xref: /dflybsd-src/sys/netinet/tcp_input.c (revision d1248869548dbf2758509889f99e3c706f4f8846)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
68  * $DragonFly: src/sys/netinet/tcp_input.c,v 1.68 2008/08/22 09:14:17 sephe Exp $
69  */
70 
71 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
72 #include "opt_inet.h"
73 #include "opt_inet6.h"
74 #include "opt_ipsec.h"
75 #include "opt_tcpdebug.h"
76 #include "opt_tcp_input.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/proc.h>		/* for proc0 declaration */
85 #include <sys/protosw.h>
86 #include <sys/socket.h>
87 #include <sys/socketvar.h>
88 #include <sys/syslog.h>
89 #include <sys/in_cksum.h>
90 
91 #include <sys/socketvar2.h>
92 
93 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
94 #include <machine/stdarg.h>
95 
96 #include <net/if.h>
97 #include <net/route.h>
98 
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #include <netinet/ip.h>
102 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
103 #include <netinet/in_var.h>
104 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
105 #include <netinet/in_pcb.h>
106 #include <netinet/ip_var.h>
107 #include <netinet/ip6.h>
108 #include <netinet/icmp6.h>
109 #include <netinet6/nd6.h>
110 #include <netinet6/ip6_var.h>
111 #include <netinet6/in6_pcb.h>
112 #include <netinet/tcp.h>
113 #include <netinet/tcp_fsm.h>
114 #include <netinet/tcp_seq.h>
115 #include <netinet/tcp_timer.h>
116 #include <netinet/tcp_timer2.h>
117 #include <netinet/tcp_var.h>
118 #include <netinet6/tcp6_var.h>
119 #include <netinet/tcpip.h>
120 
121 #ifdef TCPDEBUG
122 #include <netinet/tcp_debug.h>
123 
124 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
125 struct tcphdr tcp_savetcp;
126 #endif
127 
128 #ifdef FAST_IPSEC
129 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/ipsec6.h>
131 #endif
132 
133 #ifdef IPSEC
134 #include <netinet6/ipsec.h>
135 #include <netinet6/ipsec6.h>
136 #include <netproto/key/key.h>
137 #endif
138 
139 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
140 
141 static int log_in_vain = 0;
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
143     &log_in_vain, 0, "Log all incoming TCP connections");
144 
145 static int blackhole = 0;
146 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
147     &blackhole, 0, "Do not send RST when dropping refused connections");
148 
149 int tcp_delack_enabled = 1;
150 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
151     &tcp_delack_enabled, 0,
152     "Delay ACK to try and piggyback it onto a data packet");
153 
154 #ifdef TCP_DROP_SYNFIN
155 static int drop_synfin = 0;
156 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
157     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
158 #endif
159 
160 static int tcp_do_limitedtransmit = 1;
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
162     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
163 
164 static int tcp_do_early_retransmit = 1;
165 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
166     &tcp_do_early_retransmit, 0, "Early retransmit");
167 
168 int tcp_aggregate_acks = 1;
169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
170     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
171 
172 int tcp_do_rfc3390 = 1;
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
174     &tcp_do_rfc3390, 0,
175     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
176 
177 static int tcp_do_eifel_detect = 1;
178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
179     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
180 
181 static int tcp_do_abc = 1;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
183     &tcp_do_abc, 0,
184     "TCP Appropriate Byte Counting (RFC 3465)");
185 
186 /*
187  * Define as tunable for easy testing with SACK on and off.
188  * Warning:  do not change setting in the middle of an existing active TCP flow,
189  *   else strange things might happen to that flow.
190  */
191 int tcp_do_sack = 1;
192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
193     &tcp_do_sack, 0, "Enable SACK Algorithms");
194 
195 int tcp_do_smartsack = 1;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
197     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
198 
199 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
200     "TCP Segment Reassembly Queue");
201 
202 int tcp_reass_maxseg = 0;
203 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
204     &tcp_reass_maxseg, 0,
205     "Global maximum number of TCP Segments in Reassembly Queue");
206 
207 int tcp_reass_qsize = 0;
208 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
209     &tcp_reass_qsize, 0,
210     "Global number of TCP Segments currently in Reassembly Queue");
211 
212 static int tcp_reass_overflows = 0;
213 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
214     &tcp_reass_overflows, 0,
215     "Global number of TCP Segment Reassembly Queue Overflows");
216 
217 int tcp_do_autorcvbuf = 1;
218 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
219     &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
220 
221 int tcp_autorcvbuf_inc = 16*1024;
222 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
223     &tcp_autorcvbuf_inc, 0,
224     "Incrementor step size of automatic receive buffer");
225 
226 int tcp_autorcvbuf_max = 2*1024*1024;
227 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
228     &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
229 
230 int tcp_sosnd_agglim = 2;
231 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosnd_agglim, CTLFLAG_RW,
232     &tcp_sosnd_agglim, 0, "TCP sosend mbuf aggregation limit");
233 
234 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t);
235 static void	 tcp_pulloutofband(struct socket *,
236 		     struct tcphdr *, struct mbuf *, int);
237 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
238 		     struct mbuf *);
239 static void	 tcp_xmit_timer(struct tcpcb *, int);
240 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
241 static void	 tcp_sack_rexmt(struct tcpcb *, struct tcphdr *);
242 
243 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
244 #ifdef INET6
245 #define ND6_HINT(tp) \
246 do { \
247 	if ((tp) && (tp)->t_inpcb && \
248 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
249 	    (tp)->t_inpcb->in6p_route.ro_rt) \
250 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
251 } while (0)
252 #else
253 #define ND6_HINT(tp)
254 #endif
255 
256 /*
257  * Indicate whether this ack should be delayed.  We can delay the ack if
258  *	- delayed acks are enabled and
259  *	- there is no delayed ack timer in progress and
260  *	- our last ack wasn't a 0-sized window.  We never want to delay
261  *	  the ack that opens up a 0-sized window.
262  */
263 #define DELAY_ACK(tp) \
264 	(tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
265 	!(tp->t_flags & TF_RXWIN0SENT))
266 
267 #define acceptable_window_update(tp, th, tiwin)				\
268     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
269      (tp->snd_wl1 == th->th_seq &&					\
270       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
271        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
272 
273 static int
274 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
275 {
276 	struct tseg_qent *q;
277 	struct tseg_qent *p = NULL;
278 	struct tseg_qent *te;
279 	struct socket *so = tp->t_inpcb->inp_socket;
280 	int flags;
281 
282 	/*
283 	 * Call with th == NULL after become established to
284 	 * force pre-ESTABLISHED data up to user socket.
285 	 */
286 	if (th == NULL)
287 		goto present;
288 
289 	/*
290 	 * Limit the number of segments in the reassembly queue to prevent
291 	 * holding on to too many segments (and thus running out of mbufs).
292 	 * Make sure to let the missing segment through which caused this
293 	 * queue.  Always keep one global queue entry spare to be able to
294 	 * process the missing segment.
295 	 */
296 	if (th->th_seq != tp->rcv_nxt &&
297 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
298 		tcp_reass_overflows++;
299 		tcpstat.tcps_rcvmemdrop++;
300 		m_freem(m);
301 		/* no SACK block to report */
302 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
303 		return (0);
304 	}
305 
306 	/* Allocate a new queue entry. */
307 	MALLOC(te, struct tseg_qent *, sizeof(struct tseg_qent), M_TSEGQ,
308 	       M_INTWAIT | M_NULLOK);
309 	if (te == NULL) {
310 		tcpstat.tcps_rcvmemdrop++;
311 		m_freem(m);
312 		/* no SACK block to report */
313 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
314 		return (0);
315 	}
316 	atomic_add_int(&tcp_reass_qsize, 1);
317 
318 	/*
319 	 * Find a segment which begins after this one does.
320 	 */
321 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
322 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
323 			break;
324 		p = q;
325 	}
326 
327 	/*
328 	 * If there is a preceding segment, it may provide some of
329 	 * our data already.  If so, drop the data from the incoming
330 	 * segment.  If it provides all of our data, drop us.
331 	 */
332 	if (p != NULL) {
333 		tcp_seq_diff_t i;
334 
335 		/* conversion to int (in i) handles seq wraparound */
336 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
337 		if (i > 0) {		/* overlaps preceding segment */
338 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
339 			/* enclosing block starts w/ preceding segment */
340 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
341 			if (i >= *tlenp) {
342 				/* preceding encloses incoming segment */
343 				tp->encloseblk.rblk_end = p->tqe_th->th_seq +
344 				    p->tqe_len;
345 				tcpstat.tcps_rcvduppack++;
346 				tcpstat.tcps_rcvdupbyte += *tlenp;
347 				m_freem(m);
348 				kfree(te, M_TSEGQ);
349 				atomic_add_int(&tcp_reass_qsize, -1);
350 				/*
351 				 * Try to present any queued data
352 				 * at the left window edge to the user.
353 				 * This is needed after the 3-WHS
354 				 * completes.
355 				 */
356 				goto present;	/* ??? */
357 			}
358 			m_adj(m, i);
359 			*tlenp -= i;
360 			th->th_seq += i;
361 			/* incoming segment end is enclosing block end */
362 			tp->encloseblk.rblk_end = th->th_seq + *tlenp +
363 			    ((th->th_flags & TH_FIN) != 0);
364 			/* trim end of reported D-SACK block */
365 			tp->reportblk.rblk_end = th->th_seq;
366 		}
367 	}
368 	tcpstat.tcps_rcvoopack++;
369 	tcpstat.tcps_rcvoobyte += *tlenp;
370 
371 	/*
372 	 * While we overlap succeeding segments trim them or,
373 	 * if they are completely covered, dequeue them.
374 	 */
375 	while (q) {
376 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
377 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
378 		struct tseg_qent *nq;
379 
380 		if (i <= 0)
381 			break;
382 		if (!(tp->t_flags & TF_DUPSEG)) {    /* first time through */
383 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
384 			tp->encloseblk = tp->reportblk;
385 			/* report trailing duplicate D-SACK segment */
386 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
387 		}
388 		if ((tp->t_flags & TF_ENCLOSESEG) &&
389 		    SEQ_GT(qend, tp->encloseblk.rblk_end)) {
390 			/* extend enclosing block if one exists */
391 			tp->encloseblk.rblk_end = qend;
392 		}
393 		if (i < q->tqe_len) {
394 			q->tqe_th->th_seq += i;
395 			q->tqe_len -= i;
396 			m_adj(q->tqe_m, i);
397 			break;
398 		}
399 
400 		nq = LIST_NEXT(q, tqe_q);
401 		LIST_REMOVE(q, tqe_q);
402 		m_freem(q->tqe_m);
403 		kfree(q, M_TSEGQ);
404 		atomic_add_int(&tcp_reass_qsize, -1);
405 		q = nq;
406 	}
407 
408 	/* Insert the new segment queue entry into place. */
409 	te->tqe_m = m;
410 	te->tqe_th = th;
411 	te->tqe_len = *tlenp;
412 
413 	/* check if can coalesce with following segment */
414 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
415 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
416 
417 		te->tqe_len += q->tqe_len;
418 		if (q->tqe_th->th_flags & TH_FIN)
419 			te->tqe_th->th_flags |= TH_FIN;
420 		m_cat(te->tqe_m, q->tqe_m);
421 		tp->encloseblk.rblk_end = tend;
422 		/*
423 		 * When not reporting a duplicate segment, use
424 		 * the larger enclosing block as the SACK block.
425 		 */
426 		if (!(tp->t_flags & TF_DUPSEG))
427 			tp->reportblk.rblk_end = tend;
428 		LIST_REMOVE(q, tqe_q);
429 		kfree(q, M_TSEGQ);
430 		atomic_add_int(&tcp_reass_qsize, -1);
431 	}
432 
433 	if (p == NULL) {
434 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
435 	} else {
436 		/* check if can coalesce with preceding segment */
437 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
438 			p->tqe_len += te->tqe_len;
439 			m_cat(p->tqe_m, te->tqe_m);
440 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
441 			/*
442 			 * When not reporting a duplicate segment, use
443 			 * the larger enclosing block as the SACK block.
444 			 */
445 			if (!(tp->t_flags & TF_DUPSEG))
446 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
447 			kfree(te, M_TSEGQ);
448 			atomic_add_int(&tcp_reass_qsize, -1);
449 		} else {
450 			LIST_INSERT_AFTER(p, te, tqe_q);
451 		}
452 	}
453 
454 present:
455 	/*
456 	 * Present data to user, advancing rcv_nxt through
457 	 * completed sequence space.
458 	 */
459 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
460 		return (0);
461 	q = LIST_FIRST(&tp->t_segq);
462 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
463 		return (0);
464 	tp->rcv_nxt += q->tqe_len;
465 	if (!(tp->t_flags & TF_DUPSEG))	{
466 		/* no SACK block to report since ACK advanced */
467 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
468 	}
469 	/* no enclosing block to report since ACK advanced */
470 	tp->t_flags &= ~TF_ENCLOSESEG;
471 	flags = q->tqe_th->th_flags & TH_FIN;
472 	LIST_REMOVE(q, tqe_q);
473 	KASSERT(LIST_EMPTY(&tp->t_segq) ||
474 		LIST_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
475 		("segment not coalesced"));
476 	if (so->so_state & SS_CANTRCVMORE) {
477 		m_freem(q->tqe_m);
478 	} else {
479 		lwkt_gettoken(&so->so_rcv.ssb_token);
480 		ssb_appendstream(&so->so_rcv, q->tqe_m);
481 		lwkt_reltoken(&so->so_rcv.ssb_token);
482 	}
483 	kfree(q, M_TSEGQ);
484 	atomic_add_int(&tcp_reass_qsize, -1);
485 	ND6_HINT(tp);
486 	sorwakeup(so);
487 	return (flags);
488 }
489 
490 /*
491  * TCP input routine, follows pages 65-76 of the
492  * protocol specification dated September, 1981 very closely.
493  */
494 #ifdef INET6
495 int
496 tcp6_input(struct mbuf **mp, int *offp, int proto)
497 {
498 	struct mbuf *m = *mp;
499 	struct in6_ifaddr *ia6;
500 
501 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
502 
503 	/*
504 	 * draft-itojun-ipv6-tcp-to-anycast
505 	 * better place to put this in?
506 	 */
507 	ia6 = ip6_getdstifaddr(m);
508 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
509 		struct ip6_hdr *ip6;
510 
511 		ip6 = mtod(m, struct ip6_hdr *);
512 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
513 			    offsetof(struct ip6_hdr, ip6_dst));
514 		return (IPPROTO_DONE);
515 	}
516 
517 	tcp_input(mp, offp, proto);
518 	return (IPPROTO_DONE);
519 }
520 #endif
521 
522 int
523 tcp_input(struct mbuf **mp, int *offp, int proto)
524 {
525 	int off0;
526 	struct tcphdr *th;
527 	struct ip *ip = NULL;
528 	struct ipovly *ipov;
529 	struct inpcb *inp = NULL;
530 	u_char *optp = NULL;
531 	int optlen = 0;
532 	int tlen, off;
533 	int len = 0;
534 	int drop_hdrlen;
535 	struct tcpcb *tp = NULL;
536 	int thflags;
537 	struct socket *so = 0;
538 	int todrop, acked;
539 	boolean_t ourfinisacked, needoutput = FALSE;
540 	u_long tiwin;
541 	int recvwin;
542 	struct tcpopt to;		/* options in this segment */
543 	struct sockaddr_in *next_hop = NULL;
544 	int rstreason; /* For badport_bandlim accounting purposes */
545 	int cpu;
546 	struct ip6_hdr *ip6 = NULL;
547 	struct mbuf *m;
548 #ifdef INET6
549 	boolean_t isipv6;
550 #else
551 	const boolean_t isipv6 = FALSE;
552 #endif
553 #ifdef TCPDEBUG
554 	short ostate = 0;
555 #endif
556 
557 	off0 = *offp;
558 	m = *mp;
559 	*mp = NULL;
560 
561 	tcpstat.tcps_rcvtotal++;
562 
563 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
564 		struct m_tag *mtag;
565 
566 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
567 		KKASSERT(mtag != NULL);
568 		next_hop = m_tag_data(mtag);
569 	}
570 
571 #ifdef INET6
572 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
573 #endif
574 
575 	if (isipv6) {
576 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
577 		ip6 = mtod(m, struct ip6_hdr *);
578 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
579 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
580 			tcpstat.tcps_rcvbadsum++;
581 			goto drop;
582 		}
583 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
584 
585 		/*
586 		 * Be proactive about unspecified IPv6 address in source.
587 		 * As we use all-zero to indicate unbounded/unconnected pcb,
588 		 * unspecified IPv6 address can be used to confuse us.
589 		 *
590 		 * Note that packets with unspecified IPv6 destination is
591 		 * already dropped in ip6_input.
592 		 */
593 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
594 			/* XXX stat */
595 			goto drop;
596 		}
597 	} else {
598 		/*
599 		 * Get IP and TCP header together in first mbuf.
600 		 * Note: IP leaves IP header in first mbuf.
601 		 */
602 		if (off0 > sizeof(struct ip)) {
603 			ip_stripoptions(m);
604 			off0 = sizeof(struct ip);
605 		}
606 		/* already checked and pulled up in ip_demux() */
607 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
608 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
609 		ip = mtod(m, struct ip *);
610 		ipov = (struct ipovly *)ip;
611 		th = (struct tcphdr *)((caddr_t)ip + off0);
612 		tlen = ip->ip_len;
613 
614 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
615 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
616 				th->th_sum = m->m_pkthdr.csum_data;
617 			else
618 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
619 						ip->ip_dst.s_addr,
620 						htonl(m->m_pkthdr.csum_data +
621 							ip->ip_len +
622 							IPPROTO_TCP));
623 			th->th_sum ^= 0xffff;
624 		} else {
625 			/*
626 			 * Checksum extended TCP header and data.
627 			 */
628 			len = sizeof(struct ip) + tlen;
629 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
630 			ipov->ih_len = (u_short)tlen;
631 			ipov->ih_len = htons(ipov->ih_len);
632 			th->th_sum = in_cksum(m, len);
633 		}
634 		if (th->th_sum) {
635 			tcpstat.tcps_rcvbadsum++;
636 			goto drop;
637 		}
638 #ifdef INET6
639 		/* Re-initialization for later version check */
640 		ip->ip_v = IPVERSION;
641 #endif
642 	}
643 
644 	/*
645 	 * Check that TCP offset makes sense,
646 	 * pull out TCP options and adjust length.		XXX
647 	 */
648 	off = th->th_off << 2;
649 	/* already checked and pulled up in ip_demux() */
650 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
651 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
652 	tlen -= off;	/* tlen is used instead of ti->ti_len */
653 	if (off > sizeof(struct tcphdr)) {
654 		if (isipv6) {
655 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
656 			ip6 = mtod(m, struct ip6_hdr *);
657 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
658 		} else {
659 			/* already pulled up in ip_demux() */
660 			KASSERT(m->m_len >= sizeof(struct ip) + off,
661 			    ("TCP header and options not in one mbuf: "
662 			     "m_len %d, off %d", m->m_len, off));
663 		}
664 		optlen = off - sizeof(struct tcphdr);
665 		optp = (u_char *)(th + 1);
666 	}
667 	thflags = th->th_flags;
668 
669 #ifdef TCP_DROP_SYNFIN
670 	/*
671 	 * If the drop_synfin option is enabled, drop all packets with
672 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
673 	 * identifying the TCP/IP stack.
674 	 *
675 	 * This is a violation of the TCP specification.
676 	 */
677 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
678 		goto drop;
679 #endif
680 
681 	/*
682 	 * Convert TCP protocol specific fields to host format.
683 	 */
684 	th->th_seq = ntohl(th->th_seq);
685 	th->th_ack = ntohl(th->th_ack);
686 	th->th_win = ntohs(th->th_win);
687 	th->th_urp = ntohs(th->th_urp);
688 
689 	/*
690 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
691 	 * until after ip6_savecontrol() is called and before other functions
692 	 * which don't want those proto headers.
693 	 * Because ip6_savecontrol() is going to parse the mbuf to
694 	 * search for data to be passed up to user-land, it wants mbuf
695 	 * parameters to be unchanged.
696 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
697 	 * latest version of the advanced API (20020110).
698 	 */
699 	drop_hdrlen = off0 + off;
700 
701 	/*
702 	 * Locate pcb for segment.
703 	 */
704 findpcb:
705 	/* IPFIREWALL_FORWARD section */
706 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
707 		/*
708 		 * Transparently forwarded. Pretend to be the destination.
709 		 * already got one like this?
710 		 */
711 		cpu = mycpu->gd_cpuid;
712 		inp = in_pcblookup_hash(&tcbinfo[cpu],
713 					ip->ip_src, th->th_sport,
714 					ip->ip_dst, th->th_dport,
715 					0, m->m_pkthdr.rcvif);
716 		if (!inp) {
717 			/*
718 			 * It's new.  Try to find the ambushing socket.
719 			 */
720 
721 			/*
722 			 * The rest of the ipfw code stores the port in
723 			 * host order.  XXX
724 			 * (The IP address is still in network order.)
725 			 */
726 			in_port_t dport = next_hop->sin_port ?
727 						htons(next_hop->sin_port) :
728 						th->th_dport;
729 
730 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
731 					  next_hop->sin_addr.s_addr, dport);
732 			inp = in_pcblookup_hash(&tcbinfo[cpu],
733 						ip->ip_src, th->th_sport,
734 						next_hop->sin_addr, dport,
735 						1, m->m_pkthdr.rcvif);
736 		}
737 	} else {
738 		if (isipv6) {
739 			inp = in6_pcblookup_hash(&tcbinfo[0],
740 						 &ip6->ip6_src, th->th_sport,
741 						 &ip6->ip6_dst, th->th_dport,
742 						 1, m->m_pkthdr.rcvif);
743 		} else {
744 			cpu = mycpu->gd_cpuid;
745 			inp = in_pcblookup_hash(&tcbinfo[cpu],
746 						ip->ip_src, th->th_sport,
747 						ip->ip_dst, th->th_dport,
748 						1, m->m_pkthdr.rcvif);
749 		}
750 	}
751 
752 	/*
753 	 * If the state is CLOSED (i.e., TCB does not exist) then
754 	 * all data in the incoming segment is discarded.
755 	 * If the TCB exists but is in CLOSED state, it is embryonic,
756 	 * but should either do a listen or a connect soon.
757 	 */
758 	if (inp == NULL) {
759 		if (log_in_vain) {
760 #ifdef INET6
761 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
762 #else
763 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
764 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
765 #endif
766 			if (isipv6) {
767 				strcpy(dbuf, "[");
768 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
769 				strcat(dbuf, "]");
770 				strcpy(sbuf, "[");
771 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
772 				strcat(sbuf, "]");
773 			} else {
774 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
775 				strcpy(sbuf, inet_ntoa(ip->ip_src));
776 			}
777 			switch (log_in_vain) {
778 			case 1:
779 				if (!(thflags & TH_SYN))
780 					break;
781 			case 2:
782 				log(LOG_INFO,
783 				    "Connection attempt to TCP %s:%d "
784 				    "from %s:%d flags:0x%02x\n",
785 				    dbuf, ntohs(th->th_dport), sbuf,
786 				    ntohs(th->th_sport), thflags);
787 				break;
788 			default:
789 				break;
790 			}
791 		}
792 		if (blackhole) {
793 			switch (blackhole) {
794 			case 1:
795 				if (thflags & TH_SYN)
796 					goto drop;
797 				break;
798 			case 2:
799 				goto drop;
800 			default:
801 				goto drop;
802 			}
803 		}
804 		rstreason = BANDLIM_RST_CLOSEDPORT;
805 		goto dropwithreset;
806 	}
807 
808 #ifdef IPSEC
809 	if (isipv6) {
810 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
811 			ipsec6stat.in_polvio++;
812 			goto drop;
813 		}
814 	} else {
815 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
816 			ipsecstat.in_polvio++;
817 			goto drop;
818 		}
819 	}
820 #endif
821 #ifdef FAST_IPSEC
822 	if (isipv6) {
823 		if (ipsec6_in_reject(m, inp))
824 			goto drop;
825 	} else {
826 		if (ipsec4_in_reject(m, inp))
827 			goto drop;
828 	}
829 #endif
830 	/* Check the minimum TTL for socket. */
831 #ifdef INET6
832 	if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
833 		goto drop;
834 #endif
835 
836 	tp = intotcpcb(inp);
837 	if (tp == NULL) {
838 		rstreason = BANDLIM_RST_CLOSEDPORT;
839 		goto dropwithreset;
840 	}
841 	if (tp->t_state <= TCPS_CLOSED)
842 		goto drop;
843 
844 	/* Unscale the window into a 32-bit value. */
845 	if (!(thflags & TH_SYN))
846 		tiwin = th->th_win << tp->snd_scale;
847 	else
848 		tiwin = th->th_win;
849 
850 	so = inp->inp_socket;
851 
852 #ifdef TCPDEBUG
853 	if (so->so_options & SO_DEBUG) {
854 		ostate = tp->t_state;
855 		if (isipv6)
856 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
857 		else
858 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
859 		tcp_savetcp = *th;
860 	}
861 #endif
862 
863 	bzero(&to, sizeof to);
864 
865 	if (so->so_options & SO_ACCEPTCONN) {
866 		struct in_conninfo inc;
867 
868 #ifdef INET6
869 		inc.inc_isipv6 = (isipv6 == TRUE);
870 #endif
871 		if (isipv6) {
872 			inc.inc6_faddr = ip6->ip6_src;
873 			inc.inc6_laddr = ip6->ip6_dst;
874 			inc.inc6_route.ro_rt = NULL;		/* XXX */
875 		} else {
876 			inc.inc_faddr = ip->ip_src;
877 			inc.inc_laddr = ip->ip_dst;
878 			inc.inc_route.ro_rt = NULL;		/* XXX */
879 		}
880 		inc.inc_fport = th->th_sport;
881 		inc.inc_lport = th->th_dport;
882 
883 		/*
884 		 * If the state is LISTEN then ignore segment if it contains
885 		 * a RST.  If the segment contains an ACK then it is bad and
886 		 * send a RST.  If it does not contain a SYN then it is not
887 		 * interesting; drop it.
888 		 *
889 		 * If the state is SYN_RECEIVED (syncache) and seg contains
890 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
891 		 * contains a RST, check the sequence number to see if it
892 		 * is a valid reset segment.
893 		 */
894 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
895 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
896 				if (!syncache_expand(&inc, th, &so, m)) {
897 					/*
898 					 * No syncache entry, or ACK was not
899 					 * for our SYN/ACK.  Send a RST.
900 					 */
901 					tcpstat.tcps_badsyn++;
902 					rstreason = BANDLIM_RST_OPENPORT;
903 					goto dropwithreset;
904 				}
905 
906 				/*
907 				 * Could not complete 3-way handshake,
908 				 * connection is being closed down, and
909 				 * syncache will free mbuf.
910 				 */
911 				if (so == NULL)
912 					return(IPPROTO_DONE);
913 
914 				/*
915 				 * We must be in the correct protocol thread
916 				 * for this connection.
917 				 */
918 				KKASSERT(so->so_port == &curthread->td_msgport);
919 
920 				/*
921 				 * Socket is created in state SYN_RECEIVED.
922 				 * Continue processing segment.
923 				 */
924 				inp = so->so_pcb;
925 				tp = intotcpcb(inp);
926 				/*
927 				 * This is what would have happened in
928 				 * tcp_output() when the SYN,ACK was sent.
929 				 */
930 				tp->snd_up = tp->snd_una;
931 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
932 				tp->last_ack_sent = tp->rcv_nxt;
933 /*
934  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
935  * until the _second_ ACK is received:
936  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
937  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
938  *	  move to ESTAB, set snd_wnd to tiwin.
939  */
940 				tp->snd_wnd = tiwin;	/* unscaled */
941 				goto after_listen;
942 			}
943 			if (thflags & TH_RST) {
944 				syncache_chkrst(&inc, th);
945 				goto drop;
946 			}
947 			if (thflags & TH_ACK) {
948 				syncache_badack(&inc);
949 				tcpstat.tcps_badsyn++;
950 				rstreason = BANDLIM_RST_OPENPORT;
951 				goto dropwithreset;
952 			}
953 			goto drop;
954 		}
955 
956 		/*
957 		 * Segment's flags are (SYN) or (SYN | FIN).
958 		 */
959 #ifdef INET6
960 		/*
961 		 * If deprecated address is forbidden,
962 		 * we do not accept SYN to deprecated interface
963 		 * address to prevent any new inbound connection from
964 		 * getting established.
965 		 * When we do not accept SYN, we send a TCP RST,
966 		 * with deprecated source address (instead of dropping
967 		 * it).  We compromise it as it is much better for peer
968 		 * to send a RST, and RST will be the final packet
969 		 * for the exchange.
970 		 *
971 		 * If we do not forbid deprecated addresses, we accept
972 		 * the SYN packet.  RFC2462 does not suggest dropping
973 		 * SYN in this case.
974 		 * If we decipher RFC2462 5.5.4, it says like this:
975 		 * 1. use of deprecated addr with existing
976 		 *    communication is okay - "SHOULD continue to be
977 		 *    used"
978 		 * 2. use of it with new communication:
979 		 *   (2a) "SHOULD NOT be used if alternate address
980 		 *	  with sufficient scope is available"
981 		 *   (2b) nothing mentioned otherwise.
982 		 * Here we fall into (2b) case as we have no choice in
983 		 * our source address selection - we must obey the peer.
984 		 *
985 		 * The wording in RFC2462 is confusing, and there are
986 		 * multiple description text for deprecated address
987 		 * handling - worse, they are not exactly the same.
988 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
989 		 */
990 		if (isipv6 && !ip6_use_deprecated) {
991 			struct in6_ifaddr *ia6;
992 
993 			if ((ia6 = ip6_getdstifaddr(m)) &&
994 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
995 				tp = NULL;
996 				rstreason = BANDLIM_RST_OPENPORT;
997 				goto dropwithreset;
998 			}
999 		}
1000 #endif
1001 		/*
1002 		 * If it is from this socket, drop it, it must be forged.
1003 		 * Don't bother responding if the destination was a broadcast.
1004 		 */
1005 		if (th->th_dport == th->th_sport) {
1006 			if (isipv6) {
1007 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1008 						       &ip6->ip6_src))
1009 					goto drop;
1010 			} else {
1011 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1012 					goto drop;
1013 			}
1014 		}
1015 		/*
1016 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1017 		 *
1018 		 * Note that it is quite possible to receive unicast
1019 		 * link-layer packets with a broadcast IP address. Use
1020 		 * in_broadcast() to find them.
1021 		 */
1022 		if (m->m_flags & (M_BCAST | M_MCAST))
1023 			goto drop;
1024 		if (isipv6) {
1025 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1026 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1027 				goto drop;
1028 		} else {
1029 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1030 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1031 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1032 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1033 				goto drop;
1034 		}
1035 		/*
1036 		 * SYN appears to be valid; create compressed TCP state
1037 		 * for syncache, or perform t/tcp connection.
1038 		 */
1039 		if (so->so_qlen <= so->so_qlimit) {
1040 			tcp_dooptions(&to, optp, optlen, TRUE);
1041 			if (!syncache_add(&inc, &to, th, &so, m))
1042 				goto drop;
1043 
1044 			/*
1045 			 * Entry added to syncache, mbuf used to
1046 			 * send SYN,ACK packet.
1047 			 */
1048 			if (so == NULL)
1049 				return(IPPROTO_DONE);
1050 
1051 			/*
1052 			 * We must be in the correct protocol thread for
1053 			 * this connection.
1054 			 */
1055 			KKASSERT(so->so_port == &curthread->td_msgport);
1056 
1057 			inp = so->so_pcb;
1058 			tp = intotcpcb(inp);
1059 			tp->snd_wnd = tiwin;
1060 			tp->t_starttime = ticks;
1061 			tp->t_state = TCPS_ESTABLISHED;
1062 
1063 			/*
1064 			 * If there is a FIN, or if there is data and the
1065 			 * connection is local, then delay SYN,ACK(SYN) in
1066 			 * the hope of piggy-backing it on a response
1067 			 * segment.  Otherwise must send ACK now in case
1068 			 * the other side is slow starting.
1069 			 */
1070 			if (DELAY_ACK(tp) &&
1071 			    ((thflags & TH_FIN) ||
1072 			     (tlen != 0 &&
1073 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
1074 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
1075 				tcp_callout_reset(tp, tp->tt_delack,
1076 				    tcp_delacktime, tcp_timer_delack);
1077 				tp->t_flags |= TF_NEEDSYN;
1078 			} else {
1079 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1080 			}
1081 
1082 			tcpstat.tcps_connects++;
1083 			soisconnected(so);
1084 			goto trimthenstep6;
1085 		}
1086 		goto drop;
1087 	}
1088 
1089 after_listen:
1090 	/*
1091 	 * Should not happen - syncache should pick up these connections.
1092 	 *
1093 	 * Once we are past handling listen sockets we must be in the
1094 	 * correct protocol processing thread.
1095 	 */
1096 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1097 	KKASSERT(so->so_port == &curthread->td_msgport);
1098 
1099 	/*
1100 	 * This is the second part of the MSS DoS prevention code (after
1101 	 * minmss on the sending side) and it deals with too many too small
1102 	 * tcp packets in a too short timeframe (1 second).
1103 	 *
1104 	 * XXX Removed.  This code was crap.  It does not scale to network
1105 	 *     speed, and default values break NFS.  Gone.
1106 	 */
1107 	/* REMOVED */
1108 
1109 	/*
1110 	 * Segment received on connection.
1111 	 *
1112 	 * Reset idle time and keep-alive timer.  Don't waste time if less
1113 	 * then a second has elapsed.
1114 	 */
1115 	if ((int)(ticks - tp->t_rcvtime) > hz)
1116 		tcp_timer_keep_activity(tp, thflags);
1117 
1118 	/*
1119 	 * Process options.
1120 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1121 	 */
1122 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0);
1123 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1124 		if (to.to_flags & TOF_SCALE) {
1125 			tp->t_flags |= TF_RCVD_SCALE;
1126 			tp->requested_s_scale = to.to_requested_s_scale;
1127 		}
1128 		if (to.to_flags & TOF_TS) {
1129 			tp->t_flags |= TF_RCVD_TSTMP;
1130 			tp->ts_recent = to.to_tsval;
1131 			tp->ts_recent_age = ticks;
1132 		}
1133 		if (to.to_flags & TOF_MSS)
1134 			tcp_mss(tp, to.to_mss);
1135 		/*
1136 		 * Only set the TF_SACK_PERMITTED per-connection flag
1137 		 * if we got a SACK_PERMITTED option from the other side
1138 		 * and the global tcp_do_sack variable is true.
1139 		 */
1140 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1141 			tp->t_flags |= TF_SACK_PERMITTED;
1142 	}
1143 
1144 	/*
1145 	 * Header prediction: check for the two common cases
1146 	 * of a uni-directional data xfer.  If the packet has
1147 	 * no control flags, is in-sequence, the window didn't
1148 	 * change and we're not retransmitting, it's a
1149 	 * candidate.  If the length is zero and the ack moved
1150 	 * forward, we're the sender side of the xfer.  Just
1151 	 * free the data acked & wake any higher level process
1152 	 * that was blocked waiting for space.  If the length
1153 	 * is non-zero and the ack didn't move, we're the
1154 	 * receiver side.  If we're getting packets in-order
1155 	 * (the reassembly queue is empty), add the data to
1156 	 * the socket buffer and note that we need a delayed ack.
1157 	 * Make sure that the hidden state-flags are also off.
1158 	 * Since we check for TCPS_ESTABLISHED above, it can only
1159 	 * be TH_NEEDSYN.
1160 	 */
1161 	if (tp->t_state == TCPS_ESTABLISHED &&
1162 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1163 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1164 	    (!(to.to_flags & TOF_TS) ||
1165 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1166 	    th->th_seq == tp->rcv_nxt &&
1167 	    tp->snd_nxt == tp->snd_max) {
1168 
1169 		/*
1170 		 * If last ACK falls within this segment's sequence numbers,
1171 		 * record the timestamp.
1172 		 * NOTE that the test is modified according to the latest
1173 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1174 		 */
1175 		if ((to.to_flags & TOF_TS) &&
1176 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1177 			tp->ts_recent_age = ticks;
1178 			tp->ts_recent = to.to_tsval;
1179 		}
1180 
1181 		if (tlen == 0) {
1182 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1183 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1184 			    tp->snd_cwnd >= tp->snd_wnd &&
1185 			    !IN_FASTRECOVERY(tp)) {
1186 				/*
1187 				 * This is a pure ack for outstanding data.
1188 				 */
1189 				++tcpstat.tcps_predack;
1190 				/*
1191 				 * "bad retransmit" recovery
1192 				 *
1193 				 * If Eifel detection applies, then
1194 				 * it is deterministic, so use it
1195 				 * unconditionally over the old heuristic.
1196 				 * Otherwise, fall back to the old heuristic.
1197 				 */
1198 				if (tcp_do_eifel_detect &&
1199 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1200 				    (tp->t_flags & TF_FIRSTACCACK)) {
1201 					/* Eifel detection applicable. */
1202 					if (to.to_tsecr < tp->t_rexmtTS) {
1203 						tcp_revert_congestion_state(tp);
1204 						++tcpstat.tcps_eifeldetected;
1205 					}
1206 				} else if (tp->t_rxtshift == 1 &&
1207 					   ticks < tp->t_badrxtwin) {
1208 					tcp_revert_congestion_state(tp);
1209 					++tcpstat.tcps_rttdetected;
1210 				}
1211 				tp->t_flags &= ~(TF_FIRSTACCACK |
1212 						 TF_FASTREXMT | TF_EARLYREXMT);
1213 				/*
1214 				 * Recalculate the retransmit timer / rtt.
1215 				 *
1216 				 * Some machines (certain windows boxes)
1217 				 * send broken timestamp replies during the
1218 				 * SYN+ACK phase, ignore timestamps of 0.
1219 				 */
1220 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1221 					tcp_xmit_timer(tp,
1222 						       ticks - to.to_tsecr + 1);
1223 				} else if (tp->t_rtttime &&
1224 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1225 					tcp_xmit_timer(tp,
1226 						       ticks - tp->t_rtttime);
1227 				}
1228 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1229 				acked = th->th_ack - tp->snd_una;
1230 				tcpstat.tcps_rcvackpack++;
1231 				tcpstat.tcps_rcvackbyte += acked;
1232 				sbdrop(&so->so_snd.sb, acked);
1233 				tp->snd_recover = th->th_ack - 1;
1234 				tp->snd_una = th->th_ack;
1235 				tp->t_dupacks = 0;
1236 				/*
1237 				 * Update window information.
1238 				 */
1239 				if (tiwin != tp->snd_wnd &&
1240 				    acceptable_window_update(tp, th, tiwin)) {
1241 					/* keep track of pure window updates */
1242 					if (tp->snd_wl2 == th->th_ack &&
1243 					    tiwin > tp->snd_wnd)
1244 						tcpstat.tcps_rcvwinupd++;
1245 					tp->snd_wnd = tiwin;
1246 					tp->snd_wl1 = th->th_seq;
1247 					tp->snd_wl2 = th->th_ack;
1248 					if (tp->snd_wnd > tp->max_sndwnd)
1249 						tp->max_sndwnd = tp->snd_wnd;
1250 				}
1251 				m_freem(m);
1252 				ND6_HINT(tp); /* some progress has been done */
1253 				/*
1254 				 * If all outstanding data are acked, stop
1255 				 * retransmit timer, otherwise restart timer
1256 				 * using current (possibly backed-off) value.
1257 				 * If process is waiting for space,
1258 				 * wakeup/selwakeup/signal.  If data
1259 				 * are ready to send, let tcp_output
1260 				 * decide between more output or persist.
1261 				 */
1262 				if (tp->snd_una == tp->snd_max) {
1263 					tcp_callout_stop(tp, tp->tt_rexmt);
1264 				} else if (!tcp_callout_active(tp,
1265 					    tp->tt_persist)) {
1266 					tcp_callout_reset(tp, tp->tt_rexmt,
1267 					    tp->t_rxtcur, tcp_timer_rexmt);
1268 				}
1269 				sowwakeup(so);
1270 				if (so->so_snd.ssb_cc > 0)
1271 					tcp_output(tp);
1272 				return(IPPROTO_DONE);
1273 			}
1274 		} else if (tiwin == tp->snd_wnd &&
1275 		    th->th_ack == tp->snd_una &&
1276 		    LIST_EMPTY(&tp->t_segq) &&
1277 		    tlen <= ssb_space(&so->so_rcv)) {
1278 			u_long newsize = 0;	/* automatic sockbuf scaling */
1279 			/*
1280 			 * This is a pure, in-sequence data packet
1281 			 * with nothing on the reassembly queue and
1282 			 * we have enough buffer space to take it.
1283 			 */
1284 			++tcpstat.tcps_preddat;
1285 			tp->rcv_nxt += tlen;
1286 			tcpstat.tcps_rcvpack++;
1287 			tcpstat.tcps_rcvbyte += tlen;
1288 			ND6_HINT(tp);	/* some progress has been done */
1289 		/*
1290 		 * Automatic sizing of receive socket buffer.  Often the send
1291 		 * buffer size is not optimally adjusted to the actual network
1292 		 * conditions at hand (delay bandwidth product).  Setting the
1293 		 * buffer size too small limits throughput on links with high
1294 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1295 		 *
1296 		 * On the receive side the socket buffer memory is only rarely
1297 		 * used to any significant extent.  This allows us to be much
1298 		 * more aggressive in scaling the receive socket buffer.  For
1299 		 * the case that the buffer space is actually used to a large
1300 		 * extent and we run out of kernel memory we can simply drop
1301 		 * the new segments; TCP on the sender will just retransmit it
1302 		 * later.  Setting the buffer size too big may only consume too
1303 		 * much kernel memory if the application doesn't read() from
1304 		 * the socket or packet loss or reordering makes use of the
1305 		 * reassembly queue.
1306 		 *
1307 		 * The criteria to step up the receive buffer one notch are:
1308 		 *  1. the number of bytes received during the time it takes
1309 		 *     one timestamp to be reflected back to us (the RTT);
1310 		 *  2. received bytes per RTT is within seven eighth of the
1311 		 *     current socket buffer size;
1312 		 *  3. receive buffer size has not hit maximal automatic size;
1313 		 *
1314 		 * This algorithm does one step per RTT at most and only if
1315 		 * we receive a bulk stream w/o packet losses or reorderings.
1316 		 * Shrinking the buffer during idle times is not necessary as
1317 		 * it doesn't consume any memory when idle.
1318 		 *
1319 		 * TODO: Only step up if the application is actually serving
1320 		 * the buffer to better manage the socket buffer resources.
1321 		 */
1322 			if (tcp_do_autorcvbuf &&
1323 			    to.to_tsecr &&
1324 			    (so->so_rcv.ssb_flags & SSB_AUTOSIZE)) {
1325 				if (to.to_tsecr > tp->rfbuf_ts &&
1326 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1327 					if (tp->rfbuf_cnt >
1328 					    (so->so_rcv.ssb_hiwat / 8 * 7) &&
1329 					    so->so_rcv.ssb_hiwat <
1330 					    tcp_autorcvbuf_max) {
1331 						newsize =
1332 						    ulmin(so->so_rcv.ssb_hiwat +
1333 							  tcp_autorcvbuf_inc,
1334 							  tcp_autorcvbuf_max);
1335 					}
1336 					/* Start over with next RTT. */
1337 					tp->rfbuf_ts = 0;
1338 					tp->rfbuf_cnt = 0;
1339 				} else
1340 					tp->rfbuf_cnt += tlen;	/* add up */
1341 			}
1342 			/*
1343 			 * Add data to socket buffer.
1344 			 */
1345 			if (so->so_state & SS_CANTRCVMORE) {
1346 				m_freem(m);
1347 			} else {
1348 				/*
1349 				 * Set new socket buffer size, give up when
1350 				 * limit is reached.
1351 				 *
1352 				 * Adjusting the size can mess up ACK
1353 				 * sequencing when pure window updates are
1354 				 * being avoided (which is the default),
1355 				 * so force an ack.
1356 				 */
1357 				lwkt_gettoken(&so->so_rcv.ssb_token);
1358 				if (newsize) {
1359 					tp->t_flags |= TF_RXRESIZED;
1360 					if (!ssb_reserve(&so->so_rcv, newsize,
1361 							 so, NULL)) {
1362 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1363 					}
1364 					if (newsize >=
1365 					    (TCP_MAXWIN << tp->rcv_scale)) {
1366 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1367 					}
1368 				}
1369 				m_adj(m, drop_hdrlen); /* delayed header drop */
1370 				ssb_appendstream(&so->so_rcv, m);
1371 				lwkt_reltoken(&so->so_rcv.ssb_token);
1372 			}
1373 			sorwakeup(so);
1374 			/*
1375 			 * This code is responsible for most of the ACKs
1376 			 * the TCP stack sends back after receiving a data
1377 			 * packet.  Note that the DELAY_ACK check fails if
1378 			 * the delack timer is already running, which results
1379 			 * in an ack being sent every other packet (which is
1380 			 * what we want).
1381 			 *
1382 			 * We then further aggregate acks by not actually
1383 			 * sending one until the protocol thread has completed
1384 			 * processing the current backlog of packets.  This
1385 			 * does not delay the ack any further, but allows us
1386 			 * to take advantage of the packet aggregation that
1387 			 * high speed NICs do (usually blocks of 8-10 packets)
1388 			 * to send a single ack rather then four or five acks,
1389 			 * greatly reducing the ack rate, the return channel
1390 			 * bandwidth, and the protocol overhead on both ends.
1391 			 *
1392 			 * Since this also has the effect of slowing down
1393 			 * the exponential slow-start ramp-up, systems with
1394 			 * very large bandwidth-delay products might want
1395 			 * to turn the feature off.
1396 			 */
1397 			if (DELAY_ACK(tp)) {
1398 				tcp_callout_reset(tp, tp->tt_delack,
1399 				    tcp_delacktime, tcp_timer_delack);
1400 			} else if (tcp_aggregate_acks) {
1401 				tp->t_flags |= TF_ACKNOW;
1402 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1403 					tp->t_flags |= TF_ONOUTPUTQ;
1404 					tp->tt_cpu = mycpu->gd_cpuid;
1405 					TAILQ_INSERT_TAIL(
1406 					    &tcpcbackq[tp->tt_cpu],
1407 					    tp, t_outputq);
1408 				}
1409 			} else {
1410 				tp->t_flags |= TF_ACKNOW;
1411 				tcp_output(tp);
1412 			}
1413 			return(IPPROTO_DONE);
1414 		}
1415 	}
1416 
1417 	/*
1418 	 * Calculate amount of space in receive window,
1419 	 * and then do TCP input processing.
1420 	 * Receive window is amount of space in rcv queue,
1421 	 * but not less than advertised window.
1422 	 */
1423 	recvwin = ssb_space(&so->so_rcv);
1424 	if (recvwin < 0)
1425 		recvwin = 0;
1426 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1427 
1428 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1429 	tp->rfbuf_ts = 0;
1430 	tp->rfbuf_cnt = 0;
1431 
1432 	switch (tp->t_state) {
1433 	/*
1434 	 * If the state is SYN_RECEIVED:
1435 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1436 	 */
1437 	case TCPS_SYN_RECEIVED:
1438 		if ((thflags & TH_ACK) &&
1439 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1440 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1441 				rstreason = BANDLIM_RST_OPENPORT;
1442 				goto dropwithreset;
1443 		}
1444 		break;
1445 
1446 	/*
1447 	 * If the state is SYN_SENT:
1448 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1449 	 *	if seg contains a RST, then drop the connection.
1450 	 *	if seg does not contain SYN, then drop it.
1451 	 * Otherwise this is an acceptable SYN segment
1452 	 *	initialize tp->rcv_nxt and tp->irs
1453 	 *	if seg contains ack then advance tp->snd_una
1454 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1455 	 *	arrange for segment to be acked (eventually)
1456 	 *	continue processing rest of data/controls, beginning with URG
1457 	 */
1458 	case TCPS_SYN_SENT:
1459 		if ((thflags & TH_ACK) &&
1460 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1461 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1462 			rstreason = BANDLIM_UNLIMITED;
1463 			goto dropwithreset;
1464 		}
1465 		if (thflags & TH_RST) {
1466 			if (thflags & TH_ACK)
1467 				tp = tcp_drop(tp, ECONNREFUSED);
1468 			goto drop;
1469 		}
1470 		if (!(thflags & TH_SYN))
1471 			goto drop;
1472 		tp->snd_wnd = th->th_win;	/* initial send window */
1473 
1474 		tp->irs = th->th_seq;
1475 		tcp_rcvseqinit(tp);
1476 		if (thflags & TH_ACK) {
1477 			/* Our SYN was acked. */
1478 			tcpstat.tcps_connects++;
1479 			soisconnected(so);
1480 			/* Do window scaling on this connection? */
1481 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1482 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1483 				tp->snd_scale = tp->requested_s_scale;
1484 				tp->rcv_scale = tp->request_r_scale;
1485 			}
1486 			tp->rcv_adv += tp->rcv_wnd;
1487 			tp->snd_una++;		/* SYN is acked */
1488 			tcp_callout_stop(tp, tp->tt_rexmt);
1489 			/*
1490 			 * If there's data, delay ACK; if there's also a FIN
1491 			 * ACKNOW will be turned on later.
1492 			 */
1493 			if (DELAY_ACK(tp) && tlen != 0) {
1494 				tcp_callout_reset(tp, tp->tt_delack,
1495 				    tcp_delacktime, tcp_timer_delack);
1496 			} else {
1497 				tp->t_flags |= TF_ACKNOW;
1498 			}
1499 			/*
1500 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1501 			 * Transitions:
1502 			 *	SYN_SENT  --> ESTABLISHED
1503 			 *	SYN_SENT* --> FIN_WAIT_1
1504 			 */
1505 			tp->t_starttime = ticks;
1506 			if (tp->t_flags & TF_NEEDFIN) {
1507 				tp->t_state = TCPS_FIN_WAIT_1;
1508 				tp->t_flags &= ~TF_NEEDFIN;
1509 				thflags &= ~TH_SYN;
1510 			} else {
1511 				tp->t_state = TCPS_ESTABLISHED;
1512 				tcp_callout_reset(tp, tp->tt_keep,
1513 						  tcp_getkeepidle(tp),
1514 						  tcp_timer_keep);
1515 			}
1516 		} else {
1517 			/*
1518 			 * Received initial SYN in SYN-SENT[*] state =>
1519 			 * simultaneous open.
1520 			 * Do 3-way handshake:
1521 			 *	  SYN-SENT -> SYN-RECEIVED
1522 			 *	  SYN-SENT* -> SYN-RECEIVED*
1523 			 */
1524 			tp->t_flags |= TF_ACKNOW;
1525 			tcp_callout_stop(tp, tp->tt_rexmt);
1526 			tp->t_state = TCPS_SYN_RECEIVED;
1527 		}
1528 
1529 trimthenstep6:
1530 		/*
1531 		 * Advance th->th_seq to correspond to first data byte.
1532 		 * If data, trim to stay within window,
1533 		 * dropping FIN if necessary.
1534 		 */
1535 		th->th_seq++;
1536 		if (tlen > tp->rcv_wnd) {
1537 			todrop = tlen - tp->rcv_wnd;
1538 			m_adj(m, -todrop);
1539 			tlen = tp->rcv_wnd;
1540 			thflags &= ~TH_FIN;
1541 			tcpstat.tcps_rcvpackafterwin++;
1542 			tcpstat.tcps_rcvbyteafterwin += todrop;
1543 		}
1544 		tp->snd_wl1 = th->th_seq - 1;
1545 		tp->rcv_up = th->th_seq;
1546 		/*
1547 		 * Client side of transaction: already sent SYN and data.
1548 		 * If the remote host used T/TCP to validate the SYN,
1549 		 * our data will be ACK'd; if so, enter normal data segment
1550 		 * processing in the middle of step 5, ack processing.
1551 		 * Otherwise, goto step 6.
1552 		 */
1553 		if (thflags & TH_ACK)
1554 			goto process_ACK;
1555 
1556 		goto step6;
1557 
1558 	/*
1559 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1560 	 *	do normal processing (we no longer bother with T/TCP).
1561 	 */
1562 	case TCPS_LAST_ACK:
1563 	case TCPS_CLOSING:
1564 	case TCPS_TIME_WAIT:
1565 		break;  /* continue normal processing */
1566 	}
1567 
1568 	/*
1569 	 * States other than LISTEN or SYN_SENT.
1570 	 * First check the RST flag and sequence number since reset segments
1571 	 * are exempt from the timestamp and connection count tests.  This
1572 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1573 	 * below which allowed reset segments in half the sequence space
1574 	 * to fall though and be processed (which gives forged reset
1575 	 * segments with a random sequence number a 50 percent chance of
1576 	 * killing a connection).
1577 	 * Then check timestamp, if present.
1578 	 * Then check the connection count, if present.
1579 	 * Then check that at least some bytes of segment are within
1580 	 * receive window.  If segment begins before rcv_nxt,
1581 	 * drop leading data (and SYN); if nothing left, just ack.
1582 	 *
1583 	 *
1584 	 * If the RST bit is set, check the sequence number to see
1585 	 * if this is a valid reset segment.
1586 	 * RFC 793 page 37:
1587 	 *   In all states except SYN-SENT, all reset (RST) segments
1588 	 *   are validated by checking their SEQ-fields.  A reset is
1589 	 *   valid if its sequence number is in the window.
1590 	 * Note: this does not take into account delayed ACKs, so
1591 	 *   we should test against last_ack_sent instead of rcv_nxt.
1592 	 *   The sequence number in the reset segment is normally an
1593 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1594 	 *   send a reset with the sequence number at the rightmost edge
1595 	 *   of our receive window, and we have to handle this case.
1596 	 * If we have multiple segments in flight, the intial reset
1597 	 * segment sequence numbers will be to the left of last_ack_sent,
1598 	 * but they will eventually catch up.
1599 	 * In any case, it never made sense to trim reset segments to
1600 	 * fit the receive window since RFC 1122 says:
1601 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1602 	 *
1603 	 *    A TCP SHOULD allow a received RST segment to include data.
1604 	 *
1605 	 *    DISCUSSION
1606 	 *	   It has been suggested that a RST segment could contain
1607 	 *	   ASCII text that encoded and explained the cause of the
1608 	 *	   RST.  No standard has yet been established for such
1609 	 *	   data.
1610 	 *
1611 	 * If the reset segment passes the sequence number test examine
1612 	 * the state:
1613 	 *    SYN_RECEIVED STATE:
1614 	 *	If passive open, return to LISTEN state.
1615 	 *	If active open, inform user that connection was refused.
1616 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1617 	 *	Inform user that connection was reset, and close tcb.
1618 	 *    CLOSING, LAST_ACK STATES:
1619 	 *	Close the tcb.
1620 	 *    TIME_WAIT STATE:
1621 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1622 	 *	RFC 1337.
1623 	 */
1624 	if (thflags & TH_RST) {
1625 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1626 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1627 			switch (tp->t_state) {
1628 
1629 			case TCPS_SYN_RECEIVED:
1630 				so->so_error = ECONNREFUSED;
1631 				goto close;
1632 
1633 			case TCPS_ESTABLISHED:
1634 			case TCPS_FIN_WAIT_1:
1635 			case TCPS_FIN_WAIT_2:
1636 			case TCPS_CLOSE_WAIT:
1637 				so->so_error = ECONNRESET;
1638 			close:
1639 				tp->t_state = TCPS_CLOSED;
1640 				tcpstat.tcps_drops++;
1641 				tp = tcp_close(tp);
1642 				break;
1643 
1644 			case TCPS_CLOSING:
1645 			case TCPS_LAST_ACK:
1646 				tp = tcp_close(tp);
1647 				break;
1648 
1649 			case TCPS_TIME_WAIT:
1650 				break;
1651 			}
1652 		}
1653 		goto drop;
1654 	}
1655 
1656 	/*
1657 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1658 	 * and it's less than ts_recent, drop it.
1659 	 */
1660 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1661 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1662 
1663 		/* Check to see if ts_recent is over 24 days old.  */
1664 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1665 			/*
1666 			 * Invalidate ts_recent.  If this segment updates
1667 			 * ts_recent, the age will be reset later and ts_recent
1668 			 * will get a valid value.  If it does not, setting
1669 			 * ts_recent to zero will at least satisfy the
1670 			 * requirement that zero be placed in the timestamp
1671 			 * echo reply when ts_recent isn't valid.  The
1672 			 * age isn't reset until we get a valid ts_recent
1673 			 * because we don't want out-of-order segments to be
1674 			 * dropped when ts_recent is old.
1675 			 */
1676 			tp->ts_recent = 0;
1677 		} else {
1678 			tcpstat.tcps_rcvduppack++;
1679 			tcpstat.tcps_rcvdupbyte += tlen;
1680 			tcpstat.tcps_pawsdrop++;
1681 			if (tlen)
1682 				goto dropafterack;
1683 			goto drop;
1684 		}
1685 	}
1686 
1687 	/*
1688 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1689 	 * this connection before trimming the data to fit the receive
1690 	 * window.  Check the sequence number versus IRS since we know
1691 	 * the sequence numbers haven't wrapped.  This is a partial fix
1692 	 * for the "LAND" DoS attack.
1693 	 */
1694 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1695 		rstreason = BANDLIM_RST_OPENPORT;
1696 		goto dropwithreset;
1697 	}
1698 
1699 	todrop = tp->rcv_nxt - th->th_seq;
1700 	if (todrop > 0) {
1701 		if (TCP_DO_SACK(tp)) {
1702 			/* Report duplicate segment at head of packet. */
1703 			tp->reportblk.rblk_start = th->th_seq;
1704 			tp->reportblk.rblk_end = th->th_seq + tlen;
1705 			if (thflags & TH_FIN)
1706 				++tp->reportblk.rblk_end;
1707 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1708 				tp->reportblk.rblk_end = tp->rcv_nxt;
1709 			tp->t_flags |= (TF_DUPSEG | TF_SACKLEFT | TF_ACKNOW);
1710 		}
1711 		if (thflags & TH_SYN) {
1712 			thflags &= ~TH_SYN;
1713 			th->th_seq++;
1714 			if (th->th_urp > 1)
1715 				th->th_urp--;
1716 			else
1717 				thflags &= ~TH_URG;
1718 			todrop--;
1719 		}
1720 		/*
1721 		 * Following if statement from Stevens, vol. 2, p. 960.
1722 		 */
1723 		if (todrop > tlen ||
1724 		    (todrop == tlen && !(thflags & TH_FIN))) {
1725 			/*
1726 			 * Any valid FIN must be to the left of the window.
1727 			 * At this point the FIN must be a duplicate or out
1728 			 * of sequence; drop it.
1729 			 */
1730 			thflags &= ~TH_FIN;
1731 
1732 			/*
1733 			 * Send an ACK to resynchronize and drop any data.
1734 			 * But keep on processing for RST or ACK.
1735 			 */
1736 			tp->t_flags |= TF_ACKNOW;
1737 			todrop = tlen;
1738 			tcpstat.tcps_rcvduppack++;
1739 			tcpstat.tcps_rcvdupbyte += todrop;
1740 		} else {
1741 			tcpstat.tcps_rcvpartduppack++;
1742 			tcpstat.tcps_rcvpartdupbyte += todrop;
1743 		}
1744 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1745 		th->th_seq += todrop;
1746 		tlen -= todrop;
1747 		if (th->th_urp > todrop)
1748 			th->th_urp -= todrop;
1749 		else {
1750 			thflags &= ~TH_URG;
1751 			th->th_urp = 0;
1752 		}
1753 	}
1754 
1755 	/*
1756 	 * If new data are received on a connection after the
1757 	 * user processes are gone, then RST the other end.
1758 	 */
1759 	if ((so->so_state & SS_NOFDREF) &&
1760 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1761 		tp = tcp_close(tp);
1762 		tcpstat.tcps_rcvafterclose++;
1763 		rstreason = BANDLIM_UNLIMITED;
1764 		goto dropwithreset;
1765 	}
1766 
1767 	/*
1768 	 * If segment ends after window, drop trailing data
1769 	 * (and PUSH and FIN); if nothing left, just ACK.
1770 	 */
1771 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1772 	if (todrop > 0) {
1773 		tcpstat.tcps_rcvpackafterwin++;
1774 		if (todrop >= tlen) {
1775 			tcpstat.tcps_rcvbyteafterwin += tlen;
1776 			/*
1777 			 * If a new connection request is received
1778 			 * while in TIME_WAIT, drop the old connection
1779 			 * and start over if the sequence numbers
1780 			 * are above the previous ones.
1781 			 */
1782 			if (thflags & TH_SYN &&
1783 			    tp->t_state == TCPS_TIME_WAIT &&
1784 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1785 				tp = tcp_close(tp);
1786 				goto findpcb;
1787 			}
1788 			/*
1789 			 * If window is closed can only take segments at
1790 			 * window edge, and have to drop data and PUSH from
1791 			 * incoming segments.  Continue processing, but
1792 			 * remember to ack.  Otherwise, drop segment
1793 			 * and ack.
1794 			 */
1795 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1796 				tp->t_flags |= TF_ACKNOW;
1797 				tcpstat.tcps_rcvwinprobe++;
1798 			} else
1799 				goto dropafterack;
1800 		} else
1801 			tcpstat.tcps_rcvbyteafterwin += todrop;
1802 		m_adj(m, -todrop);
1803 		tlen -= todrop;
1804 		thflags &= ~(TH_PUSH | TH_FIN);
1805 	}
1806 
1807 	/*
1808 	 * If last ACK falls within this segment's sequence numbers,
1809 	 * record its timestamp.
1810 	 * NOTE:
1811 	 * 1) That the test incorporates suggestions from the latest
1812 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1813 	 * 2) That updating only on newer timestamps interferes with
1814 	 *    our earlier PAWS tests, so this check should be solely
1815 	 *    predicated on the sequence space of this segment.
1816 	 * 3) That we modify the segment boundary check to be
1817 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1818 	 *    instead of RFC1323's
1819 	 *        Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1820 	 *    This modified check allows us to overcome RFC1323's
1821 	 *    limitations as described in Stevens TCP/IP Illustrated
1822 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1823 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1824 	 */
1825 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1826 	    SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1827 					+ ((thflags & TH_SYN) != 0)
1828 					+ ((thflags & TH_FIN) != 0)))) {
1829 		tp->ts_recent_age = ticks;
1830 		tp->ts_recent = to.to_tsval;
1831 	}
1832 
1833 	/*
1834 	 * If a SYN is in the window, then this is an
1835 	 * error and we send an RST and drop the connection.
1836 	 */
1837 	if (thflags & TH_SYN) {
1838 		tp = tcp_drop(tp, ECONNRESET);
1839 		rstreason = BANDLIM_UNLIMITED;
1840 		goto dropwithreset;
1841 	}
1842 
1843 	/*
1844 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1845 	 * flag is on (half-synchronized state), then queue data for
1846 	 * later processing; else drop segment and return.
1847 	 */
1848 	if (!(thflags & TH_ACK)) {
1849 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1850 		    (tp->t_flags & TF_NEEDSYN))
1851 			goto step6;
1852 		else
1853 			goto drop;
1854 	}
1855 
1856 	/*
1857 	 * Ack processing.
1858 	 */
1859 	switch (tp->t_state) {
1860 	/*
1861 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1862 	 * ESTABLISHED state and continue processing.
1863 	 * The ACK was checked above.
1864 	 */
1865 	case TCPS_SYN_RECEIVED:
1866 
1867 		tcpstat.tcps_connects++;
1868 		soisconnected(so);
1869 		/* Do window scaling? */
1870 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1871 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1872 			tp->snd_scale = tp->requested_s_scale;
1873 			tp->rcv_scale = tp->request_r_scale;
1874 		}
1875 		/*
1876 		 * Make transitions:
1877 		 *      SYN-RECEIVED  -> ESTABLISHED
1878 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1879 		 */
1880 		tp->t_starttime = ticks;
1881 		if (tp->t_flags & TF_NEEDFIN) {
1882 			tp->t_state = TCPS_FIN_WAIT_1;
1883 			tp->t_flags &= ~TF_NEEDFIN;
1884 		} else {
1885 			tp->t_state = TCPS_ESTABLISHED;
1886 			tcp_callout_reset(tp, tp->tt_keep,
1887 					  tcp_getkeepidle(tp),
1888 					  tcp_timer_keep);
1889 		}
1890 		/*
1891 		 * If segment contains data or ACK, will call tcp_reass()
1892 		 * later; if not, do so now to pass queued data to user.
1893 		 */
1894 		if (tlen == 0 && !(thflags & TH_FIN))
1895 			tcp_reass(tp, NULL, NULL, NULL);
1896 		/* fall into ... */
1897 
1898 	/*
1899 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1900 	 * ACKs.  If the ack is in the range
1901 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1902 	 * then advance tp->snd_una to th->th_ack and drop
1903 	 * data from the retransmission queue.  If this ACK reflects
1904 	 * more up to date window information we update our window information.
1905 	 */
1906 	case TCPS_ESTABLISHED:
1907 	case TCPS_FIN_WAIT_1:
1908 	case TCPS_FIN_WAIT_2:
1909 	case TCPS_CLOSE_WAIT:
1910 	case TCPS_CLOSING:
1911 	case TCPS_LAST_ACK:
1912 	case TCPS_TIME_WAIT:
1913 
1914 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1915 			if (TCP_DO_SACK(tp))
1916 				tcp_sack_update_scoreboard(tp, &to);
1917 			if (tlen != 0 || tiwin != tp->snd_wnd) {
1918 				tp->t_dupacks = 0;
1919 				break;
1920 			}
1921 			tcpstat.tcps_rcvdupack++;
1922 			if (!tcp_callout_active(tp, tp->tt_rexmt) ||
1923 			    th->th_ack != tp->snd_una) {
1924 				tp->t_dupacks = 0;
1925 				break;
1926 			}
1927 			/*
1928 			 * We have outstanding data (other than
1929 			 * a window probe), this is a completely
1930 			 * duplicate ack (ie, window info didn't
1931 			 * change), the ack is the biggest we've
1932 			 * seen and we've seen exactly our rexmt
1933 			 * threshhold of them, so assume a packet
1934 			 * has been dropped and retransmit it.
1935 			 * Kludge snd_nxt & the congestion
1936 			 * window so we send only this one
1937 			 * packet.
1938 			 */
1939 			if (IN_FASTRECOVERY(tp)) {
1940 				if (TCP_DO_SACK(tp)) {
1941 					/* No artifical cwnd inflation. */
1942 					tcp_sack_rexmt(tp, th);
1943 				} else {
1944 					/*
1945 					 * Dup acks mean that packets
1946 					 * have left the network
1947 					 * (they're now cached at the
1948 					 * receiver) so bump cwnd by
1949 					 * the amount in the receiver
1950 					 * to keep a constant cwnd
1951 					 * packets in the network.
1952 					 */
1953 					tp->snd_cwnd += tp->t_maxseg;
1954 					tcp_output(tp);
1955 				}
1956 			} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1957 				tp->t_dupacks = 0;
1958 				break;
1959 			} else if (++tp->t_dupacks == tcprexmtthresh) {
1960 				tcp_seq old_snd_nxt;
1961 				u_int win;
1962 
1963 fastretransmit:
1964 				if (tcp_do_eifel_detect &&
1965 				    (tp->t_flags & TF_RCVD_TSTMP)) {
1966 					tcp_save_congestion_state(tp);
1967 					tp->t_flags |= TF_FASTREXMT;
1968 				}
1969 				/*
1970 				 * We know we're losing at the current
1971 				 * window size, so do congestion avoidance:
1972 				 * set ssthresh to half the current window
1973 				 * and pull our congestion window back to the
1974 				 * new ssthresh.
1975 				 */
1976 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1977 				    tp->t_maxseg;
1978 				if (win < 2)
1979 					win = 2;
1980 				tp->snd_ssthresh = win * tp->t_maxseg;
1981 				ENTER_FASTRECOVERY(tp);
1982 				tp->snd_recover = tp->snd_max;
1983 				tcp_callout_stop(tp, tp->tt_rexmt);
1984 				tp->t_rtttime = 0;
1985 				old_snd_nxt = tp->snd_nxt;
1986 				tp->snd_nxt = th->th_ack;
1987 				tp->snd_cwnd = tp->t_maxseg;
1988 				tcp_output(tp);
1989 				++tcpstat.tcps_sndfastrexmit;
1990 				tp->snd_cwnd = tp->snd_ssthresh;
1991 				tp->rexmt_high = tp->snd_nxt;
1992 				if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
1993 					tp->snd_nxt = old_snd_nxt;
1994 				KASSERT(tp->snd_limited <= 2,
1995 				    ("tp->snd_limited too big"));
1996 				if (TCP_DO_SACK(tp))
1997 					tcp_sack_rexmt(tp, th);
1998 				else
1999 					tp->snd_cwnd += tp->t_maxseg *
2000 					    (tp->t_dupacks - tp->snd_limited);
2001 			} else if (tcp_do_limitedtransmit) {
2002 				u_long oldcwnd = tp->snd_cwnd;
2003 				tcp_seq oldsndmax = tp->snd_max;
2004 				tcp_seq oldsndnxt = tp->snd_nxt;
2005 				/* outstanding data */
2006 				uint32_t ownd = tp->snd_max - tp->snd_una;
2007 				u_int sent;
2008 
2009 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
2010 
2011 				KASSERT(tp->t_dupacks == 1 ||
2012 					tp->t_dupacks == 2,
2013 				    ("dupacks not 1 or 2"));
2014 				if (tp->t_dupacks == 1)
2015 					tp->snd_limited = 0;
2016 				tp->snd_nxt = tp->snd_max;
2017 				tp->snd_cwnd = ownd +
2018 				    (tp->t_dupacks - tp->snd_limited) *
2019 				    tp->t_maxseg;
2020 				tcp_output(tp);
2021 
2022 				/*
2023 				 * Other acks may have been processed,
2024 				 * snd_nxt cannot be reset to a value less
2025 				 * then snd_una.
2026 				 */
2027 				if (SEQ_LT(oldsndnxt, oldsndmax)) {
2028 				    if (SEQ_GT(oldsndnxt, tp->snd_una))
2029 					tp->snd_nxt = oldsndnxt;
2030 				    else
2031 					tp->snd_nxt = tp->snd_una;
2032 				}
2033 				tp->snd_cwnd = oldcwnd;
2034 				sent = tp->snd_max - oldsndmax;
2035 				if (sent > tp->t_maxseg) {
2036 					KASSERT((tp->t_dupacks == 2 &&
2037 						 tp->snd_limited == 0) ||
2038 						(sent == tp->t_maxseg + 1 &&
2039 						 tp->t_flags & TF_SENTFIN),
2040 					    ("sent too much"));
2041 					KASSERT(sent <= tp->t_maxseg * 2,
2042 					    ("sent too many segments"));
2043 					tp->snd_limited = 2;
2044 					tcpstat.tcps_sndlimited += 2;
2045 				} else if (sent > 0) {
2046 					++tp->snd_limited;
2047 					++tcpstat.tcps_sndlimited;
2048 				} else if (tcp_do_early_retransmit &&
2049 				    (tcp_do_eifel_detect &&
2050 				     (tp->t_flags & TF_RCVD_TSTMP)) &&
2051 				    ownd < 4 * tp->t_maxseg &&
2052 				    tp->t_dupacks + 1 >=
2053 				      iceildiv(ownd, tp->t_maxseg) &&
2054 				    (!TCP_DO_SACK(tp) ||
2055 				     ownd <= tp->t_maxseg ||
2056 				     tcp_sack_has_sacked(&tp->scb,
2057 							ownd - tp->t_maxseg))) {
2058 					++tcpstat.tcps_sndearlyrexmit;
2059 					tp->t_flags |= TF_EARLYREXMT;
2060 					goto fastretransmit;
2061 				}
2062 			}
2063 			goto drop;
2064 		}
2065 
2066 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2067 		tp->t_dupacks = 0;
2068 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2069 			/*
2070 			 * Detected optimistic ACK attack.
2071 			 * Force slow-start to de-synchronize attack.
2072 			 */
2073 			tp->snd_cwnd = tp->t_maxseg;
2074 			tp->snd_wacked = 0;
2075 
2076 			tcpstat.tcps_rcvacktoomuch++;
2077 			goto dropafterack;
2078 		}
2079 		/*
2080 		 * If we reach this point, ACK is not a duplicate,
2081 		 *     i.e., it ACKs something we sent.
2082 		 */
2083 		if (tp->t_flags & TF_NEEDSYN) {
2084 			/*
2085 			 * T/TCP: Connection was half-synchronized, and our
2086 			 * SYN has been ACK'd (so connection is now fully
2087 			 * synchronized).  Go to non-starred state,
2088 			 * increment snd_una for ACK of SYN, and check if
2089 			 * we can do window scaling.
2090 			 */
2091 			tp->t_flags &= ~TF_NEEDSYN;
2092 			tp->snd_una++;
2093 			/* Do window scaling? */
2094 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2095 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
2096 				tp->snd_scale = tp->requested_s_scale;
2097 				tp->rcv_scale = tp->request_r_scale;
2098 			}
2099 		}
2100 
2101 process_ACK:
2102 		acked = th->th_ack - tp->snd_una;
2103 		tcpstat.tcps_rcvackpack++;
2104 		tcpstat.tcps_rcvackbyte += acked;
2105 
2106 		if (tcp_do_eifel_detect && acked > 0 &&
2107 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2108 		    (tp->t_flags & TF_FIRSTACCACK)) {
2109 			/* Eifel detection applicable. */
2110 			if (to.to_tsecr < tp->t_rexmtTS) {
2111 				++tcpstat.tcps_eifeldetected;
2112 				tcp_revert_congestion_state(tp);
2113 				if (tp->t_rxtshift == 1 &&
2114 				    ticks >= tp->t_badrxtwin)
2115 					++tcpstat.tcps_rttcantdetect;
2116 			}
2117 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2118 			/*
2119 			 * If we just performed our first retransmit,
2120 			 * and the ACK arrives within our recovery window,
2121 			 * then it was a mistake to do the retransmit
2122 			 * in the first place.  Recover our original cwnd
2123 			 * and ssthresh, and proceed to transmit where we
2124 			 * left off.
2125 			 */
2126 			tcp_revert_congestion_state(tp);
2127 			++tcpstat.tcps_rttdetected;
2128 		}
2129 
2130 		/*
2131 		 * If we have a timestamp reply, update smoothed
2132 		 * round trip time.  If no timestamp is present but
2133 		 * transmit timer is running and timed sequence
2134 		 * number was acked, update smoothed round trip time.
2135 		 * Since we now have an rtt measurement, cancel the
2136 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2137 		 * Recompute the initial retransmit timer.
2138 		 *
2139 		 * Some machines (certain windows boxes) send broken
2140 		 * timestamp replies during the SYN+ACK phase, ignore
2141 		 * timestamps of 0.
2142 		 */
2143 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2144 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2145 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2146 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2147 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2148 
2149 		/*
2150 		 * If no data (only SYN) was ACK'd,
2151 		 *    skip rest of ACK processing.
2152 		 */
2153 		if (acked == 0)
2154 			goto step6;
2155 
2156 		/* Stop looking for an acceptable ACK since one was received. */
2157 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
2158 
2159 		if (acked > so->so_snd.ssb_cc) {
2160 			tp->snd_wnd -= so->so_snd.ssb_cc;
2161 			sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2162 			ourfinisacked = TRUE;
2163 		} else {
2164 			sbdrop(&so->so_snd.sb, acked);
2165 			tp->snd_wnd -= acked;
2166 			ourfinisacked = FALSE;
2167 		}
2168 		sowwakeup(so);
2169 
2170 		/*
2171 		 * Update window information.
2172 		 * Don't look at window if no ACK:
2173 		 * TAC's send garbage on first SYN.
2174 		 */
2175 		if (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2176 		    (tp->snd_wl1 == th->th_seq &&
2177 		     (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2178 		      (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)))) {
2179 			/* keep track of pure window updates */
2180 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2181 			    tiwin > tp->snd_wnd)
2182 				tcpstat.tcps_rcvwinupd++;
2183 			tp->snd_wnd = tiwin;
2184 			tp->snd_wl1 = th->th_seq;
2185 			tp->snd_wl2 = th->th_ack;
2186 			if (tp->snd_wnd > tp->max_sndwnd)
2187 				tp->max_sndwnd = tp->snd_wnd;
2188 			needoutput = TRUE;
2189 		}
2190 
2191 		tp->snd_una = th->th_ack;
2192 		if (TCP_DO_SACK(tp))
2193 			tcp_sack_update_scoreboard(tp, &to);
2194 		if (IN_FASTRECOVERY(tp)) {
2195 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2196 				EXIT_FASTRECOVERY(tp);
2197 				needoutput = TRUE;
2198 				/*
2199 				 * If the congestion window was inflated
2200 				 * to account for the other side's
2201 				 * cached packets, retract it.
2202 				 */
2203 				if (!TCP_DO_SACK(tp))
2204 					tp->snd_cwnd = tp->snd_ssthresh;
2205 
2206 				/*
2207 				 * Window inflation should have left us
2208 				 * with approximately snd_ssthresh outstanding
2209 				 * data.  But, in case we would be inclined
2210 				 * to send a burst, better do it using
2211 				 * slow start.
2212 				 */
2213 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2214 					   tp->snd_max + 2 * tp->t_maxseg))
2215 					tp->snd_cwnd =
2216 					    (tp->snd_max - tp->snd_una) +
2217 					    2 * tp->t_maxseg;
2218 
2219 				tp->snd_wacked = 0;
2220 			} else {
2221 				if (TCP_DO_SACK(tp)) {
2222 					tp->snd_max_rexmt = tp->snd_max;
2223 					tcp_sack_rexmt(tp, th);
2224 				} else {
2225 					tcp_newreno_partial_ack(tp, th, acked);
2226 				}
2227 				needoutput = FALSE;
2228 			}
2229 		} else {
2230 			/*
2231 			 * Open the congestion window.  When in slow-start,
2232 			 * open exponentially: maxseg per packet.  Otherwise,
2233 			 * open linearly: maxseg per window.
2234 			 */
2235 			if (tp->snd_cwnd <= tp->snd_ssthresh) {
2236 				u_int abc_sslimit =
2237 				    (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2238 				     tp->t_maxseg : 2 * tp->t_maxseg);
2239 
2240 				/* slow-start */
2241 				tp->snd_cwnd += tcp_do_abc ?
2242 				    min(acked, abc_sslimit) : tp->t_maxseg;
2243 			} else {
2244 				/* linear increase */
2245 				tp->snd_wacked += tcp_do_abc ? acked :
2246 				    tp->t_maxseg;
2247 				if (tp->snd_wacked >= tp->snd_cwnd) {
2248 					tp->snd_wacked -= tp->snd_cwnd;
2249 					tp->snd_cwnd += tp->t_maxseg;
2250 				}
2251 			}
2252 			tp->snd_cwnd = min(tp->snd_cwnd,
2253 					   TCP_MAXWIN << tp->snd_scale);
2254 			tp->snd_recover = th->th_ack - 1;
2255 		}
2256 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2257 			tp->snd_nxt = tp->snd_una;
2258 
2259 		/*
2260 		 * If all outstanding data is acked, stop retransmit
2261 		 * timer and remember to restart (more output or persist).
2262 		 * If there is more data to be acked, restart retransmit
2263 		 * timer, using current (possibly backed-off) value.
2264 		 */
2265 		if (th->th_ack == tp->snd_max) {
2266 			tcp_callout_stop(tp, tp->tt_rexmt);
2267 			needoutput = TRUE;
2268 		} else if (!tcp_callout_active(tp, tp->tt_persist)) {
2269 			tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur,
2270 			    tcp_timer_rexmt);
2271 		}
2272 
2273 		switch (tp->t_state) {
2274 		/*
2275 		 * In FIN_WAIT_1 STATE in addition to the processing
2276 		 * for the ESTABLISHED state if our FIN is now acknowledged
2277 		 * then enter FIN_WAIT_2.
2278 		 */
2279 		case TCPS_FIN_WAIT_1:
2280 			if (ourfinisacked) {
2281 				/*
2282 				 * If we can't receive any more
2283 				 * data, then closing user can proceed.
2284 				 * Starting the timer is contrary to the
2285 				 * specification, but if we don't get a FIN
2286 				 * we'll hang forever.
2287 				 */
2288 				if (so->so_state & SS_CANTRCVMORE) {
2289 					soisdisconnected(so);
2290 					tcp_callout_reset(tp, tp->tt_2msl,
2291 					    tp->t_maxidle, tcp_timer_2msl);
2292 				}
2293 				tp->t_state = TCPS_FIN_WAIT_2;
2294 			}
2295 			break;
2296 
2297 		/*
2298 		 * In CLOSING STATE in addition to the processing for
2299 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2300 		 * then enter the TIME-WAIT state, otherwise ignore
2301 		 * the segment.
2302 		 */
2303 		case TCPS_CLOSING:
2304 			if (ourfinisacked) {
2305 				tp->t_state = TCPS_TIME_WAIT;
2306 				tcp_canceltimers(tp);
2307 				tcp_callout_reset(tp, tp->tt_2msl,
2308 					    2 * tcp_msl, tcp_timer_2msl);
2309 				soisdisconnected(so);
2310 			}
2311 			break;
2312 
2313 		/*
2314 		 * In LAST_ACK, we may still be waiting for data to drain
2315 		 * and/or to be acked, as well as for the ack of our FIN.
2316 		 * If our FIN is now acknowledged, delete the TCB,
2317 		 * enter the closed state and return.
2318 		 */
2319 		case TCPS_LAST_ACK:
2320 			if (ourfinisacked) {
2321 				tp = tcp_close(tp);
2322 				goto drop;
2323 			}
2324 			break;
2325 
2326 		/*
2327 		 * In TIME_WAIT state the only thing that should arrive
2328 		 * is a retransmission of the remote FIN.  Acknowledge
2329 		 * it and restart the finack timer.
2330 		 */
2331 		case TCPS_TIME_WAIT:
2332 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2333 			    tcp_timer_2msl);
2334 			goto dropafterack;
2335 		}
2336 	}
2337 
2338 step6:
2339 	/*
2340 	 * Update window information.
2341 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2342 	 */
2343 	if ((thflags & TH_ACK) &&
2344 	    acceptable_window_update(tp, th, tiwin)) {
2345 		/* keep track of pure window updates */
2346 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2347 		    tiwin > tp->snd_wnd)
2348 			tcpstat.tcps_rcvwinupd++;
2349 		tp->snd_wnd = tiwin;
2350 		tp->snd_wl1 = th->th_seq;
2351 		tp->snd_wl2 = th->th_ack;
2352 		if (tp->snd_wnd > tp->max_sndwnd)
2353 			tp->max_sndwnd = tp->snd_wnd;
2354 		needoutput = TRUE;
2355 	}
2356 
2357 	/*
2358 	 * Process segments with URG.
2359 	 */
2360 	if ((thflags & TH_URG) && th->th_urp &&
2361 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2362 		/*
2363 		 * This is a kludge, but if we receive and accept
2364 		 * random urgent pointers, we'll crash in
2365 		 * soreceive.  It's hard to imagine someone
2366 		 * actually wanting to send this much urgent data.
2367 		 */
2368 		if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2369 			th->th_urp = 0;			/* XXX */
2370 			thflags &= ~TH_URG;		/* XXX */
2371 			goto dodata;			/* XXX */
2372 		}
2373 		/*
2374 		 * If this segment advances the known urgent pointer,
2375 		 * then mark the data stream.  This should not happen
2376 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2377 		 * a FIN has been received from the remote side.
2378 		 * In these states we ignore the URG.
2379 		 *
2380 		 * According to RFC961 (Assigned Protocols),
2381 		 * the urgent pointer points to the last octet
2382 		 * of urgent data.  We continue, however,
2383 		 * to consider it to indicate the first octet
2384 		 * of data past the urgent section as the original
2385 		 * spec states (in one of two places).
2386 		 */
2387 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2388 			tp->rcv_up = th->th_seq + th->th_urp;
2389 			so->so_oobmark = so->so_rcv.ssb_cc +
2390 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2391 			if (so->so_oobmark == 0)
2392 				sosetstate(so, SS_RCVATMARK);
2393 			sohasoutofband(so);
2394 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2395 		}
2396 		/*
2397 		 * Remove out of band data so doesn't get presented to user.
2398 		 * This can happen independent of advancing the URG pointer,
2399 		 * but if two URG's are pending at once, some out-of-band
2400 		 * data may creep in... ick.
2401 		 */
2402 		if (th->th_urp <= (u_long)tlen &&
2403 		    !(so->so_options & SO_OOBINLINE)) {
2404 			/* hdr drop is delayed */
2405 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2406 		}
2407 	} else {
2408 		/*
2409 		 * If no out of band data is expected,
2410 		 * pull receive urgent pointer along
2411 		 * with the receive window.
2412 		 */
2413 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2414 			tp->rcv_up = tp->rcv_nxt;
2415 	}
2416 
2417 dodata:							/* XXX */
2418 	/*
2419 	 * Process the segment text, merging it into the TCP sequencing queue,
2420 	 * and arranging for acknowledgment of receipt if necessary.
2421 	 * This process logically involves adjusting tp->rcv_wnd as data
2422 	 * is presented to the user (this happens in tcp_usrreq.c,
2423 	 * case PRU_RCVD).  If a FIN has already been received on this
2424 	 * connection then we just ignore the text.
2425 	 */
2426 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2427 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2428 		/*
2429 		 * Insert segment which includes th into TCP reassembly queue
2430 		 * with control block tp.  Set thflags to whether reassembly now
2431 		 * includes a segment with FIN.  This handles the common case
2432 		 * inline (segment is the next to be received on an established
2433 		 * connection, and the queue is empty), avoiding linkage into
2434 		 * and removal from the queue and repetition of various
2435 		 * conversions.
2436 		 * Set DELACK for segments received in order, but ack
2437 		 * immediately when segments are out of order (so
2438 		 * fast retransmit can work).
2439 		 */
2440 		if (th->th_seq == tp->rcv_nxt &&
2441 		    LIST_EMPTY(&tp->t_segq) &&
2442 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2443 			if (DELAY_ACK(tp)) {
2444 				tcp_callout_reset(tp, tp->tt_delack,
2445 				    tcp_delacktime, tcp_timer_delack);
2446 			} else {
2447 				tp->t_flags |= TF_ACKNOW;
2448 			}
2449 			tp->rcv_nxt += tlen;
2450 			thflags = th->th_flags & TH_FIN;
2451 			tcpstat.tcps_rcvpack++;
2452 			tcpstat.tcps_rcvbyte += tlen;
2453 			ND6_HINT(tp);
2454 			if (so->so_state & SS_CANTRCVMORE) {
2455 				m_freem(m);
2456 			} else {
2457 				lwkt_gettoken(&so->so_rcv.ssb_token);
2458 				ssb_appendstream(&so->so_rcv, m);
2459 				lwkt_reltoken(&so->so_rcv.ssb_token);
2460 			}
2461 			sorwakeup(so);
2462 		} else {
2463 			if (!(tp->t_flags & TF_DUPSEG)) {
2464 				/* Initialize SACK report block. */
2465 				tp->reportblk.rblk_start = th->th_seq;
2466 				tp->reportblk.rblk_end = th->th_seq + tlen +
2467 				    ((thflags & TH_FIN) != 0);
2468 			}
2469 			thflags = tcp_reass(tp, th, &tlen, m);
2470 			tp->t_flags |= TF_ACKNOW;
2471 		}
2472 
2473 		/*
2474 		 * Note the amount of data that peer has sent into
2475 		 * our window, in order to estimate the sender's
2476 		 * buffer size.
2477 		 */
2478 		len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2479 	} else {
2480 		m_freem(m);
2481 		thflags &= ~TH_FIN;
2482 	}
2483 
2484 	/*
2485 	 * If FIN is received ACK the FIN and let the user know
2486 	 * that the connection is closing.
2487 	 */
2488 	if (thflags & TH_FIN) {
2489 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2490 			socantrcvmore(so);
2491 			/*
2492 			 * If connection is half-synchronized
2493 			 * (ie NEEDSYN flag on) then delay ACK,
2494 			 * so it may be piggybacked when SYN is sent.
2495 			 * Otherwise, since we received a FIN then no
2496 			 * more input can be expected, send ACK now.
2497 			 */
2498 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2499 				tcp_callout_reset(tp, tp->tt_delack,
2500 				    tcp_delacktime, tcp_timer_delack);
2501 			} else {
2502 				tp->t_flags |= TF_ACKNOW;
2503 			}
2504 			tp->rcv_nxt++;
2505 		}
2506 
2507 		switch (tp->t_state) {
2508 		/*
2509 		 * In SYN_RECEIVED and ESTABLISHED STATES
2510 		 * enter the CLOSE_WAIT state.
2511 		 */
2512 		case TCPS_SYN_RECEIVED:
2513 			tp->t_starttime = ticks;
2514 			/*FALLTHROUGH*/
2515 		case TCPS_ESTABLISHED:
2516 			tp->t_state = TCPS_CLOSE_WAIT;
2517 			break;
2518 
2519 		/*
2520 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2521 		 * enter the CLOSING state.
2522 		 */
2523 		case TCPS_FIN_WAIT_1:
2524 			tp->t_state = TCPS_CLOSING;
2525 			break;
2526 
2527 		/*
2528 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2529 		 * starting the time-wait timer, turning off the other
2530 		 * standard timers.
2531 		 */
2532 		case TCPS_FIN_WAIT_2:
2533 			tp->t_state = TCPS_TIME_WAIT;
2534 			tcp_canceltimers(tp);
2535 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2536 				    tcp_timer_2msl);
2537 			soisdisconnected(so);
2538 			break;
2539 
2540 		/*
2541 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2542 		 */
2543 		case TCPS_TIME_WAIT:
2544 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2545 			    tcp_timer_2msl);
2546 			break;
2547 		}
2548 	}
2549 
2550 #ifdef TCPDEBUG
2551 	if (so->so_options & SO_DEBUG)
2552 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2553 #endif
2554 
2555 	/*
2556 	 * Return any desired output.
2557 	 */
2558 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2559 		tcp_output(tp);
2560 	return(IPPROTO_DONE);
2561 
2562 dropafterack:
2563 	/*
2564 	 * Generate an ACK dropping incoming segment if it occupies
2565 	 * sequence space, where the ACK reflects our state.
2566 	 *
2567 	 * We can now skip the test for the RST flag since all
2568 	 * paths to this code happen after packets containing
2569 	 * RST have been dropped.
2570 	 *
2571 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2572 	 * segment we received passes the SYN-RECEIVED ACK test.
2573 	 * If it fails send a RST.  This breaks the loop in the
2574 	 * "LAND" DoS attack, and also prevents an ACK storm
2575 	 * between two listening ports that have been sent forged
2576 	 * SYN segments, each with the source address of the other.
2577 	 */
2578 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2579 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2580 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2581 		rstreason = BANDLIM_RST_OPENPORT;
2582 		goto dropwithreset;
2583 	}
2584 #ifdef TCPDEBUG
2585 	if (so->so_options & SO_DEBUG)
2586 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2587 #endif
2588 	m_freem(m);
2589 	tp->t_flags |= TF_ACKNOW;
2590 	tcp_output(tp);
2591 	return(IPPROTO_DONE);
2592 
2593 dropwithreset:
2594 	/*
2595 	 * Generate a RST, dropping incoming segment.
2596 	 * Make ACK acceptable to originator of segment.
2597 	 * Don't bother to respond if destination was broadcast/multicast.
2598 	 */
2599 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2600 		goto drop;
2601 	if (isipv6) {
2602 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2603 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2604 			goto drop;
2605 	} else {
2606 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2607 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2608 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2609 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2610 			goto drop;
2611 	}
2612 	/* IPv6 anycast check is done at tcp6_input() */
2613 
2614 	/*
2615 	 * Perform bandwidth limiting.
2616 	 */
2617 #ifdef ICMP_BANDLIM
2618 	if (badport_bandlim(rstreason) < 0)
2619 		goto drop;
2620 #endif
2621 
2622 #ifdef TCPDEBUG
2623 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2624 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2625 #endif
2626 	if (thflags & TH_ACK)
2627 		/* mtod() below is safe as long as hdr dropping is delayed */
2628 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2629 			    TH_RST);
2630 	else {
2631 		if (thflags & TH_SYN)
2632 			tlen++;
2633 		/* mtod() below is safe as long as hdr dropping is delayed */
2634 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2635 			    (tcp_seq)0, TH_RST | TH_ACK);
2636 	}
2637 	return(IPPROTO_DONE);
2638 
2639 drop:
2640 	/*
2641 	 * Drop space held by incoming segment and return.
2642 	 */
2643 #ifdef TCPDEBUG
2644 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2645 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2646 #endif
2647 	m_freem(m);
2648 	return(IPPROTO_DONE);
2649 }
2650 
2651 /*
2652  * Parse TCP options and place in tcpopt.
2653  */
2654 static void
2655 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn)
2656 {
2657 	int opt, optlen, i;
2658 
2659 	to->to_flags = 0;
2660 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2661 		opt = cp[0];
2662 		if (opt == TCPOPT_EOL)
2663 			break;
2664 		if (opt == TCPOPT_NOP)
2665 			optlen = 1;
2666 		else {
2667 			if (cnt < 2)
2668 				break;
2669 			optlen = cp[1];
2670 			if (optlen < 2 || optlen > cnt)
2671 				break;
2672 		}
2673 		switch (opt) {
2674 		case TCPOPT_MAXSEG:
2675 			if (optlen != TCPOLEN_MAXSEG)
2676 				continue;
2677 			if (!is_syn)
2678 				continue;
2679 			to->to_flags |= TOF_MSS;
2680 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2681 			to->to_mss = ntohs(to->to_mss);
2682 			break;
2683 		case TCPOPT_WINDOW:
2684 			if (optlen != TCPOLEN_WINDOW)
2685 				continue;
2686 			if (!is_syn)
2687 				continue;
2688 			to->to_flags |= TOF_SCALE;
2689 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2690 			break;
2691 		case TCPOPT_TIMESTAMP:
2692 			if (optlen != TCPOLEN_TIMESTAMP)
2693 				continue;
2694 			to->to_flags |= TOF_TS;
2695 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2696 			to->to_tsval = ntohl(to->to_tsval);
2697 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2698 			to->to_tsecr = ntohl(to->to_tsecr);
2699 			/*
2700 			 * If echoed timestamp is later than the current time,
2701 			 * fall back to non RFC1323 RTT calculation.
2702 			 */
2703 			if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2704 				to->to_tsecr = 0;
2705 			break;
2706 		case TCPOPT_SACK_PERMITTED:
2707 			if (optlen != TCPOLEN_SACK_PERMITTED)
2708 				continue;
2709 			if (!is_syn)
2710 				continue;
2711 			to->to_flags |= TOF_SACK_PERMITTED;
2712 			break;
2713 		case TCPOPT_SACK:
2714 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2715 				continue;
2716 			to->to_nsackblocks = (optlen - 2) / 8;
2717 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2718 			to->to_flags |= TOF_SACK;
2719 			for (i = 0; i < to->to_nsackblocks; i++) {
2720 				struct raw_sackblock *r = &to->to_sackblocks[i];
2721 
2722 				r->rblk_start = ntohl(r->rblk_start);
2723 				r->rblk_end = ntohl(r->rblk_end);
2724 			}
2725 			break;
2726 #ifdef TCP_SIGNATURE
2727 		/*
2728 		 * XXX In order to reply to a host which has set the
2729 		 * TCP_SIGNATURE option in its initial SYN, we have to
2730 		 * record the fact that the option was observed here
2731 		 * for the syncache code to perform the correct response.
2732 		 */
2733 		case TCPOPT_SIGNATURE:
2734 			if (optlen != TCPOLEN_SIGNATURE)
2735 				continue;
2736 			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2737 			break;
2738 #endif /* TCP_SIGNATURE */
2739 		default:
2740 			continue;
2741 		}
2742 	}
2743 }
2744 
2745 /*
2746  * Pull out of band byte out of a segment so
2747  * it doesn't appear in the user's data queue.
2748  * It is still reflected in the segment length for
2749  * sequencing purposes.
2750  * "off" is the delayed to be dropped hdrlen.
2751  */
2752 static void
2753 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2754 {
2755 	int cnt = off + th->th_urp - 1;
2756 
2757 	while (cnt >= 0) {
2758 		if (m->m_len > cnt) {
2759 			char *cp = mtod(m, caddr_t) + cnt;
2760 			struct tcpcb *tp = sototcpcb(so);
2761 
2762 			tp->t_iobc = *cp;
2763 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2764 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2765 			m->m_len--;
2766 			if (m->m_flags & M_PKTHDR)
2767 				m->m_pkthdr.len--;
2768 			return;
2769 		}
2770 		cnt -= m->m_len;
2771 		m = m->m_next;
2772 		if (m == 0)
2773 			break;
2774 	}
2775 	panic("tcp_pulloutofband");
2776 }
2777 
2778 /*
2779  * Collect new round-trip time estimate
2780  * and update averages and current timeout.
2781  */
2782 static void
2783 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2784 {
2785 	int delta;
2786 
2787 	tcpstat.tcps_rttupdated++;
2788 	tp->t_rttupdated++;
2789 	if (tp->t_srtt != 0) {
2790 		/*
2791 		 * srtt is stored as fixed point with 5 bits after the
2792 		 * binary point (i.e., scaled by 8).  The following magic
2793 		 * is equivalent to the smoothing algorithm in rfc793 with
2794 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2795 		 * point).  Adjust rtt to origin 0.
2796 		 */
2797 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2798 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2799 
2800 		if ((tp->t_srtt += delta) <= 0)
2801 			tp->t_srtt = 1;
2802 
2803 		/*
2804 		 * We accumulate a smoothed rtt variance (actually, a
2805 		 * smoothed mean difference), then set the retransmit
2806 		 * timer to smoothed rtt + 4 times the smoothed variance.
2807 		 * rttvar is stored as fixed point with 4 bits after the
2808 		 * binary point (scaled by 16).  The following is
2809 		 * equivalent to rfc793 smoothing with an alpha of .75
2810 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2811 		 * rfc793's wired-in beta.
2812 		 */
2813 		if (delta < 0)
2814 			delta = -delta;
2815 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2816 		if ((tp->t_rttvar += delta) <= 0)
2817 			tp->t_rttvar = 1;
2818 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2819 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2820 	} else {
2821 		/*
2822 		 * No rtt measurement yet - use the unsmoothed rtt.
2823 		 * Set the variance to half the rtt (so our first
2824 		 * retransmit happens at 3*rtt).
2825 		 */
2826 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2827 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2828 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2829 	}
2830 	tp->t_rtttime = 0;
2831 	tp->t_rxtshift = 0;
2832 
2833 	/*
2834 	 * the retransmit should happen at rtt + 4 * rttvar.
2835 	 * Because of the way we do the smoothing, srtt and rttvar
2836 	 * will each average +1/2 tick of bias.  When we compute
2837 	 * the retransmit timer, we want 1/2 tick of rounding and
2838 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2839 	 * firing of the timer.  The bias will give us exactly the
2840 	 * 1.5 tick we need.  But, because the bias is
2841 	 * statistical, we have to test that we don't drop below
2842 	 * the minimum feasible timer (which is 2 ticks).
2843 	 */
2844 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2845 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2846 
2847 	/*
2848 	 * We received an ack for a packet that wasn't retransmitted;
2849 	 * it is probably safe to discard any error indications we've
2850 	 * received recently.  This isn't quite right, but close enough
2851 	 * for now (a route might have failed after we sent a segment,
2852 	 * and the return path might not be symmetrical).
2853 	 */
2854 	tp->t_softerror = 0;
2855 }
2856 
2857 /*
2858  * Determine a reasonable value for maxseg size.
2859  * If the route is known, check route for mtu.
2860  * If none, use an mss that can be handled on the outgoing
2861  * interface without forcing IP to fragment; if bigger than
2862  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2863  * to utilize large mbufs.  If no route is found, route has no mtu,
2864  * or the destination isn't local, use a default, hopefully conservative
2865  * size (usually 512 or the default IP max size, but no more than the mtu
2866  * of the interface), as we can't discover anything about intervening
2867  * gateways or networks.  We also initialize the congestion/slow start
2868  * window to be a single segment if the destination isn't local.
2869  * While looking at the routing entry, we also initialize other path-dependent
2870  * parameters from pre-set or cached values in the routing entry.
2871  *
2872  * Also take into account the space needed for options that we
2873  * send regularly.  Make maxseg shorter by that amount to assure
2874  * that we can send maxseg amount of data even when the options
2875  * are present.  Store the upper limit of the length of options plus
2876  * data in maxopd.
2877  *
2878  * NOTE that this routine is only called when we process an incoming
2879  * segment, for outgoing segments only tcp_mssopt is called.
2880  */
2881 void
2882 tcp_mss(struct tcpcb *tp, int offer)
2883 {
2884 	struct rtentry *rt;
2885 	struct ifnet *ifp;
2886 	int rtt, mss;
2887 	u_long bufsize;
2888 	struct inpcb *inp = tp->t_inpcb;
2889 	struct socket *so;
2890 #ifdef INET6
2891 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2892 	size_t min_protoh = isipv6 ?
2893 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2894 			    sizeof(struct tcpiphdr);
2895 #else
2896 	const boolean_t isipv6 = FALSE;
2897 	const size_t min_protoh = sizeof(struct tcpiphdr);
2898 #endif
2899 
2900 	if (isipv6)
2901 		rt = tcp_rtlookup6(&inp->inp_inc);
2902 	else
2903 		rt = tcp_rtlookup(&inp->inp_inc);
2904 	if (rt == NULL) {
2905 		tp->t_maxopd = tp->t_maxseg =
2906 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2907 		return;
2908 	}
2909 	ifp = rt->rt_ifp;
2910 	so = inp->inp_socket;
2911 
2912 	/*
2913 	 * Offer == 0 means that there was no MSS on the SYN segment,
2914 	 * in this case we use either the interface mtu or tcp_mssdflt.
2915 	 *
2916 	 * An offer which is too large will be cut down later.
2917 	 */
2918 	if (offer == 0) {
2919 		if (isipv6) {
2920 			if (in6_localaddr(&inp->in6p_faddr)) {
2921 				offer = ND_IFINFO(rt->rt_ifp)->linkmtu -
2922 					min_protoh;
2923 			} else {
2924 				offer = tcp_v6mssdflt;
2925 			}
2926 		} else {
2927 			if (in_localaddr(inp->inp_faddr))
2928 				offer = ifp->if_mtu - min_protoh;
2929 			else
2930 				offer = tcp_mssdflt;
2931 		}
2932 	}
2933 
2934 	/*
2935 	 * Prevent DoS attack with too small MSS. Round up
2936 	 * to at least minmss.
2937 	 *
2938 	 * Sanity check: make sure that maxopd will be large
2939 	 * enough to allow some data on segments even is the
2940 	 * all the option space is used (40bytes).  Otherwise
2941 	 * funny things may happen in tcp_output.
2942 	 */
2943 	offer = max(offer, tcp_minmss);
2944 	offer = max(offer, 64);
2945 
2946 	rt->rt_rmx.rmx_mssopt = offer;
2947 
2948 	/*
2949 	 * While we're here, check if there's an initial rtt
2950 	 * or rttvar.  Convert from the route-table units
2951 	 * to scaled multiples of the slow timeout timer.
2952 	 */
2953 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2954 		/*
2955 		 * XXX the lock bit for RTT indicates that the value
2956 		 * is also a minimum value; this is subject to time.
2957 		 */
2958 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2959 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2960 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2961 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2962 		tcpstat.tcps_usedrtt++;
2963 		if (rt->rt_rmx.rmx_rttvar) {
2964 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2965 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2966 			tcpstat.tcps_usedrttvar++;
2967 		} else {
2968 			/* default variation is +- 1 rtt */
2969 			tp->t_rttvar =
2970 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2971 		}
2972 		TCPT_RANGESET(tp->t_rxtcur,
2973 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2974 			      tp->t_rttmin, TCPTV_REXMTMAX);
2975 	}
2976 
2977 	/*
2978 	 * if there's an mtu associated with the route, use it
2979 	 * else, use the link mtu.  Take the smaller of mss or offer
2980 	 * as our final mss.
2981 	 */
2982 	if (rt->rt_rmx.rmx_mtu) {
2983 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2984 	} else {
2985 		if (isipv6)
2986 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
2987 		else
2988 			mss = ifp->if_mtu - min_protoh;
2989 	}
2990 	mss = min(mss, offer);
2991 
2992 	/*
2993 	 * maxopd stores the maximum length of data AND options
2994 	 * in a segment; maxseg is the amount of data in a normal
2995 	 * segment.  We need to store this value (maxopd) apart
2996 	 * from maxseg, because now every segment carries options
2997 	 * and thus we normally have somewhat less data in segments.
2998 	 */
2999 	tp->t_maxopd = mss;
3000 
3001 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
3002 	    ((tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3003 		mss -= TCPOLEN_TSTAMP_APPA;
3004 
3005 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3006 		if (mss > MCLBYTES)
3007 			mss &= ~(MCLBYTES-1);
3008 #else
3009 		if (mss > MCLBYTES)
3010 			mss = mss / MCLBYTES * MCLBYTES;
3011 #endif
3012 	/*
3013 	 * If there's a pipesize, change the socket buffer
3014 	 * to that size.  Make the socket buffers an integral
3015 	 * number of mss units; if the mss is larger than
3016 	 * the socket buffer, decrease the mss.
3017 	 */
3018 #ifdef RTV_SPIPE
3019 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
3020 #endif
3021 		bufsize = so->so_snd.ssb_hiwat;
3022 	if (bufsize < mss)
3023 		mss = bufsize;
3024 	else {
3025 		bufsize = roundup(bufsize, mss);
3026 		if (bufsize > sb_max)
3027 			bufsize = sb_max;
3028 		if (bufsize > so->so_snd.ssb_hiwat)
3029 			ssb_reserve(&so->so_snd, bufsize, so, NULL);
3030 	}
3031 	tp->t_maxseg = mss;
3032 
3033 #ifdef RTV_RPIPE
3034 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3035 #endif
3036 		bufsize = so->so_rcv.ssb_hiwat;
3037 	if (bufsize > mss) {
3038 		bufsize = roundup(bufsize, mss);
3039 		if (bufsize > sb_max)
3040 			bufsize = sb_max;
3041 		if (bufsize > so->so_rcv.ssb_hiwat) {
3042 			lwkt_gettoken(&so->so_rcv.ssb_token);
3043 			ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3044 			lwkt_reltoken(&so->so_rcv.ssb_token);
3045 		}
3046 	}
3047 
3048 	/*
3049 	 * Set the slow-start flight size depending on whether this
3050 	 * is a local network or not.
3051 	 */
3052 	if (tcp_do_rfc3390)
3053 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3054 	else
3055 		tp->snd_cwnd = mss;
3056 
3057 	if (rt->rt_rmx.rmx_ssthresh) {
3058 		/*
3059 		 * There's some sort of gateway or interface
3060 		 * buffer limit on the path.  Use this to set
3061 		 * the slow start threshhold, but set the
3062 		 * threshold to no less than 2*mss.
3063 		 */
3064 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3065 		tcpstat.tcps_usedssthresh++;
3066 	}
3067 }
3068 
3069 /*
3070  * Determine the MSS option to send on an outgoing SYN.
3071  */
3072 int
3073 tcp_mssopt(struct tcpcb *tp)
3074 {
3075 	struct rtentry *rt;
3076 #ifdef INET6
3077 	boolean_t isipv6 =
3078 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3079 	int min_protoh = isipv6 ?
3080 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3081 			     sizeof(struct tcpiphdr);
3082 #else
3083 	const boolean_t isipv6 = FALSE;
3084 	const size_t min_protoh = sizeof(struct tcpiphdr);
3085 #endif
3086 
3087 	if (isipv6)
3088 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3089 	else
3090 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3091 	if (rt == NULL)
3092 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3093 
3094 	return (rt->rt_ifp->if_mtu - min_protoh);
3095 }
3096 
3097 /*
3098  * When a partial ack arrives, force the retransmission of the
3099  * next unacknowledged segment.  Do not exit Fast Recovery.
3100  *
3101  * Implement the Slow-but-Steady variant of NewReno by restarting the
3102  * the retransmission timer.  Turn it off here so it can be restarted
3103  * later in tcp_output().
3104  */
3105 static void
3106 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3107 {
3108 	tcp_seq old_snd_nxt = tp->snd_nxt;
3109 	u_long ocwnd = tp->snd_cwnd;
3110 
3111 	tcp_callout_stop(tp, tp->tt_rexmt);
3112 	tp->t_rtttime = 0;
3113 	tp->snd_nxt = th->th_ack;
3114 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3115 	tp->snd_cwnd = tp->t_maxseg;
3116 	tp->t_flags |= TF_ACKNOW;
3117 	tcp_output(tp);
3118 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3119 		tp->snd_nxt = old_snd_nxt;
3120 	/* partial window deflation */
3121 	if (ocwnd > acked)
3122 		tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3123 	else
3124 		tp->snd_cwnd = tp->t_maxseg;
3125 }
3126 
3127 /*
3128  * In contrast to the Slow-but-Steady NewReno variant,
3129  * we do not reset the retransmission timer for SACK retransmissions,
3130  * except when retransmitting snd_una.
3131  */
3132 static void
3133 tcp_sack_rexmt(struct tcpcb *tp, struct tcphdr *th)
3134 {
3135 	uint32_t pipe, seglen;
3136 	tcp_seq nextrexmt;
3137 	boolean_t lostdup;
3138 	tcp_seq old_snd_nxt = tp->snd_nxt;
3139 	u_long ocwnd = tp->snd_cwnd;
3140 	int nseg = 0;		/* consecutive new segments */
3141 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3142 
3143 	tp->t_rtttime = 0;
3144 	pipe = tcp_sack_compute_pipe(tp);
3145 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3146 	    (!tcp_do_smartsack || nseg < MAXBURST) &&
3147 	    tcp_sack_nextseg(tp, &nextrexmt, &seglen, &lostdup)) {
3148 		uint32_t sent;
3149 		tcp_seq old_snd_max;
3150 		int error;
3151 
3152 		if (nextrexmt == tp->snd_max)
3153 			++nseg;
3154 		tp->snd_nxt = nextrexmt;
3155 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3156 		old_snd_max = tp->snd_max;
3157 		if (nextrexmt == tp->snd_una)
3158 			tcp_callout_stop(tp, tp->tt_rexmt);
3159 		error = tcp_output(tp);
3160 		if (error != 0)
3161 			break;
3162 		sent = tp->snd_nxt - nextrexmt;
3163 		if (sent <= 0)
3164 			break;
3165 		if (!lostdup)
3166 			pipe += sent;
3167 		tcpstat.tcps_sndsackpack++;
3168 		tcpstat.tcps_sndsackbyte += sent;
3169 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3170 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt))
3171 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3172 	}
3173 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3174 		tp->snd_nxt = old_snd_nxt;
3175 	tp->snd_cwnd = ocwnd;
3176 }
3177 
3178 /*
3179  * Reset idle time and keep-alive timer, typically called when a valid
3180  * tcp packet is received but may also be called when FASTKEEP is set
3181  * to prevent the previous long-timeout from calculating to a drop.
3182  *
3183  * Only update t_rcvtime for non-SYN packets.
3184  *
3185  * Handle the case where one side thinks the connection is established
3186  * but the other side has, say, rebooted without cleaning out the
3187  * connection.   The SYNs could be construed as an attack and wind
3188  * up ignored, but in case it isn't an attack we can validate the
3189  * connection by forcing a keepalive.
3190  */
3191 void
3192 tcp_timer_keep_activity(struct tcpcb *tp, int thflags)
3193 {
3194 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3195 		if ((thflags & (TH_SYN | TH_ACK)) == TH_SYN) {
3196 			tp->t_flags |= TF_KEEPALIVE;
3197 			tcp_callout_reset(tp, tp->tt_keep, hz / 2,
3198 					  tcp_timer_keep);
3199 		} else {
3200 			tp->t_rcvtime = ticks;
3201 			tp->t_flags &= ~TF_KEEPALIVE;
3202 			tcp_callout_reset(tp, tp->tt_keep,
3203 					  tcp_getkeepidle(tp),
3204 					  tcp_timer_keep);
3205 		}
3206 	}
3207 }
3208