if (thflags & TH_RST) {
1598 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1599 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1600 			switch (tp->t_state) {
1601 
1602 			case TCPS_SYN_RECEIVED:
1603 				so->so_error = ECONNREFUSED;
1604 				goto close;
1605 
1606 			case TCPS_ESTABLISHED:
1607 			case TCPS_FIN_WAIT_1:
1608 			case TCPS_FIN_WAIT_2:
1609 			case TCPS_CLOSE_WAIT:
1610 				so->so_error = ECONNRESET;
1611 			close:
1612 				tp->t_state = TCPS_CLOSED;
1613 				tcpstat.tcps_drops++;
1614 				tp = tcp_close(tp);
1615 				break;
1616 
1617 			case TCPS_CLOSING:
1618 			case TCPS_LAST_ACK:
1619 				tp = tcp_close(tp);
1620 				break;
1621 
1622 			case TCPS_TIME_WAIT:
1623 				break;
1624 			}
1625 		}
1626 		goto drop;
1627 	}
1628 
1629 	/*
1630 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1631 	 * and it's less than ts_recent, drop it.
1632 	 */
1633 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1634 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1635 
1636 		/* Check to see if ts_recent is over 24 days old.  */
1637 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1638 			/*
1639 			 * Invalidate ts_recent.  If this segment updates
1640 			 * ts_recent, the age will be reset later and ts_recent
1641 			 * will get a valid value.  If it does not, setting
1642 			 * ts_recent to zero will at least satisfy the
1643 			 * requirement that zero be placed in the timestamp
1644 			 * echo reply when ts_recent isn't valid.  The
1645 			 * age isn't reset until we get a valid ts_recent
1646 			 * because we don't want out-of-order segments to be
1647 			 * dropped when ts_recent is old.
1648 			 */
1649 			tp->ts_recent = 0;
1650 		} else {
1651 			tcpstat.tcps_rcvduppack++;
1652 			tcpstat.tcps_rcvdupbyte += tlen;
1653 			tcpstat.tcps_pawsdrop++;
1654 			if (tlen)
1655 				goto dropafterack;
1656 			goto drop;
1657 		}
1658 	}
1659 
1660 	/*
1661 	 * T/TCP mechanism
1662 	 *   If T/TCP was negotiated and the segment doesn't have CC,
1663 	 *   or if its CC is wrong then drop the segment.
1664 	 *   RST segments do not have to comply with this.
1665 	 */
1666 	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1667 	    (!(to.to_flags & TOF_CC) || tp->cc_recv != to.to_cc))
1668 		goto dropafterack;
1669 
1670 	/*
1671 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1672 	 * this connection before trimming the data to fit the receive
1673 	 * window.  Check the sequence number versus IRS since we know
1674 	 * the sequence numbers haven't wrapped.  This is a partial fix
1675 	 * for the "LAND" DoS attack.
1676 	 */
1677 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1678 		rstreason = BANDLIM_RST_OPENPORT;
1679 		goto dropwithreset;
1680 	}
1681 
1682 	todrop = tp->rcv_nxt - th->th_seq;
1683 	if (todrop > 0) {
1684 		if (TCP_DO_SACK(tp)) {
1685 			/* Report duplicate segment at head of packet. */
1686 			tp->reportblk.rblk_start = th->th_seq;
1687 			tp->reportblk.rblk_end = th->th_seq + tlen;
1688 			if (thflags & TH_FIN)
1689 				++tp->reportblk.rblk_end;
1690 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1691 				tp->reportblk.rblk_end = tp->rcv_nxt;
1692 			tp->t_flags |= (TF_DUPSEG | TF_SACKLEFT | TF_ACKNOW);
1693 		}
1694 		if (thflags & TH_SYN) {
1695 			thflags &= ~TH_SYN;
1696 			th->th_seq++;
1697 			if (th->th_urp > 1)
1698 				th->th_urp--;
1699 			else
1700 				thflags &= ~TH_URG;
1701 			todrop--;
1702 		}
1703 		/*
1704 		 * Following if statement from Stevens, vol. 2, p. 960.
1705 		 */
1706 		if (todrop > tlen ||
1707 		    (todrop == tlen && !(thflags & TH_FIN))) {
1708 			/*
1709 			 * Any valid FIN must be to the left of the window.
1710 			 * At this point the FIN must be a duplicate or out
1711 			 * of sequence; drop it.
1712 			 */
1713 			thflags &= ~TH_FIN;
1714 
1715 			/*
1716 			 * Send an ACK to resynchronize and drop any data.
1717 			 * But keep on processing for RST or ACK.
1718 			 */
1719 			tp->t_flags |= TF_ACKNOW;
1720 			todrop = tlen;
1721 			tcpstat.tcps_rcvduppack++;
1722 			tcpstat.tcps_rcvdupbyte += todrop;
1723 		} else {
1724 			tcpstat.tcps_rcvpartduppack++;
1725 			tcpstat.tcps_rcvpartdupbyte += todrop;
1726 		}
1727 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1728 		th->th_seq += todrop;
1729 		tlen -= todrop;
1730 		if (th->th_urp > todrop)
1731 			th->th_urp -= todrop;
1732 		else {
1733 			thflags &= ~TH_URG;
1734 			th->th_urp = 0;
1735 		}
1736 	}
1737 
1738 	/*
1739 	 * If new data are received on a connection after the
1740 	 * user processes are gone, then RST the other end.
1741 	 */
1742 	if ((so->so_state & SS_NOFDREF) &&
1743 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1744 		tp = tcp_close(tp);
1745 		tcpstat.tcps_rcvafterclose++;
1746 		rstreason = BANDLIM_UNLIMITED;
1747 		goto dropwithreset;
1748 	}
1749 
1750 	/*
1751 	 * If segment ends after window, drop trailing data
1752 	 * (and PUSH and FIN); if nothing left, just ACK.
1753 	 */
1754 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1755 	if (todrop > 0) {
1756 		tcpstat.tcps_rcvpackafterwin++;
1757 		if (todrop >= tlen) {
1758 			tcpstat.tcps_rcvbyteafterwin += tlen;
1759 			/*
1760 			 * If a new connection request is received
1761 			 * while in TIME_WAIT, drop the old connection
1762 			 * and start over if the sequence numbers
1763 			 * are above the previous ones.
1764 			 */
1765 			if (thflags & TH_SYN &&
1766 			    tp->t_state == TCPS_TIME_WAIT &&
1767 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1768 				tp = tcp_close(tp);
1769 				goto findpcb;
1770 			}
1771 			/*
1772 			 * If window is closed can only take segments at
1773 			 * window edge, and have to drop data and PUSH from
1774 			 * incoming segments.  Continue processing, but
1775 			 * remember to ack.  Otherwise, drop segment
1776 			 * and ack.
1777 			 */
1778 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1779 				tp->t_flags |= TF_ACKNOW;
1780 				tcpstat.tcps_rcvwinprobe++;
1781 			} else
1782 				goto dropafterack;
1783 		} else
1784 			tcpstat.tcps_rcvbyteafterwin += todrop;
1785 		m_adj(m, -todrop);
1786 		tlen -= todrop;
1787 		thflags &= ~(TH_PUSH | TH_FIN);
1788 	}
1789 
1790 	/*
1791 	 * If last ACK falls within this segment's sequence numbers,
1792 	 * record its timestamp.
1793 	 * NOTE that the test is modified according to the latest
1794 	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1795 	 */
1796 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1797 		tp->ts_recent_age = ticks;
1798 		tp->ts_recent = to.to_tsval;
1799 	}
1800 
1801 	/*
1802 	 * If a SYN is in the window, then this is an
1803 	 * error and we send an RST and drop the connection.
1804 	 */
1805 	if (thflags & TH_SYN) {
1806 		tp = tcp_drop(tp, ECONNRESET);
1807 		rstreason = BANDLIM_UNLIMITED;
1808 		goto dropwithreset;
1809 	}
1810 
1811 	/*
1812 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1813 	 * flag is on (half-synchronized state), then queue data for
1814 	 * later processing; else drop segment and return.
1815 	 */
1816 	if (!(thflags & TH_ACK)) {
1817 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1818 		    (tp->t_flags & TF_NEEDSYN))
1819 			goto step6;
1820 		else
1821 			goto drop;
1822 	}
1823 
1824 	/*
1825 	 * Ack processing.
1826 	 */
1827 	switch (tp->t_state) {
1828 	/*
1829 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1830 	 * ESTABLISHED state and continue processing.
1831 	 * The ACK was checked above.
1832 	 */
1833 	case TCPS_SYN_RECEIVED:
1834 
1835 		tcpstat.tcps_connects++;
1836 		soisconnected(so);
1837 		/* Do window scaling? */
1838 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1839 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1840 			tp->snd_scale = tp->requested_s_scale;
1841 			tp->rcv_scale = tp->request_r_scale;
1842 		}
1843 		/*
1844 		 * Upon successful completion of 3-way handshake,
1845 		 * update cache.CC if it was undefined, pass any queued
1846 		 * data to the user, and advance state appropriately.
1847 		 */
1848 		if ((taop = tcp_gettaocache(&inp->inp_inc)) != NULL &&
1849 		    taop->tao_cc == 0)
1850 			taop->tao_cc = tp->cc_recv;
1851 
1852 		/*
1853 		 * Make transitions:
1854 		 *      SYN-RECEIVED  -> ESTABLISHED
1855 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1856 		 */
1857 		tp->t_starttime = ticks;
1858 		if (tp->t_flags & TF_NEEDFIN) {
1859 			tp->t_state = TCPS_FIN_WAIT_1;
1860 			tp->t_flags &= ~TF_NEEDFIN;
1861 		} else {
1862 			tp->t_state = TCPS_ESTABLISHED;
1863 			callout_reset(tp->tt_keep, tcp_keepidle,
1864 				      tcp_timer_keep, tp);
1865 		}
1866 		/*
1867 		 * If segment contains data or ACK, will call tcp_reass()
1868 		 * later; if not, do so now to pass queued data to user.
1869 		 */
1870 		if (tlen == 0 && !(thflags & TH_FIN))
1871 			tcp_reass(tp, NULL, NULL, NULL);
1872 		/* fall into ... */
1873 
1874 	/*
1875 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1876 	 * ACKs.  If the ack is in the range
1877 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1878 	 * then advance tp->snd_una to th->th_ack and drop
1879 	 * data from the retransmission queue.  If this ACK reflects
1880 	 * more up to date window information we update our window information.
1881 	 */
1882 	case TCPS_ESTABLISHED:
1883 	case TCPS_FIN_WAIT_1:
1884 	case TCPS_FIN_WAIT_2:
1885 	case TCPS_CLOSE_WAIT:
1886 	case TCPS_CLOSING:
1887 	case TCPS_LAST_ACK:
1888 	case TCPS_TIME_WAIT:
1889 
1890 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1891 			if (TCP_DO_SACK(tp))
1892 				tcp_sack_update_scoreboard(tp, &to);
1893 			if (tlen != 0 || tiwin != tp->snd_wnd) {
1894 				tp->t_dupacks = 0;
1895 				break;
1896 			}
1897 			tcpstat.tcps_rcvdupack++;
1898 			if (!callout_active(tp->tt_rexmt) ||
1899 			    th->th_ack != tp->snd_una) {
1900 				tp->t_dupacks = 0;
1901 				break;
1902 			}
1903 			/*
1904 			 * We have outstanding data (other than
1905 			 * a window probe), this is a completely
1906 			 * duplicate ack (ie, window info didn't
1907 			 * change), the ack is the biggest we've
1908 			 * seen and we've seen exactly our rexmt
1909 			 * threshhold of them, so assume a packet
1910 			 * has been dropped and retransmit it.
1911 			 * Kludge snd_nxt & the congestion
1912 			 * window so we send only this one
1913 			 * packet.
1914 			 */
1915 			if (IN_FASTRECOVERY(tp)) {
1916 				if (TCP_DO_SACK(tp)) {
1917 					/* No artifical cwnd inflation. */
1918 					tcp_sack_rexmt(tp, th);
1919 				} else {
1920 					/*
1921 					 * Dup acks mean that packets
1922 					 * have left the network
1923 					 * (they're now cached at the
1924 					 * receiver) so bump cwnd by
1925 					 * the amount in the receiver
1926 					 * to keep a constant cwnd
1927 					 * packets in the network.
1928 					 */
1929 					tp->snd_cwnd += tp->t_maxseg;
1930 					tcp_output(tp);
1931 				}
1932 			} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1933 				tp->t_dupacks = 0;
1934 				break;
1935 			} else if (++tp->t_dupacks == tcprexmtthresh) {
1936 				tcp_seq old_snd_nxt;
1937 				u_int win;
1938 
1939 fastretransmit:
1940 				if (tcp_do_eifel_detect &&
1941 				    (tp->t_flags & TF_RCVD_TSTMP)) {
1942 					tcp_save_congestion_state(tp);
1943 					tp->t_flags |= TF_FASTREXMT;
1944 				}
1945 				/*
1946 				 * We know we're losing at the current
1947 				 * window size, so do congestion avoidance:
1948 				 * set ssthresh to half the current window
1949 				 * and pull our congestion window back to the
1950 				 * new ssthresh.
1951 				 */
1952 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1953 				    tp->t_maxseg;
1954 				if (win < 2)
1955 					win = 2;
1956 				tp->snd_ssthresh = win * tp->t_maxseg;
1957 				ENTER_FASTRECOVERY(tp);
1958 				tp->snd_recover = tp->snd_max;
1959 				callout_stop(tp->tt_rexmt);
1960 				tp->t_rtttime = 0;
1961 				old_snd_nxt = tp->snd_nxt;
1962 				tp->snd_nxt = th->th_ack;
1963 				tp->snd_cwnd = tp->t_maxseg;
1964 				tcp_output(tp);
1965 				++tcpstat.tcps_sndfastrexmit;
1966 				tp->snd_cwnd = tp->snd_ssthresh;
1967 				tp->rexmt_high = tp->snd_nxt;
1968 				if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
1969 					tp->snd_nxt = old_snd_nxt;
1970 				KASSERT(tp->snd_limited <= 2,
1971 				    ("tp->snd_limited too big"));
1972 				if (TCP_DO_SACK(tp))
1973 					tcp_sack_rexmt(tp, th);
1974 				else
1975 					tp->snd_cwnd += tp->t_maxseg *
1976 					    (tp->t_dupacks - tp->snd_limited);
1977 			} else if (tcp_do_limitedtransmit) {
1978 				u_long oldcwnd = tp->snd_cwnd;
1979 				tcp_seq oldsndmax = tp->snd_max;
1980 				tcp_seq oldsndnxt = tp->snd_nxt;
1981 				/* outstanding data */
1982 				uint32_t ownd = tp->snd_max - tp->snd_una;
1983 				u_int sent;
1984 
1985 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
1986 
1987 				KASSERT(tp->t_dupacks == 1 ||
1988 					tp->t_dupacks == 2,
1989 				    ("dupacks not 1 or 2"));
1990 				if (tp->t_dupacks == 1)
1991 					tp->snd_limited = 0;
1992 				tp->snd_nxt = tp->snd_max;
1993 				tp->snd_cwnd = ownd +
1994 				    (tp->t_dupacks - tp->snd_limited) *
1995 				    tp->t_maxseg;
1996 				tcp_output(tp);
1997 				if (SEQ_LT(oldsndnxt, oldsndmax))
1998 					tp->snd_nxt = oldsndnxt;
1999 				tp->snd_cwnd = oldcwnd;
2000 				sent = tp->snd_max - oldsndmax;
2001 				if (sent > tp->t_maxseg) {
2002 					KASSERT((tp->t_dupacks == 2 &&
2003 						 tp->snd_limited == 0) ||
2004 						(sent == tp->t_maxseg + 1 &&
2005 						 tp->t_flags & TF_SENTFIN),
2006 					    ("sent too much"));
2007 					KASSERT(sent <= tp->t_maxseg * 2,
2008 					    ("sent too many segments"));
2009 					tp->snd_limited = 2;
2010 					tcpstat.tcps_sndlimited += 2;
2011 				} else if (sent > 0) {
2012 					++tp->snd_limited;
2013 					++tcpstat.tcps_sndlimited;
2014 				} else if (tcp_do_early_retransmit &&
2015 				    (tcp_do_eifel_detect &&
2016 				     (tp->t_flags & TF_RCVD_TSTMP)) &&
2017 				    ownd < 4 * tp->t_maxseg &&
2018 				    tp->t_dupacks + 1 >=
2019 				      iceildiv(ownd, tp->t_maxseg) &&
2020 				    (!TCP_DO_SACK(tp) ||
2021 				     ownd <= tp->t_maxseg ||
2022 				     tcp_sack_has_sacked(&tp->scb,
2023 							ownd - tp->t_maxseg))) {
2024 					++tcpstat.tcps_sndearlyrexmit;
2025 					tp->t_flags |= TF_EARLYREXMT;
2026 					goto fastretransmit;
2027 				}
2028 			}
2029 			goto drop;
2030 		}
2031 
2032 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2033 		tp->t_dupacks = 0;
2034 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2035 			/*
2036 			 * Detected optimistic ACK attack.
2037 			 * Force slow-start to de-synchronize attack.
2038 			 */
2039 			tp->snd_cwnd = tp->t_maxseg;
2040 
2041 			tcpstat.tcps_rcvacktoomuch++;
2042 			goto dropafterack;
2043 		}
2044 		/*
2045 		 * If we reach this point, ACK is not a duplicate,
2046 		 *     i.e., it ACKs something we sent.
2047 		 */
2048 		if (tp->t_flags & TF_NEEDSYN) {
2049 			/*
2050 			 * T/TCP: Connection was half-synchronized, and our
2051 			 * SYN has been ACK'd (so connection is now fully
2052 			 * synchronized).  Go to non-starred state,
2053 			 * increment snd_una for ACK of SYN, and check if
2054 			 * we can do window scaling.
2055 			 */
2056 			tp->t_flags &= ~TF_NEEDSYN;
2057 			tp->snd_una++;
2058 			/* Do window scaling? */
2059 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2060 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
2061 				tp->snd_scale = tp->requested_s_scale;
2062 				tp->rcv_scale = tp->request_r_scale;
2063 			}
2064 		}
2065 
2066 process_ACK:
2067 		acked = th->th_ack - tp->snd_una;
2068 		tcpstat.tcps_rcvackpack++;
2069 		tcpstat.tcps_rcvackbyte += acked;
2070 
2071 		if (tcp_do_eifel_detect && acked > 0 &&
2072 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2073 		    (tp->t_flags & TF_FIRSTACCACK)) {
2074 			/* Eifel detection applicable. */
2075 			if (to.to_tsecr < tp->t_rexmtTS) {
2076 				++tcpstat.tcps_eifeldetected;
2077 				tcp_revert_congestion_state(tp);
2078 				if (tp->t_rxtshift == 1 &&
2079 				    ticks >= tp->t_badrxtwin)
2080 					++tcpstat.tcps_rttcantdetect;
2081 			}
2082 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2083 			/*
2084 			 * If we just performed our first retransmit,
2085 			 * and the ACK arrives within our recovery window,
2086 			 * then it was a mistake to do the retransmit
2087 			 * in the first place.  Recover our original cwnd
2088 			 * and ssthresh, and proceed to transmit where we
2089 			 * left off.
2090 			 */
2091 			tcp_revert_congestion_state(tp);
2092 			++tcpstat.tcps_rttdetected;
2093 		}
2094 
2095 		/*
2096 		 * If we have a timestamp reply, update smoothed
2097 		 * round trip time.  If no timestamp is present but
2098 		 * transmit timer is running and timed sequence
2099 		 * number was acked, update smoothed round trip time.
2100 		 * Since we now have an rtt measurement, cancel the
2101 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2102 		 * Recompute the initial retransmit timer.
2103 		 *
2104 		 * Some machines (certain windows boxes) send broken
2105 		 * timestamp replies during the SYN+ACK phase, ignore
2106 		 * timestamps of 0.
2107 		 */
2108 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2109 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2110 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2111 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2112 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2113 
2114 		/*
2115 		 * If no data (only SYN) was ACK'd,
2116 		 *    skip rest of ACK processing.
2117 		 */
2118 		if (acked == 0)
2119 			goto step6;
2120 
2121 		/* Stop looking for an acceptable ACK since one was received. */
2122 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
2123 
2124 		if (acked > so->so_snd.sb_cc) {
2125 			tp->snd_wnd -= so->so_snd.sb_cc;
2126 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2127 			ourfinisacked = TRUE;
2128 		} else {
2129 			sbdrop(&so->so_snd, acked);
2130 			tp->snd_wnd -= acked;
2131 			ourfinisacked = FALSE;
2132 		}
2133 		sowwakeup(so);
2134 
2135 		/*
2136 		 * Update window information.
2137 		 * Don't look at window if no ACK:
2138 		 * TAC's send garbage on first SYN.
2139 		 */
2140 		if (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2141 		    (tp->snd_wl1 == th->th_seq &&
2142 		     (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2143 		      (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)))) {
2144 			/* keep track of pure window updates */
2145 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2146 			    tiwin > tp->snd_wnd)
2147 				tcpstat.tcps_rcvwinupd++;
2148 			tp->snd_wnd = tiwin;
2149 			tp->snd_wl1 = th->th_seq;
2150 			tp->snd_wl2 = th->th_ack;
2151 			if (tp->snd_wnd > tp->max_sndwnd)
2152 				tp->max_sndwnd = tp->snd_wnd;
2153 			needoutput = TRUE;
2154 		}
2155 
2156 		tp->snd_una = th->th_ack;
2157 		if (TCP_DO_SACK(tp))
2158 			tcp_sack_update_scoreboard(tp, &to);
2159 		if (IN_FASTRECOVERY(tp)) {
2160 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2161 				EXIT_FASTRECOVERY(tp);
2162 				needoutput = TRUE;
2163 				/*
2164 				 * If the congestion window was inflated
2165 				 * to account for the other side's
2166 				 * cached packets, retract it.
2167 				 *
2168 				 * Window inflation should have left us
2169 				 * with approximately snd_ssthresh outstanding
2170 				 * data.  But, in case we would be inclined
2171 				 * to send a burst, better do it using
2172 				 * slow start.
2173 				 */
2174 				if (!TCP_DO_SACK(tp))
2175 					tp->snd_cwnd = tp->snd_ssthresh;
2176 
2177 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2178 					   tp->snd_max + 2 * tp->t_maxseg))
2179 					tp->snd_cwnd =
2180 					    (tp->snd_max - tp->snd_una) +
2181 					    2 * tp->t_maxseg;
2182 			} else {
2183 				if (TCP_DO_SACK(tp)) {
2184 					tp->snd_max_rexmt = tp->snd_max;
2185 					tcp_sack_rexmt(tp, th);
2186 				} else {
2187 					tcp_newreno_partial_ack(tp, th, acked);
2188 				}
2189 				needoutput = FALSE;
2190 			}
2191 		} else {
2192 			/*
2193 			 * When new data is acked, open the congestion window.
2194 			 * If the window gives us less than ssthresh packets
2195 			 * in flight, open exponentially (maxseg per packet).
2196 			 * Otherwise open linearly: maxseg per window
2197 			 * (maxseg^2 / cwnd per packet).
2198 			 */
2199 			u_int cw = tp->snd_cwnd;
2200 			u_int incr;
2201 
2202 			if (cw > tp->snd_ssthresh)
2203 				incr = tp->t_maxseg * tp->t_maxseg / cw;
2204 			else
2205 				incr = tp->t_maxseg;
2206 			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2207 			tp->snd_recover = th->th_ack - 1;
2208 		}
2209 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2210 			tp->snd_nxt = tp->snd_una;
2211 
2212 		/*
2213 		 * If all outstanding data is acked, stop retransmit
2214 		 * timer and remember to restart (more output or persist).
2215 		 * If there is more data to be acked, restart retransmit
2216 		 * timer, using current (possibly backed-off) value.
2217 		 */
2218 		if (th->th_ack == tp->snd_max) {
2219 			callout_stop(tp->tt_rexmt);
2220 			needoutput = TRUE;
2221 		} else if (!callout_active(tp->tt_persist))
2222 			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
2223 				      tcp_timer_rexmt, tp);
2224 
2225 		switch (tp->t_state) {
2226 		/*
2227 		 * In FIN_WAIT_1 STATE in addition to the processing
2228 		 * for the ESTABLISHED state if our FIN is now acknowledged
2229 		 * then enter FIN_WAIT_2.
2230 		 */
2231 		case TCPS_FIN_WAIT_1:
2232 			if (ourfinisacked) {
2233 				/*
2234 				 * If we can't receive any more
2235 				 * data, then closing user can proceed.
2236 				 * Starting the timer is contrary to the
2237 				 * specification, but if we don't get a FIN
2238 				 * we'll hang forever.
2239 				 */
2240 				if (so->so_state & SS_CANTRCVMORE) {
2241 					soisdisconnected(so);
2242 					callout_reset(tp->tt_2msl, tcp_maxidle,
2243 						      tcp_timer_2msl, tp);
2244 				}
2245 				tp->t_state = TCPS_FIN_WAIT_2;
2246 			}
2247 			break;
2248 
2249 		/*
2250 		 * In CLOSING STATE in addition to the processing for
2251 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2252 		 * then enter the TIME-WAIT state, otherwise ignore
2253 		 * the segment.
2254 		 */
2255 		case TCPS_CLOSING:
2256 			if (ourfinisacked) {
2257 				tp->t_state = TCPS_TIME_WAIT;
2258 				tcp_canceltimers(tp);
2259 				/* Shorten TIME_WAIT [RFC-1644, p.28] */
2260 				if (tp->cc_recv != 0 &&
2261 				    (ticks - tp->t_starttime) < tcp_msl)
2262 					callout_reset(tp->tt_2msl,
2263 					    tp->t_rxtcur * TCPTV_TWTRUNC,
2264 					    tcp_timer_2msl, tp);
2265 				else
2266 					callout_reset(tp->tt_2msl, 2 * tcp_msl,
2267 					    tcp_timer_2msl, tp);
2268 				soisdisconnected(so);
2269 			}
2270 			break;
2271 
2272 		/*
2273 		 * In LAST_ACK, we may still be waiting for data to drain
2274 		 * and/or to be acked, as well as for the ack of our FIN.
2275 		 * If our FIN is now acknowledged, delete the TCB,
2276 		 * enter the closed state and return.
2277 		 */
2278 		case TCPS_LAST_ACK:
2279 			if (ourfinisacked) {
2280 				tp = tcp_close(tp);
2281 				goto drop;
2282 			}
2283 			break;
2284 
2285 		/*
2286 		 * In TIME_WAIT state the only thing that should arrive
2287 		 * is a retransmission of the remote FIN.  Acknowledge
2288 		 * it and restart the finack timer.
2289 		 */
2290 		case TCPS_TIME_WAIT:
2291 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2292 				      tcp_timer_2msl, tp);
2293 			goto dropafterack;
2294 		}
2295 	}
2296 
2297 step6:
2298 	/*
2299 	 * Update window information.
2300 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2301 	 */
2302 	if ((thflags & TH_ACK) &&
2303 	    acceptable_window_update(tp, th, tiwin)) {
2304 		/* keep track of pure window updates */
2305 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2306 		    tiwin > tp->snd_wnd)
2307 			tcpstat.tcps_rcvwinupd++;
2308 		tp->snd_wnd = tiwin;
2309 		tp->snd_wl1 = th->th_seq;
2310 		tp->snd_wl2 = th->th_ack;
2311 		if (tp->snd_wnd > tp->max_sndwnd)
2312 			tp->max_sndwnd = tp->snd_wnd;
2313 		needoutput = TRUE;
2314 	}
2315 
2316 	/*
2317 	 * Process segments with URG.
2318 	 */
2319 	if ((thflags & TH_URG) && th->th_urp &&
2320 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2321 		/*
2322 		 * This is a kludge, but if we receive and accept
2323 		 * random urgent pointers, we'll crash in
2324 		 * soreceive.  It's hard to imagine someone
2325 		 * actually wanting to send this much urgent data.
2326 		 */
2327 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2328 			th->th_urp = 0;			/* XXX */
2329 			thflags &= ~TH_URG;		/* XXX */
2330 			goto dodata;			/* XXX */
2331 		}
2332 		/*
2333 		 * If this segment advances the known urgent pointer,
2334 		 * then mark the data stream.  This should not happen
2335 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2336 		 * a FIN has been received from the remote side.
2337 		 * In these states we ignore the URG.
2338 		 *
2339 		 * According to RFC961 (Assigned Protocols),
2340 		 * the urgent pointer points to the last octet
2341 		 * of urgent data.  We continue, however,
2342 		 * to consider it to indicate the first octet
2343 		 * of data past the urgent section as the original
2344 		 * spec states (in one of two places).
2345 		 */
2346 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2347 			tp->rcv_up = th->th_seq + th->th_urp;
2348 			so->so_oobmark = so->so_rcv.sb_cc +
2349 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2350 			if (so->so_oobmark == 0)
2351 				so->so_state |= SS_RCVATMARK;
2352 			sohasoutofband(so);
2353 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2354 		}
2355 		/*
2356 		 * Remove out of band data so doesn't get presented to user.
2357 		 * This can happen independent of advancing the URG pointer,
2358 		 * but if two URG's are pending at once, some out-of-band
2359 		 * data may creep in... ick.
2360 		 */
2361 		if (th->th_urp <= (u_long)tlen &&
2362 		    !(so->so_options & SO_OOBINLINE)) {
2363 			/* hdr drop is delayed */
2364 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2365 		}
2366 	} else {
2367 		/*
2368 		 * If no out of band data is expected,
2369 		 * pull receive urgent pointer along
2370 		 * with the receive window.
2371 		 */
2372 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2373 			tp->rcv_up = tp->rcv_nxt;
2374 	}
2375 
2376 dodata:							/* XXX */
2377 	/*
2378 	 * Process the segment text, merging it into the TCP sequencing queue,
2379 	 * and arranging for acknowledgment of receipt if necessary.
2380 	 * This process logically involves adjusting tp->rcv_wnd as data
2381 	 * is presented to the user (this happens in tcp_usrreq.c,
2382 	 * case PRU_RCVD).  If a FIN has already been received on this
2383 	 * connection then we just ignore the text.
2384 	 */
2385 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2386 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2387 		/*
2388 		 * Insert segment which includes th into TCP reassembly queue
2389 		 * with control block tp.  Set thflags to whether reassembly now
2390 		 * includes a segment with FIN.  This handles the common case
2391 		 * inline (segment is the next to be received on an established
2392 		 * connection, and the queue is empty), avoiding linkage into
2393 		 * and removal from the queue and repetition of various
2394 		 * conversions.
2395 		 * Set DELACK for segments received in order, but ack
2396 		 * immediately when segments are out of order (so
2397 		 * fast retransmit can work).
2398 		 */
2399 		if (th->th_seq == tp->rcv_nxt &&
2400 		    LIST_EMPTY(&tp->t_segq) &&
2401 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2402 			if (DELAY_ACK(tp))
2403 				callout_reset(tp->tt_delack, tcp_delacktime,
2404 					      tcp_timer_delack, tp);
2405 			else
2406 				tp->t_flags |= TF_ACKNOW;
2407 			tp->rcv_nxt += tlen;
2408 			thflags = th->th_flags & TH_FIN;
2409 			tcpstat.tcps_rcvpack++;
2410 			tcpstat.tcps_rcvbyte += tlen;
2411 			ND6_HINT(tp);
2412 			if (so->so_state & SS_CANTRCVMORE)
2413 				m_freem(m);
2414 			else
2415 				sbappendstream(&so->so_rcv, m);
2416 			sorwakeup(so);
2417 		} else {
2418 			if (!(tp->t_flags & TF_DUPSEG)) {
2419 				/* Initialize SACK report block. */
2420 				tp->reportblk.rblk_start = th->th_seq;
2421 				tp->reportblk.rblk_end = th->th_seq + tlen +
2422 				    ((thflags & TH_FIN) != 0);
2423 			}
2424 			thflags = tcp_reass(tp, th, &tlen, m);
2425 			tp->t_flags |= TF_ACKNOW;
2426 		}
2427 
2428 		/*
2429 		 * Note the amount of data that peer has sent into
2430 		 * our window, in order to estimate the sender's
2431 		 * buffer size.
2432 		 */
2433 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2434 	} else {
2435 		m_freem(m);
2436 		thflags &= ~TH_FIN;
2437 	}
2438 
2439 	/*
2440 	 * If FIN is received ACK the FIN and let the user know
2441 	 * that the connection is closing.
2442 	 */
2443 	if (thflags & TH_FIN) {
2444 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2445 			socantrcvmore(so);
2446 			/*
2447 			 * If connection is half-synchronized
2448 			 * (ie NEEDSYN flag on) then delay ACK,
2449 			 * so it may be piggybacked when SYN is sent.
2450 			 * Otherwise, since we received a FIN then no
2451 			 * more input can be expected, send ACK now.
2452 			 */
2453 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN))
2454 				callout_reset(tp->tt_delack, tcp_delacktime,
2455 				    tcp_timer_delack, tp);
2456 			else
2457 				tp->t_flags |= TF_ACKNOW;
2458 			tp->rcv_nxt++;
2459 		}
2460 
2461 		switch (tp->t_state) {
2462 		/*
2463 		 * In SYN_RECEIVED and ESTABLISHED STATES
2464 		 * enter the CLOSE_WAIT state.
2465 		 */
2466 		case TCPS_SYN_RECEIVED:
2467 			tp->t_starttime = ticks;
2468 			/*FALLTHROUGH*/
2469 		case TCPS_ESTABLISHED:
2470 			tp->t_state = TCPS_CLOSE_WAIT;
2471 			break;
2472 
2473 		/*
2474 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2475 		 * enter the CLOSING state.
2476 		 */
2477 		case TCPS_FIN_WAIT_1:
2478 			tp->t_state = TCPS_CLOSING;
2479 			break;
2480 
2481 		/*
2482 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2483 		 * starting the time-wait timer, turning off the other
2484 		 * standard timers.
2485 		 */
2486 		case TCPS_FIN_WAIT_2:
2487 			tp->t_state = TCPS_TIME_WAIT;
2488 			tcp_canceltimers(tp);
2489 			/* Shorten TIME_WAIT [RFC-1644, p.28] */
2490 			if (tp->cc_recv != 0 &&
2491 			    (ticks - tp->t_starttime) < tcp_msl) {
2492 				callout_reset(tp->tt_2msl,
2493 					      tp->t_rxtcur * TCPTV_TWTRUNC,
2494 					      tcp_timer_2msl, tp);
2495 				/* For transaction client, force ACK now. */
2496 				tp->t_flags |= TF_ACKNOW;
2497 			}
2498 			else
2499 				callout_reset(tp->tt_2msl, 2 * tcp_msl,
2500 					      tcp_timer_2msl, tp);
2501 			soisdisconnected(so);
2502 			break;
2503 
2504 		/*
2505 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2506 		 */
2507 		case TCPS_TIME_WAIT:
2508 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2509 				      tcp_timer_2msl, tp);
2510 			break;
2511 		}
2512 	}
2513 
2514 #ifdef TCPDEBUG
2515 	if (so->so_options & SO_DEBUG)
2516 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2517 #endif
2518 
2519 	/*
2520 	 * Return any desired output.
2521 	 */
2522 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2523 		tcp_output(tp);
2524 	return;
2525 
2526 dropafterack:
2527 	/*
2528 	 * Generate an ACK dropping incoming segment if it occupies
2529 	 * sequence space, where the ACK reflects our state.
2530 	 *
2531 	 * We can now skip the test for the RST flag since all
2532 	 * paths to this code happen after packets containing
2533 	 * RST have been dropped.
2534 	 *
2535 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2536 	 * segment we received passes the SYN-RECEIVED ACK test.
2537 	 * If it fails send a RST.  This breaks the loop in the
2538 	 * "LAND" DoS attack, and also prevents an ACK storm
2539 	 * between two listening ports that have been sent forged
2540 	 * SYN segments, each with the source address of the other.
2541 	 */
2542 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2543 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2544 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2545 		rstreason = BANDLIM_RST_OPENPORT;
2546 		goto dropwithreset;
2547 	}
2548 #ifdef TCPDEBUG
2549 	if (so->so_options & SO_DEBUG)
2550 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2551 #endif
2552 	m_freem(m);
2553 	tp->t_flags |= TF_ACKNOW;
2554 	tcp_output(tp);
2555 	return;
2556 
2557 dropwithreset:
2558 	/*
2559 	 * Generate a RST, dropping incoming segment.
2560 	 * Make ACK acceptable to originator of segment.
2561 	 * Don't bother to respond if destination was broadcast/multicast.
2562 	 */
2563 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2564 		goto drop;
2565 	if (isipv6) {
2566 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2567 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2568 			goto drop;
2569 	} else {
2570 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2571 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2572 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2573 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2574 			goto drop;
2575 	}
2576 	/* IPv6 anycast check is done at tcp6_input() */
2577 
2578 	/*
2579 	 * Perform bandwidth limiting.
2580 	 */
2581 #ifdef ICMP_BANDLIM
2582 	if (badport_bandlim(rstreason) < 0)
2583 		goto drop;
2584 #endif
2585 
2586 #ifdef TCPDEBUG
2587 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2588 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2589 #endif
2590 	if (thflags & TH_ACK)
2591 		/* mtod() below is safe as long as hdr dropping is delayed */
2592 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2593 			    TH_RST);
2594 	else {
2595 		if (thflags & TH_SYN)
2596 			tlen++;
2597 		/* mtod() below is safe as long as hdr dropping is delayed */
2598 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2599 			    (tcp_seq)0, TH_RST | TH_ACK);
2600 	}
2601 	return;
2602 
2603 drop:
2604 	/*
2605 	 * Drop space held by incoming segment and return.
2606 	 */
2607 #ifdef TCPDEBUG
2608 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2609 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2610 #endif
2611 	m_freem(m);
2612 	return;
2613 }
2614 
2615 /*
2616  * Parse TCP options and place in tcpopt.
2617  */
2618 static void
2619 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn)
2620 {
2621 	int opt, optlen, i;
2622 
2623 	to->to_flags = 0;
2624 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2625 		opt = cp[0];
2626 		if (opt == TCPOPT_EOL)
2627 			break;
2628 		if (opt == TCPOPT_NOP)
2629 			optlen = 1;
2630 		else {
2631 			if (cnt < 2)
2632 				break;
2633 			optlen = cp[1];
2634 			if (optlen < 2 || optlen > cnt)
2635 				break;
2636 		}
2637 		switch (opt) {
2638 		case TCPOPT_MAXSEG:
2639 			if (optlen != TCPOLEN_MAXSEG)
2640 				continue;
2641 			if (!is_syn)
2642 				continue;
2643 			to->to_flags |= TOF_MSS;
2644 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2645 			to->to_mss = ntohs(to->to_mss);
2646 			break;
2647 		case TCPOPT_WINDOW:
2648 			if (optlen != TCPOLEN_WINDOW)
2649 				continue;
2650 			if (!is_syn)
2651 				continue;
2652 			to->to_flags |= TOF_SCALE;
2653 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2654 			break;
2655 		case TCPOPT_TIMESTAMP:
2656 			if (optlen != TCPOLEN_TIMESTAMP)
2657 				continue;
2658 			to->to_flags |= TOF_TS;
2659 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2660 			to->to_tsval = ntohl(to->to_tsval);
2661 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2662 			to->to_tsecr = ntohl(to->to_tsecr);
2663 			break;
2664 		case TCPOPT_CC:
2665 			if (optlen != TCPOLEN_CC)
2666 				continue;
2667 			to->to_flags |= TOF_CC;
2668 			bcopy(cp + 2, &to->to_cc, sizeof to->to_cc);
2669 			to->to_cc = ntohl(to->to_cc);
2670 			break;
2671 		case TCPOPT_CCNEW:
2672 			if (optlen != TCPOLEN_CC)
2673 				continue;
2674 			if (!is_syn)
2675 				continue;
2676 			to->to_flags |= TOF_CCNEW;
2677 			bcopy(cp + 2, &to->to_cc, sizeof to->to_cc);
2678 			to->to_cc = ntohl(to->to_cc);
2679 			break;
2680 		case TCPOPT_CCECHO:
2681 			if (optlen != TCPOLEN_CC)
2682 				continue;
2683 			if (!is_syn)
2684 				continue;
2685 			to->to_flags |= TOF_CCECHO;
2686 			bcopy(cp + 2, &to->to_ccecho, sizeof to->to_ccecho);
2687 			to->to_ccecho = ntohl(to->to_ccecho);
2688 			break;
2689 		case TCPOPT_SACK_PERMITTED:
2690 			if (optlen != TCPOLEN_SACK_PERMITTED)
2691 				continue;
2692 			if (!is_syn)
2693 				continue;
2694 			to->to_flags |= TOF_SACK_PERMITTED;
2695 			break;
2696 		case TCPOPT_SACK:
2697 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2698 				continue;
2699 			to->to_nsackblocks = (optlen - 2) / 8;
2700 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2701 			to->to_flags |= TOF_SACK;
2702 			for (i = 0; i < to->to_nsackblocks; i++) {
2703 				struct raw_sackblock *r = &to->to_sackblocks[i];
2704 
2705 				r->rblk_start = ntohl(r->rblk_start);
2706 				r->rblk_end = ntohl(r->rblk_end);
2707 			}
2708 			break;
2709 		default:
2710 			continue;
2711 		}
2712 	}
2713 }
2714 
2715 /*
2716  * Pull out of band byte out of a segment so
2717  * it doesn't appear in the user's data queue.
2718  * It is still reflected in the segment length for
2719  * sequencing purposes.
2720  * "off" is the delayed to be dropped hdrlen.
2721  */
2722 static void
2723 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2724 {
2725 	int cnt = off + th->th_urp - 1;
2726 
2727 	while (cnt >= 0) {
2728 		if (m->m_len > cnt) {
2729 			char *cp = mtod(m, caddr_t) + cnt;
2730 			struct tcpcb *tp = sototcpcb(so);
2731 
2732 			tp->t_iobc = *cp;
2733 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2734 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2735 			m->m_len--;
2736 			if (m->m_flags & M_PKTHDR)
2737 				m->m_pkthdr.len--;
2738 			return;
2739 		}
2740 		cnt -= m->m_len;
2741 		m = m->m_next;
2742 		if (m == 0)
2743 			break;
2744 	}
2745 	panic("tcp_pulloutofband");
2746 }
2747 
2748 /*
2749  * Collect new round-trip time estimate
2750  * and update averages and current timeout.
2751  */
2752 static void
2753 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2754 {
2755 	int delta;
2756 
2757 	tcpstat.tcps_rttupdated++;
2758 	tp->t_rttupdated++;
2759 	if (tp->t_srtt != 0) {
2760 		/*
2761 		 * srtt is stored as fixed point with 5 bits after the
2762 		 * binary point (i.e., scaled by 8).  The following magic
2763 		 * is equivalent to the smoothing algorithm in rfc793 with
2764 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2765 		 * point).  Adjust rtt to origin 0.
2766 		 */
2767 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2768 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2769 
2770 		if ((tp->t_srtt += delta) <= 0)
2771 			tp->t_srtt = 1;
2772 
2773 		/*
2774 		 * We accumulate a smoothed rtt variance (actually, a
2775 		 * smoothed mean difference), then set the retransmit
2776 		 * timer to smoothed rtt + 4 times the smoothed variance.
2777 		 * rttvar is stored as fixed point with 4 bits after the
2778 		 * binary point (scaled by 16).  The following is
2779 		 * equivalent to rfc793 smoothing with an alpha of .75
2780 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2781 		 * rfc793's wired-in beta.
2782 		 */
2783 		if (delta < 0)
2784 			delta = -delta;
2785 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2786 		if ((tp->t_rttvar += delta) <= 0)
2787 			tp->t_rttvar = 1;
2788 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2789 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2790 	} else {
2791 		/*
2792 		 * No rtt measurement yet - use the unsmoothed rtt.
2793 		 * Set the variance to half the rtt (so our first
2794 		 * retransmit happens at 3*rtt).
2795 		 */
2796 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2797 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2798 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2799 	}
2800 	tp->t_rtttime = 0;
2801 	tp->t_rxtshift = 0;
2802 
2803 	/*
2804 	 * the retransmit should happen at rtt + 4 * rttvar.
2805 	 * Because of the way we do the smoothing, srtt and rttvar
2806 	 * will each average +1/2 tick of bias.  When we compute
2807 	 * the retransmit timer, we want 1/2 tick of rounding and
2808 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2809 	 * firing of the timer.  The bias will give us exactly the
2810 	 * 1.5 tick we need.  But, because the bias is
2811 	 * statistical, we have to test that we don't drop below
2812 	 * the minimum feasible timer (which is 2 ticks).
2813 	 */
2814 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2815 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2816 
2817 	/*
2818 	 * We received an ack for a packet that wasn't retransmitted;
2819 	 * it is probably safe to discard any error indications we've
2820 	 * received recently.  This isn't quite right, but close enough
2821 	 * for now (a route might have failed after we sent a segment,
2822 	 * and the return path might not be symmetrical).
2823 	 */
2824 	tp->t_softerror = 0;
2825 }
2826 
2827 /*
2828  * Determine a reasonable value for maxseg size.
2829  * If the route is known, check route for mtu.
2830  * If none, use an mss that can be handled on the outgoing
2831  * interface without forcing IP to fragment; if bigger than
2832  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2833  * to utilize large mbufs.  If no route is found, route has no mtu,
2834  * or the destination isn't local, use a default, hopefully conservative
2835  * size (usually 512 or the default IP max size, but no more than the mtu
2836  * of the interface), as we can't discover anything about intervening
2837  * gateways or networks.  We also initialize the congestion/slow start
2838  * window to be a single segment if the destination isn't local.
2839  * While looking at the routing entry, we also initialize other path-dependent
2840  * parameters from pre-set or cached values in the routing entry.
2841  *
2842  * Also take into account the space needed for options that we
2843  * send regularly.  Make maxseg shorter by that amount to assure
2844  * that we can send maxseg amount of data even when the options
2845  * are present.  Store the upper limit of the length of options plus
2846  * data in maxopd.
2847  *
2848  * NOTE that this routine is only called when we process an incoming
2849  * segment, for outgoing segments only tcp_mssopt is called.
2850  *
2851  * In case of T/TCP, we call this routine during implicit connection
2852  * setup as well (offer = -1), to initialize maxseg from the cached
2853  * MSS of our peer.
2854  */
2855 void
2856 tcp_mss(struct tcpcb *tp, int offer)
2857 {
2858 	struct rtentry *rt;
2859 	struct ifnet *ifp;
2860 	int rtt, mss;
2861 	u_long bufsize;
2862 	struct inpcb *inp = tp->t_inpcb;
2863 	struct socket *so;
2864 	struct rmxp_tao *taop;
2865 	int origoffer = offer;
2866 #ifdef INET6
2867 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2868 	size_t min_protoh = isipv6 ?
2869 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2870 			    sizeof(struct tcpiphdr);
2871 #else
2872 	const boolean_t isipv6 = FALSE;
2873 	const size_t min_protoh = sizeof(struct tcpiphdr);
2874 #endif
2875 
2876 	if (isipv6)
2877 		rt = tcp_rtlookup6(&inp->inp_inc);
2878 	else
2879 		rt = tcp_rtlookup(&inp->inp_inc);
2880 	if (rt == NULL) {
2881 		tp->t_maxopd = tp->t_maxseg =
2882 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2883 		return;
2884 	}
2885 	ifp = rt->rt_ifp;
2886 	so = inp->inp_socket;
2887 
2888 	taop = rmx_taop(rt->rt_rmx);
2889 	/*
2890 	 * Offer == -1 means that we didn't receive SYN yet,
2891 	 * use cached value in that case;
2892 	 */
2893 	if (offer == -1)
2894 		offer = taop->tao_mssopt;
2895 	/*
2896 	 * Offer == 0 means that there was no MSS on the SYN segment,
2897 	 * in this case we use tcp_mssdflt.
2898 	 */
2899 	if (offer == 0)
2900 		offer = (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2901 	else
2902 		/*
2903 		 * Sanity check: make sure that maxopd will be large
2904 		 * enough to allow some data on segments even is the
2905 		 * all the option space is used (40bytes).  Otherwise
2906 		 * funny things may happen in tcp_output.
2907 		 */
2908 		offer = max(offer, 64);
2909 	taop->tao_mssopt = offer;
2910 
2911 	/*
2912 	 * While we're here, check if there's an initial rtt
2913 	 * or rttvar.  Convert from the route-table units
2914 	 * to scaled multiples of the slow timeout timer.
2915 	 */
2916 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2917 		/*
2918 		 * XXX the lock bit for RTT indicates that the value
2919 		 * is also a minimum value; this is subject to time.
2920 		 */
2921 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2922 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2923 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2924 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2925 		tcpstat.tcps_usedrtt++;
2926 		if (rt->rt_rmx.rmx_rttvar) {
2927 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2928 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2929 			tcpstat.tcps_usedrttvar++;
2930 		} else {
2931 			/* default variation is +- 1 rtt */
2932 			tp->t_rttvar =
2933 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2934 		}
2935 		TCPT_RANGESET(tp->t_rxtcur,
2936 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2937 			      tp->t_rttmin, TCPTV_REXMTMAX);
2938 	}
2939 	/*
2940 	 * if there's an mtu associated with the route, use it
2941 	 * else, use the link mtu.
2942 	 */
2943 	if (rt->rt_rmx.rmx_mtu)
2944 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2945 	else {
2946 		if (isipv6) {
2947 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
2948 			if (!in6_localaddr(&inp->in6p_faddr))
2949 				mss = min(mss, tcp_v6mssdflt);
2950 		} else {
2951 			mss = ifp->if_mtu - min_protoh;
2952 			if (!in_localaddr(inp->inp_faddr))
2953 				mss = min(mss, tcp_mssdflt);
2954 		}
2955 	}
2956 	mss = min(mss, offer);
2957 	/*
2958 	 * maxopd stores the maximum length of data AND options
2959 	 * in a segment; maxseg is the amount of data in a normal
2960 	 * segment.  We need to store this value (maxopd) apart
2961 	 * from maxseg, because now every segment carries options
2962 	 * and thus we normally have somewhat less data in segments.
2963 	 */
2964 	tp->t_maxopd = mss;
2965 
2966 	/*
2967 	 * In case of T/TCP, origoffer==-1 indicates, that no segments
2968 	 * were received yet.  In this case we just guess, otherwise
2969 	 * we do the same as before T/TCP.
2970 	 */
2971 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
2972 	    (origoffer == -1 ||
2973 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2974 		mss -= TCPOLEN_TSTAMP_APPA;
2975 	if ((tp->t_flags & (TF_REQ_CC | TF_NOOPT)) == TF_REQ_CC &&
2976 	    (origoffer == -1 ||
2977 	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
2978 		mss -= TCPOLEN_CC_APPA;
2979 
2980 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2981 		if (mss > MCLBYTES)
2982 			mss &= ~(MCLBYTES-1);
2983 #else
2984 		if (mss > MCLBYTES)
2985 			mss = mss / MCLBYTES * MCLBYTES;
2986 #endif
2987 	/*
2988 	 * If there's a pipesize, change the socket buffer
2989 	 * to that size.  Make the socket buffers an integral
2990 	 * number of mss units; if the mss is larger than
2991 	 * the socket buffer, decrease the mss.
2992 	 */
2993 #ifdef RTV_SPIPE
2994 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
2995 #endif
2996 		bufsize = so->so_snd.sb_hiwat;
2997 	if (bufsize < mss)
2998 		mss = bufsize;
2999 	else {
3000 		bufsize = roundup(bufsize, mss);
3001 		if (bufsize > sb_max)
3002 			bufsize = sb_max;
3003 		if (bufsize > so->so_snd.sb_hiwat)
3004 			sbreserve(&so->so_snd, bufsize, so, NULL);
3005 	}
3006 	tp->t_maxseg = mss;
3007 
3008 #ifdef RTV_RPIPE
3009 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3010 #endif
3011 		bufsize = so->so_rcv.sb_hiwat;
3012 	if (bufsize > mss) {
3013 		bufsize = roundup(bufsize, mss);
3014 		if (bufsize > sb_max)
3015 			bufsize = sb_max;
3016 		if (bufsize > so->so_rcv.sb_hiwat)
3017 			sbreserve(&so->so_rcv, bufsize, so, NULL);
3018 	}
3019 
3020 	/*
3021 	 * Set the slow-start flight size depending on whether this
3022 	 * is a local network or not.
3023 	 */
3024 	if (tcp_do_rfc3390)
3025 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3026 	else
3027 		tp->snd_cwnd = mss;
3028 
3029 	if (rt->rt_rmx.rmx_ssthresh) {
3030 		/*
3031 		 * There's some sort of gateway or interface
3032 		 * buffer limit on the path.  Use this to set
3033 		 * the slow start threshhold, but set the
3034 		 * threshold to no less than 2*mss.
3035 		 */
3036 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3037 		tcpstat.tcps_usedssthresh++;
3038 	}
3039 }
3040 
3041 /*
3042  * Determine the MSS option to send on an outgoing SYN.
3043  */
3044 int
3045 tcp_mssopt(struct tcpcb *tp)
3046 {
3047 	struct rtentry *rt;
3048 #ifdef INET6
3049 	boolean_t isipv6 =
3050 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3051 	int min_protoh = isipv6 ?
3052 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3053 			     sizeof(struct tcpiphdr);
3054 #else
3055 	const boolean_t isipv6 = FALSE;
3056 	const size_t min_protoh = sizeof(struct tcpiphdr);
3057 #endif
3058 
3059 	if (isipv6)
3060 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3061 	else
3062 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3063 	if (rt == NULL)
3064 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3065 
3066 	return (rt->rt_ifp->if_mtu - min_protoh);
3067 }
3068 
3069 /*
3070  * When a partial ack arrives, force the retransmission of the
3071  * next unacknowledged segment.  Do not exit Fast Recovery.
3072  *
3073  * Implement the Slow-but-Steady variant of NewReno by restarting the
3074  * the retransmission timer.  Turn it off here so it can be restarted
3075  * later in tcp_output().
3076  */
3077 static void
3078 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3079 {
3080 	tcp_seq old_snd_nxt = tp->snd_nxt;
3081 	u_long ocwnd = tp->snd_cwnd;
3082 
3083 	callout_stop(tp->tt_rexmt);
3084 	tp->t_rtttime = 0;
3085 	tp->snd_nxt = th->th_ack;
3086 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3087 	tp->snd_cwnd = tp->t_maxseg;
3088 	tp->t_flags |= TF_ACKNOW;
3089 	tcp_output(tp);
3090 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3091 		tp->snd_nxt = old_snd_nxt;
3092 	/* partial window deflation */
3093 	tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3094 }
3095 
3096 /*
3097  * In contrast to the Slow-but-Steady NewReno variant,
3098  * we do not reset the retransmission timer for SACK retransmissions,
3099  * except when retransmitting snd_una.
3100  */
3101 static void
3102 tcp_sack_rexmt(struct tcpcb *tp, struct tcphdr *th)
3103 {
3104 	uint32_t pipe, seglen;
3105 	tcp_seq nextrexmt;
3106 	boolean_t lostdup;
3107 	tcp_seq old_snd_nxt = tp->snd_nxt;
3108 	u_long ocwnd = tp->snd_cwnd;
3109 	int nseg = 0;		/* consecutive new segments */
3110 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3111 
3112 	tp->t_rtttime = 0;
3113 	pipe = tcp_sack_compute_pipe(tp);
3114 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3115 	    (!tcp_do_smartsack || nseg < MAXBURST) &&
3116 	    tcp_sack_nextseg(tp, &nextrexmt, &seglen, &lostdup)) {
3117 		uint32_t sent;
3118 		tcp_seq old_snd_max;
3119 		int error;
3120 
3121 		if (nextrexmt == tp->snd_max) ++nseg;
3122 		tp->snd_nxt = nextrexmt;
3123 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3124 		old_snd_max = tp->snd_max;
3125 		if (nextrexmt == tp->snd_una)
3126 			callout_stop(tp->tt_rexmt);
3127 		error = tcp_output(tp);
3128 		if (error != 0)
3129 			break;
3130 		sent = tp->snd_nxt - nextrexmt;
3131 		if (sent <= 0)
3132 			break;
3133 		if (!lostdup)
3134 			pipe += sent;
3135 		tcpstat.tcps_sndsackpack++;
3136 		tcpstat.tcps_sndsackbyte += sent;
3137 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3138 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt))
3139 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3140 	}
3141 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3142 		tp->snd_nxt = old_snd_nxt;
3143 	tp->snd_cwnd = ocwnd;
3144 }
3145