xref: /dflybsd-src/sys/netinet/tcp_input.c (revision b370aff7747b2e03ce9b829fbf2877dffdadfb64)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
68  * $DragonFly: src/sys/netinet/tcp_input.c,v 1.68 2008/08/22 09:14:17 sephe Exp $
69  */
70 
71 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
72 #include "opt_inet.h"
73 #include "opt_inet6.h"
74 #include "opt_ipsec.h"
75 #include "opt_tcpdebug.h"
76 #include "opt_tcp_input.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/proc.h>		/* for proc0 declaration */
85 #include <sys/protosw.h>
86 #include <sys/socket.h>
87 #include <sys/socketvar.h>
88 #include <sys/syslog.h>
89 #include <sys/in_cksum.h>
90 
91 #include <sys/socketvar2.h>
92 
93 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
94 #include <machine/stdarg.h>
95 
96 #include <net/if.h>
97 #include <net/route.h>
98 
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #include <netinet/ip.h>
102 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
103 #include <netinet/in_var.h>
104 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
105 #include <netinet/in_pcb.h>
106 #include <netinet/ip_var.h>
107 #include <netinet/ip6.h>
108 #include <netinet/icmp6.h>
109 #include <netinet6/nd6.h>
110 #include <netinet6/ip6_var.h>
111 #include <netinet6/in6_pcb.h>
112 #include <netinet/tcp.h>
113 #include <netinet/tcp_fsm.h>
114 #include <netinet/tcp_seq.h>
115 #include <netinet/tcp_timer.h>
116 #include <netinet/tcp_timer2.h>
117 #include <netinet/tcp_var.h>
118 #include <netinet6/tcp6_var.h>
119 #include <netinet/tcpip.h>
120 
121 #ifdef TCPDEBUG
122 #include <netinet/tcp_debug.h>
123 
124 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
125 struct tcphdr tcp_savetcp;
126 #endif
127 
128 #ifdef FAST_IPSEC
129 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/ipsec6.h>
131 #endif
132 
133 #ifdef IPSEC
134 #include <netinet6/ipsec.h>
135 #include <netinet6/ipsec6.h>
136 #include <netproto/key/key.h>
137 #endif
138 
139 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
140 
141 static int log_in_vain = 0;
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
143     &log_in_vain, 0, "Log all incoming TCP connections");
144 
145 static int blackhole = 0;
146 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
147     &blackhole, 0, "Do not send RST when dropping refused connections");
148 
149 int tcp_delack_enabled = 1;
150 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
151     &tcp_delack_enabled, 0,
152     "Delay ACK to try and piggyback it onto a data packet");
153 
154 #ifdef TCP_DROP_SYNFIN
155 static int drop_synfin = 0;
156 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
157     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
158 #endif
159 
160 static int tcp_do_limitedtransmit = 1;
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
162     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
163 
164 static int tcp_do_early_retransmit = 1;
165 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
166     &tcp_do_early_retransmit, 0, "Early retransmit");
167 
168 int tcp_aggregate_acks = 1;
169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
170     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
171 
172 int tcp_do_rfc3390 = 1;
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
174     &tcp_do_rfc3390, 0,
175     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
176 
177 static int tcp_do_eifel_detect = 1;
178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
179     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
180 
181 static int tcp_do_abc = 1;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
183     &tcp_do_abc, 0,
184     "TCP Appropriate Byte Counting (RFC 3465)");
185 
186 /*
187  * Define as tunable for easy testing with SACK on and off.
188  * Warning:  do not change setting in the middle of an existing active TCP flow,
189  *   else strange things might happen to that flow.
190  */
191 int tcp_do_sack = 1;
192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
193     &tcp_do_sack, 0, "Enable SACK Algorithms");
194 
195 int tcp_do_smartsack = 1;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
197     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
198 
199 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
200     "TCP Segment Reassembly Queue");
201 
202 int tcp_reass_maxseg = 0;
203 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
204     &tcp_reass_maxseg, 0,
205     "Global maximum number of TCP Segments in Reassembly Queue");
206 
207 int tcp_reass_qsize = 0;
208 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
209     &tcp_reass_qsize, 0,
210     "Global number of TCP Segments currently in Reassembly Queue");
211 
212 static int tcp_reass_overflows = 0;
213 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
214     &tcp_reass_overflows, 0,
215     "Global number of TCP Segment Reassembly Queue Overflows");
216 
217 int tcp_do_autorcvbuf = 1;
218 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
219     &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
220 
221 int tcp_autorcvbuf_inc = 16*1024;
222 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
223     &tcp_autorcvbuf_inc, 0,
224     "Incrementor step size of automatic receive buffer");
225 
226 int tcp_autorcvbuf_max = 2*1024*1024;
227 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
228     &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
229 
230 int tcp_sosnd_agglim = 2;
231 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosnd_agglim, CTLFLAG_RW,
232     &tcp_sosnd_agglim, 0, "TCP sosend mbuf aggregation limit");
233 
234 int tcp_sosnd_async = 1;
235 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosnd_async, CTLFLAG_RW,
236     &tcp_sosnd_async, 0, "TCP asynchronized pru_send");
237 
238 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t);
239 static void	 tcp_pulloutofband(struct socket *,
240 		     struct tcphdr *, struct mbuf *, int);
241 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
242 		     struct mbuf *);
243 static void	 tcp_xmit_timer(struct tcpcb *, int);
244 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
245 static void	 tcp_sack_rexmt(struct tcpcb *, struct tcphdr *);
246 static int	 tcp_rmx_msl(const struct tcpcb *);
247 
248 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
249 #ifdef INET6
250 #define ND6_HINT(tp) \
251 do { \
252 	if ((tp) && (tp)->t_inpcb && \
253 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
254 	    (tp)->t_inpcb->in6p_route.ro_rt) \
255 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
256 } while (0)
257 #else
258 #define ND6_HINT(tp)
259 #endif
260 
261 /*
262  * Indicate whether this ack should be delayed.  We can delay the ack if
263  *	- delayed acks are enabled and
264  *	- there is no delayed ack timer in progress and
265  *	- our last ack wasn't a 0-sized window.  We never want to delay
266  *	  the ack that opens up a 0-sized window.
267  */
268 #define DELAY_ACK(tp) \
269 	(tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
270 	!(tp->t_flags & TF_RXWIN0SENT))
271 
272 #define acceptable_window_update(tp, th, tiwin)				\
273     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
274      (tp->snd_wl1 == th->th_seq &&					\
275       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
276        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
277 
278 static int
279 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
280 {
281 	struct tseg_qent *q;
282 	struct tseg_qent *p = NULL;
283 	struct tseg_qent *te;
284 	struct socket *so = tp->t_inpcb->inp_socket;
285 	int flags;
286 
287 	/*
288 	 * Call with th == NULL after become established to
289 	 * force pre-ESTABLISHED data up to user socket.
290 	 */
291 	if (th == NULL)
292 		goto present;
293 
294 	/*
295 	 * Limit the number of segments in the reassembly queue to prevent
296 	 * holding on to too many segments (and thus running out of mbufs).
297 	 * Make sure to let the missing segment through which caused this
298 	 * queue.  Always keep one global queue entry spare to be able to
299 	 * process the missing segment.
300 	 */
301 	if (th->th_seq != tp->rcv_nxt &&
302 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
303 		tcp_reass_overflows++;
304 		tcpstat.tcps_rcvmemdrop++;
305 		m_freem(m);
306 		/* no SACK block to report */
307 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
308 		return (0);
309 	}
310 
311 	/* Allocate a new queue entry. */
312 	MALLOC(te, struct tseg_qent *, sizeof(struct tseg_qent), M_TSEGQ,
313 	       M_INTWAIT | M_NULLOK);
314 	if (te == NULL) {
315 		tcpstat.tcps_rcvmemdrop++;
316 		m_freem(m);
317 		/* no SACK block to report */
318 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
319 		return (0);
320 	}
321 	atomic_add_int(&tcp_reass_qsize, 1);
322 
323 	/*
324 	 * Find a segment which begins after this one does.
325 	 */
326 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
327 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
328 			break;
329 		p = q;
330 	}
331 
332 	/*
333 	 * If there is a preceding segment, it may provide some of
334 	 * our data already.  If so, drop the data from the incoming
335 	 * segment.  If it provides all of our data, drop us.
336 	 */
337 	if (p != NULL) {
338 		tcp_seq_diff_t i;
339 
340 		/* conversion to int (in i) handles seq wraparound */
341 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
342 		if (i > 0) {		/* overlaps preceding segment */
343 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
344 			/* enclosing block starts w/ preceding segment */
345 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
346 			if (i >= *tlenp) {
347 				/* preceding encloses incoming segment */
348 				tp->encloseblk.rblk_end = p->tqe_th->th_seq +
349 				    p->tqe_len;
350 				tcpstat.tcps_rcvduppack++;
351 				tcpstat.tcps_rcvdupbyte += *tlenp;
352 				m_freem(m);
353 				kfree(te, M_TSEGQ);
354 				atomic_add_int(&tcp_reass_qsize, -1);
355 				/*
356 				 * Try to present any queued data
357 				 * at the left window edge to the user.
358 				 * This is needed after the 3-WHS
359 				 * completes.
360 				 */
361 				goto present;	/* ??? */
362 			}
363 			m_adj(m, i);
364 			*tlenp -= i;
365 			th->th_seq += i;
366 			/* incoming segment end is enclosing block end */
367 			tp->encloseblk.rblk_end = th->th_seq + *tlenp +
368 			    ((th->th_flags & TH_FIN) != 0);
369 			/* trim end of reported D-SACK block */
370 			tp->reportblk.rblk_end = th->th_seq;
371 		}
372 	}
373 	tcpstat.tcps_rcvoopack++;
374 	tcpstat.tcps_rcvoobyte += *tlenp;
375 
376 	/*
377 	 * While we overlap succeeding segments trim them or,
378 	 * if they are completely covered, dequeue them.
379 	 */
380 	while (q) {
381 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
382 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
383 		struct tseg_qent *nq;
384 
385 		if (i <= 0)
386 			break;
387 		if (!(tp->t_flags & TF_DUPSEG)) {    /* first time through */
388 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
389 			tp->encloseblk = tp->reportblk;
390 			/* report trailing duplicate D-SACK segment */
391 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
392 		}
393 		if ((tp->t_flags & TF_ENCLOSESEG) &&
394 		    SEQ_GT(qend, tp->encloseblk.rblk_end)) {
395 			/* extend enclosing block if one exists */
396 			tp->encloseblk.rblk_end = qend;
397 		}
398 		if (i < q->tqe_len) {
399 			q->tqe_th->th_seq += i;
400 			q->tqe_len -= i;
401 			m_adj(q->tqe_m, i);
402 			break;
403 		}
404 
405 		nq = LIST_NEXT(q, tqe_q);
406 		LIST_REMOVE(q, tqe_q);
407 		m_freem(q->tqe_m);
408 		kfree(q, M_TSEGQ);
409 		atomic_add_int(&tcp_reass_qsize, -1);
410 		q = nq;
411 	}
412 
413 	/* Insert the new segment queue entry into place. */
414 	te->tqe_m = m;
415 	te->tqe_th = th;
416 	te->tqe_len = *tlenp;
417 
418 	/* check if can coalesce with following segment */
419 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
420 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
421 
422 		te->tqe_len += q->tqe_len;
423 		if (q->tqe_th->th_flags & TH_FIN)
424 			te->tqe_th->th_flags |= TH_FIN;
425 		m_cat(te->tqe_m, q->tqe_m);
426 		tp->encloseblk.rblk_end = tend;
427 		/*
428 		 * When not reporting a duplicate segment, use
429 		 * the larger enclosing block as the SACK block.
430 		 */
431 		if (!(tp->t_flags & TF_DUPSEG))
432 			tp->reportblk.rblk_end = tend;
433 		LIST_REMOVE(q, tqe_q);
434 		kfree(q, M_TSEGQ);
435 		atomic_add_int(&tcp_reass_qsize, -1);
436 	}
437 
438 	if (p == NULL) {
439 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
440 	} else {
441 		/* check if can coalesce with preceding segment */
442 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
443 			p->tqe_len += te->tqe_len;
444 			m_cat(p->tqe_m, te->tqe_m);
445 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
446 			/*
447 			 * When not reporting a duplicate segment, use
448 			 * the larger enclosing block as the SACK block.
449 			 */
450 			if (!(tp->t_flags & TF_DUPSEG))
451 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
452 			kfree(te, M_TSEGQ);
453 			atomic_add_int(&tcp_reass_qsize, -1);
454 		} else {
455 			LIST_INSERT_AFTER(p, te, tqe_q);
456 		}
457 	}
458 
459 present:
460 	/*
461 	 * Present data to user, advancing rcv_nxt through
462 	 * completed sequence space.
463 	 */
464 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
465 		return (0);
466 	q = LIST_FIRST(&tp->t_segq);
467 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
468 		return (0);
469 	tp->rcv_nxt += q->tqe_len;
470 	if (!(tp->t_flags & TF_DUPSEG))	{
471 		/* no SACK block to report since ACK advanced */
472 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
473 	}
474 	/* no enclosing block to report since ACK advanced */
475 	tp->t_flags &= ~TF_ENCLOSESEG;
476 	flags = q->tqe_th->th_flags & TH_FIN;
477 	LIST_REMOVE(q, tqe_q);
478 	KASSERT(LIST_EMPTY(&tp->t_segq) ||
479 		LIST_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
480 		("segment not coalesced"));
481 	if (so->so_state & SS_CANTRCVMORE) {
482 		m_freem(q->tqe_m);
483 	} else {
484 		lwkt_gettoken(&so->so_rcv.ssb_token);
485 		ssb_appendstream(&so->so_rcv, q->tqe_m);
486 		lwkt_reltoken(&so->so_rcv.ssb_token);
487 	}
488 	kfree(q, M_TSEGQ);
489 	atomic_add_int(&tcp_reass_qsize, -1);
490 	ND6_HINT(tp);
491 	sorwakeup(so);
492 	return (flags);
493 }
494 
495 /*
496  * TCP input routine, follows pages 65-76 of the
497  * protocol specification dated September, 1981 very closely.
498  */
499 #ifdef INET6
500 int
501 tcp6_input(struct mbuf **mp, int *offp, int proto)
502 {
503 	struct mbuf *m = *mp;
504 	struct in6_ifaddr *ia6;
505 
506 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
507 
508 	/*
509 	 * draft-itojun-ipv6-tcp-to-anycast
510 	 * better place to put this in?
511 	 */
512 	ia6 = ip6_getdstifaddr(m);
513 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
514 		struct ip6_hdr *ip6;
515 
516 		ip6 = mtod(m, struct ip6_hdr *);
517 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
518 			    offsetof(struct ip6_hdr, ip6_dst));
519 		return (IPPROTO_DONE);
520 	}
521 
522 	tcp_input(mp, offp, proto);
523 	return (IPPROTO_DONE);
524 }
525 #endif
526 
527 int
528 tcp_input(struct mbuf **mp, int *offp, int proto)
529 {
530 	int off0;
531 	struct tcphdr *th;
532 	struct ip *ip = NULL;
533 	struct ipovly *ipov;
534 	struct inpcb *inp = NULL;
535 	u_char *optp = NULL;
536 	int optlen = 0;
537 	int tlen, off;
538 	int len = 0;
539 	int drop_hdrlen;
540 	struct tcpcb *tp = NULL;
541 	int thflags;
542 	struct socket *so = 0;
543 	int todrop, acked;
544 	boolean_t ourfinisacked, needoutput = FALSE;
545 	u_long tiwin;
546 	int recvwin;
547 	struct tcpopt to;		/* options in this segment */
548 	struct sockaddr_in *next_hop = NULL;
549 	int rstreason; /* For badport_bandlim accounting purposes */
550 	int cpu;
551 	struct ip6_hdr *ip6 = NULL;
552 	struct mbuf *m;
553 #ifdef INET6
554 	boolean_t isipv6;
555 #else
556 	const boolean_t isipv6 = FALSE;
557 #endif
558 #ifdef TCPDEBUG
559 	short ostate = 0;
560 #endif
561 
562 	off0 = *offp;
563 	m = *mp;
564 	*mp = NULL;
565 
566 	tcpstat.tcps_rcvtotal++;
567 
568 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
569 		struct m_tag *mtag;
570 
571 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
572 		KKASSERT(mtag != NULL);
573 		next_hop = m_tag_data(mtag);
574 	}
575 
576 #ifdef INET6
577 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
578 #endif
579 
580 	if (isipv6) {
581 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
582 		ip6 = mtod(m, struct ip6_hdr *);
583 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
584 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
585 			tcpstat.tcps_rcvbadsum++;
586 			goto drop;
587 		}
588 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
589 
590 		/*
591 		 * Be proactive about unspecified IPv6 address in source.
592 		 * As we use all-zero to indicate unbounded/unconnected pcb,
593 		 * unspecified IPv6 address can be used to confuse us.
594 		 *
595 		 * Note that packets with unspecified IPv6 destination is
596 		 * already dropped in ip6_input.
597 		 */
598 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
599 			/* XXX stat */
600 			goto drop;
601 		}
602 	} else {
603 		/*
604 		 * Get IP and TCP header together in first mbuf.
605 		 * Note: IP leaves IP header in first mbuf.
606 		 */
607 		if (off0 > sizeof(struct ip)) {
608 			ip_stripoptions(m);
609 			off0 = sizeof(struct ip);
610 		}
611 		/* already checked and pulled up in ip_demux() */
612 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
613 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
614 		ip = mtod(m, struct ip *);
615 		ipov = (struct ipovly *)ip;
616 		th = (struct tcphdr *)((caddr_t)ip + off0);
617 		tlen = ip->ip_len;
618 
619 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
620 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
621 				th->th_sum = m->m_pkthdr.csum_data;
622 			else
623 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
624 						ip->ip_dst.s_addr,
625 						htonl(m->m_pkthdr.csum_data +
626 							ip->ip_len +
627 							IPPROTO_TCP));
628 			th->th_sum ^= 0xffff;
629 		} else {
630 			/*
631 			 * Checksum extended TCP header and data.
632 			 */
633 			len = sizeof(struct ip) + tlen;
634 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
635 			ipov->ih_len = (u_short)tlen;
636 			ipov->ih_len = htons(ipov->ih_len);
637 			th->th_sum = in_cksum(m, len);
638 		}
639 		if (th->th_sum) {
640 			tcpstat.tcps_rcvbadsum++;
641 			goto drop;
642 		}
643 #ifdef INET6
644 		/* Re-initialization for later version check */
645 		ip->ip_v = IPVERSION;
646 #endif
647 	}
648 
649 	/*
650 	 * Check that TCP offset makes sense,
651 	 * pull out TCP options and adjust length.		XXX
652 	 */
653 	off = th->th_off << 2;
654 	/* already checked and pulled up in ip_demux() */
655 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
656 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
657 	tlen -= off;	/* tlen is used instead of ti->ti_len */
658 	if (off > sizeof(struct tcphdr)) {
659 		if (isipv6) {
660 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
661 			ip6 = mtod(m, struct ip6_hdr *);
662 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
663 		} else {
664 			/* already pulled up in ip_demux() */
665 			KASSERT(m->m_len >= sizeof(struct ip) + off,
666 			    ("TCP header and options not in one mbuf: "
667 			     "m_len %d, off %d", m->m_len, off));
668 		}
669 		optlen = off - sizeof(struct tcphdr);
670 		optp = (u_char *)(th + 1);
671 	}
672 	thflags = th->th_flags;
673 
674 #ifdef TCP_DROP_SYNFIN
675 	/*
676 	 * If the drop_synfin option is enabled, drop all packets with
677 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
678 	 * identifying the TCP/IP stack.
679 	 *
680 	 * This is a violation of the TCP specification.
681 	 */
682 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
683 		goto drop;
684 #endif
685 
686 	/*
687 	 * Convert TCP protocol specific fields to host format.
688 	 */
689 	th->th_seq = ntohl(th->th_seq);
690 	th->th_ack = ntohl(th->th_ack);
691 	th->th_win = ntohs(th->th_win);
692 	th->th_urp = ntohs(th->th_urp);
693 
694 	/*
695 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
696 	 * until after ip6_savecontrol() is called and before other functions
697 	 * which don't want those proto headers.
698 	 * Because ip6_savecontrol() is going to parse the mbuf to
699 	 * search for data to be passed up to user-land, it wants mbuf
700 	 * parameters to be unchanged.
701 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
702 	 * latest version of the advanced API (20020110).
703 	 */
704 	drop_hdrlen = off0 + off;
705 
706 	/*
707 	 * Locate pcb for segment.
708 	 */
709 findpcb:
710 	/* IPFIREWALL_FORWARD section */
711 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
712 		/*
713 		 * Transparently forwarded. Pretend to be the destination.
714 		 * already got one like this?
715 		 */
716 		cpu = mycpu->gd_cpuid;
717 		inp = in_pcblookup_hash(&tcbinfo[cpu],
718 					ip->ip_src, th->th_sport,
719 					ip->ip_dst, th->th_dport,
720 					0, m->m_pkthdr.rcvif);
721 		if (!inp) {
722 			/*
723 			 * It's new.  Try to find the ambushing socket.
724 			 */
725 
726 			/*
727 			 * The rest of the ipfw code stores the port in
728 			 * host order.  XXX
729 			 * (The IP address is still in network order.)
730 			 */
731 			in_port_t dport = next_hop->sin_port ?
732 						htons(next_hop->sin_port) :
733 						th->th_dport;
734 
735 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
736 					  next_hop->sin_addr.s_addr, dport);
737 			inp = in_pcblookup_hash(&tcbinfo[cpu],
738 						ip->ip_src, th->th_sport,
739 						next_hop->sin_addr, dport,
740 						1, m->m_pkthdr.rcvif);
741 		}
742 	} else {
743 		if (isipv6) {
744 			inp = in6_pcblookup_hash(&tcbinfo[0],
745 						 &ip6->ip6_src, th->th_sport,
746 						 &ip6->ip6_dst, th->th_dport,
747 						 1, m->m_pkthdr.rcvif);
748 		} else {
749 			cpu = mycpu->gd_cpuid;
750 			inp = in_pcblookup_hash(&tcbinfo[cpu],
751 						ip->ip_src, th->th_sport,
752 						ip->ip_dst, th->th_dport,
753 						1, m->m_pkthdr.rcvif);
754 		}
755 	}
756 
757 	/*
758 	 * If the state is CLOSED (i.e., TCB does not exist) then
759 	 * all data in the incoming segment is discarded.
760 	 * If the TCB exists but is in CLOSED state, it is embryonic,
761 	 * but should either do a listen or a connect soon.
762 	 */
763 	if (inp == NULL) {
764 		if (log_in_vain) {
765 #ifdef INET6
766 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
767 #else
768 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
769 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
770 #endif
771 			if (isipv6) {
772 				strcpy(dbuf, "[");
773 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
774 				strcat(dbuf, "]");
775 				strcpy(sbuf, "[");
776 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
777 				strcat(sbuf, "]");
778 			} else {
779 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
780 				strcpy(sbuf, inet_ntoa(ip->ip_src));
781 			}
782 			switch (log_in_vain) {
783 			case 1:
784 				if (!(thflags & TH_SYN))
785 					break;
786 			case 2:
787 				log(LOG_INFO,
788 				    "Connection attempt to TCP %s:%d "
789 				    "from %s:%d flags:0x%02x\n",
790 				    dbuf, ntohs(th->th_dport), sbuf,
791 				    ntohs(th->th_sport), thflags);
792 				break;
793 			default:
794 				break;
795 			}
796 		}
797 		if (blackhole) {
798 			switch (blackhole) {
799 			case 1:
800 				if (thflags & TH_SYN)
801 					goto drop;
802 				break;
803 			case 2:
804 				goto drop;
805 			default:
806 				goto drop;
807 			}
808 		}
809 		rstreason = BANDLIM_RST_CLOSEDPORT;
810 		goto dropwithreset;
811 	}
812 
813 #ifdef IPSEC
814 	if (isipv6) {
815 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
816 			ipsec6stat.in_polvio++;
817 			goto drop;
818 		}
819 	} else {
820 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
821 			ipsecstat.in_polvio++;
822 			goto drop;
823 		}
824 	}
825 #endif
826 #ifdef FAST_IPSEC
827 	if (isipv6) {
828 		if (ipsec6_in_reject(m, inp))
829 			goto drop;
830 	} else {
831 		if (ipsec4_in_reject(m, inp))
832 			goto drop;
833 	}
834 #endif
835 	/* Check the minimum TTL for socket. */
836 #ifdef INET6
837 	if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
838 		goto drop;
839 #endif
840 
841 	tp = intotcpcb(inp);
842 	if (tp == NULL) {
843 		rstreason = BANDLIM_RST_CLOSEDPORT;
844 		goto dropwithreset;
845 	}
846 	if (tp->t_state <= TCPS_CLOSED)
847 		goto drop;
848 
849 	/* Unscale the window into a 32-bit value. */
850 	if (!(thflags & TH_SYN))
851 		tiwin = th->th_win << tp->snd_scale;
852 	else
853 		tiwin = th->th_win;
854 
855 	so = inp->inp_socket;
856 
857 #ifdef TCPDEBUG
858 	if (so->so_options & SO_DEBUG) {
859 		ostate = tp->t_state;
860 		if (isipv6)
861 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
862 		else
863 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
864 		tcp_savetcp = *th;
865 	}
866 #endif
867 
868 	bzero(&to, sizeof to);
869 
870 	if (so->so_options & SO_ACCEPTCONN) {
871 		struct in_conninfo inc;
872 
873 #ifdef INET6
874 		inc.inc_isipv6 = (isipv6 == TRUE);
875 #endif
876 		if (isipv6) {
877 			inc.inc6_faddr = ip6->ip6_src;
878 			inc.inc6_laddr = ip6->ip6_dst;
879 			inc.inc6_route.ro_rt = NULL;		/* XXX */
880 		} else {
881 			inc.inc_faddr = ip->ip_src;
882 			inc.inc_laddr = ip->ip_dst;
883 			inc.inc_route.ro_rt = NULL;		/* XXX */
884 		}
885 		inc.inc_fport = th->th_sport;
886 		inc.inc_lport = th->th_dport;
887 
888 		/*
889 		 * If the state is LISTEN then ignore segment if it contains
890 		 * a RST.  If the segment contains an ACK then it is bad and
891 		 * send a RST.  If it does not contain a SYN then it is not
892 		 * interesting; drop it.
893 		 *
894 		 * If the state is SYN_RECEIVED (syncache) and seg contains
895 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
896 		 * contains a RST, check the sequence number to see if it
897 		 * is a valid reset segment.
898 		 */
899 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
900 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
901 				if (!syncache_expand(&inc, th, &so, m)) {
902 					/*
903 					 * No syncache entry, or ACK was not
904 					 * for our SYN/ACK.  Send a RST.
905 					 */
906 					tcpstat.tcps_badsyn++;
907 					rstreason = BANDLIM_RST_OPENPORT;
908 					goto dropwithreset;
909 				}
910 
911 				/*
912 				 * Could not complete 3-way handshake,
913 				 * connection is being closed down, and
914 				 * syncache will free mbuf.
915 				 */
916 				if (so == NULL)
917 					return(IPPROTO_DONE);
918 
919 				/*
920 				 * We must be in the correct protocol thread
921 				 * for this connection.
922 				 */
923 				KKASSERT(so->so_port == &curthread->td_msgport);
924 
925 				/*
926 				 * Socket is created in state SYN_RECEIVED.
927 				 * Continue processing segment.
928 				 */
929 				inp = so->so_pcb;
930 				tp = intotcpcb(inp);
931 				/*
932 				 * This is what would have happened in
933 				 * tcp_output() when the SYN,ACK was sent.
934 				 */
935 				tp->snd_up = tp->snd_una;
936 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
937 				tp->last_ack_sent = tp->rcv_nxt;
938 /*
939  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
940  * until the _second_ ACK is received:
941  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
942  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
943  *	  move to ESTAB, set snd_wnd to tiwin.
944  */
945 				tp->snd_wnd = tiwin;	/* unscaled */
946 				goto after_listen;
947 			}
948 			if (thflags & TH_RST) {
949 				syncache_chkrst(&inc, th);
950 				goto drop;
951 			}
952 			if (thflags & TH_ACK) {
953 				syncache_badack(&inc);
954 				tcpstat.tcps_badsyn++;
955 				rstreason = BANDLIM_RST_OPENPORT;
956 				goto dropwithreset;
957 			}
958 			goto drop;
959 		}
960 
961 		/*
962 		 * Segment's flags are (SYN) or (SYN | FIN).
963 		 */
964 #ifdef INET6
965 		/*
966 		 * If deprecated address is forbidden,
967 		 * we do not accept SYN to deprecated interface
968 		 * address to prevent any new inbound connection from
969 		 * getting established.
970 		 * When we do not accept SYN, we send a TCP RST,
971 		 * with deprecated source address (instead of dropping
972 		 * it).  We compromise it as it is much better for peer
973 		 * to send a RST, and RST will be the final packet
974 		 * for the exchange.
975 		 *
976 		 * If we do not forbid deprecated addresses, we accept
977 		 * the SYN packet.  RFC2462 does not suggest dropping
978 		 * SYN in this case.
979 		 * If we decipher RFC2462 5.5.4, it says like this:
980 		 * 1. use of deprecated addr with existing
981 		 *    communication is okay - "SHOULD continue to be
982 		 *    used"
983 		 * 2. use of it with new communication:
984 		 *   (2a) "SHOULD NOT be used if alternate address
985 		 *	  with sufficient scope is available"
986 		 *   (2b) nothing mentioned otherwise.
987 		 * Here we fall into (2b) case as we have no choice in
988 		 * our source address selection - we must obey the peer.
989 		 *
990 		 * The wording in RFC2462 is confusing, and there are
991 		 * multiple description text for deprecated address
992 		 * handling - worse, they are not exactly the same.
993 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
994 		 */
995 		if (isipv6 && !ip6_use_deprecated) {
996 			struct in6_ifaddr *ia6;
997 
998 			if ((ia6 = ip6_getdstifaddr(m)) &&
999 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1000 				tp = NULL;
1001 				rstreason = BANDLIM_RST_OPENPORT;
1002 				goto dropwithreset;
1003 			}
1004 		}
1005 #endif
1006 		/*
1007 		 * If it is from this socket, drop it, it must be forged.
1008 		 * Don't bother responding if the destination was a broadcast.
1009 		 */
1010 		if (th->th_dport == th->th_sport) {
1011 			if (isipv6) {
1012 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1013 						       &ip6->ip6_src))
1014 					goto drop;
1015 			} else {
1016 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1017 					goto drop;
1018 			}
1019 		}
1020 		/*
1021 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1022 		 *
1023 		 * Note that it is quite possible to receive unicast
1024 		 * link-layer packets with a broadcast IP address. Use
1025 		 * in_broadcast() to find them.
1026 		 */
1027 		if (m->m_flags & (M_BCAST | M_MCAST))
1028 			goto drop;
1029 		if (isipv6) {
1030 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1031 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1032 				goto drop;
1033 		} else {
1034 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1035 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1036 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1037 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1038 				goto drop;
1039 		}
1040 		/*
1041 		 * SYN appears to be valid; create compressed TCP state
1042 		 * for syncache, or perform t/tcp connection.
1043 		 */
1044 		if (so->so_qlen <= so->so_qlimit) {
1045 			tcp_dooptions(&to, optp, optlen, TRUE);
1046 			if (!syncache_add(&inc, &to, th, &so, m))
1047 				goto drop;
1048 
1049 			/*
1050 			 * Entry added to syncache, mbuf used to
1051 			 * send SYN,ACK packet.
1052 			 */
1053 			if (so == NULL)
1054 				return(IPPROTO_DONE);
1055 
1056 			/*
1057 			 * We must be in the correct protocol thread for
1058 			 * this connection.
1059 			 */
1060 			KKASSERT(so->so_port == &curthread->td_msgport);
1061 
1062 			inp = so->so_pcb;
1063 			tp = intotcpcb(inp);
1064 			tp->snd_wnd = tiwin;
1065 			tp->t_starttime = ticks;
1066 			tp->t_state = TCPS_ESTABLISHED;
1067 
1068 			/*
1069 			 * If there is a FIN, or if there is data and the
1070 			 * connection is local, then delay SYN,ACK(SYN) in
1071 			 * the hope of piggy-backing it on a response
1072 			 * segment.  Otherwise must send ACK now in case
1073 			 * the other side is slow starting.
1074 			 */
1075 			if (DELAY_ACK(tp) &&
1076 			    ((thflags & TH_FIN) ||
1077 			     (tlen != 0 &&
1078 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
1079 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
1080 				tcp_callout_reset(tp, tp->tt_delack,
1081 				    tcp_delacktime, tcp_timer_delack);
1082 				tp->t_flags |= TF_NEEDSYN;
1083 			} else {
1084 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1085 			}
1086 
1087 			tcpstat.tcps_connects++;
1088 			soisconnected(so);
1089 			goto trimthenstep6;
1090 		}
1091 		goto drop;
1092 	}
1093 
1094 after_listen:
1095 	/*
1096 	 * Should not happen - syncache should pick up these connections.
1097 	 *
1098 	 * Once we are past handling listen sockets we must be in the
1099 	 * correct protocol processing thread.
1100 	 */
1101 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1102 	KKASSERT(so->so_port == &curthread->td_msgport);
1103 
1104 	/*
1105 	 * This is the second part of the MSS DoS prevention code (after
1106 	 * minmss on the sending side) and it deals with too many too small
1107 	 * tcp packets in a too short timeframe (1 second).
1108 	 *
1109 	 * XXX Removed.  This code was crap.  It does not scale to network
1110 	 *     speed, and default values break NFS.  Gone.
1111 	 */
1112 	/* REMOVED */
1113 
1114 	/*
1115 	 * Segment received on connection.
1116 	 *
1117 	 * Reset idle time and keep-alive timer.  Don't waste time if less
1118 	 * then a second has elapsed.
1119 	 */
1120 	if ((int)(ticks - tp->t_rcvtime) > hz)
1121 		tcp_timer_keep_activity(tp, thflags);
1122 
1123 	/*
1124 	 * Process options.
1125 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1126 	 */
1127 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0);
1128 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1129 		if (to.to_flags & TOF_SCALE) {
1130 			tp->t_flags |= TF_RCVD_SCALE;
1131 			tp->requested_s_scale = to.to_requested_s_scale;
1132 		}
1133 		if (to.to_flags & TOF_TS) {
1134 			tp->t_flags |= TF_RCVD_TSTMP;
1135 			tp->ts_recent = to.to_tsval;
1136 			tp->ts_recent_age = ticks;
1137 		}
1138 		if (to.to_flags & TOF_MSS)
1139 			tcp_mss(tp, to.to_mss);
1140 		/*
1141 		 * Only set the TF_SACK_PERMITTED per-connection flag
1142 		 * if we got a SACK_PERMITTED option from the other side
1143 		 * and the global tcp_do_sack variable is true.
1144 		 */
1145 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1146 			tp->t_flags |= TF_SACK_PERMITTED;
1147 	}
1148 
1149 	/*
1150 	 * Header prediction: check for the two common cases
1151 	 * of a uni-directional data xfer.  If the packet has
1152 	 * no control flags, is in-sequence, the window didn't
1153 	 * change and we're not retransmitting, it's a
1154 	 * candidate.  If the length is zero and the ack moved
1155 	 * forward, we're the sender side of the xfer.  Just
1156 	 * free the data acked & wake any higher level process
1157 	 * that was blocked waiting for space.  If the length
1158 	 * is non-zero and the ack didn't move, we're the
1159 	 * receiver side.  If we're getting packets in-order
1160 	 * (the reassembly queue is empty), add the data to
1161 	 * the socket buffer and note that we need a delayed ack.
1162 	 * Make sure that the hidden state-flags are also off.
1163 	 * Since we check for TCPS_ESTABLISHED above, it can only
1164 	 * be TH_NEEDSYN.
1165 	 */
1166 	if (tp->t_state == TCPS_ESTABLISHED &&
1167 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1168 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1169 	    (!(to.to_flags & TOF_TS) ||
1170 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1171 	    th->th_seq == tp->rcv_nxt &&
1172 	    tp->snd_nxt == tp->snd_max) {
1173 
1174 		/*
1175 		 * If last ACK falls within this segment's sequence numbers,
1176 		 * record the timestamp.
1177 		 * NOTE that the test is modified according to the latest
1178 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1179 		 */
1180 		if ((to.to_flags & TOF_TS) &&
1181 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1182 			tp->ts_recent_age = ticks;
1183 			tp->ts_recent = to.to_tsval;
1184 		}
1185 
1186 		if (tlen == 0) {
1187 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1188 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1189 			    tp->snd_cwnd >= tp->snd_wnd &&
1190 			    !IN_FASTRECOVERY(tp)) {
1191 				/*
1192 				 * This is a pure ack for outstanding data.
1193 				 */
1194 				++tcpstat.tcps_predack;
1195 				/*
1196 				 * "bad retransmit" recovery
1197 				 *
1198 				 * If Eifel detection applies, then
1199 				 * it is deterministic, so use it
1200 				 * unconditionally over the old heuristic.
1201 				 * Otherwise, fall back to the old heuristic.
1202 				 */
1203 				if (tcp_do_eifel_detect &&
1204 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1205 				    (tp->t_flags & TF_FIRSTACCACK)) {
1206 					/* Eifel detection applicable. */
1207 					if (to.to_tsecr < tp->t_rexmtTS) {
1208 						tcp_revert_congestion_state(tp);
1209 						++tcpstat.tcps_eifeldetected;
1210 					}
1211 				} else if (tp->t_rxtshift == 1 &&
1212 					   ticks < tp->t_badrxtwin) {
1213 					tcp_revert_congestion_state(tp);
1214 					++tcpstat.tcps_rttdetected;
1215 				}
1216 				tp->t_flags &= ~(TF_FIRSTACCACK |
1217 						 TF_FASTREXMT | TF_EARLYREXMT);
1218 				/*
1219 				 * Recalculate the retransmit timer / rtt.
1220 				 *
1221 				 * Some machines (certain windows boxes)
1222 				 * send broken timestamp replies during the
1223 				 * SYN+ACK phase, ignore timestamps of 0.
1224 				 */
1225 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1226 					tcp_xmit_timer(tp,
1227 						       ticks - to.to_tsecr + 1);
1228 				} else if (tp->t_rtttime &&
1229 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1230 					tcp_xmit_timer(tp,
1231 						       ticks - tp->t_rtttime);
1232 				}
1233 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1234 				acked = th->th_ack - tp->snd_una;
1235 				tcpstat.tcps_rcvackpack++;
1236 				tcpstat.tcps_rcvackbyte += acked;
1237 				sbdrop(&so->so_snd.sb, acked);
1238 				tp->snd_recover = th->th_ack - 1;
1239 				tp->snd_una = th->th_ack;
1240 				tp->t_dupacks = 0;
1241 				/*
1242 				 * Update window information.
1243 				 */
1244 				if (tiwin != tp->snd_wnd &&
1245 				    acceptable_window_update(tp, th, tiwin)) {
1246 					/* keep track of pure window updates */
1247 					if (tp->snd_wl2 == th->th_ack &&
1248 					    tiwin > tp->snd_wnd)
1249 						tcpstat.tcps_rcvwinupd++;
1250 					tp->snd_wnd = tiwin;
1251 					tp->snd_wl1 = th->th_seq;
1252 					tp->snd_wl2 = th->th_ack;
1253 					if (tp->snd_wnd > tp->max_sndwnd)
1254 						tp->max_sndwnd = tp->snd_wnd;
1255 				}
1256 				m_freem(m);
1257 				ND6_HINT(tp); /* some progress has been done */
1258 				/*
1259 				 * If all outstanding data are acked, stop
1260 				 * retransmit timer, otherwise restart timer
1261 				 * using current (possibly backed-off) value.
1262 				 * If process is waiting for space,
1263 				 * wakeup/selwakeup/signal.  If data
1264 				 * are ready to send, let tcp_output
1265 				 * decide between more output or persist.
1266 				 */
1267 				if (tp->snd_una == tp->snd_max) {
1268 					tcp_callout_stop(tp, tp->tt_rexmt);
1269 				} else if (!tcp_callout_active(tp,
1270 					    tp->tt_persist)) {
1271 					tcp_callout_reset(tp, tp->tt_rexmt,
1272 					    tp->t_rxtcur, tcp_timer_rexmt);
1273 				}
1274 				sowwakeup(so);
1275 				if (so->so_snd.ssb_cc > 0)
1276 					tcp_output(tp);
1277 				return(IPPROTO_DONE);
1278 			}
1279 		} else if (tiwin == tp->snd_wnd &&
1280 		    th->th_ack == tp->snd_una &&
1281 		    LIST_EMPTY(&tp->t_segq) &&
1282 		    tlen <= ssb_space(&so->so_rcv)) {
1283 			u_long newsize = 0;	/* automatic sockbuf scaling */
1284 			/*
1285 			 * This is a pure, in-sequence data packet
1286 			 * with nothing on the reassembly queue and
1287 			 * we have enough buffer space to take it.
1288 			 */
1289 			++tcpstat.tcps_preddat;
1290 			tp->rcv_nxt += tlen;
1291 			tcpstat.tcps_rcvpack++;
1292 			tcpstat.tcps_rcvbyte += tlen;
1293 			ND6_HINT(tp);	/* some progress has been done */
1294 		/*
1295 		 * Automatic sizing of receive socket buffer.  Often the send
1296 		 * buffer size is not optimally adjusted to the actual network
1297 		 * conditions at hand (delay bandwidth product).  Setting the
1298 		 * buffer size too small limits throughput on links with high
1299 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1300 		 *
1301 		 * On the receive side the socket buffer memory is only rarely
1302 		 * used to any significant extent.  This allows us to be much
1303 		 * more aggressive in scaling the receive socket buffer.  For
1304 		 * the case that the buffer space is actually used to a large
1305 		 * extent and we run out of kernel memory we can simply drop
1306 		 * the new segments; TCP on the sender will just retransmit it
1307 		 * later.  Setting the buffer size too big may only consume too
1308 		 * much kernel memory if the application doesn't read() from
1309 		 * the socket or packet loss or reordering makes use of the
1310 		 * reassembly queue.
1311 		 *
1312 		 * The criteria to step up the receive buffer one notch are:
1313 		 *  1. the number of bytes received during the time it takes
1314 		 *     one timestamp to be reflected back to us (the RTT);
1315 		 *  2. received bytes per RTT is within seven eighth of the
1316 		 *     current socket buffer size;
1317 		 *  3. receive buffer size has not hit maximal automatic size;
1318 		 *
1319 		 * This algorithm does one step per RTT at most and only if
1320 		 * we receive a bulk stream w/o packet losses or reorderings.
1321 		 * Shrinking the buffer during idle times is not necessary as
1322 		 * it doesn't consume any memory when idle.
1323 		 *
1324 		 * TODO: Only step up if the application is actually serving
1325 		 * the buffer to better manage the socket buffer resources.
1326 		 */
1327 			if (tcp_do_autorcvbuf &&
1328 			    to.to_tsecr &&
1329 			    (so->so_rcv.ssb_flags & SSB_AUTOSIZE)) {
1330 				if (to.to_tsecr > tp->rfbuf_ts &&
1331 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1332 					if (tp->rfbuf_cnt >
1333 					    (so->so_rcv.ssb_hiwat / 8 * 7) &&
1334 					    so->so_rcv.ssb_hiwat <
1335 					    tcp_autorcvbuf_max) {
1336 						newsize =
1337 						    ulmin(so->so_rcv.ssb_hiwat +
1338 							  tcp_autorcvbuf_inc,
1339 							  tcp_autorcvbuf_max);
1340 					}
1341 					/* Start over with next RTT. */
1342 					tp->rfbuf_ts = 0;
1343 					tp->rfbuf_cnt = 0;
1344 				} else
1345 					tp->rfbuf_cnt += tlen;	/* add up */
1346 			}
1347 			/*
1348 			 * Add data to socket buffer.
1349 			 */
1350 			if (so->so_state & SS_CANTRCVMORE) {
1351 				m_freem(m);
1352 			} else {
1353 				/*
1354 				 * Set new socket buffer size, give up when
1355 				 * limit is reached.
1356 				 *
1357 				 * Adjusting the size can mess up ACK
1358 				 * sequencing when pure window updates are
1359 				 * being avoided (which is the default),
1360 				 * so force an ack.
1361 				 */
1362 				lwkt_gettoken(&so->so_rcv.ssb_token);
1363 				if (newsize) {
1364 					tp->t_flags |= TF_RXRESIZED;
1365 					if (!ssb_reserve(&so->so_rcv, newsize,
1366 							 so, NULL)) {
1367 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1368 					}
1369 					if (newsize >=
1370 					    (TCP_MAXWIN << tp->rcv_scale)) {
1371 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1372 					}
1373 				}
1374 				m_adj(m, drop_hdrlen); /* delayed header drop */
1375 				ssb_appendstream(&so->so_rcv, m);
1376 				lwkt_reltoken(&so->so_rcv.ssb_token);
1377 			}
1378 			sorwakeup(so);
1379 			/*
1380 			 * This code is responsible for most of the ACKs
1381 			 * the TCP stack sends back after receiving a data
1382 			 * packet.  Note that the DELAY_ACK check fails if
1383 			 * the delack timer is already running, which results
1384 			 * in an ack being sent every other packet (which is
1385 			 * what we want).
1386 			 *
1387 			 * We then further aggregate acks by not actually
1388 			 * sending one until the protocol thread has completed
1389 			 * processing the current backlog of packets.  This
1390 			 * does not delay the ack any further, but allows us
1391 			 * to take advantage of the packet aggregation that
1392 			 * high speed NICs do (usually blocks of 8-10 packets)
1393 			 * to send a single ack rather then four or five acks,
1394 			 * greatly reducing the ack rate, the return channel
1395 			 * bandwidth, and the protocol overhead on both ends.
1396 			 *
1397 			 * Since this also has the effect of slowing down
1398 			 * the exponential slow-start ramp-up, systems with
1399 			 * very large bandwidth-delay products might want
1400 			 * to turn the feature off.
1401 			 */
1402 			if (DELAY_ACK(tp)) {
1403 				tcp_callout_reset(tp, tp->tt_delack,
1404 				    tcp_delacktime, tcp_timer_delack);
1405 			} else if (tcp_aggregate_acks) {
1406 				tp->t_flags |= TF_ACKNOW;
1407 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1408 					tp->t_flags |= TF_ONOUTPUTQ;
1409 					tp->tt_cpu = mycpu->gd_cpuid;
1410 					TAILQ_INSERT_TAIL(
1411 					    &tcpcbackq[tp->tt_cpu],
1412 					    tp, t_outputq);
1413 				}
1414 			} else {
1415 				tp->t_flags |= TF_ACKNOW;
1416 				tcp_output(tp);
1417 			}
1418 			return(IPPROTO_DONE);
1419 		}
1420 	}
1421 
1422 	/*
1423 	 * Calculate amount of space in receive window,
1424 	 * and then do TCP input processing.
1425 	 * Receive window is amount of space in rcv queue,
1426 	 * but not less than advertised window.
1427 	 */
1428 	recvwin = ssb_space(&so->so_rcv);
1429 	if (recvwin < 0)
1430 		recvwin = 0;
1431 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1432 
1433 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1434 	tp->rfbuf_ts = 0;
1435 	tp->rfbuf_cnt = 0;
1436 
1437 	switch (tp->t_state) {
1438 	/*
1439 	 * If the state is SYN_RECEIVED:
1440 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1441 	 */
1442 	case TCPS_SYN_RECEIVED:
1443 		if ((thflags & TH_ACK) &&
1444 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1445 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1446 				rstreason = BANDLIM_RST_OPENPORT;
1447 				goto dropwithreset;
1448 		}
1449 		break;
1450 
1451 	/*
1452 	 * If the state is SYN_SENT:
1453 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1454 	 *	if seg contains a RST, then drop the connection.
1455 	 *	if seg does not contain SYN, then drop it.
1456 	 * Otherwise this is an acceptable SYN segment
1457 	 *	initialize tp->rcv_nxt and tp->irs
1458 	 *	if seg contains ack then advance tp->snd_una
1459 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1460 	 *	arrange for segment to be acked (eventually)
1461 	 *	continue processing rest of data/controls, beginning with URG
1462 	 */
1463 	case TCPS_SYN_SENT:
1464 		if ((thflags & TH_ACK) &&
1465 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1466 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1467 			rstreason = BANDLIM_UNLIMITED;
1468 			goto dropwithreset;
1469 		}
1470 		if (thflags & TH_RST) {
1471 			if (thflags & TH_ACK)
1472 				tp = tcp_drop(tp, ECONNREFUSED);
1473 			goto drop;
1474 		}
1475 		if (!(thflags & TH_SYN))
1476 			goto drop;
1477 		tp->snd_wnd = th->th_win;	/* initial send window */
1478 
1479 		tp->irs = th->th_seq;
1480 		tcp_rcvseqinit(tp);
1481 		if (thflags & TH_ACK) {
1482 			/* Our SYN was acked. */
1483 			tcpstat.tcps_connects++;
1484 			soisconnected(so);
1485 			/* Do window scaling on this connection? */
1486 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1487 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1488 				tp->snd_scale = tp->requested_s_scale;
1489 				tp->rcv_scale = tp->request_r_scale;
1490 			}
1491 			tp->rcv_adv += tp->rcv_wnd;
1492 			tp->snd_una++;		/* SYN is acked */
1493 			tcp_callout_stop(tp, tp->tt_rexmt);
1494 			/*
1495 			 * If there's data, delay ACK; if there's also a FIN
1496 			 * ACKNOW will be turned on later.
1497 			 */
1498 			if (DELAY_ACK(tp) && tlen != 0) {
1499 				tcp_callout_reset(tp, tp->tt_delack,
1500 				    tcp_delacktime, tcp_timer_delack);
1501 			} else {
1502 				tp->t_flags |= TF_ACKNOW;
1503 			}
1504 			/*
1505 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1506 			 * Transitions:
1507 			 *	SYN_SENT  --> ESTABLISHED
1508 			 *	SYN_SENT* --> FIN_WAIT_1
1509 			 */
1510 			tp->t_starttime = ticks;
1511 			if (tp->t_flags & TF_NEEDFIN) {
1512 				tp->t_state = TCPS_FIN_WAIT_1;
1513 				tp->t_flags &= ~TF_NEEDFIN;
1514 				thflags &= ~TH_SYN;
1515 			} else {
1516 				tp->t_state = TCPS_ESTABLISHED;
1517 				tcp_callout_reset(tp, tp->tt_keep,
1518 						  tcp_getkeepidle(tp),
1519 						  tcp_timer_keep);
1520 			}
1521 		} else {
1522 			/*
1523 			 * Received initial SYN in SYN-SENT[*] state =>
1524 			 * simultaneous open.
1525 			 * Do 3-way handshake:
1526 			 *	  SYN-SENT -> SYN-RECEIVED
1527 			 *	  SYN-SENT* -> SYN-RECEIVED*
1528 			 */
1529 			tp->t_flags |= TF_ACKNOW;
1530 			tcp_callout_stop(tp, tp->tt_rexmt);
1531 			tp->t_state = TCPS_SYN_RECEIVED;
1532 		}
1533 
1534 trimthenstep6:
1535 		/*
1536 		 * Advance th->th_seq to correspond to first data byte.
1537 		 * If data, trim to stay within window,
1538 		 * dropping FIN if necessary.
1539 		 */
1540 		th->th_seq++;
1541 		if (tlen > tp->rcv_wnd) {
1542 			todrop = tlen - tp->rcv_wnd;
1543 			m_adj(m, -todrop);
1544 			tlen = tp->rcv_wnd;
1545 			thflags &= ~TH_FIN;
1546 			tcpstat.tcps_rcvpackafterwin++;
1547 			tcpstat.tcps_rcvbyteafterwin += todrop;
1548 		}
1549 		tp->snd_wl1 = th->th_seq - 1;
1550 		tp->rcv_up = th->th_seq;
1551 		/*
1552 		 * Client side of transaction: already sent SYN and data.
1553 		 * If the remote host used T/TCP to validate the SYN,
1554 		 * our data will be ACK'd; if so, enter normal data segment
1555 		 * processing in the middle of step 5, ack processing.
1556 		 * Otherwise, goto step 6.
1557 		 */
1558 		if (thflags & TH_ACK)
1559 			goto process_ACK;
1560 
1561 		goto step6;
1562 
1563 	/*
1564 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1565 	 *	do normal processing (we no longer bother with T/TCP).
1566 	 */
1567 	case TCPS_LAST_ACK:
1568 	case TCPS_CLOSING:
1569 	case TCPS_TIME_WAIT:
1570 		break;  /* continue normal processing */
1571 	}
1572 
1573 	/*
1574 	 * States other than LISTEN or SYN_SENT.
1575 	 * First check the RST flag and sequence number since reset segments
1576 	 * are exempt from the timestamp and connection count tests.  This
1577 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1578 	 * below which allowed reset segments in half the sequence space
1579 	 * to fall though and be processed (which gives forged reset
1580 	 * segments with a random sequence number a 50 percent chance of
1581 	 * killing a connection).
1582 	 * Then check timestamp, if present.
1583 	 * Then check the connection count, if present.
1584 	 * Then check that at least some bytes of segment are within
1585 	 * receive window.  If segment begins before rcv_nxt,
1586 	 * drop leading data (and SYN); if nothing left, just ack.
1587 	 *
1588 	 *
1589 	 * If the RST bit is set, check the sequence number to see
1590 	 * if this is a valid reset segment.
1591 	 * RFC 793 page 37:
1592 	 *   In all states except SYN-SENT, all reset (RST) segments
1593 	 *   are validated by checking their SEQ-fields.  A reset is
1594 	 *   valid if its sequence number is in the window.
1595 	 * Note: this does not take into account delayed ACKs, so
1596 	 *   we should test against last_ack_sent instead of rcv_nxt.
1597 	 *   The sequence number in the reset segment is normally an
1598 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1599 	 *   send a reset with the sequence number at the rightmost edge
1600 	 *   of our receive window, and we have to handle this case.
1601 	 * If we have multiple segments in flight, the intial reset
1602 	 * segment sequence numbers will be to the left of last_ack_sent,
1603 	 * but they will eventually catch up.
1604 	 * In any case, it never made sense to trim reset segments to
1605 	 * fit the receive window since RFC 1122 says:
1606 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1607 	 *
1608 	 *    A TCP SHOULD allow a received RST segment to include data.
1609 	 *
1610 	 *    DISCUSSION
1611 	 *	   It has been suggested that a RST segment could contain
1612 	 *	   ASCII text that encoded and explained the cause of the
1613 	 *	   RST.  No standard has yet been established for such
1614 	 *	   data.
1615 	 *
1616 	 * If the reset segment passes the sequence number test examine
1617 	 * the state:
1618 	 *    SYN_RECEIVED STATE:
1619 	 *	If passive open, return to LISTEN state.
1620 	 *	If active open, inform user that connection was refused.
1621 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1622 	 *	Inform user that connection was reset, and close tcb.
1623 	 *    CLOSING, LAST_ACK STATES:
1624 	 *	Close the tcb.
1625 	 *    TIME_WAIT STATE:
1626 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1627 	 *	RFC 1337.
1628 	 */
1629 	if (thflags & TH_RST) {
1630 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1631 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1632 			switch (tp->t_state) {
1633 
1634 			case TCPS_SYN_RECEIVED:
1635 				so->so_error = ECONNREFUSED;
1636 				goto close;
1637 
1638 			case TCPS_ESTABLISHED:
1639 			case TCPS_FIN_WAIT_1:
1640 			case TCPS_FIN_WAIT_2:
1641 			case TCPS_CLOSE_WAIT:
1642 				so->so_error = ECONNRESET;
1643 			close:
1644 				tp->t_state = TCPS_CLOSED;
1645 				tcpstat.tcps_drops++;
1646 				tp = tcp_close(tp);
1647 				break;
1648 
1649 			case TCPS_CLOSING:
1650 			case TCPS_LAST_ACK:
1651 				tp = tcp_close(tp);
1652 				break;
1653 
1654 			case TCPS_TIME_WAIT:
1655 				break;
1656 			}
1657 		}
1658 		goto drop;
1659 	}
1660 
1661 	/*
1662 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1663 	 * and it's less than ts_recent, drop it.
1664 	 */
1665 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1666 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1667 
1668 		/* Check to see if ts_recent is over 24 days old.  */
1669 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1670 			/*
1671 			 * Invalidate ts_recent.  If this segment updates
1672 			 * ts_recent, the age will be reset later and ts_recent
1673 			 * will get a valid value.  If it does not, setting
1674 			 * ts_recent to zero will at least satisfy the
1675 			 * requirement that zero be placed in the timestamp
1676 			 * echo reply when ts_recent isn't valid.  The
1677 			 * age isn't reset until we get a valid ts_recent
1678 			 * because we don't want out-of-order segments to be
1679 			 * dropped when ts_recent is old.
1680 			 */
1681 			tp->ts_recent = 0;
1682 		} else {
1683 			tcpstat.tcps_rcvduppack++;
1684 			tcpstat.tcps_rcvdupbyte += tlen;
1685 			tcpstat.tcps_pawsdrop++;
1686 			if (tlen)
1687 				goto dropafterack;
1688 			goto drop;
1689 		}
1690 	}
1691 
1692 	/*
1693 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1694 	 * this connection before trimming the data to fit the receive
1695 	 * window.  Check the sequence number versus IRS since we know
1696 	 * the sequence numbers haven't wrapped.  This is a partial fix
1697 	 * for the "LAND" DoS attack.
1698 	 */
1699 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1700 		rstreason = BANDLIM_RST_OPENPORT;
1701 		goto dropwithreset;
1702 	}
1703 
1704 	todrop = tp->rcv_nxt - th->th_seq;
1705 	if (todrop > 0) {
1706 		if (TCP_DO_SACK(tp)) {
1707 			/* Report duplicate segment at head of packet. */
1708 			tp->reportblk.rblk_start = th->th_seq;
1709 			tp->reportblk.rblk_end = th->th_seq + tlen;
1710 			if (thflags & TH_FIN)
1711 				++tp->reportblk.rblk_end;
1712 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1713 				tp->reportblk.rblk_end = tp->rcv_nxt;
1714 			tp->t_flags |= (TF_DUPSEG | TF_SACKLEFT | TF_ACKNOW);
1715 		}
1716 		if (thflags & TH_SYN) {
1717 			thflags &= ~TH_SYN;
1718 			th->th_seq++;
1719 			if (th->th_urp > 1)
1720 				th->th_urp--;
1721 			else
1722 				thflags &= ~TH_URG;
1723 			todrop--;
1724 		}
1725 		/*
1726 		 * Following if statement from Stevens, vol. 2, p. 960.
1727 		 */
1728 		if (todrop > tlen ||
1729 		    (todrop == tlen && !(thflags & TH_FIN))) {
1730 			/*
1731 			 * Any valid FIN must be to the left of the window.
1732 			 * At this point the FIN must be a duplicate or out
1733 			 * of sequence; drop it.
1734 			 */
1735 			thflags &= ~TH_FIN;
1736 
1737 			/*
1738 			 * Send an ACK to resynchronize and drop any data.
1739 			 * But keep on processing for RST or ACK.
1740 			 */
1741 			tp->t_flags |= TF_ACKNOW;
1742 			todrop = tlen;
1743 			tcpstat.tcps_rcvduppack++;
1744 			tcpstat.tcps_rcvdupbyte += todrop;
1745 		} else {
1746 			tcpstat.tcps_rcvpartduppack++;
1747 			tcpstat.tcps_rcvpartdupbyte += todrop;
1748 		}
1749 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1750 		th->th_seq += todrop;
1751 		tlen -= todrop;
1752 		if (th->th_urp > todrop)
1753 			th->th_urp -= todrop;
1754 		else {
1755 			thflags &= ~TH_URG;
1756 			th->th_urp = 0;
1757 		}
1758 	}
1759 
1760 	/*
1761 	 * If new data are received on a connection after the
1762 	 * user processes are gone, then RST the other end.
1763 	 */
1764 	if ((so->so_state & SS_NOFDREF) &&
1765 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1766 		tp = tcp_close(tp);
1767 		tcpstat.tcps_rcvafterclose++;
1768 		rstreason = BANDLIM_UNLIMITED;
1769 		goto dropwithreset;
1770 	}
1771 
1772 	/*
1773 	 * If segment ends after window, drop trailing data
1774 	 * (and PUSH and FIN); if nothing left, just ACK.
1775 	 */
1776 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1777 	if (todrop > 0) {
1778 		tcpstat.tcps_rcvpackafterwin++;
1779 		if (todrop >= tlen) {
1780 			tcpstat.tcps_rcvbyteafterwin += tlen;
1781 			/*
1782 			 * If a new connection request is received
1783 			 * while in TIME_WAIT, drop the old connection
1784 			 * and start over if the sequence numbers
1785 			 * are above the previous ones.
1786 			 */
1787 			if (thflags & TH_SYN &&
1788 			    tp->t_state == TCPS_TIME_WAIT &&
1789 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1790 				tp = tcp_close(tp);
1791 				goto findpcb;
1792 			}
1793 			/*
1794 			 * If window is closed can only take segments at
1795 			 * window edge, and have to drop data and PUSH from
1796 			 * incoming segments.  Continue processing, but
1797 			 * remember to ack.  Otherwise, drop segment
1798 			 * and ack.
1799 			 */
1800 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1801 				tp->t_flags |= TF_ACKNOW;
1802 				tcpstat.tcps_rcvwinprobe++;
1803 			} else
1804 				goto dropafterack;
1805 		} else
1806 			tcpstat.tcps_rcvbyteafterwin += todrop;
1807 		m_adj(m, -todrop);
1808 		tlen -= todrop;
1809 		thflags &= ~(TH_PUSH | TH_FIN);
1810 	}
1811 
1812 	/*
1813 	 * If last ACK falls within this segment's sequence numbers,
1814 	 * record its timestamp.
1815 	 * NOTE:
1816 	 * 1) That the test incorporates suggestions from the latest
1817 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1818 	 * 2) That updating only on newer timestamps interferes with
1819 	 *    our earlier PAWS tests, so this check should be solely
1820 	 *    predicated on the sequence space of this segment.
1821 	 * 3) That we modify the segment boundary check to be
1822 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1823 	 *    instead of RFC1323's
1824 	 *        Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1825 	 *    This modified check allows us to overcome RFC1323's
1826 	 *    limitations as described in Stevens TCP/IP Illustrated
1827 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1828 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1829 	 */
1830 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1831 	    SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1832 					+ ((thflags & TH_SYN) != 0)
1833 					+ ((thflags & TH_FIN) != 0)))) {
1834 		tp->ts_recent_age = ticks;
1835 		tp->ts_recent = to.to_tsval;
1836 	}
1837 
1838 	/*
1839 	 * If a SYN is in the window, then this is an
1840 	 * error and we send an RST and drop the connection.
1841 	 */
1842 	if (thflags & TH_SYN) {
1843 		tp = tcp_drop(tp, ECONNRESET);
1844 		rstreason = BANDLIM_UNLIMITED;
1845 		goto dropwithreset;
1846 	}
1847 
1848 	/*
1849 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1850 	 * flag is on (half-synchronized state), then queue data for
1851 	 * later processing; else drop segment and return.
1852 	 */
1853 	if (!(thflags & TH_ACK)) {
1854 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1855 		    (tp->t_flags & TF_NEEDSYN))
1856 			goto step6;
1857 		else
1858 			goto drop;
1859 	}
1860 
1861 	/*
1862 	 * Ack processing.
1863 	 */
1864 	switch (tp->t_state) {
1865 	/*
1866 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1867 	 * ESTABLISHED state and continue processing.
1868 	 * The ACK was checked above.
1869 	 */
1870 	case TCPS_SYN_RECEIVED:
1871 
1872 		tcpstat.tcps_connects++;
1873 		soisconnected(so);
1874 		/* Do window scaling? */
1875 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1876 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1877 			tp->snd_scale = tp->requested_s_scale;
1878 			tp->rcv_scale = tp->request_r_scale;
1879 		}
1880 		/*
1881 		 * Make transitions:
1882 		 *      SYN-RECEIVED  -> ESTABLISHED
1883 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1884 		 */
1885 		tp->t_starttime = ticks;
1886 		if (tp->t_flags & TF_NEEDFIN) {
1887 			tp->t_state = TCPS_FIN_WAIT_1;
1888 			tp->t_flags &= ~TF_NEEDFIN;
1889 		} else {
1890 			tp->t_state = TCPS_ESTABLISHED;
1891 			tcp_callout_reset(tp, tp->tt_keep,
1892 					  tcp_getkeepidle(tp),
1893 					  tcp_timer_keep);
1894 		}
1895 		/*
1896 		 * If segment contains data or ACK, will call tcp_reass()
1897 		 * later; if not, do so now to pass queued data to user.
1898 		 */
1899 		if (tlen == 0 && !(thflags & TH_FIN))
1900 			tcp_reass(tp, NULL, NULL, NULL);
1901 		/* fall into ... */
1902 
1903 	/*
1904 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1905 	 * ACKs.  If the ack is in the range
1906 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1907 	 * then advance tp->snd_una to th->th_ack and drop
1908 	 * data from the retransmission queue.  If this ACK reflects
1909 	 * more up to date window information we update our window information.
1910 	 */
1911 	case TCPS_ESTABLISHED:
1912 	case TCPS_FIN_WAIT_1:
1913 	case TCPS_FIN_WAIT_2:
1914 	case TCPS_CLOSE_WAIT:
1915 	case TCPS_CLOSING:
1916 	case TCPS_LAST_ACK:
1917 	case TCPS_TIME_WAIT:
1918 
1919 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1920 			if (TCP_DO_SACK(tp))
1921 				tcp_sack_update_scoreboard(tp, &to);
1922 			if (tlen != 0 || tiwin != tp->snd_wnd) {
1923 				tp->t_dupacks = 0;
1924 				break;
1925 			}
1926 			tcpstat.tcps_rcvdupack++;
1927 			if (!tcp_callout_active(tp, tp->tt_rexmt) ||
1928 			    th->th_ack != tp->snd_una) {
1929 				tp->t_dupacks = 0;
1930 				break;
1931 			}
1932 			/*
1933 			 * We have outstanding data (other than
1934 			 * a window probe), this is a completely
1935 			 * duplicate ack (ie, window info didn't
1936 			 * change), the ack is the biggest we've
1937 			 * seen and we've seen exactly our rexmt
1938 			 * threshhold of them, so assume a packet
1939 			 * has been dropped and retransmit it.
1940 			 * Kludge snd_nxt & the congestion
1941 			 * window so we send only this one
1942 			 * packet.
1943 			 */
1944 			if (IN_FASTRECOVERY(tp)) {
1945 				if (TCP_DO_SACK(tp)) {
1946 					/* No artifical cwnd inflation. */
1947 					tcp_sack_rexmt(tp, th);
1948 				} else {
1949 					/*
1950 					 * Dup acks mean that packets
1951 					 * have left the network
1952 					 * (they're now cached at the
1953 					 * receiver) so bump cwnd by
1954 					 * the amount in the receiver
1955 					 * to keep a constant cwnd
1956 					 * packets in the network.
1957 					 */
1958 					tp->snd_cwnd += tp->t_maxseg;
1959 					tcp_output(tp);
1960 				}
1961 			} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1962 				tp->t_dupacks = 0;
1963 				break;
1964 			} else if (++tp->t_dupacks == tcprexmtthresh) {
1965 				tcp_seq old_snd_nxt;
1966 				u_int win;
1967 
1968 fastretransmit:
1969 				if (tcp_do_eifel_detect &&
1970 				    (tp->t_flags & TF_RCVD_TSTMP)) {
1971 					tcp_save_congestion_state(tp);
1972 					tp->t_flags |= TF_FASTREXMT;
1973 				}
1974 				/*
1975 				 * We know we're losing at the current
1976 				 * window size, so do congestion avoidance:
1977 				 * set ssthresh to half the current window
1978 				 * and pull our congestion window back to the
1979 				 * new ssthresh.
1980 				 */
1981 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1982 				    tp->t_maxseg;
1983 				if (win < 2)
1984 					win = 2;
1985 				tp->snd_ssthresh = win * tp->t_maxseg;
1986 				ENTER_FASTRECOVERY(tp);
1987 				tp->snd_recover = tp->snd_max;
1988 				tcp_callout_stop(tp, tp->tt_rexmt);
1989 				tp->t_rtttime = 0;
1990 				old_snd_nxt = tp->snd_nxt;
1991 				tp->snd_nxt = th->th_ack;
1992 				tp->snd_cwnd = tp->t_maxseg;
1993 				tcp_output(tp);
1994 				++tcpstat.tcps_sndfastrexmit;
1995 				tp->snd_cwnd = tp->snd_ssthresh;
1996 				tp->rexmt_high = tp->snd_nxt;
1997 				if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
1998 					tp->snd_nxt = old_snd_nxt;
1999 				KASSERT(tp->snd_limited <= 2,
2000 				    ("tp->snd_limited too big"));
2001 				if (TCP_DO_SACK(tp))
2002 					tcp_sack_rexmt(tp, th);
2003 				else
2004 					tp->snd_cwnd += tp->t_maxseg *
2005 					    (tp->t_dupacks - tp->snd_limited);
2006 			} else if (tcp_do_limitedtransmit) {
2007 				u_long oldcwnd = tp->snd_cwnd;
2008 				tcp_seq oldsndmax = tp->snd_max;
2009 				tcp_seq oldsndnxt = tp->snd_nxt;
2010 				/* outstanding data */
2011 				uint32_t ownd = tp->snd_max - tp->snd_una;
2012 				u_int sent;
2013 
2014 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
2015 
2016 				KASSERT(tp->t_dupacks == 1 ||
2017 					tp->t_dupacks == 2,
2018 				    ("dupacks not 1 or 2"));
2019 				if (tp->t_dupacks == 1)
2020 					tp->snd_limited = 0;
2021 				tp->snd_nxt = tp->snd_max;
2022 				tp->snd_cwnd = ownd +
2023 				    (tp->t_dupacks - tp->snd_limited) *
2024 				    tp->t_maxseg;
2025 				tcp_output(tp);
2026 
2027 				/*
2028 				 * Other acks may have been processed,
2029 				 * snd_nxt cannot be reset to a value less
2030 				 * then snd_una.
2031 				 */
2032 				if (SEQ_LT(oldsndnxt, oldsndmax)) {
2033 				    if (SEQ_GT(oldsndnxt, tp->snd_una))
2034 					tp->snd_nxt = oldsndnxt;
2035 				    else
2036 					tp->snd_nxt = tp->snd_una;
2037 				}
2038 				tp->snd_cwnd = oldcwnd;
2039 				sent = tp->snd_max - oldsndmax;
2040 				if (sent > tp->t_maxseg) {
2041 					KASSERT((tp->t_dupacks == 2 &&
2042 						 tp->snd_limited == 0) ||
2043 						(sent == tp->t_maxseg + 1 &&
2044 						 tp->t_flags & TF_SENTFIN),
2045 					    ("sent too much"));
2046 					KASSERT(sent <= tp->t_maxseg * 2,
2047 					    ("sent too many segments"));
2048 					tp->snd_limited = 2;
2049 					tcpstat.tcps_sndlimited += 2;
2050 				} else if (sent > 0) {
2051 					++tp->snd_limited;
2052 					++tcpstat.tcps_sndlimited;
2053 				} else if (tcp_do_early_retransmit &&
2054 				    (tcp_do_eifel_detect &&
2055 				     (tp->t_flags & TF_RCVD_TSTMP)) &&
2056 				    ownd < 4 * tp->t_maxseg &&
2057 				    tp->t_dupacks + 1 >=
2058 				      iceildiv(ownd, tp->t_maxseg) &&
2059 				    (!TCP_DO_SACK(tp) ||
2060 				     ownd <= tp->t_maxseg ||
2061 				     tcp_sack_has_sacked(&tp->scb,
2062 							ownd - tp->t_maxseg))) {
2063 					++tcpstat.tcps_sndearlyrexmit;
2064 					tp->t_flags |= TF_EARLYREXMT;
2065 					goto fastretransmit;
2066 				}
2067 			}
2068 			goto drop;
2069 		}
2070 
2071 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2072 		tp->t_dupacks = 0;
2073 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2074 			/*
2075 			 * Detected optimistic ACK attack.
2076 			 * Force slow-start to de-synchronize attack.
2077 			 */
2078 			tp->snd_cwnd = tp->t_maxseg;
2079 			tp->snd_wacked = 0;
2080 
2081 			tcpstat.tcps_rcvacktoomuch++;
2082 			goto dropafterack;
2083 		}
2084 		/*
2085 		 * If we reach this point, ACK is not a duplicate,
2086 		 *     i.e., it ACKs something we sent.
2087 		 */
2088 		if (tp->t_flags & TF_NEEDSYN) {
2089 			/*
2090 			 * T/TCP: Connection was half-synchronized, and our
2091 			 * SYN has been ACK'd (so connection is now fully
2092 			 * synchronized).  Go to non-starred state,
2093 			 * increment snd_una for ACK of SYN, and check if
2094 			 * we can do window scaling.
2095 			 */
2096 			tp->t_flags &= ~TF_NEEDSYN;
2097 			tp->snd_una++;
2098 			/* Do window scaling? */
2099 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2100 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
2101 				tp->snd_scale = tp->requested_s_scale;
2102 				tp->rcv_scale = tp->request_r_scale;
2103 			}
2104 		}
2105 
2106 process_ACK:
2107 		acked = th->th_ack - tp->snd_una;
2108 		tcpstat.tcps_rcvackpack++;
2109 		tcpstat.tcps_rcvackbyte += acked;
2110 
2111 		if (tcp_do_eifel_detect && acked > 0 &&
2112 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2113 		    (tp->t_flags & TF_FIRSTACCACK)) {
2114 			/* Eifel detection applicable. */
2115 			if (to.to_tsecr < tp->t_rexmtTS) {
2116 				++tcpstat.tcps_eifeldetected;
2117 				tcp_revert_congestion_state(tp);
2118 				if (tp->t_rxtshift == 1 &&
2119 				    ticks >= tp->t_badrxtwin)
2120 					++tcpstat.tcps_rttcantdetect;
2121 			}
2122 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2123 			/*
2124 			 * If we just performed our first retransmit,
2125 			 * and the ACK arrives within our recovery window,
2126 			 * then it was a mistake to do the retransmit
2127 			 * in the first place.  Recover our original cwnd
2128 			 * and ssthresh, and proceed to transmit where we
2129 			 * left off.
2130 			 */
2131 			tcp_revert_congestion_state(tp);
2132 			++tcpstat.tcps_rttdetected;
2133 		}
2134 
2135 		/*
2136 		 * If we have a timestamp reply, update smoothed
2137 		 * round trip time.  If no timestamp is present but
2138 		 * transmit timer is running and timed sequence
2139 		 * number was acked, update smoothed round trip time.
2140 		 * Since we now have an rtt measurement, cancel the
2141 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2142 		 * Recompute the initial retransmit timer.
2143 		 *
2144 		 * Some machines (certain windows boxes) send broken
2145 		 * timestamp replies during the SYN+ACK phase, ignore
2146 		 * timestamps of 0.
2147 		 */
2148 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2149 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2150 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2151 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2152 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2153 
2154 		/*
2155 		 * If no data (only SYN) was ACK'd,
2156 		 *    skip rest of ACK processing.
2157 		 */
2158 		if (acked == 0)
2159 			goto step6;
2160 
2161 		/* Stop looking for an acceptable ACK since one was received. */
2162 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
2163 
2164 		if (acked > so->so_snd.ssb_cc) {
2165 			tp->snd_wnd -= so->so_snd.ssb_cc;
2166 			sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2167 			ourfinisacked = TRUE;
2168 		} else {
2169 			sbdrop(&so->so_snd.sb, acked);
2170 			tp->snd_wnd -= acked;
2171 			ourfinisacked = FALSE;
2172 		}
2173 		sowwakeup(so);
2174 
2175 		/*
2176 		 * Update window information.
2177 		 * Don't look at window if no ACK:
2178 		 * TAC's send garbage on first SYN.
2179 		 */
2180 		if (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2181 		    (tp->snd_wl1 == th->th_seq &&
2182 		     (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2183 		      (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)))) {
2184 			/* keep track of pure window updates */
2185 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2186 			    tiwin > tp->snd_wnd)
2187 				tcpstat.tcps_rcvwinupd++;
2188 			tp->snd_wnd = tiwin;
2189 			tp->snd_wl1 = th->th_seq;
2190 			tp->snd_wl2 = th->th_ack;
2191 			if (tp->snd_wnd > tp->max_sndwnd)
2192 				tp->max_sndwnd = tp->snd_wnd;
2193 			needoutput = TRUE;
2194 		}
2195 
2196 		tp->snd_una = th->th_ack;
2197 		if (TCP_DO_SACK(tp))
2198 			tcp_sack_update_scoreboard(tp, &to);
2199 		if (IN_FASTRECOVERY(tp)) {
2200 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2201 				EXIT_FASTRECOVERY(tp);
2202 				needoutput = TRUE;
2203 				/*
2204 				 * If the congestion window was inflated
2205 				 * to account for the other side's
2206 				 * cached packets, retract it.
2207 				 */
2208 				if (!TCP_DO_SACK(tp))
2209 					tp->snd_cwnd = tp->snd_ssthresh;
2210 
2211 				/*
2212 				 * Window inflation should have left us
2213 				 * with approximately snd_ssthresh outstanding
2214 				 * data.  But, in case we would be inclined
2215 				 * to send a burst, better do it using
2216 				 * slow start.
2217 				 */
2218 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2219 					   tp->snd_max + 2 * tp->t_maxseg))
2220 					tp->snd_cwnd =
2221 					    (tp->snd_max - tp->snd_una) +
2222 					    2 * tp->t_maxseg;
2223 
2224 				tp->snd_wacked = 0;
2225 			} else {
2226 				if (TCP_DO_SACK(tp)) {
2227 					tp->snd_max_rexmt = tp->snd_max;
2228 					tcp_sack_rexmt(tp, th);
2229 				} else {
2230 					tcp_newreno_partial_ack(tp, th, acked);
2231 				}
2232 				needoutput = FALSE;
2233 			}
2234 		} else {
2235 			/*
2236 			 * Open the congestion window.  When in slow-start,
2237 			 * open exponentially: maxseg per packet.  Otherwise,
2238 			 * open linearly: maxseg per window.
2239 			 */
2240 			if (tp->snd_cwnd <= tp->snd_ssthresh) {
2241 				u_int abc_sslimit =
2242 				    (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2243 				     tp->t_maxseg : 2 * tp->t_maxseg);
2244 
2245 				/* slow-start */
2246 				tp->snd_cwnd += tcp_do_abc ?
2247 				    min(acked, abc_sslimit) : tp->t_maxseg;
2248 			} else {
2249 				/* linear increase */
2250 				tp->snd_wacked += tcp_do_abc ? acked :
2251 				    tp->t_maxseg;
2252 				if (tp->snd_wacked >= tp->snd_cwnd) {
2253 					tp->snd_wacked -= tp->snd_cwnd;
2254 					tp->snd_cwnd += tp->t_maxseg;
2255 				}
2256 			}
2257 			tp->snd_cwnd = min(tp->snd_cwnd,
2258 					   TCP_MAXWIN << tp->snd_scale);
2259 			tp->snd_recover = th->th_ack - 1;
2260 		}
2261 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2262 			tp->snd_nxt = tp->snd_una;
2263 
2264 		/*
2265 		 * If all outstanding data is acked, stop retransmit
2266 		 * timer and remember to restart (more output or persist).
2267 		 * If there is more data to be acked, restart retransmit
2268 		 * timer, using current (possibly backed-off) value.
2269 		 */
2270 		if (th->th_ack == tp->snd_max) {
2271 			tcp_callout_stop(tp, tp->tt_rexmt);
2272 			needoutput = TRUE;
2273 		} else if (!tcp_callout_active(tp, tp->tt_persist)) {
2274 			tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur,
2275 			    tcp_timer_rexmt);
2276 		}
2277 
2278 		switch (tp->t_state) {
2279 		/*
2280 		 * In FIN_WAIT_1 STATE in addition to the processing
2281 		 * for the ESTABLISHED state if our FIN is now acknowledged
2282 		 * then enter FIN_WAIT_2.
2283 		 */
2284 		case TCPS_FIN_WAIT_1:
2285 			if (ourfinisacked) {
2286 				/*
2287 				 * If we can't receive any more
2288 				 * data, then closing user can proceed.
2289 				 * Starting the timer is contrary to the
2290 				 * specification, but if we don't get a FIN
2291 				 * we'll hang forever.
2292 				 */
2293 				if (so->so_state & SS_CANTRCVMORE) {
2294 					soisdisconnected(so);
2295 					tcp_callout_reset(tp, tp->tt_2msl,
2296 					    tp->t_maxidle, tcp_timer_2msl);
2297 				}
2298 				tp->t_state = TCPS_FIN_WAIT_2;
2299 			}
2300 			break;
2301 
2302 		/*
2303 		 * In CLOSING STATE in addition to the processing for
2304 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2305 		 * then enter the TIME-WAIT state, otherwise ignore
2306 		 * the segment.
2307 		 */
2308 		case TCPS_CLOSING:
2309 			if (ourfinisacked) {
2310 				tp->t_state = TCPS_TIME_WAIT;
2311 				tcp_canceltimers(tp);
2312 				tcp_callout_reset(tp, tp->tt_2msl,
2313 					    2 * tcp_rmx_msl(tp),
2314 					    tcp_timer_2msl);
2315 				soisdisconnected(so);
2316 			}
2317 			break;
2318 
2319 		/*
2320 		 * In LAST_ACK, we may still be waiting for data to drain
2321 		 * and/or to be acked, as well as for the ack of our FIN.
2322 		 * If our FIN is now acknowledged, delete the TCB,
2323 		 * enter the closed state and return.
2324 		 */
2325 		case TCPS_LAST_ACK:
2326 			if (ourfinisacked) {
2327 				tp = tcp_close(tp);
2328 				goto drop;
2329 			}
2330 			break;
2331 
2332 		/*
2333 		 * In TIME_WAIT state the only thing that should arrive
2334 		 * is a retransmission of the remote FIN.  Acknowledge
2335 		 * it and restart the finack timer.
2336 		 */
2337 		case TCPS_TIME_WAIT:
2338 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2339 			    tcp_timer_2msl);
2340 			goto dropafterack;
2341 		}
2342 	}
2343 
2344 step6:
2345 	/*
2346 	 * Update window information.
2347 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2348 	 */
2349 	if ((thflags & TH_ACK) &&
2350 	    acceptable_window_update(tp, th, tiwin)) {
2351 		/* keep track of pure window updates */
2352 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2353 		    tiwin > tp->snd_wnd)
2354 			tcpstat.tcps_rcvwinupd++;
2355 		tp->snd_wnd = tiwin;
2356 		tp->snd_wl1 = th->th_seq;
2357 		tp->snd_wl2 = th->th_ack;
2358 		if (tp->snd_wnd > tp->max_sndwnd)
2359 			tp->max_sndwnd = tp->snd_wnd;
2360 		needoutput = TRUE;
2361 	}
2362 
2363 	/*
2364 	 * Process segments with URG.
2365 	 */
2366 	if ((thflags & TH_URG) && th->th_urp &&
2367 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2368 		/*
2369 		 * This is a kludge, but if we receive and accept
2370 		 * random urgent pointers, we'll crash in
2371 		 * soreceive.  It's hard to imagine someone
2372 		 * actually wanting to send this much urgent data.
2373 		 */
2374 		if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2375 			th->th_urp = 0;			/* XXX */
2376 			thflags &= ~TH_URG;		/* XXX */
2377 			goto dodata;			/* XXX */
2378 		}
2379 		/*
2380 		 * If this segment advances the known urgent pointer,
2381 		 * then mark the data stream.  This should not happen
2382 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2383 		 * a FIN has been received from the remote side.
2384 		 * In these states we ignore the URG.
2385 		 *
2386 		 * According to RFC961 (Assigned Protocols),
2387 		 * the urgent pointer points to the last octet
2388 		 * of urgent data.  We continue, however,
2389 		 * to consider it to indicate the first octet
2390 		 * of data past the urgent section as the original
2391 		 * spec states (in one of two places).
2392 		 */
2393 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2394 			tp->rcv_up = th->th_seq + th->th_urp;
2395 			so->so_oobmark = so->so_rcv.ssb_cc +
2396 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2397 			if (so->so_oobmark == 0)
2398 				sosetstate(so, SS_RCVATMARK);
2399 			sohasoutofband(so);
2400 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2401 		}
2402 		/*
2403 		 * Remove out of band data so doesn't get presented to user.
2404 		 * This can happen independent of advancing the URG pointer,
2405 		 * but if two URG's are pending at once, some out-of-band
2406 		 * data may creep in... ick.
2407 		 */
2408 		if (th->th_urp <= (u_long)tlen &&
2409 		    !(so->so_options & SO_OOBINLINE)) {
2410 			/* hdr drop is delayed */
2411 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2412 		}
2413 	} else {
2414 		/*
2415 		 * If no out of band data is expected,
2416 		 * pull receive urgent pointer along
2417 		 * with the receive window.
2418 		 */
2419 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2420 			tp->rcv_up = tp->rcv_nxt;
2421 	}
2422 
2423 dodata:							/* XXX */
2424 	/*
2425 	 * Process the segment text, merging it into the TCP sequencing queue,
2426 	 * and arranging for acknowledgment of receipt if necessary.
2427 	 * This process logically involves adjusting tp->rcv_wnd as data
2428 	 * is presented to the user (this happens in tcp_usrreq.c,
2429 	 * case PRU_RCVD).  If a FIN has already been received on this
2430 	 * connection then we just ignore the text.
2431 	 */
2432 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2433 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2434 		/*
2435 		 * Insert segment which includes th into TCP reassembly queue
2436 		 * with control block tp.  Set thflags to whether reassembly now
2437 		 * includes a segment with FIN.  This handles the common case
2438 		 * inline (segment is the next to be received on an established
2439 		 * connection, and the queue is empty), avoiding linkage into
2440 		 * and removal from the queue and repetition of various
2441 		 * conversions.
2442 		 * Set DELACK for segments received in order, but ack
2443 		 * immediately when segments are out of order (so
2444 		 * fast retransmit can work).
2445 		 */
2446 		if (th->th_seq == tp->rcv_nxt &&
2447 		    LIST_EMPTY(&tp->t_segq) &&
2448 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2449 			if (DELAY_ACK(tp)) {
2450 				tcp_callout_reset(tp, tp->tt_delack,
2451 				    tcp_delacktime, tcp_timer_delack);
2452 			} else {
2453 				tp->t_flags |= TF_ACKNOW;
2454 			}
2455 			tp->rcv_nxt += tlen;
2456 			thflags = th->th_flags & TH_FIN;
2457 			tcpstat.tcps_rcvpack++;
2458 			tcpstat.tcps_rcvbyte += tlen;
2459 			ND6_HINT(tp);
2460 			if (so->so_state & SS_CANTRCVMORE) {
2461 				m_freem(m);
2462 			} else {
2463 				lwkt_gettoken(&so->so_rcv.ssb_token);
2464 				ssb_appendstream(&so->so_rcv, m);
2465 				lwkt_reltoken(&so->so_rcv.ssb_token);
2466 			}
2467 			sorwakeup(so);
2468 		} else {
2469 			if (!(tp->t_flags & TF_DUPSEG)) {
2470 				/* Initialize SACK report block. */
2471 				tp->reportblk.rblk_start = th->th_seq;
2472 				tp->reportblk.rblk_end = th->th_seq + tlen +
2473 				    ((thflags & TH_FIN) != 0);
2474 			}
2475 			thflags = tcp_reass(tp, th, &tlen, m);
2476 			tp->t_flags |= TF_ACKNOW;
2477 		}
2478 
2479 		/*
2480 		 * Note the amount of data that peer has sent into
2481 		 * our window, in order to estimate the sender's
2482 		 * buffer size.
2483 		 */
2484 		len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2485 	} else {
2486 		m_freem(m);
2487 		thflags &= ~TH_FIN;
2488 	}
2489 
2490 	/*
2491 	 * If FIN is received ACK the FIN and let the user know
2492 	 * that the connection is closing.
2493 	 */
2494 	if (thflags & TH_FIN) {
2495 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2496 			socantrcvmore(so);
2497 			/*
2498 			 * If connection is half-synchronized
2499 			 * (ie NEEDSYN flag on) then delay ACK,
2500 			 * so it may be piggybacked when SYN is sent.
2501 			 * Otherwise, since we received a FIN then no
2502 			 * more input can be expected, send ACK now.
2503 			 */
2504 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2505 				tcp_callout_reset(tp, tp->tt_delack,
2506 				    tcp_delacktime, tcp_timer_delack);
2507 			} else {
2508 				tp->t_flags |= TF_ACKNOW;
2509 			}
2510 			tp->rcv_nxt++;
2511 		}
2512 
2513 		switch (tp->t_state) {
2514 		/*
2515 		 * In SYN_RECEIVED and ESTABLISHED STATES
2516 		 * enter the CLOSE_WAIT state.
2517 		 */
2518 		case TCPS_SYN_RECEIVED:
2519 			tp->t_starttime = ticks;
2520 			/*FALLTHROUGH*/
2521 		case TCPS_ESTABLISHED:
2522 			tp->t_state = TCPS_CLOSE_WAIT;
2523 			break;
2524 
2525 		/*
2526 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2527 		 * enter the CLOSING state.
2528 		 */
2529 		case TCPS_FIN_WAIT_1:
2530 			tp->t_state = TCPS_CLOSING;
2531 			break;
2532 
2533 		/*
2534 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2535 		 * starting the time-wait timer, turning off the other
2536 		 * standard timers.
2537 		 */
2538 		case TCPS_FIN_WAIT_2:
2539 			tp->t_state = TCPS_TIME_WAIT;
2540 			tcp_canceltimers(tp);
2541 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2542 				    tcp_timer_2msl);
2543 			soisdisconnected(so);
2544 			break;
2545 
2546 		/*
2547 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2548 		 */
2549 		case TCPS_TIME_WAIT:
2550 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2551 			    tcp_timer_2msl);
2552 			break;
2553 		}
2554 	}
2555 
2556 #ifdef TCPDEBUG
2557 	if (so->so_options & SO_DEBUG)
2558 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2559 #endif
2560 
2561 	/*
2562 	 * Return any desired output.
2563 	 */
2564 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2565 		tcp_output(tp);
2566 	return(IPPROTO_DONE);
2567 
2568 dropafterack:
2569 	/*
2570 	 * Generate an ACK dropping incoming segment if it occupies
2571 	 * sequence space, where the ACK reflects our state.
2572 	 *
2573 	 * We can now skip the test for the RST flag since all
2574 	 * paths to this code happen after packets containing
2575 	 * RST have been dropped.
2576 	 *
2577 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2578 	 * segment we received passes the SYN-RECEIVED ACK test.
2579 	 * If it fails send a RST.  This breaks the loop in the
2580 	 * "LAND" DoS attack, and also prevents an ACK storm
2581 	 * between two listening ports that have been sent forged
2582 	 * SYN segments, each with the source address of the other.
2583 	 */
2584 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2585 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2586 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2587 		rstreason = BANDLIM_RST_OPENPORT;
2588 		goto dropwithreset;
2589 	}
2590 #ifdef TCPDEBUG
2591 	if (so->so_options & SO_DEBUG)
2592 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2593 #endif
2594 	m_freem(m);
2595 	tp->t_flags |= TF_ACKNOW;
2596 	tcp_output(tp);
2597 	return(IPPROTO_DONE);
2598 
2599 dropwithreset:
2600 	/*
2601 	 * Generate a RST, dropping incoming segment.
2602 	 * Make ACK acceptable to originator of segment.
2603 	 * Don't bother to respond if destination was broadcast/multicast.
2604 	 */
2605 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2606 		goto drop;
2607 	if (isipv6) {
2608 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2609 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2610 			goto drop;
2611 	} else {
2612 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2613 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2614 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2615 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2616 			goto drop;
2617 	}
2618 	/* IPv6 anycast check is done at tcp6_input() */
2619 
2620 	/*
2621 	 * Perform bandwidth limiting.
2622 	 */
2623 #ifdef ICMP_BANDLIM
2624 	if (badport_bandlim(rstreason) < 0)
2625 		goto drop;
2626 #endif
2627 
2628 #ifdef TCPDEBUG
2629 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2630 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2631 #endif
2632 	if (thflags & TH_ACK)
2633 		/* mtod() below is safe as long as hdr dropping is delayed */
2634 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2635 			    TH_RST);
2636 	else {
2637 		if (thflags & TH_SYN)
2638 			tlen++;
2639 		/* mtod() below is safe as long as hdr dropping is delayed */
2640 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2641 			    (tcp_seq)0, TH_RST | TH_ACK);
2642 	}
2643 	return(IPPROTO_DONE);
2644 
2645 drop:
2646 	/*
2647 	 * Drop space held by incoming segment and return.
2648 	 */
2649 #ifdef TCPDEBUG
2650 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2651 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2652 #endif
2653 	m_freem(m);
2654 	return(IPPROTO_DONE);
2655 }
2656 
2657 /*
2658  * Parse TCP options and place in tcpopt.
2659  */
2660 static void
2661 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn)
2662 {
2663 	int opt, optlen, i;
2664 
2665 	to->to_flags = 0;
2666 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2667 		opt = cp[0];
2668 		if (opt == TCPOPT_EOL)
2669 			break;
2670 		if (opt == TCPOPT_NOP)
2671 			optlen = 1;
2672 		else {
2673 			if (cnt < 2)
2674 				break;
2675 			optlen = cp[1];
2676 			if (optlen < 2 || optlen > cnt)
2677 				break;
2678 		}
2679 		switch (opt) {
2680 		case TCPOPT_MAXSEG:
2681 			if (optlen != TCPOLEN_MAXSEG)
2682 				continue;
2683 			if (!is_syn)
2684 				continue;
2685 			to->to_flags |= TOF_MSS;
2686 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2687 			to->to_mss = ntohs(to->to_mss);
2688 			break;
2689 		case TCPOPT_WINDOW:
2690 			if (optlen != TCPOLEN_WINDOW)
2691 				continue;
2692 			if (!is_syn)
2693 				continue;
2694 			to->to_flags |= TOF_SCALE;
2695 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2696 			break;
2697 		case TCPOPT_TIMESTAMP:
2698 			if (optlen != TCPOLEN_TIMESTAMP)
2699 				continue;
2700 			to->to_flags |= TOF_TS;
2701 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2702 			to->to_tsval = ntohl(to->to_tsval);
2703 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2704 			to->to_tsecr = ntohl(to->to_tsecr);
2705 			/*
2706 			 * If echoed timestamp is later than the current time,
2707 			 * fall back to non RFC1323 RTT calculation.
2708 			 */
2709 			if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2710 				to->to_tsecr = 0;
2711 			break;
2712 		case TCPOPT_SACK_PERMITTED:
2713 			if (optlen != TCPOLEN_SACK_PERMITTED)
2714 				continue;
2715 			if (!is_syn)
2716 				continue;
2717 			to->to_flags |= TOF_SACK_PERMITTED;
2718 			break;
2719 		case TCPOPT_SACK:
2720 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2721 				continue;
2722 			to->to_nsackblocks = (optlen - 2) / 8;
2723 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2724 			to->to_flags |= TOF_SACK;
2725 			for (i = 0; i < to->to_nsackblocks; i++) {
2726 				struct raw_sackblock *r = &to->to_sackblocks[i];
2727 
2728 				r->rblk_start = ntohl(r->rblk_start);
2729 				r->rblk_end = ntohl(r->rblk_end);
2730 			}
2731 			break;
2732 #ifdef TCP_SIGNATURE
2733 		/*
2734 		 * XXX In order to reply to a host which has set the
2735 		 * TCP_SIGNATURE option in its initial SYN, we have to
2736 		 * record the fact that the option was observed here
2737 		 * for the syncache code to perform the correct response.
2738 		 */
2739 		case TCPOPT_SIGNATURE:
2740 			if (optlen != TCPOLEN_SIGNATURE)
2741 				continue;
2742 			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2743 			break;
2744 #endif /* TCP_SIGNATURE */
2745 		default:
2746 			continue;
2747 		}
2748 	}
2749 }
2750 
2751 /*
2752  * Pull out of band byte out of a segment so
2753  * it doesn't appear in the user's data queue.
2754  * It is still reflected in the segment length for
2755  * sequencing purposes.
2756  * "off" is the delayed to be dropped hdrlen.
2757  */
2758 static void
2759 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2760 {
2761 	int cnt = off + th->th_urp - 1;
2762 
2763 	while (cnt >= 0) {
2764 		if (m->m_len > cnt) {
2765 			char *cp = mtod(m, caddr_t) + cnt;
2766 			struct tcpcb *tp = sototcpcb(so);
2767 
2768 			tp->t_iobc = *cp;
2769 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2770 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2771 			m->m_len--;
2772 			if (m->m_flags & M_PKTHDR)
2773 				m->m_pkthdr.len--;
2774 			return;
2775 		}
2776 		cnt -= m->m_len;
2777 		m = m->m_next;
2778 		if (m == 0)
2779 			break;
2780 	}
2781 	panic("tcp_pulloutofband");
2782 }
2783 
2784 /*
2785  * Collect new round-trip time estimate
2786  * and update averages and current timeout.
2787  */
2788 static void
2789 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2790 {
2791 	int delta;
2792 
2793 	tcpstat.tcps_rttupdated++;
2794 	tp->t_rttupdated++;
2795 	if (tp->t_srtt != 0) {
2796 		/*
2797 		 * srtt is stored as fixed point with 5 bits after the
2798 		 * binary point (i.e., scaled by 8).  The following magic
2799 		 * is equivalent to the smoothing algorithm in rfc793 with
2800 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2801 		 * point).  Adjust rtt to origin 0.
2802 		 */
2803 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2804 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2805 
2806 		if ((tp->t_srtt += delta) <= 0)
2807 			tp->t_srtt = 1;
2808 
2809 		/*
2810 		 * We accumulate a smoothed rtt variance (actually, a
2811 		 * smoothed mean difference), then set the retransmit
2812 		 * timer to smoothed rtt + 4 times the smoothed variance.
2813 		 * rttvar is stored as fixed point with 4 bits after the
2814 		 * binary point (scaled by 16).  The following is
2815 		 * equivalent to rfc793 smoothing with an alpha of .75
2816 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2817 		 * rfc793's wired-in beta.
2818 		 */
2819 		if (delta < 0)
2820 			delta = -delta;
2821 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2822 		if ((tp->t_rttvar += delta) <= 0)
2823 			tp->t_rttvar = 1;
2824 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2825 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2826 	} else {
2827 		/*
2828 		 * No rtt measurement yet - use the unsmoothed rtt.
2829 		 * Set the variance to half the rtt (so our first
2830 		 * retransmit happens at 3*rtt).
2831 		 */
2832 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2833 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2834 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2835 	}
2836 	tp->t_rtttime = 0;
2837 	tp->t_rxtshift = 0;
2838 
2839 	/*
2840 	 * the retransmit should happen at rtt + 4 * rttvar.
2841 	 * Because of the way we do the smoothing, srtt and rttvar
2842 	 * will each average +1/2 tick of bias.  When we compute
2843 	 * the retransmit timer, we want 1/2 tick of rounding and
2844 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2845 	 * firing of the timer.  The bias will give us exactly the
2846 	 * 1.5 tick we need.  But, because the bias is
2847 	 * statistical, we have to test that we don't drop below
2848 	 * the minimum feasible timer (which is 2 ticks).
2849 	 */
2850 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2851 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2852 
2853 	/*
2854 	 * We received an ack for a packet that wasn't retransmitted;
2855 	 * it is probably safe to discard any error indications we've
2856 	 * received recently.  This isn't quite right, but close enough
2857 	 * for now (a route might have failed after we sent a segment,
2858 	 * and the return path might not be symmetrical).
2859 	 */
2860 	tp->t_softerror = 0;
2861 }
2862 
2863 /*
2864  * Determine a reasonable value for maxseg size.
2865  * If the route is known, check route for mtu.
2866  * If none, use an mss that can be handled on the outgoing
2867  * interface without forcing IP to fragment; if bigger than
2868  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2869  * to utilize large mbufs.  If no route is found, route has no mtu,
2870  * or the destination isn't local, use a default, hopefully conservative
2871  * size (usually 512 or the default IP max size, but no more than the mtu
2872  * of the interface), as we can't discover anything about intervening
2873  * gateways or networks.  We also initialize the congestion/slow start
2874  * window to be a single segment if the destination isn't local.
2875  * While looking at the routing entry, we also initialize other path-dependent
2876  * parameters from pre-set or cached values in the routing entry.
2877  *
2878  * Also take into account the space needed for options that we
2879  * send regularly.  Make maxseg shorter by that amount to assure
2880  * that we can send maxseg amount of data even when the options
2881  * are present.  Store the upper limit of the length of options plus
2882  * data in maxopd.
2883  *
2884  * NOTE that this routine is only called when we process an incoming
2885  * segment, for outgoing segments only tcp_mssopt is called.
2886  */
2887 void
2888 tcp_mss(struct tcpcb *tp, int offer)
2889 {
2890 	struct rtentry *rt;
2891 	struct ifnet *ifp;
2892 	int rtt, mss;
2893 	u_long bufsize;
2894 	struct inpcb *inp = tp->t_inpcb;
2895 	struct socket *so;
2896 #ifdef INET6
2897 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2898 	size_t min_protoh = isipv6 ?
2899 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2900 			    sizeof(struct tcpiphdr);
2901 #else
2902 	const boolean_t isipv6 = FALSE;
2903 	const size_t min_protoh = sizeof(struct tcpiphdr);
2904 #endif
2905 
2906 	if (isipv6)
2907 		rt = tcp_rtlookup6(&inp->inp_inc);
2908 	else
2909 		rt = tcp_rtlookup(&inp->inp_inc);
2910 	if (rt == NULL) {
2911 		tp->t_maxopd = tp->t_maxseg =
2912 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2913 		return;
2914 	}
2915 	ifp = rt->rt_ifp;
2916 	so = inp->inp_socket;
2917 
2918 	/*
2919 	 * Offer == 0 means that there was no MSS on the SYN segment,
2920 	 * in this case we use either the interface mtu or tcp_mssdflt.
2921 	 *
2922 	 * An offer which is too large will be cut down later.
2923 	 */
2924 	if (offer == 0) {
2925 		if (isipv6) {
2926 			if (in6_localaddr(&inp->in6p_faddr)) {
2927 				offer = ND_IFINFO(rt->rt_ifp)->linkmtu -
2928 					min_protoh;
2929 			} else {
2930 				offer = tcp_v6mssdflt;
2931 			}
2932 		} else {
2933 			if (in_localaddr(inp->inp_faddr))
2934 				offer = ifp->if_mtu - min_protoh;
2935 			else
2936 				offer = tcp_mssdflt;
2937 		}
2938 	}
2939 
2940 	/*
2941 	 * Prevent DoS attack with too small MSS. Round up
2942 	 * to at least minmss.
2943 	 *
2944 	 * Sanity check: make sure that maxopd will be large
2945 	 * enough to allow some data on segments even is the
2946 	 * all the option space is used (40bytes).  Otherwise
2947 	 * funny things may happen in tcp_output.
2948 	 */
2949 	offer = max(offer, tcp_minmss);
2950 	offer = max(offer, 64);
2951 
2952 	rt->rt_rmx.rmx_mssopt = offer;
2953 
2954 	/*
2955 	 * While we're here, check if there's an initial rtt
2956 	 * or rttvar.  Convert from the route-table units
2957 	 * to scaled multiples of the slow timeout timer.
2958 	 */
2959 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2960 		/*
2961 		 * XXX the lock bit for RTT indicates that the value
2962 		 * is also a minimum value; this is subject to time.
2963 		 */
2964 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2965 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2966 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2967 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2968 		tcpstat.tcps_usedrtt++;
2969 		if (rt->rt_rmx.rmx_rttvar) {
2970 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2971 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2972 			tcpstat.tcps_usedrttvar++;
2973 		} else {
2974 			/* default variation is +- 1 rtt */
2975 			tp->t_rttvar =
2976 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2977 		}
2978 		TCPT_RANGESET(tp->t_rxtcur,
2979 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2980 			      tp->t_rttmin, TCPTV_REXMTMAX);
2981 	}
2982 
2983 	/*
2984 	 * if there's an mtu associated with the route, use it
2985 	 * else, use the link mtu.  Take the smaller of mss or offer
2986 	 * as our final mss.
2987 	 */
2988 	if (rt->rt_rmx.rmx_mtu) {
2989 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2990 	} else {
2991 		if (isipv6)
2992 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
2993 		else
2994 			mss = ifp->if_mtu - min_protoh;
2995 	}
2996 	mss = min(mss, offer);
2997 
2998 	/*
2999 	 * maxopd stores the maximum length of data AND options
3000 	 * in a segment; maxseg is the amount of data in a normal
3001 	 * segment.  We need to store this value (maxopd) apart
3002 	 * from maxseg, because now every segment carries options
3003 	 * and thus we normally have somewhat less data in segments.
3004 	 */
3005 	tp->t_maxopd = mss;
3006 
3007 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
3008 	    ((tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3009 		mss -= TCPOLEN_TSTAMP_APPA;
3010 
3011 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3012 		if (mss > MCLBYTES)
3013 			mss &= ~(MCLBYTES-1);
3014 #else
3015 		if (mss > MCLBYTES)
3016 			mss = mss / MCLBYTES * MCLBYTES;
3017 #endif
3018 	/*
3019 	 * If there's a pipesize, change the socket buffer
3020 	 * to that size.  Make the socket buffers an integral
3021 	 * number of mss units; if the mss is larger than
3022 	 * the socket buffer, decrease the mss.
3023 	 */
3024 #ifdef RTV_SPIPE
3025 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
3026 #endif
3027 		bufsize = so->so_snd.ssb_hiwat;
3028 	if (bufsize < mss)
3029 		mss = bufsize;
3030 	else {
3031 		bufsize = roundup(bufsize, mss);
3032 		if (bufsize > sb_max)
3033 			bufsize = sb_max;
3034 		if (bufsize > so->so_snd.ssb_hiwat)
3035 			ssb_reserve(&so->so_snd, bufsize, so, NULL);
3036 	}
3037 	tp->t_maxseg = mss;
3038 
3039 #ifdef RTV_RPIPE
3040 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3041 #endif
3042 		bufsize = so->so_rcv.ssb_hiwat;
3043 	if (bufsize > mss) {
3044 		bufsize = roundup(bufsize, mss);
3045 		if (bufsize > sb_max)
3046 			bufsize = sb_max;
3047 		if (bufsize > so->so_rcv.ssb_hiwat) {
3048 			lwkt_gettoken(&so->so_rcv.ssb_token);
3049 			ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3050 			lwkt_reltoken(&so->so_rcv.ssb_token);
3051 		}
3052 	}
3053 
3054 	/*
3055 	 * Set the slow-start flight size depending on whether this
3056 	 * is a local network or not.
3057 	 */
3058 	if (tcp_do_rfc3390)
3059 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3060 	else
3061 		tp->snd_cwnd = mss;
3062 
3063 	if (rt->rt_rmx.rmx_ssthresh) {
3064 		/*
3065 		 * There's some sort of gateway or interface
3066 		 * buffer limit on the path.  Use this to set
3067 		 * the slow start threshhold, but set the
3068 		 * threshold to no less than 2*mss.
3069 		 */
3070 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3071 		tcpstat.tcps_usedssthresh++;
3072 	}
3073 }
3074 
3075 /*
3076  * Determine the MSS option to send on an outgoing SYN.
3077  */
3078 int
3079 tcp_mssopt(struct tcpcb *tp)
3080 {
3081 	struct rtentry *rt;
3082 #ifdef INET6
3083 	boolean_t isipv6 =
3084 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3085 	int min_protoh = isipv6 ?
3086 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3087 			     sizeof(struct tcpiphdr);
3088 #else
3089 	const boolean_t isipv6 = FALSE;
3090 	const size_t min_protoh = sizeof(struct tcpiphdr);
3091 #endif
3092 
3093 	if (isipv6)
3094 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3095 	else
3096 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3097 	if (rt == NULL)
3098 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3099 
3100 	return (rt->rt_ifp->if_mtu - min_protoh);
3101 }
3102 
3103 /*
3104  * When a partial ack arrives, force the retransmission of the
3105  * next unacknowledged segment.  Do not exit Fast Recovery.
3106  *
3107  * Implement the Slow-but-Steady variant of NewReno by restarting the
3108  * the retransmission timer.  Turn it off here so it can be restarted
3109  * later in tcp_output().
3110  */
3111 static void
3112 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3113 {
3114 	tcp_seq old_snd_nxt = tp->snd_nxt;
3115 	u_long ocwnd = tp->snd_cwnd;
3116 
3117 	tcp_callout_stop(tp, tp->tt_rexmt);
3118 	tp->t_rtttime = 0;
3119 	tp->snd_nxt = th->th_ack;
3120 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3121 	tp->snd_cwnd = tp->t_maxseg;
3122 	tp->t_flags |= TF_ACKNOW;
3123 	tcp_output(tp);
3124 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3125 		tp->snd_nxt = old_snd_nxt;
3126 	/* partial window deflation */
3127 	if (ocwnd > acked)
3128 		tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3129 	else
3130 		tp->snd_cwnd = tp->t_maxseg;
3131 }
3132 
3133 /*
3134  * In contrast to the Slow-but-Steady NewReno variant,
3135  * we do not reset the retransmission timer for SACK retransmissions,
3136  * except when retransmitting snd_una.
3137  */
3138 static void
3139 tcp_sack_rexmt(struct tcpcb *tp, struct tcphdr *th)
3140 {
3141 	uint32_t pipe, seglen;
3142 	tcp_seq nextrexmt;
3143 	boolean_t lostdup;
3144 	tcp_seq old_snd_nxt = tp->snd_nxt;
3145 	u_long ocwnd = tp->snd_cwnd;
3146 	int nseg = 0;		/* consecutive new segments */
3147 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3148 
3149 	tp->t_rtttime = 0;
3150 	pipe = tcp_sack_compute_pipe(tp);
3151 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3152 	    (!tcp_do_smartsack || nseg < MAXBURST) &&
3153 	    tcp_sack_nextseg(tp, &nextrexmt, &seglen, &lostdup)) {
3154 		uint32_t sent;
3155 		tcp_seq old_snd_max;
3156 		int error;
3157 
3158 		if (nextrexmt == tp->snd_max)
3159 			++nseg;
3160 		tp->snd_nxt = nextrexmt;
3161 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3162 		old_snd_max = tp->snd_max;
3163 		if (nextrexmt == tp->snd_una)
3164 			tcp_callout_stop(tp, tp->tt_rexmt);
3165 		error = tcp_output(tp);
3166 		if (error != 0)
3167 			break;
3168 		sent = tp->snd_nxt - nextrexmt;
3169 		if (sent <= 0)
3170 			break;
3171 		if (!lostdup)
3172 			pipe += sent;
3173 		tcpstat.tcps_sndsackpack++;
3174 		tcpstat.tcps_sndsackbyte += sent;
3175 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3176 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt))
3177 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3178 	}
3179 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3180 		tp->snd_nxt = old_snd_nxt;
3181 	tp->snd_cwnd = ocwnd;
3182 }
3183 
3184 /*
3185  * Reset idle time and keep-alive timer, typically called when a valid
3186  * tcp packet is received but may also be called when FASTKEEP is set
3187  * to prevent the previous long-timeout from calculating to a drop.
3188  *
3189  * Only update t_rcvtime for non-SYN packets.
3190  *
3191  * Handle the case where one side thinks the connection is established
3192  * but the other side has, say, rebooted without cleaning out the
3193  * connection.   The SYNs could be construed as an attack and wind
3194  * up ignored, but in case it isn't an attack we can validate the
3195  * connection by forcing a keepalive.
3196  */
3197 void
3198 tcp_timer_keep_activity(struct tcpcb *tp, int thflags)
3199 {
3200 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3201 		if ((thflags & (TH_SYN | TH_ACK)) == TH_SYN) {
3202 			tp->t_flags |= TF_KEEPALIVE;
3203 			tcp_callout_reset(tp, tp->tt_keep, hz / 2,
3204 					  tcp_timer_keep);
3205 		} else {
3206 			tp->t_rcvtime = ticks;
3207 			tp->t_flags &= ~TF_KEEPALIVE;
3208 			tcp_callout_reset(tp, tp->tt_keep,
3209 					  tcp_getkeepidle(tp),
3210 					  tcp_timer_keep);
3211 		}
3212 	}
3213 }
3214 
3215 static int
3216 tcp_rmx_msl(const struct tcpcb *tp)
3217 {
3218 	struct rtentry *rt;
3219 	struct inpcb *inp = tp->t_inpcb;
3220 	int msl;
3221 #ifdef INET6
3222 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3223 #else
3224 	const boolean_t isipv6 = FALSE;
3225 #endif
3226 
3227 	if (isipv6)
3228 		rt = tcp_rtlookup6(&inp->inp_inc);
3229 	else
3230 		rt = tcp_rtlookup(&inp->inp_inc);
3231 	if (rt == NULL || rt->rt_rmx.rmx_msl == 0)
3232 		return tcp_msl;
3233 
3234 	msl = (rt->rt_rmx.rmx_msl * hz) / 1000;
3235 	if (msl == 0)
3236 		msl = 1;
3237 
3238 	return msl;
3239 }
3240