xref: /dflybsd-src/sys/netinet/tcp_input.c (revision bf22d4c1f95f57623b2b3030738e116d3a547284)
1 /*
2  * Copyright (c) 2002-2004 Jeffrey Hsu.  All rights reserved.
3  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by the University of
17  *	California, Berkeley and its contributors.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
35  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
36  * $DragonFly: src/sys/netinet/tcp_input.c,v 1.26 2004/04/22 04:35:45 dillon Exp $
37  */
38 
39 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
40 #include "opt_inet6.h"
41 #include "opt_ipsec.h"
42 #include "opt_tcpdebug.h"
43 #include "opt_tcp_input.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/sysctl.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/proc.h>		/* for proc0 declaration */
52 #include <sys/protosw.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/syslog.h>
56 #include <sys/in_cksum.h>
57 
58 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
59 
60 #include <net/if.h>
61 #include <net/route.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM		*/
67 #include <netinet/in_var.h>
68 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM		*/
69 #include <netinet/in_pcb.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <netinet6/nd6.h>
74 #include <netinet6/ip6_var.h>
75 #include <netinet6/in6_pcb.h>
76 #include <netinet/tcp.h>
77 #include <netinet/tcp_fsm.h>
78 #include <netinet/tcp_seq.h>
79 #include <netinet/tcp_timer.h>
80 #include <netinet/tcp_var.h>
81 #include <netinet6/tcp6_var.h>
82 #include <netinet/tcpip.h>
83 #ifdef TCPDEBUG
84 #include <netinet/tcp_debug.h>
85 
86 u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */
87 struct tcphdr tcp_savetcp;
88 #endif /* TCPDEBUG */
89 
90 #ifdef FAST_IPSEC
91 #include <netipsec/ipsec.h>
92 #include <netipsec/ipsec6.h>
93 #endif
94 
95 #ifdef IPSEC
96 #include <netinet6/ipsec.h>
97 #include <netinet6/ipsec6.h>
98 #include <netproto/key/key.h>
99 #endif /*IPSEC*/
100 
101 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
102 
103 static const int tcprexmtthresh = 3;
104 tcp_cc	tcp_ccgen;
105 static int log_in_vain = 0;
106 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
107     &log_in_vain, 0, "Log all incoming TCP connections");
108 
109 static int blackhole = 0;
110 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
111     &blackhole, 0, "Do not send RST when dropping refused connections");
112 
113 int tcp_delack_enabled = 1;
114 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
115     &tcp_delack_enabled, 0,
116     "Delay ACK to try and piggyback it onto a data packet");
117 
118 #ifdef TCP_DROP_SYNFIN
119 static int drop_synfin = 0;
120 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
121     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
122 #endif
123 
124 static int tcp_do_limitedtransmit = 1;
125 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
126     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
127 
128 static int tcp_do_early_retransmit = 0;
129 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
130     &tcp_do_early_retransmit, 0, "Early retransmit");
131 
132 static int tcp_do_rfc3390 = 1;
133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
134     &tcp_do_rfc3390, 0,
135     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
136 
137 static int tcp_do_eifel_detect = 1;
138 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
139     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
140 
141 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
142     "TCP Segment Reassembly Queue");
143 
144 int tcp_reass_maxseg = 0;
145 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
146     &tcp_reass_maxseg, 0,
147     "Global maximum number of TCP Segments in Reassembly Queue");
148 
149 int tcp_reass_qsize = 0;
150 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
151     &tcp_reass_qsize, 0,
152     "Global number of TCP Segments currently in Reassembly Queue");
153 
154 static int tcp_reass_overflows = 0;
155 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
156     &tcp_reass_overflows, 0,
157     "Global number of TCP Segment Reassembly Queue Overflows");
158 
159 struct inpcbinfo tcbinfo[MAXCPU];
160 
161 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
162 static void	 tcp_pulloutofband(struct socket *,
163 		     struct tcphdr *, struct mbuf *, int);
164 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
165 		     struct mbuf *);
166 static void	 tcp_xmit_timer(struct tcpcb *, int);
167 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
168 
169 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
170 #ifdef INET6
171 #define ND6_HINT(tp) \
172 do { \
173 	if ((tp) && (tp)->t_inpcb && \
174 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0 && \
175 	    (tp)->t_inpcb->in6p_route.ro_rt) \
176 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
177 } while (0)
178 #else
179 #define ND6_HINT(tp)
180 #endif
181 
182 /*
183  * Indicate whether this ack should be delayed.  We can delay the ack if
184  *	- delayed acks are enabled and
185  *	- there is no delayed ack timer in progress and
186  *	- our last ack wasn't a 0-sized window.  We never want to delay
187  *	  the ack that opens up a 0-sized window.
188  */
189 #define DELAY_ACK(tp) \
190 	(tcp_delack_enabled && !callout_pending(tp->tt_delack) && \
191 	(tp->t_flags & TF_RXWIN0SENT) == 0)
192 
193 static int
194 tcp_reass(tp, th, tlenp, m)
195 	struct tcpcb *tp;
196 	struct tcphdr *th;
197 	int *tlenp;
198 	struct mbuf *m;
199 {
200 	struct tseg_qent *q;
201 	struct tseg_qent *p = NULL;
202 	struct tseg_qent *nq;
203 	struct tseg_qent *te;
204 	struct socket *so = tp->t_inpcb->inp_socket;
205 	int flags;
206 
207 	/*
208 	 * Call with th==0 after become established to
209 	 * force pre-ESTABLISHED data up to user socket.
210 	 */
211 	if (th == 0)
212 		goto present;
213 
214 	/*
215 	 * Limit the number of segments in the reassembly queue to prevent
216 	 * holding on to too many segments (and thus running out of mbufs).
217 	 * Make sure to let the missing segment through which caused this
218 	 * queue.  Always keep one global queue entry spare to be able to
219 	 * process the missing segment.
220 	 */
221 	if (th->th_seq != tp->rcv_nxt &&
222 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
223 		tcp_reass_overflows++;
224 		tcpstat.tcps_rcvmemdrop++;
225 		m_freem(m);
226 		return (0);
227 	}
228 
229 	/* Allocate a new queue entry. */
230 	MALLOC(te, struct tseg_qent *, sizeof(struct tseg_qent), M_TSEGQ,
231 	       M_INTWAIT | M_NULLOK);
232 	if (te == NULL) {
233 		tcpstat.tcps_rcvmemdrop++;
234 		m_freem(m);
235 		return (0);
236 	}
237 	tcp_reass_qsize++;
238 
239 	/*
240 	 * Find a segment which begins after this one does.
241 	 */
242 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
243 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
244 			break;
245 		p = q;
246 	}
247 
248 	/*
249 	 * If there is a preceding segment, it may provide some of
250 	 * our data already.  If so, drop the data from the incoming
251 	 * segment.  If it provides all of our data, drop us.
252 	 */
253 	if (p != NULL) {
254 		int i;
255 		/* conversion to int (in i) handles seq wraparound */
256 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
257 		if (i > 0) {
258 			if (i >= *tlenp) {
259 				tcpstat.tcps_rcvduppack++;
260 				tcpstat.tcps_rcvdupbyte += *tlenp;
261 				m_freem(m);
262 				free(te, M_TSEGQ);
263 				tcp_reass_qsize--;
264 				/*
265 				 * Try to present any queued data
266 				 * at the left window edge to the user.
267 				 * This is needed after the 3-WHS
268 				 * completes.
269 				 */
270 				goto present;	/* ??? */
271 			}
272 			m_adj(m, i);
273 			*tlenp -= i;
274 			th->th_seq += i;
275 		}
276 	}
277 	tcpstat.tcps_rcvoopack++;
278 	tcpstat.tcps_rcvoobyte += *tlenp;
279 
280 	/*
281 	 * While we overlap succeeding segments trim them or,
282 	 * if they are completely covered, dequeue them.
283 	 */
284 	while (q) {
285 		int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
286 		if (i <= 0)
287 			break;
288 		if (i < q->tqe_len) {
289 			q->tqe_th->th_seq += i;
290 			q->tqe_len -= i;
291 			m_adj(q->tqe_m, i);
292 			break;
293 		}
294 
295 		nq = LIST_NEXT(q, tqe_q);
296 		LIST_REMOVE(q, tqe_q);
297 		m_freem(q->tqe_m);
298 		free(q, M_TSEGQ);
299 		tcp_reass_qsize--;
300 		q = nq;
301 	}
302 
303 	/* Insert the new segment queue entry into place. */
304 	te->tqe_m = m;
305 	te->tqe_th = th;
306 	te->tqe_len = *tlenp;
307 
308 	if (p == NULL) {
309 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
310 	} else {
311 		LIST_INSERT_AFTER(p, te, tqe_q);
312 	}
313 
314 present:
315 	/*
316 	 * Present data to user, advancing rcv_nxt through
317 	 * completed sequence space.
318 	 */
319 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
320 		return (0);
321 	q = LIST_FIRST(&tp->t_segq);
322 	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
323 		return (0);
324 	do {
325 		tp->rcv_nxt += q->tqe_len;
326 		flags = q->tqe_th->th_flags & TH_FIN;
327 		nq = LIST_NEXT(q, tqe_q);
328 		LIST_REMOVE(q, tqe_q);
329 		if (so->so_state & SS_CANTRCVMORE)
330 			m_freem(q->tqe_m);
331 		else
332 			sbappend(&so->so_rcv, q->tqe_m);
333 		free(q, M_TSEGQ);
334 		tcp_reass_qsize--;
335 		q = nq;
336 	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
337 	ND6_HINT(tp);
338 	sorwakeup(so);
339 	return (flags);
340 }
341 
342 /*
343  * TCP input routine, follows pages 65-76 of the
344  * protocol specification dated September, 1981 very closely.
345  */
346 #ifdef INET6
347 int
348 tcp6_input(mp, offp, proto)
349 	struct mbuf **mp;
350 	int *offp, proto;
351 {
352 	struct mbuf *m = *mp;
353 	struct in6_ifaddr *ia6;
354 
355 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
356 
357 	/*
358 	 * draft-itojun-ipv6-tcp-to-anycast
359 	 * better place to put this in?
360 	 */
361 	ia6 = ip6_getdstifaddr(m);
362 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
363 		struct ip6_hdr *ip6;
364 
365 		ip6 = mtod(m, struct ip6_hdr *);
366 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
367 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
368 		return (IPPROTO_DONE);
369 	}
370 
371 	tcp_input(m, *offp, proto);
372 	return (IPPROTO_DONE);
373 }
374 #endif
375 
376 void
377 tcp_input(m, off0, proto)
378 	struct mbuf *m;
379 	int off0, proto;
380 {
381 	struct tcphdr *th;
382 	struct ip *ip = NULL;
383 	struct ipovly *ipov;
384 	struct inpcb *inp = NULL;
385 	u_char *optp = NULL;
386 	int optlen = 0;
387 	int len, tlen, off;
388 	int drop_hdrlen;
389 	struct tcpcb *tp = NULL;
390 	int thflags;
391 	struct socket *so = 0;
392 	int todrop, acked, ourfinisacked, needoutput = 0;
393 	u_long tiwin;
394 	struct tcpopt to;		/* options in this segment */
395 	struct rmxp_tao *taop;		/* pointer to our TAO cache entry */
396 	struct rmxp_tao	tao_noncached;	/* in case there's no cached entry */
397 	struct sockaddr_in *next_hop = NULL;
398 	int rstreason; /* For badport_bandlim accounting purposes */
399 	int cpu;
400 	struct ip6_hdr *ip6 = NULL;
401 #ifdef INET6
402 	boolean_t isipv6;
403 #else
404 	const boolean_t isipv6 = FALSE;
405 #endif
406 #ifdef TCPDEBUG
407 	short ostate = 0;
408 #endif
409 
410 	tcpstat.tcps_rcvtotal++;
411 
412 	/* Grab info from and strip MT_TAG mbufs prepended to the chain. */
413 	while  (m->m_type == MT_TAG) {
414 		if (m->_m_tag_id == PACKET_TAG_IPFORWARD)
415 			next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
416 		m = m->m_next;
417 	}
418 
419 #ifdef INET6
420 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
421 #endif
422 
423 	if (isipv6) {
424 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
425 		ip6 = mtod(m, struct ip6_hdr *);
426 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
427 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
428 			tcpstat.tcps_rcvbadsum++;
429 			goto drop;
430 		}
431 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
432 
433 		/*
434 		 * Be proactive about unspecified IPv6 address in source.
435 		 * As we use all-zero to indicate unbounded/unconnected pcb,
436 		 * unspecified IPv6 address can be used to confuse us.
437 		 *
438 		 * Note that packets with unspecified IPv6 destination is
439 		 * already dropped in ip6_input.
440 		 */
441 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
442 			/* XXX stat */
443 			goto drop;
444 		}
445 	} else {
446 		/*
447 		 * Get IP and TCP header together in first mbuf.
448 		 * Note: IP leaves IP header in first mbuf.
449 		 */
450 		if (off0 > sizeof(struct ip)) {
451 			ip_stripoptions(m);
452 			off0 = sizeof(struct ip);
453 		}
454 		/* already checked and pulled up in ip_demux() */
455 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
456 		    ("TCP header not in one mbuf"));
457 		ip = mtod(m, struct ip *);
458 		ipov = (struct ipovly *)ip;
459 		th = (struct tcphdr *)((caddr_t)ip + off0);
460 		tlen = ip->ip_len;
461 
462 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
463 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
464 				th->th_sum = m->m_pkthdr.csum_data;
465 			else
466 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
467 						ip->ip_dst.s_addr,
468 						htonl(m->m_pkthdr.csum_data +
469 							ip->ip_len +
470 							IPPROTO_TCP));
471 			th->th_sum ^= 0xffff;
472 		} else {
473 			/*
474 			 * Checksum extended TCP header and data.
475 			 */
476 			len = sizeof(struct ip) + tlen;
477 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
478 			ipov->ih_len = (u_short)tlen;
479 			ipov->ih_len = htons(ipov->ih_len);
480 			th->th_sum = in_cksum(m, len);
481 		}
482 		if (th->th_sum) {
483 			tcpstat.tcps_rcvbadsum++;
484 			goto drop;
485 		}
486 #ifdef INET6
487 		/* Re-initialization for later version check */
488 		ip->ip_v = IPVERSION;
489 #endif
490 	}
491 
492 	/*
493 	 * Check that TCP offset makes sense,
494 	 * pull out TCP options and adjust length.		XXX
495 	 */
496 	off = th->th_off << 2;
497 	/* already checked and pulled up in ip_demux() */
498 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
499 	    ("bad TCP data offset"));
500 	tlen -= off;	/* tlen is used instead of ti->ti_len */
501 	if (off > sizeof(struct tcphdr)) {
502 		if (isipv6) {
503 			IP6_EXTHDR_CHECK(m, off0, off, );
504 			ip6 = mtod(m, struct ip6_hdr *);
505 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
506 		} else {
507 			/* already pulled up in ip_demux() */
508 			KASSERT(m->m_len >= sizeof(struct ip) + off,
509 			    ("TCP header and options not in one mbuf"));
510 		}
511 		optlen = off - sizeof(struct tcphdr);
512 		optp = (u_char *)(th + 1);
513 	}
514 	thflags = th->th_flags;
515 
516 #ifdef TCP_DROP_SYNFIN
517 	/*
518 	 * If the drop_synfin option is enabled, drop all packets with
519 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
520 	 * identifying the TCP/IP stack.
521 	 *
522 	 * This is a violation of the TCP specification.
523 	 */
524 	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
525 		goto drop;
526 #endif
527 
528 	/*
529 	 * Convert TCP protocol specific fields to host format.
530 	 */
531 	th->th_seq = ntohl(th->th_seq);
532 	th->th_ack = ntohl(th->th_ack);
533 	th->th_win = ntohs(th->th_win);
534 	th->th_urp = ntohs(th->th_urp);
535 
536 	/*
537 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
538 	 * until after ip6_savecontrol() is called and before other functions
539 	 * which don't want those proto headers.
540 	 * Because ip6_savecontrol() is going to parse the mbuf to
541 	 * search for data to be passed up to user-land, it wants mbuf
542 	 * parameters to be unchanged.
543 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
544 	 * latest version of the advanced API (20020110).
545 	 */
546 	drop_hdrlen = off0 + off;
547 
548 	/*
549 	 * Locate pcb for segment.
550 	 */
551 findpcb:
552 	/* IPFIREWALL_FORWARD section */
553 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
554 		/*
555 		 * Transparently forwarded. Pretend to be the destination.
556 		 * already got one like this?
557 		 */
558 		cpu = mycpu->gd_cpuid;
559 		inp = in_pcblookup_hash(&tcbinfo[cpu],
560 					ip->ip_src, th->th_sport,
561 					ip->ip_dst, th->th_dport,
562 					0, m->m_pkthdr.rcvif);
563 		if (!inp) {
564 			/*
565 			 * It's new.  Try to find the ambushing socket.
566 			 */
567 
568 			/*
569 			 * The rest of the ipfw code stores the port in
570 			 * host order.  XXX
571 			 * (The IP address is still in network order.)
572 			 */
573 			in_port_t dport = next_hop->sin_port ?
574 						htons(next_hop->sin_port) :
575 						th->th_dport;
576 
577 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
578 					  next_hop->sin_addr.s_addr, dport);
579 			inp = in_pcblookup_hash(&tcbinfo[cpu],
580 						ip->ip_src, th->th_sport,
581 						next_hop->sin_addr, dport,
582 						1, m->m_pkthdr.rcvif);
583 		}
584 	} else {
585 		if (isipv6) {
586 			inp = in6_pcblookup_hash(&tcbinfo[0],
587 						 &ip6->ip6_src, th->th_sport,
588 						 &ip6->ip6_dst, th->th_dport,
589 						 1, m->m_pkthdr.rcvif);
590 		} else {
591 			cpu = mycpu->gd_cpuid;
592 			inp = in_pcblookup_hash(&tcbinfo[cpu],
593 						ip->ip_src, th->th_sport,
594 						ip->ip_dst, th->th_dport,
595 						1, m->m_pkthdr.rcvif);
596 		}
597       }
598 
599 #ifdef IPSEC
600 	if (isipv6) {
601 		if (inp != NULL && ipsec6_in_reject_so(m, inp->inp_socket)) {
602 			ipsec6stat.in_polvio++;
603 			goto drop;
604 		}
605 	} else {
606 		if (inp != NULL && ipsec4_in_reject_so(m, inp->inp_socket)) {
607 			ipsecstat.in_polvio++;
608 			goto drop;
609 		}
610 	}
611 #endif
612 #ifdef FAST_IPSEC
613 	if (isipv6) {
614 		if (inp != NULL && ipsec6_in_reject(m, inp)) {
615 			goto drop;
616 		}
617 	} else {
618 		if (inp != NULL && ipsec4_in_reject(m, inp)) {
619 			goto drop;
620 		}
621 	}
622 #endif
623 
624 	/*
625 	 * If the state is CLOSED (i.e., TCB does not exist) then
626 	 * all data in the incoming segment is discarded.
627 	 * If the TCB exists but is in CLOSED state, it is embryonic,
628 	 * but should either do a listen or a connect soon.
629 	 */
630 	if (inp == NULL) {
631 		if (log_in_vain) {
632 #ifdef INET6
633 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
634 #else
635 			char dbuf[4 * sizeof "123"], sbuf[4 * sizeof "123"];
636 #endif
637 			if (isipv6) {
638 				strcpy(dbuf, "[");
639 				strcpy(sbuf, "[");
640 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
641 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
642 				strcat(dbuf, "]");
643 				strcat(sbuf, "]");
644 			} else {
645 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
646 				strcpy(sbuf, inet_ntoa(ip->ip_src));
647 			}
648 			switch (log_in_vain) {
649 			case 1:
650 				if ((thflags & TH_SYN) == 0)
651 					break;
652 			case 2:
653 				log(LOG_INFO,
654 				    "Connection attempt to TCP %s:%d "
655 				    "from %s:%d flags:0x%02x\n",
656 				    dbuf, ntohs(th->th_dport), sbuf,
657 				    ntohs(th->th_sport), thflags);
658 				break;
659 			default:
660 				break;
661 			}
662 		}
663 		if (blackhole) {
664 			switch (blackhole) {
665 			case 1:
666 				if (thflags & TH_SYN)
667 					goto drop;
668 				break;
669 			case 2:
670 				goto drop;
671 			default:
672 				goto drop;
673 			}
674 		}
675 		rstreason = BANDLIM_RST_CLOSEDPORT;
676 		goto dropwithreset;
677 	}
678 	tp = intotcpcb(inp);
679 	if (tp == NULL) {
680 		rstreason = BANDLIM_RST_CLOSEDPORT;
681 		goto dropwithreset;
682 	}
683 	if (tp->t_state == TCPS_CLOSED)
684 		goto drop;
685 
686 	/* Unscale the window into a 32-bit value. */
687 	if ((thflags & TH_SYN) == 0)
688 		tiwin = th->th_win << tp->snd_scale;
689 	else
690 		tiwin = th->th_win;
691 
692 	so = inp->inp_socket;
693 
694 #ifdef TCPDEBUG
695 	if (so->so_options & SO_DEBUG) {
696 		ostate = tp->t_state;
697 		if (isipv6)
698 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
699 		else
700 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
701 		tcp_savetcp = *th;
702 	}
703 #endif
704 
705 	bzero((char *)&to, sizeof(to));
706 
707 	if (so->so_options & SO_ACCEPTCONN) {
708 		struct in_conninfo inc;
709 
710 #ifdef INET6
711 		inc.inc_isipv6 = (isipv6 == TRUE);
712 #endif
713 		if (isipv6) {
714 			inc.inc6_faddr = ip6->ip6_src;
715 			inc.inc6_laddr = ip6->ip6_dst;
716 			inc.inc6_route.ro_rt = NULL;		/* XXX */
717 		} else {
718 			inc.inc_faddr = ip->ip_src;
719 			inc.inc_laddr = ip->ip_dst;
720 			inc.inc_route.ro_rt = NULL;		/* XXX */
721 		}
722 		inc.inc_fport = th->th_sport;
723 		inc.inc_lport = th->th_dport;
724 
725 	        /*
726 	         * If the state is LISTEN then ignore segment if it contains
727 		 * a RST.  If the segment contains an ACK then it is bad and
728 		 * send a RST.  If it does not contain a SYN then it is not
729 		 * interesting; drop it.
730 		 *
731 		 * If the state is SYN_RECEIVED (syncache) and seg contains
732 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
733 		 * contains a RST, check the sequence number to see if it
734 		 * is a valid reset segment.
735 		 */
736 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
737 			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
738 				if (!syncache_expand(&inc, th, &so, m)) {
739 					/*
740 					 * No syncache entry, or ACK was not
741 					 * for our SYN/ACK.  Send a RST.
742 					 */
743 					tcpstat.tcps_badsyn++;
744 					rstreason = BANDLIM_RST_OPENPORT;
745 					goto dropwithreset;
746 				}
747 				if (so == NULL)
748 					/*
749 					 * Could not complete 3-way handshake,
750 					 * connection is being closed down, and
751 					 * syncache will free mbuf.
752 					 */
753 					return;
754 				/*
755 				 * Socket is created in state SYN_RECEIVED.
756 				 * Continue processing segment.
757 				 */
758 				inp = sotoinpcb(so);
759 				tp = intotcpcb(inp);
760 				/*
761 				 * This is what would have happened in
762 				 * tcp_output() when the SYN,ACK was sent.
763 				 */
764 				tp->snd_up = tp->snd_una;
765 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
766 				tp->last_ack_sent = tp->rcv_nxt;
767 /*
768  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
769  * until the _second_ ACK is received:
770  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
771  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
772  *        move to ESTAB, set snd_wnd to tiwin.
773  */
774 				tp->snd_wnd = tiwin;	/* unscaled */
775 				goto after_listen;
776 			}
777 			if (thflags & TH_RST) {
778 				syncache_chkrst(&inc, th);
779 				goto drop;
780 			}
781 			if (thflags & TH_ACK) {
782 				syncache_badack(&inc);
783 				tcpstat.tcps_badsyn++;
784 				rstreason = BANDLIM_RST_OPENPORT;
785 				goto dropwithreset;
786 			}
787 			goto drop;
788 		}
789 
790 		/*
791 		 * Segment's flags are (SYN) or (SYN|FIN).
792 		 */
793 #ifdef INET6
794 		/*
795 		 * If deprecated address is forbidden,
796 		 * we do not accept SYN to deprecated interface
797 		 * address to prevent any new inbound connection from
798 		 * getting established.
799 		 * When we do not accept SYN, we send a TCP RST,
800 		 * with deprecated source address (instead of dropping
801 		 * it).  We compromise it as it is much better for peer
802 		 * to send a RST, and RST will be the final packet
803 		 * for the exchange.
804 		 *
805 		 * If we do not forbid deprecated addresses, we accept
806 		 * the SYN packet.  RFC2462 does not suggest dropping
807 		 * SYN in this case.
808 		 * If we decipher RFC2462 5.5.4, it says like this:
809 		 * 1. use of deprecated addr with existing
810 		 *    communication is okay - "SHOULD continue to be
811 		 *    used"
812 		 * 2. use of it with new communication:
813 		 *   (2a) "SHOULD NOT be used if alternate address
814 		 *        with sufficient scope is available"
815 		 *   (2b) nothing mentioned otherwise.
816 		 * Here we fall into (2b) case as we have no choice in
817 		 * our source address selection - we must obey the peer.
818 		 *
819 		 * The wording in RFC2462 is confusing, and there are
820 		 * multiple description text for deprecated address
821 		 * handling - worse, they are not exactly the same.
822 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
823 		 */
824 		if (isipv6 && !ip6_use_deprecated) {
825 			struct in6_ifaddr *ia6;
826 
827 			if ((ia6 = ip6_getdstifaddr(m)) &&
828 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
829 				tp = NULL;
830 				rstreason = BANDLIM_RST_OPENPORT;
831 				goto dropwithreset;
832 			}
833 		}
834 #endif
835 		/*
836 		 * If it is from this socket, drop it, it must be forged.
837 		 * Don't bother responding if the destination was a broadcast.
838 		 */
839 		if (th->th_dport == th->th_sport) {
840 			if (isipv6) {
841 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
842 						       &ip6->ip6_src))
843 					goto drop;
844 			} else {
845 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
846 					goto drop;
847 			}
848 		}
849 		/*
850 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
851 		 *
852 		 * Note that it is quite possible to receive unicast
853 		 * link-layer packets with a broadcast IP address. Use
854 		 * in_broadcast() to find them.
855 		 */
856 		if (m->m_flags & (M_BCAST|M_MCAST))
857 			goto drop;
858 		if (isipv6) {
859 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
860 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
861 				goto drop;
862 		} else {
863 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
864 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
865 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
866 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
867 				goto drop;
868 		}
869 		/*
870 		 * SYN appears to be valid; create compressed TCP state
871 		 * for syncache, or perform t/tcp connection.
872 		 */
873 		if (so->so_qlen <= so->so_qlimit) {
874 			tcp_dooptions(&to, optp, optlen, 1);
875 			if (!syncache_add(&inc, &to, th, &so, m))
876 				goto drop;
877 			if (so == NULL)
878 				/*
879 				 * Entry added to syncache, mbuf used to
880 				 * send SYN,ACK packet.
881 				 */
882 				return;
883 			/*
884 			 * Segment passed TAO tests.
885 			 */
886 			inp = sotoinpcb(so);
887 			tp = intotcpcb(inp);
888 			tp->snd_wnd = tiwin;
889 			tp->t_starttime = ticks;
890 			tp->t_state = TCPS_ESTABLISHED;
891 
892 			/*
893 			 * If there is a FIN, or if there is data and the
894 			 * connection is local, then delay SYN,ACK(SYN) in
895 			 * the hope of piggy-backing it on a response
896 			 * segment.  Otherwise must send ACK now in case
897 			 * the other side is slow starting.
898 			 */
899 			if (DELAY_ACK(tp) &&
900 			    ((thflags & TH_FIN) ||
901 			     (tlen != 0 &&
902 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
903 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
904 				callout_reset(tp->tt_delack, tcp_delacktime,
905 						tcp_timer_delack, tp);
906 				tp->t_flags |= TF_NEEDSYN;
907 			} else
908 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
909 
910 			tcpstat.tcps_connects++;
911 			soisconnected(so);
912 			goto trimthenstep6;
913 		}
914 		goto drop;
915 	}
916 after_listen:
917 
918 /* XXX temp debugging */
919 	/* should not happen - syncache should pick up these connections */
920 	if (tp->t_state == TCPS_LISTEN)
921 		panic("tcp_input: TCPS_LISTEN");
922 
923 	/*
924 	 * Segment received on connection.
925 	 * Reset idle time and keep-alive timer.
926 	 */
927 	tp->t_rcvtime = ticks;
928 	if (TCPS_HAVEESTABLISHED(tp->t_state))
929 		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
930 
931 	/*
932 	 * Process options.
933 	 * XXX this is tradtitional behavior, may need to be cleaned up.
934 	 */
935 	tcp_dooptions(&to, optp, optlen, thflags & TH_SYN);
936 	if (thflags & TH_SYN) {
937 		if (to.to_flags & TOF_SCALE) {
938 			tp->t_flags |= TF_RCVD_SCALE;
939 			tp->requested_s_scale = to.to_requested_s_scale;
940 		}
941 		if (to.to_flags & TOF_TS) {
942 			tp->t_flags |= TF_RCVD_TSTMP;
943 			tp->ts_recent = to.to_tsval;
944 			tp->ts_recent_age = ticks;
945 		}
946 		if (to.to_flags & (TOF_CC|TOF_CCNEW))
947 			tp->t_flags |= TF_RCVD_CC;
948 		if (to.to_flags & TOF_MSS)
949 			tcp_mss(tp, to.to_mss);
950 	}
951 
952 	/*
953 	 * Header prediction: check for the two common cases
954 	 * of a uni-directional data xfer.  If the packet has
955 	 * no control flags, is in-sequence, the window didn't
956 	 * change and we're not retransmitting, it's a
957 	 * candidate.  If the length is zero and the ack moved
958 	 * forward, we're the sender side of the xfer.  Just
959 	 * free the data acked & wake any higher level process
960 	 * that was blocked waiting for space.  If the length
961 	 * is non-zero and the ack didn't move, we're the
962 	 * receiver side.  If we're getting packets in-order
963 	 * (the reassembly queue is empty), add the data to
964 	 * the socket buffer and note that we need a delayed ack.
965 	 * Make sure that the hidden state-flags are also off.
966 	 * Since we check for TCPS_ESTABLISHED above, it can only
967 	 * be TH_NEEDSYN.
968 	 */
969 	if (tp->t_state == TCPS_ESTABLISHED &&
970 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
971 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
972 	    ((to.to_flags & TOF_TS) == 0 ||
973 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
974 	    /*
975 	     * Using the CC option is compulsory if once started:
976 	     *   the segment is OK if no T/TCP was negotiated or
977 	     *   if the segment has a CC option equal to CCrecv
978 	     */
979 	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
980 	     ((to.to_flags & TOF_CC) != 0 && to.to_cc == tp->cc_recv)) &&
981 	    th->th_seq == tp->rcv_nxt &&
982 	    tiwin && tiwin == tp->snd_wnd &&
983 	    tp->snd_nxt == tp->snd_max) {
984 
985 		/*
986 		 * If last ACK falls within this segment's sequence numbers,
987 		 * record the timestamp.
988 		 * NOTE that the test is modified according to the latest
989 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
990 		 */
991 		if ((to.to_flags & TOF_TS) != 0 &&
992 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
993 			tp->ts_recent_age = ticks;
994 			tp->ts_recent = to.to_tsval;
995 		}
996 
997 		if (tlen == 0) {
998 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
999 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1000 			    tp->snd_cwnd >= tp->snd_wnd &&
1001 			    ((!tcp_do_newreno &&
1002 			      tp->t_dupacks < tcprexmtthresh) ||
1003 			     (tcp_do_newreno && !IN_FASTRECOVERY(tp)))) {
1004 				/*
1005 				 * this is a pure ack for outstanding data.
1006 				 */
1007 				++tcpstat.tcps_predack;
1008 				/*
1009 				 * "bad retransmit" recovery
1010 				 *
1011 				 * If Eifel detection applies, then
1012 				 * it is deterministic, so use it
1013 				 * unconditionally over the old heuristic.
1014 				 * Otherwise, fall back to the old heuristic.
1015 				 */
1016 				if (tcp_do_eifel_detect &&
1017 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1018 				    (tp->t_flags & TF_FIRSTACCACK)) {
1019 					/* Eifel detection applicable. */
1020 					if (to.to_tsecr < tp->t_rexmtTS) {
1021 						tcp_revert_congestion_state(tp);
1022 						++tcpstat.tcps_eifeldetected;
1023 					}
1024 				} else if (tp->t_rxtshift == 1 &&
1025 					   ticks < tp->t_badrxtwin) {
1026 					tcp_revert_congestion_state(tp);
1027 					++tcpstat.tcps_rttdetected;
1028 				}
1029 				tp->t_flags &= ~(TF_FIRSTACCACK |
1030 						 TF_FASTREXMT | TF_EARLYREXMT);
1031 				/*
1032 				 * Recalculate the retransmit timer / rtt.
1033 				 *
1034 				 * Some machines (certain windows boxes)
1035 				 * send broken timestamp replies during the
1036 				 * SYN+ACK phase, ignore timestamps of 0.
1037 				 */
1038 				if ((to.to_flags & TOF_TS) != 0 &&
1039 				    to.to_tsecr) {
1040 					tcp_xmit_timer(tp,
1041 					    ticks - to.to_tsecr + 1);
1042 				} else if (tp->t_rtttime &&
1043 					    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1044 					tcp_xmit_timer(tp,
1045 						       ticks - tp->t_rtttime);
1046 				}
1047 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1048 				acked = th->th_ack - tp->snd_una;
1049 				tcpstat.tcps_rcvackpack++;
1050 				tcpstat.tcps_rcvackbyte += acked;
1051 				sbdrop(&so->so_snd, acked);
1052 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1053 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1054 					tp->snd_recover = th->th_ack - 1;
1055 				tp->snd_una = th->th_ack;
1056 				tp->t_dupacks = 0;
1057 				m_freem(m);
1058 				ND6_HINT(tp); /* some progress has been done */
1059 
1060 				/*
1061 				 * If all outstanding data are acked, stop
1062 				 * retransmit timer, otherwise restart timer
1063 				 * using current (possibly backed-off) value.
1064 				 * If process is waiting for space,
1065 				 * wakeup/selwakeup/signal.  If data
1066 				 * are ready to send, let tcp_output
1067 				 * decide between more output or persist.
1068 				 */
1069 				if (tp->snd_una == tp->snd_max)
1070 					callout_stop(tp->tt_rexmt);
1071 				else if (!callout_active(tp->tt_persist))
1072 					callout_reset(tp->tt_rexmt,
1073 						      tp->t_rxtcur,
1074 						      tcp_timer_rexmt, tp);
1075 
1076 				sowwakeup(so);
1077 				if (so->so_snd.sb_cc)
1078 					(void) tcp_output(tp);
1079 				return;
1080 			}
1081 		} else if (th->th_ack == tp->snd_una &&
1082 		    LIST_EMPTY(&tp->t_segq) &&
1083 		    tlen <= sbspace(&so->so_rcv)) {
1084 			/*
1085 			 * this is a pure, in-sequence data packet
1086 			 * with nothing on the reassembly queue and
1087 			 * we have enough buffer space to take it.
1088 			 */
1089 			++tcpstat.tcps_preddat;
1090 			tp->rcv_nxt += tlen;
1091 			tcpstat.tcps_rcvpack++;
1092 			tcpstat.tcps_rcvbyte += tlen;
1093 			ND6_HINT(tp);	/* some progress has been done */
1094 			/*
1095 			 * Add data to socket buffer.
1096 			 */
1097 			if (so->so_state & SS_CANTRCVMORE) {
1098 				m_freem(m);
1099 			} else {
1100 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1101 				sbappend(&so->so_rcv, m);
1102 			}
1103 			sorwakeup(so);
1104 			if (DELAY_ACK(tp)) {
1105 	                        callout_reset(tp->tt_delack, tcp_delacktime,
1106 	                            tcp_timer_delack, tp);
1107 			} else {
1108 				tp->t_flags |= TF_ACKNOW;
1109 				tcp_output(tp);
1110 			}
1111 			return;
1112 		}
1113 	}
1114 
1115 	/*
1116 	 * Calculate amount of space in receive window,
1117 	 * and then do TCP input processing.
1118 	 * Receive window is amount of space in rcv queue,
1119 	 * but not less than advertised window.
1120 	 */
1121 	{ int win;
1122 
1123 	win = sbspace(&so->so_rcv);
1124 	if (win < 0)
1125 		win = 0;
1126 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1127 	}
1128 
1129 	switch (tp->t_state) {
1130 
1131 	/*
1132 	 * If the state is SYN_RECEIVED:
1133 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1134 	 */
1135 	case TCPS_SYN_RECEIVED:
1136 		if ((thflags & TH_ACK) &&
1137 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1138 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1139 				rstreason = BANDLIM_RST_OPENPORT;
1140 				goto dropwithreset;
1141 		}
1142 		break;
1143 
1144 	/*
1145 	 * If the state is SYN_SENT:
1146 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1147 	 *	if seg contains a RST, then drop the connection.
1148 	 *	if seg does not contain SYN, then drop it.
1149 	 * Otherwise this is an acceptable SYN segment
1150 	 *	initialize tp->rcv_nxt and tp->irs
1151 	 *	if seg contains ack then advance tp->snd_una
1152 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1153 	 *	arrange for segment to be acked (eventually)
1154 	 *	continue processing rest of data/controls, beginning with URG
1155 	 */
1156 	case TCPS_SYN_SENT:
1157 		if ((taop = tcp_gettaocache(&inp->inp_inc)) == NULL) {
1158 			taop = &tao_noncached;
1159 			bzero(taop, sizeof(*taop));
1160 		}
1161 
1162 		if ((thflags & TH_ACK) &&
1163 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1164 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1165 			/*
1166 			 * If we have a cached CCsent for the remote host,
1167 			 * hence we haven't just crashed and restarted,
1168 			 * do not send a RST.  This may be a retransmission
1169 			 * from the other side after our earlier ACK was lost.
1170 			 * Our new SYN, when it arrives, will serve as the
1171 			 * needed ACK.
1172 			 */
1173 			if (taop->tao_ccsent != 0)
1174 				goto drop;
1175 			else {
1176 				rstreason = BANDLIM_UNLIMITED;
1177 				goto dropwithreset;
1178 			}
1179 		}
1180 		if (thflags & TH_RST) {
1181 			if (thflags & TH_ACK)
1182 				tp = tcp_drop(tp, ECONNREFUSED);
1183 			goto drop;
1184 		}
1185 		if ((thflags & TH_SYN) == 0)
1186 			goto drop;
1187 		tp->snd_wnd = th->th_win;	/* initial send window */
1188 		tp->cc_recv = to.to_cc;		/* foreign CC */
1189 
1190 		tp->irs = th->th_seq;
1191 		tcp_rcvseqinit(tp);
1192 		if (thflags & TH_ACK) {
1193 			/*
1194 			 * Our SYN was acked.  If segment contains CC.ECHO
1195 			 * option, check it to make sure this segment really
1196 			 * matches our SYN.  If not, just drop it as old
1197 			 * duplicate, but send an RST if we're still playing
1198 			 * by the old rules.  If no CC.ECHO option, make sure
1199 			 * we don't get fooled into using T/TCP.
1200 			 */
1201 			if (to.to_flags & TOF_CCECHO) {
1202 				if (tp->cc_send != to.to_ccecho) {
1203 					if (taop->tao_ccsent != 0)
1204 						goto drop;
1205 					else {
1206 						rstreason = BANDLIM_UNLIMITED;
1207 						goto dropwithreset;
1208 					}
1209 				}
1210 			} else
1211 				tp->t_flags &= ~TF_RCVD_CC;
1212 			tcpstat.tcps_connects++;
1213 			soisconnected(so);
1214 			/* Do window scaling on this connection? */
1215 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1216 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1217 				tp->snd_scale = tp->requested_s_scale;
1218 				tp->rcv_scale = tp->request_r_scale;
1219 			}
1220 			/* Segment is acceptable, update cache if undefined. */
1221 			if (taop->tao_ccsent == 0)
1222 				taop->tao_ccsent = to.to_ccecho;
1223 
1224 			tp->rcv_adv += tp->rcv_wnd;
1225 			tp->snd_una++;		/* SYN is acked */
1226 			/*
1227 			 * If there's data, delay ACK; if there's also a FIN
1228 			 * ACKNOW will be turned on later.
1229 			 */
1230 			if (DELAY_ACK(tp) && tlen != 0)
1231                                 callout_reset(tp->tt_delack, tcp_delacktime,
1232                                     tcp_timer_delack, tp);
1233 			else
1234 				tp->t_flags |= TF_ACKNOW;
1235 			/*
1236 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1237 			 * Transitions:
1238 			 *	SYN_SENT  --> ESTABLISHED
1239 			 *	SYN_SENT* --> FIN_WAIT_1
1240 			 */
1241 			tp->t_starttime = ticks;
1242 			if (tp->t_flags & TF_NEEDFIN) {
1243 				tp->t_state = TCPS_FIN_WAIT_1;
1244 				tp->t_flags &= ~TF_NEEDFIN;
1245 				thflags &= ~TH_SYN;
1246 			} else {
1247 				tp->t_state = TCPS_ESTABLISHED;
1248 				callout_reset(tp->tt_keep, tcp_keepidle,
1249 					      tcp_timer_keep, tp);
1250 			}
1251 		} else {
1252 			/*
1253 		 	 * Received initial SYN in SYN-SENT[*] state =>
1254 		 	 * simultaneous open.  If segment contains CC option
1255 		 	 * and there is a cached CC, apply TAO test.
1256 		 	 * If it succeeds, connection is * half-synchronized.
1257 		 	 * Otherwise, do 3-way handshake:
1258 		 	 *        SYN-SENT -> SYN-RECEIVED
1259 		 	 *        SYN-SENT* -> SYN-RECEIVED*
1260 		 	 * If there was no CC option, clear cached CC value.
1261 		 	 */
1262 			tp->t_flags |= TF_ACKNOW;
1263 			callout_stop(tp->tt_rexmt);
1264 			if (to.to_flags & TOF_CC) {
1265 				if (taop->tao_cc != 0 &&
1266 				    CC_GT(to.to_cc, taop->tao_cc)) {
1267 					/*
1268 					 * update cache and make transition:
1269 					 *        SYN-SENT -> ESTABLISHED*
1270 					 *        SYN-SENT* -> FIN-WAIT-1*
1271 					 */
1272 					taop->tao_cc = to.to_cc;
1273 					tp->t_starttime = ticks;
1274 					if (tp->t_flags & TF_NEEDFIN) {
1275 						tp->t_state = TCPS_FIN_WAIT_1;
1276 						tp->t_flags &= ~TF_NEEDFIN;
1277 					} else {
1278 						tp->t_state = TCPS_ESTABLISHED;
1279 						callout_reset(tp->tt_keep,
1280 							      tcp_keepidle,
1281 							      tcp_timer_keep,
1282 							      tp);
1283 					}
1284 					tp->t_flags |= TF_NEEDSYN;
1285 				} else
1286 					tp->t_state = TCPS_SYN_RECEIVED;
1287 			} else {
1288 				/* CC.NEW or no option => invalidate cache */
1289 				taop->tao_cc = 0;
1290 				tp->t_state = TCPS_SYN_RECEIVED;
1291 			}
1292 		}
1293 
1294 trimthenstep6:
1295 		/*
1296 		 * Advance th->th_seq to correspond to first data byte.
1297 		 * If data, trim to stay within window,
1298 		 * dropping FIN if necessary.
1299 		 */
1300 		th->th_seq++;
1301 		if (tlen > tp->rcv_wnd) {
1302 			todrop = tlen - tp->rcv_wnd;
1303 			m_adj(m, -todrop);
1304 			tlen = tp->rcv_wnd;
1305 			thflags &= ~TH_FIN;
1306 			tcpstat.tcps_rcvpackafterwin++;
1307 			tcpstat.tcps_rcvbyteafterwin += todrop;
1308 		}
1309 		tp->snd_wl1 = th->th_seq - 1;
1310 		tp->rcv_up = th->th_seq;
1311 		/*
1312 		 * Client side of transaction: already sent SYN and data.
1313 		 * If the remote host used T/TCP to validate the SYN,
1314 		 * our data will be ACK'd; if so, enter normal data segment
1315 		 * processing in the middle of step 5, ack processing.
1316 		 * Otherwise, goto step 6.
1317 		 */
1318  		if (thflags & TH_ACK)
1319 			goto process_ACK;
1320 
1321 		goto step6;
1322 
1323 	/*
1324 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1325 	 *	if segment contains a SYN and CC [not CC.NEW] option:
1326 	 *              if state == TIME_WAIT and connection duration > MSL,
1327 	 *                  drop packet and send RST;
1328 	 *
1329 	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
1330 	 *		    ack the FIN (and data) in retransmission queue.
1331 	 *                  Complete close and delete TCPCB.  Then reprocess
1332 	 *                  segment, hoping to find new TCPCB in LISTEN state;
1333 	 *
1334 	 *		else must be old SYN; drop it.
1335 	 *      else do normal processing.
1336 	 */
1337 	case TCPS_LAST_ACK:
1338 	case TCPS_CLOSING:
1339 	case TCPS_TIME_WAIT:
1340 		if ((thflags & TH_SYN) &&
1341 		    (to.to_flags & TOF_CC) && tp->cc_recv != 0) {
1342 			if (tp->t_state == TCPS_TIME_WAIT &&
1343 					(ticks - tp->t_starttime) > tcp_msl) {
1344 				rstreason = BANDLIM_UNLIMITED;
1345 				goto dropwithreset;
1346 			}
1347 			if (CC_GT(to.to_cc, tp->cc_recv)) {
1348 				tp = tcp_close(tp);
1349 				goto findpcb;
1350 			}
1351 			else
1352 				goto drop;
1353 		}
1354  		break;  /* continue normal processing */
1355 	}
1356 
1357 	/*
1358 	 * States other than LISTEN or SYN_SENT.
1359 	 * First check the RST flag and sequence number since reset segments
1360 	 * are exempt from the timestamp and connection count tests.  This
1361 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1362 	 * below which allowed reset segments in half the sequence space
1363 	 * to fall though and be processed (which gives forged reset
1364 	 * segments with a random sequence number a 50 percent chance of
1365 	 * killing a connection).
1366 	 * Then check timestamp, if present.
1367 	 * Then check the connection count, if present.
1368 	 * Then check that at least some bytes of segment are within
1369 	 * receive window.  If segment begins before rcv_nxt,
1370 	 * drop leading data (and SYN); if nothing left, just ack.
1371 	 *
1372 	 *
1373 	 * If the RST bit is set, check the sequence number to see
1374 	 * if this is a valid reset segment.
1375 	 * RFC 793 page 37:
1376 	 *   In all states except SYN-SENT, all reset (RST) segments
1377 	 *   are validated by checking their SEQ-fields.  A reset is
1378 	 *   valid if its sequence number is in the window.
1379 	 * Note: this does not take into account delayed ACKs, so
1380 	 *   we should test against last_ack_sent instead of rcv_nxt.
1381 	 *   The sequence number in the reset segment is normally an
1382 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1383 	 *   send a reset with the sequence number at the rightmost edge
1384 	 *   of our receive window, and we have to handle this case.
1385 	 * If we have multiple segments in flight, the intial reset
1386 	 * segment sequence numbers will be to the left of last_ack_sent,
1387 	 * but they will eventually catch up.
1388 	 * In any case, it never made sense to trim reset segments to
1389 	 * fit the receive window since RFC 1122 says:
1390 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1391 	 *
1392 	 *    A TCP SHOULD allow a received RST segment to include data.
1393 	 *
1394 	 *    DISCUSSION
1395 	 *         It has been suggested that a RST segment could contain
1396 	 *         ASCII text that encoded and explained the cause of the
1397 	 *         RST.  No standard has yet been established for such
1398 	 *         data.
1399 	 *
1400 	 * If the reset segment passes the sequence number test examine
1401 	 * the state:
1402 	 *    SYN_RECEIVED STATE:
1403 	 *	If passive open, return to LISTEN state.
1404 	 *	If active open, inform user that connection was refused.
1405 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1406 	 *	Inform user that connection was reset, and close tcb.
1407 	 *    CLOSING, LAST_ACK STATES:
1408 	 *	Close the tcb.
1409 	 *    TIME_WAIT STATE:
1410 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1411 	 *      RFC 1337.
1412 	 */
1413 	if (thflags & TH_RST) {
1414 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1415 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1416 			switch (tp->t_state) {
1417 
1418 			case TCPS_SYN_RECEIVED:
1419 				so->so_error = ECONNREFUSED;
1420 				goto close;
1421 
1422 			case TCPS_ESTABLISHED:
1423 			case TCPS_FIN_WAIT_1:
1424 			case TCPS_FIN_WAIT_2:
1425 			case TCPS_CLOSE_WAIT:
1426 				so->so_error = ECONNRESET;
1427 			close:
1428 				tp->t_state = TCPS_CLOSED;
1429 				tcpstat.tcps_drops++;
1430 				tp = tcp_close(tp);
1431 				break;
1432 
1433 			case TCPS_CLOSING:
1434 			case TCPS_LAST_ACK:
1435 				tp = tcp_close(tp);
1436 				break;
1437 
1438 			case TCPS_TIME_WAIT:
1439 				break;
1440 			}
1441 		}
1442 		goto drop;
1443 	}
1444 
1445 	/*
1446 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1447 	 * and it's less than ts_recent, drop it.
1448 	 */
1449 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1450 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1451 
1452 		/* Check to see if ts_recent is over 24 days old.  */
1453 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1454 			/*
1455 			 * Invalidate ts_recent.  If this segment updates
1456 			 * ts_recent, the age will be reset later and ts_recent
1457 			 * will get a valid value.  If it does not, setting
1458 			 * ts_recent to zero will at least satisfy the
1459 			 * requirement that zero be placed in the timestamp
1460 			 * echo reply when ts_recent isn't valid.  The
1461 			 * age isn't reset until we get a valid ts_recent
1462 			 * because we don't want out-of-order segments to be
1463 			 * dropped when ts_recent is old.
1464 			 */
1465 			tp->ts_recent = 0;
1466 		} else {
1467 			tcpstat.tcps_rcvduppack++;
1468 			tcpstat.tcps_rcvdupbyte += tlen;
1469 			tcpstat.tcps_pawsdrop++;
1470 			if (tlen)
1471 				goto dropafterack;
1472 			goto drop;
1473 		}
1474 	}
1475 
1476 	/*
1477 	 * T/TCP mechanism
1478 	 *   If T/TCP was negotiated and the segment doesn't have CC,
1479 	 *   or if its CC is wrong then drop the segment.
1480 	 *   RST segments do not have to comply with this.
1481 	 */
1482 	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1483 	    ((to.to_flags & TOF_CC) == 0 || tp->cc_recv != to.to_cc))
1484  		goto dropafterack;
1485 
1486 	/*
1487 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1488 	 * this connection before trimming the data to fit the receive
1489 	 * window.  Check the sequence number versus IRS since we know
1490 	 * the sequence numbers haven't wrapped.  This is a partial fix
1491 	 * for the "LAND" DoS attack.
1492 	 */
1493 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1494 		rstreason = BANDLIM_RST_OPENPORT;
1495 		goto dropwithreset;
1496 	}
1497 
1498 	todrop = tp->rcv_nxt - th->th_seq;
1499 	if (todrop > 0) {
1500 		if (thflags & TH_SYN) {
1501 			thflags &= ~TH_SYN;
1502 			th->th_seq++;
1503 			if (th->th_urp > 1)
1504 				th->th_urp--;
1505 			else
1506 				thflags &= ~TH_URG;
1507 			todrop--;
1508 		}
1509 		/*
1510 		 * Following if statement from Stevens, vol. 2, p. 960.
1511 		 */
1512 		if (todrop > tlen
1513 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1514 			/*
1515 			 * Any valid FIN must be to the left of the window.
1516 			 * At this point the FIN must be a duplicate or out
1517 			 * of sequence; drop it.
1518 			 */
1519 			thflags &= ~TH_FIN;
1520 
1521 			/*
1522 			 * Send an ACK to resynchronize and drop any data.
1523 			 * But keep on processing for RST or ACK.
1524 			 */
1525 			tp->t_flags |= TF_ACKNOW;
1526 			todrop = tlen;
1527 			tcpstat.tcps_rcvduppack++;
1528 			tcpstat.tcps_rcvdupbyte += todrop;
1529 		} else {
1530 			tcpstat.tcps_rcvpartduppack++;
1531 			tcpstat.tcps_rcvpartdupbyte += todrop;
1532 		}
1533 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1534 		th->th_seq += todrop;
1535 		tlen -= todrop;
1536 		if (th->th_urp > todrop)
1537 			th->th_urp -= todrop;
1538 		else {
1539 			thflags &= ~TH_URG;
1540 			th->th_urp = 0;
1541 		}
1542 	}
1543 
1544 	/*
1545 	 * If new data are received on a connection after the
1546 	 * user processes are gone, then RST the other end.
1547 	 */
1548 	if ((so->so_state & SS_NOFDREF) &&
1549 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1550 		tp = tcp_close(tp);
1551 		tcpstat.tcps_rcvafterclose++;
1552 		rstreason = BANDLIM_UNLIMITED;
1553 		goto dropwithreset;
1554 	}
1555 
1556 	/*
1557 	 * If segment ends after window, drop trailing data
1558 	 * (and PUSH and FIN); if nothing left, just ACK.
1559 	 */
1560 	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1561 	if (todrop > 0) {
1562 		tcpstat.tcps_rcvpackafterwin++;
1563 		if (todrop >= tlen) {
1564 			tcpstat.tcps_rcvbyteafterwin += tlen;
1565 			/*
1566 			 * If a new connection request is received
1567 			 * while in TIME_WAIT, drop the old connection
1568 			 * and start over if the sequence numbers
1569 			 * are above the previous ones.
1570 			 */
1571 			if (thflags & TH_SYN &&
1572 			    tp->t_state == TCPS_TIME_WAIT &&
1573 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1574 				tp = tcp_close(tp);
1575 				goto findpcb;
1576 			}
1577 			/*
1578 			 * If window is closed can only take segments at
1579 			 * window edge, and have to drop data and PUSH from
1580 			 * incoming segments.  Continue processing, but
1581 			 * remember to ack.  Otherwise, drop segment
1582 			 * and ack.
1583 			 */
1584 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1585 				tp->t_flags |= TF_ACKNOW;
1586 				tcpstat.tcps_rcvwinprobe++;
1587 			} else
1588 				goto dropafterack;
1589 		} else
1590 			tcpstat.tcps_rcvbyteafterwin += todrop;
1591 		m_adj(m, -todrop);
1592 		tlen -= todrop;
1593 		thflags &= ~(TH_PUSH|TH_FIN);
1594 	}
1595 
1596 	/*
1597 	 * If last ACK falls within this segment's sequence numbers,
1598 	 * record its timestamp.
1599 	 * NOTE that the test is modified according to the latest
1600 	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1601 	 */
1602 	if ((to.to_flags & TOF_TS) != 0 &&
1603 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1604 		tp->ts_recent_age = ticks;
1605 		tp->ts_recent = to.to_tsval;
1606 	}
1607 
1608 	/*
1609 	 * If a SYN is in the window, then this is an
1610 	 * error and we send an RST and drop the connection.
1611 	 */
1612 	if (thflags & TH_SYN) {
1613 		tp = tcp_drop(tp, ECONNRESET);
1614 		rstreason = BANDLIM_UNLIMITED;
1615 		goto dropwithreset;
1616 	}
1617 
1618 	/*
1619 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1620 	 * flag is on (half-synchronized state), then queue data for
1621 	 * later processing; else drop segment and return.
1622 	 */
1623 	if ((thflags & TH_ACK) == 0) {
1624 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1625 		    (tp->t_flags & TF_NEEDSYN))
1626 			goto step6;
1627 		else
1628 			goto drop;
1629 	}
1630 
1631 	/*
1632 	 * Ack processing.
1633 	 */
1634 	switch (tp->t_state) {
1635 
1636 	/*
1637 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1638 	 * ESTABLISHED state and continue processing.
1639 	 * The ACK was checked above.
1640 	 */
1641 	case TCPS_SYN_RECEIVED:
1642 
1643 		tcpstat.tcps_connects++;
1644 		soisconnected(so);
1645 		/* Do window scaling? */
1646 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1647 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1648 			tp->snd_scale = tp->requested_s_scale;
1649 			tp->rcv_scale = tp->request_r_scale;
1650 		}
1651 		/*
1652 		 * Upon successful completion of 3-way handshake,
1653 		 * update cache.CC if it was undefined, pass any queued
1654 		 * data to the user, and advance state appropriately.
1655 		 */
1656 		if ((taop = tcp_gettaocache(&inp->inp_inc)) != NULL &&
1657 		    taop->tao_cc == 0)
1658 			taop->tao_cc = tp->cc_recv;
1659 
1660 		/*
1661 		 * Make transitions:
1662 		 *      SYN-RECEIVED  -> ESTABLISHED
1663 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1664 		 */
1665 		tp->t_starttime = ticks;
1666 		if (tp->t_flags & TF_NEEDFIN) {
1667 			tp->t_state = TCPS_FIN_WAIT_1;
1668 			tp->t_flags &= ~TF_NEEDFIN;
1669 		} else {
1670 			tp->t_state = TCPS_ESTABLISHED;
1671 			callout_reset(tp->tt_keep, tcp_keepidle,
1672 				      tcp_timer_keep, tp);
1673 		}
1674 		/*
1675 		 * If segment contains data or ACK, will call tcp_reass()
1676 		 * later; if not, do so now to pass queued data to user.
1677 		 */
1678 		if (tlen == 0 && (thflags & TH_FIN) == 0)
1679 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1680 			    (struct mbuf *)0);
1681 		tp->snd_wl1 = th->th_seq - 1;
1682 		/* fall into ... */
1683 
1684 	/*
1685 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1686 	 * ACKs.  If the ack is in the range
1687 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1688 	 * then advance tp->snd_una to th->th_ack and drop
1689 	 * data from the retransmission queue.  If this ACK reflects
1690 	 * more up to date window information we update our window information.
1691 	 */
1692 	case TCPS_ESTABLISHED:
1693 	case TCPS_FIN_WAIT_1:
1694 	case TCPS_FIN_WAIT_2:
1695 	case TCPS_CLOSE_WAIT:
1696 	case TCPS_CLOSING:
1697 	case TCPS_LAST_ACK:
1698 	case TCPS_TIME_WAIT:
1699 
1700 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1701 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1702 				tcpstat.tcps_rcvdupack++;
1703 				/*
1704 				 * If we have outstanding data (other than
1705 				 * a window probe), this is a completely
1706 				 * duplicate ack (ie, window info didn't
1707 				 * change), the ack is the biggest we've
1708 				 * seen and we've seen exactly our rexmt
1709 				 * threshhold of them, assume a packet
1710 				 * has been dropped and retransmit it.
1711 				 * Kludge snd_nxt & the congestion
1712 				 * window so we send only this one
1713 				 * packet.
1714 				 *
1715 				 * We know we're losing at the current
1716 				 * window size so do congestion avoidance
1717 				 * (set ssthresh to half the current window
1718 				 * and pull our congestion window back to
1719 				 * the new ssthresh).
1720 				 *
1721 				 * Dup acks mean that packets have left the
1722 				 * network (they're now cached at the receiver)
1723 				 * so bump cwnd by the amount in the receiver
1724 				 * to keep a constant cwnd packets in the
1725 				 * network.
1726 				 */
1727 				if (!callout_active(tp->tt_rexmt) ||
1728 				    th->th_ack != tp->snd_una)
1729 					tp->t_dupacks = 0;
1730 				else if (++tp->t_dupacks > tcprexmtthresh ||
1731 					 (tcp_do_newreno &&
1732 					  IN_FASTRECOVERY(tp))) {
1733 					tp->snd_cwnd += tp->t_maxseg;
1734 					(void) tcp_output(tp);
1735 					goto drop;
1736 				} else if (tp->t_dupacks == tcprexmtthresh) {
1737 					tcp_seq onxt;
1738 					u_int win;
1739 
1740 					if (tcp_do_newreno &&
1741 					    SEQ_LEQ(th->th_ack,
1742 					            tp->snd_recover)) {
1743 						tp->t_dupacks = 0;
1744 						break;
1745 					}
1746 fastretransmit:
1747 					if (tcp_do_eifel_detect &&
1748 					    (tp->t_flags & TF_RCVD_TSTMP)) {
1749 						tcp_save_congestion_state(tp);
1750 						tp->t_flags |= TF_FASTREXMT;
1751 					}
1752 					win = min(tp->snd_wnd, tp->snd_cwnd) /
1753 					    2 / tp->t_maxseg;
1754 					if (win < 2)
1755 						win = 2;
1756 					tp->snd_ssthresh = win * tp->t_maxseg;
1757 					ENTER_FASTRECOVERY(tp);
1758 					tp->snd_recover = tp->snd_max;
1759 					callout_stop(tp->tt_rexmt);
1760 					tp->t_rtttime = 0;
1761 					onxt = tp->snd_nxt;
1762 					tp->snd_nxt = th->th_ack;
1763 					tp->snd_cwnd = tp->t_maxseg;
1764 					(void) tcp_output(tp);
1765 					++tcpstat.tcps_sndfastrexmit;
1766 					KASSERT(tp->snd_limited <= 2,
1767 					    ("tp->snd_limited too big"));
1768 					tp->snd_cwnd = tp->snd_ssthresh +
1769 					    (tp->t_maxseg *
1770 					     (tp->t_dupacks - tp->snd_limited));
1771 					if (SEQ_GT(onxt, tp->snd_nxt))
1772 						tp->snd_nxt = onxt;
1773 					goto drop;
1774 				} else if (tcp_do_limitedtransmit) {
1775 					u_long oldcwnd = tp->snd_cwnd;
1776 					tcp_seq oldsndmax = tp->snd_max;
1777 					/* outstanding data */
1778 					uint32_t ownd =
1779 					    tp->snd_max - tp->snd_una;
1780 					u_int sent;
1781 
1782 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
1783 
1784 					KASSERT(tp->t_dupacks == 1 ||
1785 					    tp->t_dupacks == 2,
1786 					    ("dupacks not 1 or 2"));
1787 					if (tp->t_dupacks == 1)
1788 						tp->snd_limited = 0;
1789 					tp->snd_cwnd = ownd +
1790 					    (tp->t_dupacks - tp->snd_limited) *
1791 					    tp->t_maxseg;
1792 					(void) tcp_output(tp);
1793 					tp->snd_cwnd = oldcwnd;
1794 					sent = tp->snd_max - oldsndmax;
1795 					if (sent > tp->t_maxseg) {
1796 						KASSERT((tp->t_dupacks == 2 &&
1797 						    tp->snd_limited == 0) ||
1798 						   (sent == tp->t_maxseg + 1 &&
1799 						    tp->t_flags & TF_SENTFIN),
1800 						    ("sent too much"));
1801 						KASSERT(sent <=
1802 							tp->t_maxseg * 2,
1803 						    ("sent too many segments"));
1804 						tp->snd_limited = 2;
1805 						tcpstat.tcps_sndlimited += 2;
1806 					} else if (sent > 0) {
1807 						++tp->snd_limited;
1808 						++tcpstat.tcps_sndlimited;
1809 					} else if (tcp_do_early_retransmit &&
1810 					    (tcp_do_eifel_detect &&
1811 					     (tp->t_flags & TF_RCVD_TSTMP)) &&
1812 					    tcp_do_newreno &&
1813 					    tp->t_dupacks + 1 >=
1814 					      iceildiv(ownd, tp->t_maxseg)) {
1815 						++tcpstat.tcps_sndearlyrexmit;
1816 						tp->t_flags |= TF_EARLYREXMT;
1817 						goto fastretransmit;
1818 					}
1819 					goto drop;
1820 				}
1821 			} else
1822 				tp->t_dupacks = 0;
1823 			break;
1824 		}
1825 
1826 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
1827 
1828 		/*
1829 		 * If the congestion window was inflated to account
1830 		 * for the other side's cached packets, retract it.
1831 		 */
1832 		if (tcp_do_newreno) {
1833 			if (IN_FASTRECOVERY(tp)) {
1834 				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1835 					tcp_newreno_partial_ack(tp, th);
1836 				} else {
1837 					/*
1838 					 * Window inflation should have left us
1839 					 * with approximately snd_ssthresh
1840 					 * outstanding data.
1841 					 * But in case we would be inclined to
1842 					 * send a burst, better to do it via
1843 					 * the slow start mechanism.
1844 					 */
1845 					if (SEQ_GT(th->th_ack +
1846 							tp->snd_ssthresh,
1847 						   tp->snd_max))
1848 						tp->snd_cwnd = tp->snd_max -
1849 								th->th_ack +
1850 								tp->t_maxseg;
1851 					else
1852 						tp->snd_cwnd = tp->snd_ssthresh;
1853 				}
1854 			}
1855                 } else {
1856                         if (tp->t_dupacks >= tcprexmtthresh &&
1857                             tp->snd_cwnd > tp->snd_ssthresh)
1858 				tp->snd_cwnd = tp->snd_ssthresh;
1859                 }
1860 		tp->t_dupacks = 0;
1861 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1862 			tcpstat.tcps_rcvacktoomuch++;
1863 			goto dropafterack;
1864 		}
1865 		/*
1866 		 * If we reach this point, ACK is not a duplicate,
1867 		 *     i.e., it ACKs something we sent.
1868 		 */
1869 		if (tp->t_flags & TF_NEEDSYN) {
1870 			/*
1871 			 * T/TCP: Connection was half-synchronized, and our
1872 			 * SYN has been ACK'd (so connection is now fully
1873 			 * synchronized).  Go to non-starred state,
1874 			 * increment snd_una for ACK of SYN, and check if
1875 			 * we can do window scaling.
1876 			 */
1877 			tp->t_flags &= ~TF_NEEDSYN;
1878 			tp->snd_una++;
1879 			/* Do window scaling? */
1880 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1881 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1882 				tp->snd_scale = tp->requested_s_scale;
1883 				tp->rcv_scale = tp->request_r_scale;
1884 			}
1885 		}
1886 
1887 process_ACK:
1888 		acked = th->th_ack - tp->snd_una;
1889 		tcpstat.tcps_rcvackpack++;
1890 		tcpstat.tcps_rcvackbyte += acked;
1891 
1892 		/*
1893 		 * If we just performed our first retransmit, and the ACK
1894 		 * arrives within our recovery window, then it was a mistake
1895 		 * to do the retransmit in the first place.  Recover our
1896 		 * original cwnd and ssthresh, and proceed to transmit where
1897 		 * we left off.
1898 		 */
1899 		if (tcp_do_eifel_detect && acked &&
1900 		    (to.to_flags & TOF_TS) && to.to_tsecr &&
1901 		    (tp->t_flags & TF_FIRSTACCACK)) {
1902 			/* Eifel detection applicable. */
1903 			if (to.to_tsecr < tp->t_rexmtTS) {
1904 				++tcpstat.tcps_eifeldetected;
1905 				tcp_revert_congestion_state(tp);
1906 				if (tp->t_rxtshift == 1 &&
1907 				    ticks >= tp->t_badrxtwin)
1908 					++tcpstat.tcps_rttcantdetect;
1909 			}
1910 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
1911 			tcp_revert_congestion_state(tp);
1912 			++tcpstat.tcps_rttdetected;
1913 		}
1914 
1915 		/*
1916 		 * If we have a timestamp reply, update smoothed
1917 		 * round trip time.  If no timestamp is present but
1918 		 * transmit timer is running and timed sequence
1919 		 * number was acked, update smoothed round trip time.
1920 		 * Since we now have an rtt measurement, cancel the
1921 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1922 		 * Recompute the initial retransmit timer.
1923 		 *
1924 		 * Some machines (certain windows boxes) send broken
1925 		 * timestamp replies during the SYN+ACK phase, ignore
1926 		 * timestamps of 0.
1927 		 */
1928 		if ((to.to_flags & TOF_TS) != 0 &&
1929 		    to.to_tsecr) {
1930 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
1931 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
1932 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
1933 		}
1934 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
1935 
1936 		/*
1937 		 * If all outstanding data is acked, stop retransmit
1938 		 * timer and remember to restart (more output or persist).
1939 		 * If there is more data to be acked, restart retransmit
1940 		 * timer, using current (possibly backed-off) value.
1941 		 */
1942 		if (th->th_ack == tp->snd_max) {
1943 			callout_stop(tp->tt_rexmt);
1944 			needoutput = 1;
1945 		} else if (!callout_active(tp->tt_persist))
1946 			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
1947 				      tcp_timer_rexmt, tp);
1948 
1949 		/*
1950 		 * If no data (only SYN) was ACK'd,
1951 		 *    skip rest of ACK processing.
1952 		 */
1953 		if (acked == 0)
1954 			goto step6;
1955 
1956 		/* Stop looking for an acceptable ACK since one was received. */
1957 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
1958 
1959 		/*
1960 		 * When new data is acked, open the congestion window.
1961 		 * If the window gives us less than ssthresh packets
1962 		 * in flight, open exponentially (maxseg per packet).
1963 		 * Otherwise open linearly: maxseg per window
1964 		 * (maxseg^2 / cwnd per packet).
1965 		 */
1966 		if (!tcp_do_newreno || !IN_FASTRECOVERY(tp)) {
1967 			u_int cw = tp->snd_cwnd;
1968 			u_int incr = tp->t_maxseg;
1969 			if (cw > tp->snd_ssthresh)
1970 				incr = incr * incr / cw;
1971 			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
1972 		}
1973 		if (acked > so->so_snd.sb_cc) {
1974 			tp->snd_wnd -= so->so_snd.sb_cc;
1975 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1976 			ourfinisacked = 1;
1977 		} else {
1978 			sbdrop(&so->so_snd, acked);
1979 			tp->snd_wnd -= acked;
1980 			ourfinisacked = 0;
1981 		}
1982 		sowwakeup(so);
1983 		/* detect una wraparound */
1984 		if (tcp_do_newreno && !IN_FASTRECOVERY(tp) &&
1985 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
1986 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
1987 			tp->snd_recover = th->th_ack - 1;
1988 		if (tcp_do_newreno && IN_FASTRECOVERY(tp) &&
1989 		    SEQ_GEQ(th->th_ack, tp->snd_recover))
1990 			EXIT_FASTRECOVERY(tp);
1991 		tp->snd_una = th->th_ack;
1992 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1993 			tp->snd_nxt = tp->snd_una;
1994 
1995 		switch (tp->t_state) {
1996 
1997 		/*
1998 		 * In FIN_WAIT_1 STATE in addition to the processing
1999 		 * for the ESTABLISHED state if our FIN is now acknowledged
2000 		 * then enter FIN_WAIT_2.
2001 		 */
2002 		case TCPS_FIN_WAIT_1:
2003 			if (ourfinisacked) {
2004 				/*
2005 				 * If we can't receive any more
2006 				 * data, then closing user can proceed.
2007 				 * Starting the timer is contrary to the
2008 				 * specification, but if we don't get a FIN
2009 				 * we'll hang forever.
2010 				 */
2011 				if (so->so_state & SS_CANTRCVMORE) {
2012 					soisdisconnected(so);
2013 					callout_reset(tp->tt_2msl, tcp_maxidle,
2014 						      tcp_timer_2msl, tp);
2015 				}
2016 				tp->t_state = TCPS_FIN_WAIT_2;
2017 			}
2018 			break;
2019 
2020 	 	/*
2021 		 * In CLOSING STATE in addition to the processing for
2022 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2023 		 * then enter the TIME-WAIT state, otherwise ignore
2024 		 * the segment.
2025 		 */
2026 		case TCPS_CLOSING:
2027 			if (ourfinisacked) {
2028 				tp->t_state = TCPS_TIME_WAIT;
2029 				tcp_canceltimers(tp);
2030 				/* Shorten TIME_WAIT [RFC-1644, p.28] */
2031 				if (tp->cc_recv != 0 &&
2032 				    (ticks - tp->t_starttime) < tcp_msl)
2033 					callout_reset(tp->tt_2msl,
2034 						      tp->t_rxtcur *
2035 						      TCPTV_TWTRUNC,
2036 						      tcp_timer_2msl, tp);
2037 				else
2038 					callout_reset(tp->tt_2msl, 2 * tcp_msl,
2039 						      tcp_timer_2msl, tp);
2040 				soisdisconnected(so);
2041 			}
2042 			break;
2043 
2044 		/*
2045 		 * In LAST_ACK, we may still be waiting for data to drain
2046 		 * and/or to be acked, as well as for the ack of our FIN.
2047 		 * If our FIN is now acknowledged, delete the TCB,
2048 		 * enter the closed state and return.
2049 		 */
2050 		case TCPS_LAST_ACK:
2051 			if (ourfinisacked) {
2052 				tp = tcp_close(tp);
2053 				goto drop;
2054 			}
2055 			break;
2056 
2057 		/*
2058 		 * In TIME_WAIT state the only thing that should arrive
2059 		 * is a retransmission of the remote FIN.  Acknowledge
2060 		 * it and restart the finack timer.
2061 		 */
2062 		case TCPS_TIME_WAIT:
2063 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2064 				      tcp_timer_2msl, tp);
2065 			goto dropafterack;
2066 		}
2067 	}
2068 
2069 step6:
2070 	/*
2071 	 * Update window information.
2072 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2073 	 */
2074 	if ((thflags & TH_ACK) &&
2075 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2076 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2077 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2078 		/* keep track of pure window updates */
2079 		if (tlen == 0 &&
2080 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2081 			tcpstat.tcps_rcvwinupd++;
2082 		tp->snd_wnd = tiwin;
2083 		tp->snd_wl1 = th->th_seq;
2084 		tp->snd_wl2 = th->th_ack;
2085 		if (tp->snd_wnd > tp->max_sndwnd)
2086 			tp->max_sndwnd = tp->snd_wnd;
2087 		needoutput = 1;
2088 	}
2089 
2090 	/*
2091 	 * Process segments with URG.
2092 	 */
2093 	if ((thflags & TH_URG) && th->th_urp &&
2094 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2095 		/*
2096 		 * This is a kludge, but if we receive and accept
2097 		 * random urgent pointers, we'll crash in
2098 		 * soreceive.  It's hard to imagine someone
2099 		 * actually wanting to send this much urgent data.
2100 		 */
2101 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2102 			th->th_urp = 0;			/* XXX */
2103 			thflags &= ~TH_URG;		/* XXX */
2104 			goto dodata;			/* XXX */
2105 		}
2106 		/*
2107 		 * If this segment advances the known urgent pointer,
2108 		 * then mark the data stream.  This should not happen
2109 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2110 		 * a FIN has been received from the remote side.
2111 		 * In these states we ignore the URG.
2112 		 *
2113 		 * According to RFC961 (Assigned Protocols),
2114 		 * the urgent pointer points to the last octet
2115 		 * of urgent data.  We continue, however,
2116 		 * to consider it to indicate the first octet
2117 		 * of data past the urgent section as the original
2118 		 * spec states (in one of two places).
2119 		 */
2120 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2121 			tp->rcv_up = th->th_seq + th->th_urp;
2122 			so->so_oobmark = so->so_rcv.sb_cc +
2123 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2124 			if (so->so_oobmark == 0)
2125 				so->so_state |= SS_RCVATMARK;
2126 			sohasoutofband(so);
2127 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2128 		}
2129 		/*
2130 		 * Remove out of band data so doesn't get presented to user.
2131 		 * This can happen independent of advancing the URG pointer,
2132 		 * but if two URG's are pending at once, some out-of-band
2133 		 * data may creep in... ick.
2134 		 */
2135 		if (th->th_urp <= (u_long)tlen
2136 #ifdef SO_OOBINLINE
2137 		     && (so->so_options & SO_OOBINLINE) == 0
2138 #endif
2139 		     )
2140 			tcp_pulloutofband(so, th, m,
2141 				drop_hdrlen);	/* hdr drop is delayed */
2142 	} else {
2143 		/*
2144 		 * If no out of band data is expected,
2145 		 * pull receive urgent pointer along
2146 		 * with the receive window.
2147 		 */
2148 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2149 			tp->rcv_up = tp->rcv_nxt;
2150 	}
2151 dodata:							/* XXX */
2152 
2153 	/*
2154 	 * Process the segment text, merging it into the TCP sequencing queue,
2155 	 * and arranging for acknowledgment of receipt if necessary.
2156 	 * This process logically involves adjusting tp->rcv_wnd as data
2157 	 * is presented to the user (this happens in tcp_usrreq.c,
2158 	 * case PRU_RCVD).  If a FIN has already been received on this
2159 	 * connection then we just ignore the text.
2160 	 */
2161 	if ((tlen || (thflags & TH_FIN)) &&
2162 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2163 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2164 		/*
2165 		 * Insert segment which includes th into TCP reassembly queue
2166 		 * with control block tp.  Set thflags to whether reassembly now
2167 		 * includes a segment with FIN.  This handles the common case
2168 		 * inline (segment is the next to be received on an established
2169 		 * connection, and the queue is empty), avoiding linkage into
2170 		 * and removal from the queue and repetition of various
2171 		 * conversions.
2172 		 * Set DELACK for segments received in order, but ack
2173 		 * immediately when segments are out of order (so
2174 		 * fast retransmit can work).
2175 		 */
2176 		if (th->th_seq == tp->rcv_nxt &&
2177 		    LIST_EMPTY(&tp->t_segq) &&
2178 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2179 			if (DELAY_ACK(tp))
2180 				callout_reset(tp->tt_delack, tcp_delacktime,
2181 					      tcp_timer_delack, tp);
2182 			else
2183 				tp->t_flags |= TF_ACKNOW;
2184 			tp->rcv_nxt += tlen;
2185 			thflags = th->th_flags & TH_FIN;
2186 			tcpstat.tcps_rcvpack++;
2187 			tcpstat.tcps_rcvbyte += tlen;
2188 			ND6_HINT(tp);
2189 			if (so->so_state & SS_CANTRCVMORE)
2190 				m_freem(m);
2191 			else
2192 				sbappend(&so->so_rcv, m);
2193 			sorwakeup(so);
2194 		} else {
2195 			thflags = tcp_reass(tp, th, &tlen, m);
2196 			tp->t_flags |= TF_ACKNOW;
2197 		}
2198 
2199 		/*
2200 		 * Note the amount of data that peer has sent into
2201 		 * our window, in order to estimate the sender's
2202 		 * buffer size.
2203 		 */
2204 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2205 	} else {
2206 		m_freem(m);
2207 		thflags &= ~TH_FIN;
2208 	}
2209 
2210 	/*
2211 	 * If FIN is received ACK the FIN and let the user know
2212 	 * that the connection is closing.
2213 	 */
2214 	if (thflags & TH_FIN) {
2215 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2216 			socantrcvmore(so);
2217 			/*
2218 			 * If connection is half-synchronized
2219 			 * (ie NEEDSYN flag on) then delay ACK,
2220 			 * so it may be piggybacked when SYN is sent.
2221 			 * Otherwise, since we received a FIN then no
2222 			 * more input can be expected, send ACK now.
2223 			 */
2224 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN))
2225                                 callout_reset(tp->tt_delack, tcp_delacktime,
2226                                     tcp_timer_delack, tp);
2227 			else
2228 				tp->t_flags |= TF_ACKNOW;
2229 			tp->rcv_nxt++;
2230 		}
2231 		switch (tp->t_state) {
2232 
2233 	 	/*
2234 		 * In SYN_RECEIVED and ESTABLISHED STATES
2235 		 * enter the CLOSE_WAIT state.
2236 		 */
2237 		case TCPS_SYN_RECEIVED:
2238 			tp->t_starttime = ticks;
2239 			/*FALLTHROUGH*/
2240 		case TCPS_ESTABLISHED:
2241 			tp->t_state = TCPS_CLOSE_WAIT;
2242 			break;
2243 
2244 	 	/*
2245 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2246 		 * enter the CLOSING state.
2247 		 */
2248 		case TCPS_FIN_WAIT_1:
2249 			tp->t_state = TCPS_CLOSING;
2250 			break;
2251 
2252 	 	/*
2253 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2254 		 * starting the time-wait timer, turning off the other
2255 		 * standard timers.
2256 		 */
2257 		case TCPS_FIN_WAIT_2:
2258 			tp->t_state = TCPS_TIME_WAIT;
2259 			tcp_canceltimers(tp);
2260 			/* Shorten TIME_WAIT [RFC-1644, p.28] */
2261 			if (tp->cc_recv != 0 &&
2262 			    (ticks - tp->t_starttime) < tcp_msl) {
2263 				callout_reset(tp->tt_2msl,
2264 					      tp->t_rxtcur * TCPTV_TWTRUNC,
2265 					      tcp_timer_2msl, tp);
2266 				/* For transaction client, force ACK now. */
2267 				tp->t_flags |= TF_ACKNOW;
2268 			}
2269 			else
2270 				callout_reset(tp->tt_2msl, 2 * tcp_msl,
2271 					      tcp_timer_2msl, tp);
2272 			soisdisconnected(so);
2273 			break;
2274 
2275 		/*
2276 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2277 		 */
2278 		case TCPS_TIME_WAIT:
2279 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2280 				      tcp_timer_2msl, tp);
2281 			break;
2282 		}
2283 	}
2284 #ifdef TCPDEBUG
2285 	if (so->so_options & SO_DEBUG)
2286 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2287 			  &tcp_savetcp, 0);
2288 #endif
2289 
2290 	/*
2291 	 * Return any desired output.
2292 	 */
2293 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2294 		(void) tcp_output(tp);
2295 	return;
2296 
2297 dropafterack:
2298 	/*
2299 	 * Generate an ACK dropping incoming segment if it occupies
2300 	 * sequence space, where the ACK reflects our state.
2301 	 *
2302 	 * We can now skip the test for the RST flag since all
2303 	 * paths to this code happen after packets containing
2304 	 * RST have been dropped.
2305 	 *
2306 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2307 	 * segment we received passes the SYN-RECEIVED ACK test.
2308 	 * If it fails send a RST.  This breaks the loop in the
2309 	 * "LAND" DoS attack, and also prevents an ACK storm
2310 	 * between two listening ports that have been sent forged
2311 	 * SYN segments, each with the source address of the other.
2312 	 */
2313 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2314 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2315 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2316 		rstreason = BANDLIM_RST_OPENPORT;
2317 		goto dropwithreset;
2318 	}
2319 #ifdef TCPDEBUG
2320 	if (so->so_options & SO_DEBUG)
2321 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2322 			  &tcp_savetcp, 0);
2323 #endif
2324 	m_freem(m);
2325 	tp->t_flags |= TF_ACKNOW;
2326 	(void) tcp_output(tp);
2327 	return;
2328 
2329 dropwithreset:
2330 	/*
2331 	 * Generate a RST, dropping incoming segment.
2332 	 * Make ACK acceptable to originator of segment.
2333 	 * Don't bother to respond if destination was broadcast/multicast.
2334 	 */
2335 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2336 		goto drop;
2337 	if (isipv6) {
2338 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2339 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2340 			goto drop;
2341 	} else {
2342 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2343 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2344 	    	    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2345 	    	    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2346 			goto drop;
2347 	}
2348 	/* IPv6 anycast check is done at tcp6_input() */
2349 
2350 	/*
2351 	 * Perform bandwidth limiting.
2352 	 */
2353 #ifdef ICMP_BANDLIM
2354 	if (badport_bandlim(rstreason) < 0)
2355 		goto drop;
2356 #endif
2357 
2358 #ifdef TCPDEBUG
2359 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2360 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2361 			  &tcp_savetcp, 0);
2362 #endif
2363 	if (thflags & TH_ACK)
2364 		/* mtod() below is safe as long as hdr dropping is delayed */
2365 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2366 			    TH_RST);
2367 	else {
2368 		if (thflags & TH_SYN)
2369 			tlen++;
2370 		/* mtod() below is safe as long as hdr dropping is delayed */
2371 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2372 			    (tcp_seq)0, TH_RST|TH_ACK);
2373 	}
2374 	return;
2375 
2376 drop:
2377 	/*
2378 	 * Drop space held by incoming segment and return.
2379 	 */
2380 #ifdef TCPDEBUG
2381 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2382 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2383 			  &tcp_savetcp, 0);
2384 #endif
2385 	m_freem(m);
2386 	return;
2387 }
2388 
2389 /*
2390  * Parse TCP options and place in tcpopt.
2391  */
2392 static void
2393 tcp_dooptions(to, cp, cnt, is_syn)
2394 	struct tcpopt *to;
2395 	u_char *cp;
2396 	int cnt;
2397 {
2398 	int opt, optlen;
2399 
2400 	to->to_flags = 0;
2401 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2402 		opt = cp[0];
2403 		if (opt == TCPOPT_EOL)
2404 			break;
2405 		if (opt == TCPOPT_NOP)
2406 			optlen = 1;
2407 		else {
2408 			if (cnt < 2)
2409 				break;
2410 			optlen = cp[1];
2411 			if (optlen < 2 || optlen > cnt)
2412 				break;
2413 		}
2414 		switch (opt) {
2415 		case TCPOPT_MAXSEG:
2416 			if (optlen != TCPOLEN_MAXSEG)
2417 				continue;
2418 			if (!is_syn)
2419 				continue;
2420 			to->to_flags |= TOF_MSS;
2421 			bcopy((char *)cp + 2,
2422 			    (char *)&to->to_mss, sizeof(to->to_mss));
2423 			to->to_mss = ntohs(to->to_mss);
2424 			break;
2425 		case TCPOPT_WINDOW:
2426 			if (optlen != TCPOLEN_WINDOW)
2427 				continue;
2428 			if (! is_syn)
2429 				continue;
2430 			to->to_flags |= TOF_SCALE;
2431 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2432 			break;
2433 		case TCPOPT_TIMESTAMP:
2434 			if (optlen != TCPOLEN_TIMESTAMP)
2435 				continue;
2436 			to->to_flags |= TOF_TS;
2437 			bcopy((char *)cp + 2,
2438 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2439 			to->to_tsval = ntohl(to->to_tsval);
2440 			bcopy((char *)cp + 6,
2441 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2442 			to->to_tsecr = ntohl(to->to_tsecr);
2443 			break;
2444 		case TCPOPT_CC:
2445 			if (optlen != TCPOLEN_CC)
2446 				continue;
2447 			to->to_flags |= TOF_CC;
2448 			bcopy((char *)cp + 2,
2449 			    (char *)&to->to_cc, sizeof(to->to_cc));
2450 			to->to_cc = ntohl(to->to_cc);
2451 			break;
2452 		case TCPOPT_CCNEW:
2453 			if (optlen != TCPOLEN_CC)
2454 				continue;
2455 			if (!is_syn)
2456 				continue;
2457 			to->to_flags |= TOF_CCNEW;
2458 			bcopy((char *)cp + 2,
2459 			    (char *)&to->to_cc, sizeof(to->to_cc));
2460 			to->to_cc = ntohl(to->to_cc);
2461 			break;
2462 		case TCPOPT_CCECHO:
2463 			if (optlen != TCPOLEN_CC)
2464 				continue;
2465 			if (!is_syn)
2466 				continue;
2467 			to->to_flags |= TOF_CCECHO;
2468 			bcopy((char *)cp + 2,
2469 			    (char *)&to->to_ccecho, sizeof(to->to_ccecho));
2470 			to->to_ccecho = ntohl(to->to_ccecho);
2471 			break;
2472 		default:
2473 			continue;
2474 		}
2475 	}
2476 }
2477 
2478 /*
2479  * Pull out of band byte out of a segment so
2480  * it doesn't appear in the user's data queue.
2481  * It is still reflected in the segment length for
2482  * sequencing purposes.
2483  */
2484 static void
2485 tcp_pulloutofband(so, th, m, off)
2486 	struct socket *so;
2487 	struct tcphdr *th;
2488 	struct mbuf *m;
2489 	int off;		/* delayed to be droped hdrlen */
2490 {
2491 	int cnt = off + th->th_urp - 1;
2492 
2493 	while (cnt >= 0) {
2494 		if (m->m_len > cnt) {
2495 			char *cp = mtod(m, caddr_t) + cnt;
2496 			struct tcpcb *tp = sototcpcb(so);
2497 
2498 			tp->t_iobc = *cp;
2499 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2500 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2501 			m->m_len--;
2502 			if (m->m_flags & M_PKTHDR)
2503 				m->m_pkthdr.len--;
2504 			return;
2505 		}
2506 		cnt -= m->m_len;
2507 		m = m->m_next;
2508 		if (m == 0)
2509 			break;
2510 	}
2511 	panic("tcp_pulloutofband");
2512 }
2513 
2514 /*
2515  * Collect new round-trip time estimate
2516  * and update averages and current timeout.
2517  */
2518 static void
2519 tcp_xmit_timer(tp, rtt)
2520 	struct tcpcb *tp;
2521 	int rtt;
2522 {
2523 	int delta;
2524 
2525 	tcpstat.tcps_rttupdated++;
2526 	tp->t_rttupdated++;
2527 	if (tp->t_srtt != 0) {
2528 		/*
2529 		 * srtt is stored as fixed point with 5 bits after the
2530 		 * binary point (i.e., scaled by 8).  The following magic
2531 		 * is equivalent to the smoothing algorithm in rfc793 with
2532 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2533 		 * point).  Adjust rtt to origin 0.
2534 		 */
2535 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2536 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2537 
2538 		if ((tp->t_srtt += delta) <= 0)
2539 			tp->t_srtt = 1;
2540 
2541 		/*
2542 		 * We accumulate a smoothed rtt variance (actually, a
2543 		 * smoothed mean difference), then set the retransmit
2544 		 * timer to smoothed rtt + 4 times the smoothed variance.
2545 		 * rttvar is stored as fixed point with 4 bits after the
2546 		 * binary point (scaled by 16).  The following is
2547 		 * equivalent to rfc793 smoothing with an alpha of .75
2548 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2549 		 * rfc793's wired-in beta.
2550 		 */
2551 		if (delta < 0)
2552 			delta = -delta;
2553 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2554 		if ((tp->t_rttvar += delta) <= 0)
2555 			tp->t_rttvar = 1;
2556 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2557 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2558 	} else {
2559 		/*
2560 		 * No rtt measurement yet - use the unsmoothed rtt.
2561 		 * Set the variance to half the rtt (so our first
2562 		 * retransmit happens at 3*rtt).
2563 		 */
2564 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2565 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2566 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2567 	}
2568 	tp->t_rtttime = 0;
2569 	tp->t_rxtshift = 0;
2570 
2571 	/*
2572 	 * the retransmit should happen at rtt + 4 * rttvar.
2573 	 * Because of the way we do the smoothing, srtt and rttvar
2574 	 * will each average +1/2 tick of bias.  When we compute
2575 	 * the retransmit timer, we want 1/2 tick of rounding and
2576 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2577 	 * firing of the timer.  The bias will give us exactly the
2578 	 * 1.5 tick we need.  But, because the bias is
2579 	 * statistical, we have to test that we don't drop below
2580 	 * the minimum feasible timer (which is 2 ticks).
2581 	 */
2582 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2583 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2584 
2585 	/*
2586 	 * We received an ack for a packet that wasn't retransmitted;
2587 	 * it is probably safe to discard any error indications we've
2588 	 * received recently.  This isn't quite right, but close enough
2589 	 * for now (a route might have failed after we sent a segment,
2590 	 * and the return path might not be symmetrical).
2591 	 */
2592 	tp->t_softerror = 0;
2593 }
2594 
2595 /*
2596  * Determine a reasonable value for maxseg size.
2597  * If the route is known, check route for mtu.
2598  * If none, use an mss that can be handled on the outgoing
2599  * interface without forcing IP to fragment; if bigger than
2600  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2601  * to utilize large mbufs.  If no route is found, route has no mtu,
2602  * or the destination isn't local, use a default, hopefully conservative
2603  * size (usually 512 or the default IP max size, but no more than the mtu
2604  * of the interface), as we can't discover anything about intervening
2605  * gateways or networks.  We also initialize the congestion/slow start
2606  * window to be a single segment if the destination isn't local.
2607  * While looking at the routing entry, we also initialize other path-dependent
2608  * parameters from pre-set or cached values in the routing entry.
2609  *
2610  * Also take into account the space needed for options that we
2611  * send regularly.  Make maxseg shorter by that amount to assure
2612  * that we can send maxseg amount of data even when the options
2613  * are present.  Store the upper limit of the length of options plus
2614  * data in maxopd.
2615  *
2616  * NOTE that this routine is only called when we process an incoming
2617  * segment, for outgoing segments only tcp_mssopt is called.
2618  *
2619  * In case of T/TCP, we call this routine during implicit connection
2620  * setup as well (offer = -1), to initialize maxseg from the cached
2621  * MSS of our peer.
2622  */
2623 void
2624 tcp_mss(tp, offer)
2625 	struct tcpcb *tp;
2626 	int offer;
2627 {
2628 	struct rtentry *rt;
2629 	struct ifnet *ifp;
2630 	int rtt, mss;
2631 	u_long bufsize;
2632 	struct inpcb *inp = tp->t_inpcb;
2633 	struct socket *so;
2634 	struct rmxp_tao *taop;
2635 	int origoffer = offer;
2636 #ifdef INET6
2637 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2638 	size_t min_protoh = isipv6 ?
2639 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2640 			    sizeof(struct tcpiphdr);
2641 #else
2642 	const boolean_t isipv6 = FALSE;
2643 	const size_t min_protoh = sizeof(struct tcpiphdr);
2644 #endif
2645 
2646 	if (isipv6)
2647 		rt = tcp_rtlookup6(&inp->inp_inc);
2648 	else
2649 		rt = tcp_rtlookup(&inp->inp_inc);
2650 	if (rt == NULL) {
2651 		tp->t_maxopd = tp->t_maxseg =
2652 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2653 		return;
2654 	}
2655 	ifp = rt->rt_ifp;
2656 	so = inp->inp_socket;
2657 
2658 	taop = rmx_taop(rt->rt_rmx);
2659 	/*
2660 	 * Offer == -1 means that we didn't receive SYN yet,
2661 	 * use cached value in that case;
2662 	 */
2663 	if (offer == -1)
2664 		offer = taop->tao_mssopt;
2665 	/*
2666 	 * Offer == 0 means that there was no MSS on the SYN segment,
2667 	 * in this case we use tcp_mssdflt.
2668 	 */
2669 	if (offer == 0)
2670 		offer = (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2671 	else
2672 		/*
2673 		 * Sanity check: make sure that maxopd will be large
2674 		 * enough to allow some data on segments even is the
2675 		 * all the option space is used (40bytes).  Otherwise
2676 		 * funny things may happen in tcp_output.
2677 		 */
2678 		offer = max(offer, 64);
2679 	taop->tao_mssopt = offer;
2680 
2681 	/*
2682 	 * While we're here, check if there's an initial rtt
2683 	 * or rttvar.  Convert from the route-table units
2684 	 * to scaled multiples of the slow timeout timer.
2685 	 */
2686 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2687 		/*
2688 		 * XXX the lock bit for RTT indicates that the value
2689 		 * is also a minimum value; this is subject to time.
2690 		 */
2691 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2692 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2693 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2694 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2695 		tcpstat.tcps_usedrtt++;
2696 		if (rt->rt_rmx.rmx_rttvar) {
2697 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2698 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2699 			tcpstat.tcps_usedrttvar++;
2700 		} else {
2701 			/* default variation is +- 1 rtt */
2702 			tp->t_rttvar =
2703 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2704 		}
2705 		TCPT_RANGESET(tp->t_rxtcur,
2706 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2707 			      tp->t_rttmin, TCPTV_REXMTMAX);
2708 	}
2709 	/*
2710 	 * if there's an mtu associated with the route, use it
2711 	 * else, use the link mtu.
2712 	 */
2713 	if (rt->rt_rmx.rmx_mtu)
2714 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2715 	else {
2716 		if (isipv6) {
2717 			mss = nd_ifinfo[rt->rt_ifp->if_index].linkmtu -
2718 				min_protoh;
2719 			if (!in6_localaddr(&inp->in6p_faddr))
2720 				mss = min(mss, tcp_v6mssdflt);
2721 		} else {
2722 			mss = ifp->if_mtu - min_protoh;
2723 			if (!in_localaddr(inp->inp_faddr))
2724 				mss = min(mss, tcp_mssdflt);
2725 		}
2726 	}
2727 	mss = min(mss, offer);
2728 	/*
2729 	 * maxopd stores the maximum length of data AND options
2730 	 * in a segment; maxseg is the amount of data in a normal
2731 	 * segment.  We need to store this value (maxopd) apart
2732 	 * from maxseg, because now every segment carries options
2733 	 * and thus we normally have somewhat less data in segments.
2734 	 */
2735 	tp->t_maxopd = mss;
2736 
2737 	/*
2738 	 * In case of T/TCP, origoffer==-1 indicates, that no segments
2739 	 * were received yet.  In this case we just guess, otherwise
2740 	 * we do the same as before T/TCP.
2741 	 */
2742  	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2743 	    (origoffer == -1 ||
2744 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2745 		mss -= TCPOLEN_TSTAMP_APPA;
2746  	if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
2747 	    (origoffer == -1 ||
2748 	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
2749 		mss -= TCPOLEN_CC_APPA;
2750 
2751 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2752 		if (mss > MCLBYTES)
2753 			mss &= ~(MCLBYTES-1);
2754 #else
2755 		if (mss > MCLBYTES)
2756 			mss = mss / MCLBYTES * MCLBYTES;
2757 #endif
2758 	/*
2759 	 * If there's a pipesize, change the socket buffer
2760 	 * to that size.  Make the socket buffers an integral
2761 	 * number of mss units; if the mss is larger than
2762 	 * the socket buffer, decrease the mss.
2763 	 */
2764 #ifdef RTV_SPIPE
2765 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
2766 #endif
2767 		bufsize = so->so_snd.sb_hiwat;
2768 	if (bufsize < mss)
2769 		mss = bufsize;
2770 	else {
2771 		bufsize = roundup(bufsize, mss);
2772 		if (bufsize > sb_max)
2773 			bufsize = sb_max;
2774 		if (bufsize > so->so_snd.sb_hiwat)
2775 			(void)sbreserve(&so->so_snd, bufsize, so, NULL);
2776 	}
2777 	tp->t_maxseg = mss;
2778 
2779 #ifdef RTV_RPIPE
2780 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
2781 #endif
2782 		bufsize = so->so_rcv.sb_hiwat;
2783 	if (bufsize > mss) {
2784 		bufsize = roundup(bufsize, mss);
2785 		if (bufsize > sb_max)
2786 			bufsize = sb_max;
2787 		if (bufsize > so->so_rcv.sb_hiwat)
2788 			(void)sbreserve(&so->so_rcv, bufsize, so, NULL);
2789 	}
2790 
2791 	/*
2792 	 * Set the slow-start flight size depending on whether this
2793 	 * is a local network or not.
2794 	 */
2795 	if (tcp_do_rfc3390)
2796 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
2797 	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
2798 		 (!isipv6 && in_localaddr(inp->inp_faddr)))
2799 		tp->snd_cwnd = mss * ss_fltsz_local;
2800 	else
2801 		tp->snd_cwnd = mss * ss_fltsz;
2802 
2803 	if (rt->rt_rmx.rmx_ssthresh) {
2804 		/*
2805 		 * There's some sort of gateway or interface
2806 		 * buffer limit on the path.  Use this to set
2807 		 * the slow start threshhold, but set the
2808 		 * threshold to no less than 2*mss.
2809 		 */
2810 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2811 		tcpstat.tcps_usedssthresh++;
2812 	}
2813 }
2814 
2815 /*
2816  * Determine the MSS option to send on an outgoing SYN.
2817  */
2818 int
2819 tcp_mssopt(tp)
2820 	struct tcpcb *tp;
2821 {
2822 	struct rtentry *rt;
2823 #ifdef INET6
2824 	boolean_t isipv6 =
2825 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2826 	int min_protoh = isipv6 ?
2827 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2828 			     sizeof(struct tcpiphdr);
2829 #else
2830 	const boolean_t isipv6 = FALSE;
2831 	const size_t min_protoh = sizeof(struct tcpiphdr);
2832 #endif
2833 
2834 	if (isipv6)
2835 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
2836 	else
2837 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
2838 	if (rt == NULL)
2839 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2840 
2841 	return (rt->rt_ifp->if_mtu - min_protoh);
2842 }
2843 
2844 
2845 /*
2846  * When a partial ack arrives, force the retransmission of the
2847  * next unacknowledged segment.  Do not clear tp->t_dupacks.
2848  * By setting snd_nxt to ti_ack, this forces retransmission timer to
2849  * be started again.
2850  */
2851 static void
2852 tcp_newreno_partial_ack(tp, th)
2853 	struct tcpcb *tp;
2854 	struct tcphdr *th;
2855 {
2856 	tcp_seq onxt = tp->snd_nxt;
2857 	u_long  ocwnd = tp->snd_cwnd;
2858 
2859 	callout_stop(tp->tt_rexmt);
2860 	tp->t_rtttime = 0;
2861 	tp->snd_nxt = th->th_ack;
2862 	/*
2863 	 * Set snd_cwnd to one segment beyond acknowledged offset
2864 	 * (tp->snd_una has not yet been updated when this function is called.)
2865 	 */
2866 	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
2867 	tp->t_flags |= TF_ACKNOW;
2868 	(void) tcp_output(tp);
2869 	tp->snd_cwnd = ocwnd;
2870 	if (SEQ_GT(onxt, tp->snd_nxt))
2871 		tp->snd_nxt = onxt;
2872 	/*
2873 	 * Partial window deflation.  Relies on fact that tp->snd_una
2874 	 * not updated yet.
2875 	 */
2876 	tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
2877 }
2878