xref: /dflybsd-src/sys/netinet/tcp_input.c (revision ad63697b1227b985f99dd96f67aaafb238b3d148)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
68  */
69 
70 #include "opt_inet.h"
71 #include "opt_inet6.h"
72 #include "opt_ipsec.h"
73 #include "opt_tcpdebug.h"
74 #include "opt_tcp_input.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/sysctl.h>
80 #include <sys/malloc.h>
81 #include <sys/mbuf.h>
82 #include <sys/proc.h>		/* for proc0 declaration */
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/syslog.h>
87 #include <sys/in_cksum.h>
88 
89 #include <sys/socketvar2.h>
90 
91 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
92 #include <machine/stdarg.h>
93 
94 #include <net/if.h>
95 #include <net/route.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
101 #include <netinet/in_var.h>
102 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
103 #include <netinet/in_pcb.h>
104 #include <netinet/ip_var.h>
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
117 #include <netinet/tcpip.h>
118 
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 
122 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
123 struct tcphdr tcp_savetcp;
124 #endif
125 
126 #ifdef FAST_IPSEC
127 #include <netproto/ipsec/ipsec.h>
128 #include <netproto/ipsec/ipsec6.h>
129 #endif
130 
131 #ifdef IPSEC
132 #include <netinet6/ipsec.h>
133 #include <netinet6/ipsec6.h>
134 #include <netproto/key/key.h>
135 #endif
136 
137 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
138 
139 static int log_in_vain = 0;
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
141     &log_in_vain, 0, "Log all incoming TCP connections");
142 
143 static int blackhole = 0;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
145     &blackhole, 0, "Do not send RST when dropping refused connections");
146 
147 int tcp_delack_enabled = 1;
148 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
149     &tcp_delack_enabled, 0,
150     "Delay ACK to try and piggyback it onto a data packet");
151 
152 #ifdef TCP_DROP_SYNFIN
153 static int drop_synfin = 0;
154 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
155     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
156 #endif
157 
158 static int tcp_do_limitedtransmit = 1;
159 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
160     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
161 
162 static int tcp_do_early_retransmit = 1;
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
164     &tcp_do_early_retransmit, 0, "Early retransmit");
165 
166 int tcp_aggregate_acks = 1;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
168     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
169 
170 static int tcp_do_eifel_detect = 1;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
172     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
173 
174 static int tcp_do_abc = 1;
175 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
176     &tcp_do_abc, 0,
177     "TCP Appropriate Byte Counting (RFC 3465)");
178 
179 /*
180  * Define as tunable for easy testing with SACK on and off.
181  * Warning:  do not change setting in the middle of an existing active TCP flow,
182  *   else strange things might happen to that flow.
183  */
184 int tcp_do_sack = 1;
185 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
186     &tcp_do_sack, 0, "Enable SACK Algorithms");
187 
188 int tcp_do_smartsack = 1;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
190     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
191 
192 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
193     "TCP Segment Reassembly Queue");
194 
195 int tcp_reass_maxseg = 0;
196 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
197     &tcp_reass_maxseg, 0,
198     "Global maximum number of TCP Segments in Reassembly Queue");
199 
200 int tcp_reass_qsize = 0;
201 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
202     &tcp_reass_qsize, 0,
203     "Global number of TCP Segments currently in Reassembly Queue");
204 
205 static int tcp_reass_overflows = 0;
206 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
207     &tcp_reass_overflows, 0,
208     "Global number of TCP Segment Reassembly Queue Overflows");
209 
210 int tcp_do_autorcvbuf = 1;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
212     &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
213 
214 int tcp_autorcvbuf_inc = 16*1024;
215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
216     &tcp_autorcvbuf_inc, 0,
217     "Incrementor step size of automatic receive buffer");
218 
219 int tcp_autorcvbuf_max = 2*1024*1024;
220 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
221     &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
222 
223 int tcp_sosend_agglim = 2;
224 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosend_agglim, CTLFLAG_RW,
225     &tcp_sosend_agglim, 0, "TCP sosend mbuf aggregation limit");
226 
227 int tcp_sosend_async = 1;
228 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosend_async, CTLFLAG_RW,
229     &tcp_sosend_async, 0, "TCP asynchronized pru_send");
230 
231 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t);
232 static void	 tcp_pulloutofband(struct socket *,
233 		     struct tcphdr *, struct mbuf *, int);
234 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
235 		     struct mbuf *);
236 static void	 tcp_xmit_timer(struct tcpcb *, int);
237 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
238 static void	 tcp_sack_rexmt(struct tcpcb *, struct tcphdr *);
239 static int	 tcp_rmx_msl(const struct tcpcb *);
240 static void	 tcp_established(struct tcpcb *);
241 
242 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
243 #ifdef INET6
244 #define ND6_HINT(tp) \
245 do { \
246 	if ((tp) && (tp)->t_inpcb && \
247 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
248 	    (tp)->t_inpcb->in6p_route.ro_rt) \
249 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
250 } while (0)
251 #else
252 #define ND6_HINT(tp)
253 #endif
254 
255 /*
256  * Indicate whether this ack should be delayed.  We can delay the ack if
257  *	- delayed acks are enabled and
258  *	- there is no delayed ack timer in progress and
259  *	- our last ack wasn't a 0-sized window.  We never want to delay
260  *	  the ack that opens up a 0-sized window.
261  */
262 #define DELAY_ACK(tp) \
263 	(tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
264 	!(tp->t_flags & TF_RXWIN0SENT))
265 
266 #define acceptable_window_update(tp, th, tiwin)				\
267     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
268      (tp->snd_wl1 == th->th_seq &&					\
269       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
270        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
271 
272 static int
273 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
274 {
275 	struct tseg_qent *q;
276 	struct tseg_qent *p = NULL;
277 	struct tseg_qent *te;
278 	struct socket *so = tp->t_inpcb->inp_socket;
279 	int flags;
280 
281 	/*
282 	 * Call with th == NULL after become established to
283 	 * force pre-ESTABLISHED data up to user socket.
284 	 */
285 	if (th == NULL)
286 		goto present;
287 
288 	/*
289 	 * Limit the number of segments in the reassembly queue to prevent
290 	 * holding on to too many segments (and thus running out of mbufs).
291 	 * Make sure to let the missing segment through which caused this
292 	 * queue.  Always keep one global queue entry spare to be able to
293 	 * process the missing segment.
294 	 */
295 	if (th->th_seq != tp->rcv_nxt &&
296 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
297 		tcp_reass_overflows++;
298 		tcpstat.tcps_rcvmemdrop++;
299 		m_freem(m);
300 		/* no SACK block to report */
301 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
302 		return (0);
303 	}
304 
305 	/* Allocate a new queue entry. */
306 	te = kmalloc(sizeof(struct tseg_qent), M_TSEGQ, M_INTWAIT | M_NULLOK);
307 	if (te == NULL) {
308 		tcpstat.tcps_rcvmemdrop++;
309 		m_freem(m);
310 		/* no SACK block to report */
311 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
312 		return (0);
313 	}
314 	atomic_add_int(&tcp_reass_qsize, 1);
315 
316 	/*
317 	 * Find a segment which begins after this one does.
318 	 */
319 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
320 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
321 			break;
322 		p = q;
323 	}
324 
325 	/*
326 	 * If there is a preceding segment, it may provide some of
327 	 * our data already.  If so, drop the data from the incoming
328 	 * segment.  If it provides all of our data, drop us.
329 	 */
330 	if (p != NULL) {
331 		tcp_seq_diff_t i;
332 
333 		/* conversion to int (in i) handles seq wraparound */
334 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
335 		if (i > 0) {		/* overlaps preceding segment */
336 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
337 			/* enclosing block starts w/ preceding segment */
338 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
339 			if (i >= *tlenp) {
340 				/* preceding encloses incoming segment */
341 				tp->encloseblk.rblk_end = TCP_SACK_BLKEND(
342 				    p->tqe_th->th_seq + p->tqe_len,
343 				    p->tqe_th->th_flags);
344 				tcpstat.tcps_rcvduppack++;
345 				tcpstat.tcps_rcvdupbyte += *tlenp;
346 				m_freem(m);
347 				kfree(te, M_TSEGQ);
348 				atomic_add_int(&tcp_reass_qsize, -1);
349 				/*
350 				 * Try to present any queued data
351 				 * at the left window edge to the user.
352 				 * This is needed after the 3-WHS
353 				 * completes.
354 				 */
355 				goto present;	/* ??? */
356 			}
357 			m_adj(m, i);
358 			*tlenp -= i;
359 			th->th_seq += i;
360 			/* incoming segment end is enclosing block end */
361 			tp->encloseblk.rblk_end = TCP_SACK_BLKEND(
362 			    th->th_seq + *tlenp, th->th_flags);
363 			/* trim end of reported D-SACK block */
364 			tp->reportblk.rblk_end = th->th_seq;
365 		}
366 	}
367 	tcpstat.tcps_rcvoopack++;
368 	tcpstat.tcps_rcvoobyte += *tlenp;
369 
370 	/*
371 	 * While we overlap succeeding segments trim them or,
372 	 * if they are completely covered, dequeue them.
373 	 */
374 	while (q) {
375 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
376 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
377 		tcp_seq qend_sack = TCP_SACK_BLKEND(qend, q->tqe_th->th_flags);
378 		struct tseg_qent *nq;
379 
380 		if (i <= 0)
381 			break;
382 		if (!(tp->t_flags & TF_DUPSEG)) {    /* first time through */
383 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
384 			tp->encloseblk = tp->reportblk;
385 			/* report trailing duplicate D-SACK segment */
386 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
387 		}
388 		if ((tp->t_flags & TF_ENCLOSESEG) &&
389 		    SEQ_GT(qend_sack, tp->encloseblk.rblk_end)) {
390 			/* extend enclosing block if one exists */
391 			tp->encloseblk.rblk_end = qend_sack;
392 		}
393 		if (i < q->tqe_len) {
394 			q->tqe_th->th_seq += i;
395 			q->tqe_len -= i;
396 			m_adj(q->tqe_m, i);
397 			break;
398 		}
399 
400 		nq = LIST_NEXT(q, tqe_q);
401 		LIST_REMOVE(q, tqe_q);
402 		m_freem(q->tqe_m);
403 		kfree(q, M_TSEGQ);
404 		atomic_add_int(&tcp_reass_qsize, -1);
405 		q = nq;
406 	}
407 
408 	/* Insert the new segment queue entry into place. */
409 	te->tqe_m = m;
410 	te->tqe_th = th;
411 	te->tqe_len = *tlenp;
412 
413 	/* check if can coalesce with following segment */
414 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
415 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
416 		tcp_seq tend_sack = TCP_SACK_BLKEND(tend, te->tqe_th->th_flags);
417 
418 		te->tqe_len += q->tqe_len;
419 		if (q->tqe_th->th_flags & TH_FIN)
420 			te->tqe_th->th_flags |= TH_FIN;
421 		m_cat(te->tqe_m, q->tqe_m);
422 		tp->encloseblk.rblk_end = tend_sack;
423 		/*
424 		 * When not reporting a duplicate segment, use
425 		 * the larger enclosing block as the SACK block.
426 		 */
427 		if (!(tp->t_flags & TF_DUPSEG))
428 			tp->reportblk.rblk_end = tend_sack;
429 		LIST_REMOVE(q, tqe_q);
430 		kfree(q, M_TSEGQ);
431 		atomic_add_int(&tcp_reass_qsize, -1);
432 	}
433 
434 	if (p == NULL) {
435 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
436 	} else {
437 		/* check if can coalesce with preceding segment */
438 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
439 			p->tqe_len += te->tqe_len;
440 			m_cat(p->tqe_m, te->tqe_m);
441 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
442 			/*
443 			 * When not reporting a duplicate segment, use
444 			 * the larger enclosing block as the SACK block.
445 			 */
446 			if (!(tp->t_flags & TF_DUPSEG))
447 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
448 			kfree(te, M_TSEGQ);
449 			atomic_add_int(&tcp_reass_qsize, -1);
450 		} else {
451 			LIST_INSERT_AFTER(p, te, tqe_q);
452 		}
453 	}
454 
455 present:
456 	/*
457 	 * Present data to user, advancing rcv_nxt through
458 	 * completed sequence space.
459 	 */
460 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
461 		return (0);
462 	q = LIST_FIRST(&tp->t_segq);
463 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
464 		return (0);
465 	tp->rcv_nxt += q->tqe_len;
466 	if (!(tp->t_flags & TF_DUPSEG))	{
467 		/* no SACK block to report since ACK advanced */
468 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
469 	}
470 	/* no enclosing block to report since ACK advanced */
471 	tp->t_flags &= ~TF_ENCLOSESEG;
472 	flags = q->tqe_th->th_flags & TH_FIN;
473 	LIST_REMOVE(q, tqe_q);
474 	KASSERT(LIST_EMPTY(&tp->t_segq) ||
475 		LIST_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
476 		("segment not coalesced"));
477 	if (so->so_state & SS_CANTRCVMORE) {
478 		m_freem(q->tqe_m);
479 	} else {
480 		lwkt_gettoken(&so->so_rcv.ssb_token);
481 		ssb_appendstream(&so->so_rcv, q->tqe_m);
482 		lwkt_reltoken(&so->so_rcv.ssb_token);
483 	}
484 	kfree(q, M_TSEGQ);
485 	atomic_add_int(&tcp_reass_qsize, -1);
486 	ND6_HINT(tp);
487 	sorwakeup(so);
488 	return (flags);
489 }
490 
491 /*
492  * TCP input routine, follows pages 65-76 of the
493  * protocol specification dated September, 1981 very closely.
494  */
495 #ifdef INET6
496 int
497 tcp6_input(struct mbuf **mp, int *offp, int proto)
498 {
499 	struct mbuf *m = *mp;
500 	struct in6_ifaddr *ia6;
501 
502 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
503 
504 	/*
505 	 * draft-itojun-ipv6-tcp-to-anycast
506 	 * better place to put this in?
507 	 */
508 	ia6 = ip6_getdstifaddr(m);
509 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
510 		struct ip6_hdr *ip6;
511 
512 		ip6 = mtod(m, struct ip6_hdr *);
513 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
514 			    offsetof(struct ip6_hdr, ip6_dst));
515 		return (IPPROTO_DONE);
516 	}
517 
518 	tcp_input(mp, offp, proto);
519 	return (IPPROTO_DONE);
520 }
521 #endif
522 
523 int
524 tcp_input(struct mbuf **mp, int *offp, int proto)
525 {
526 	int off0;
527 	struct tcphdr *th;
528 	struct ip *ip = NULL;
529 	struct ipovly *ipov;
530 	struct inpcb *inp = NULL;
531 	u_char *optp = NULL;
532 	int optlen = 0;
533 	int tlen, off;
534 	int len = 0;
535 	int drop_hdrlen;
536 	struct tcpcb *tp = NULL;
537 	int thflags;
538 	struct socket *so = NULL;
539 	int todrop, acked;
540 	boolean_t ourfinisacked, needoutput = FALSE;
541 	u_long tiwin;
542 	int recvwin;
543 	struct tcpopt to;		/* options in this segment */
544 	struct sockaddr_in *next_hop = NULL;
545 	int rstreason; /* For badport_bandlim accounting purposes */
546 	int cpu;
547 	struct ip6_hdr *ip6 = NULL;
548 	struct mbuf *m;
549 #ifdef INET6
550 	boolean_t isipv6;
551 #else
552 	const boolean_t isipv6 = FALSE;
553 #endif
554 #ifdef TCPDEBUG
555 	short ostate = 0;
556 #endif
557 
558 	off0 = *offp;
559 	m = *mp;
560 	*mp = NULL;
561 
562 	tcpstat.tcps_rcvtotal++;
563 
564 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
565 		struct m_tag *mtag;
566 
567 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
568 		KKASSERT(mtag != NULL);
569 		next_hop = m_tag_data(mtag);
570 	}
571 
572 #ifdef INET6
573 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
574 #endif
575 
576 	if (isipv6) {
577 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
578 		ip6 = mtod(m, struct ip6_hdr *);
579 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
580 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
581 			tcpstat.tcps_rcvbadsum++;
582 			goto drop;
583 		}
584 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
585 
586 		/*
587 		 * Be proactive about unspecified IPv6 address in source.
588 		 * As we use all-zero to indicate unbounded/unconnected pcb,
589 		 * unspecified IPv6 address can be used to confuse us.
590 		 *
591 		 * Note that packets with unspecified IPv6 destination is
592 		 * already dropped in ip6_input.
593 		 */
594 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
595 			/* XXX stat */
596 			goto drop;
597 		}
598 	} else {
599 		/*
600 		 * Get IP and TCP header together in first mbuf.
601 		 * Note: IP leaves IP header in first mbuf.
602 		 */
603 		if (off0 > sizeof(struct ip)) {
604 			ip_stripoptions(m);
605 			off0 = sizeof(struct ip);
606 		}
607 		/* already checked and pulled up in ip_demux() */
608 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
609 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
610 		ip = mtod(m, struct ip *);
611 		ipov = (struct ipovly *)ip;
612 		th = (struct tcphdr *)((caddr_t)ip + off0);
613 		tlen = ip->ip_len;
614 
615 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
616 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
617 				th->th_sum = m->m_pkthdr.csum_data;
618 			else
619 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
620 						ip->ip_dst.s_addr,
621 						htonl(m->m_pkthdr.csum_data +
622 							ip->ip_len +
623 							IPPROTO_TCP));
624 			th->th_sum ^= 0xffff;
625 		} else {
626 			/*
627 			 * Checksum extended TCP header and data.
628 			 */
629 			len = sizeof(struct ip) + tlen;
630 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
631 			ipov->ih_len = (u_short)tlen;
632 			ipov->ih_len = htons(ipov->ih_len);
633 			th->th_sum = in_cksum(m, len);
634 		}
635 		if (th->th_sum) {
636 			tcpstat.tcps_rcvbadsum++;
637 			goto drop;
638 		}
639 #ifdef INET6
640 		/* Re-initialization for later version check */
641 		ip->ip_v = IPVERSION;
642 #endif
643 	}
644 
645 	/*
646 	 * Check that TCP offset makes sense,
647 	 * pull out TCP options and adjust length.		XXX
648 	 */
649 	off = th->th_off << 2;
650 	/* already checked and pulled up in ip_demux() */
651 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
652 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
653 	tlen -= off;	/* tlen is used instead of ti->ti_len */
654 	if (off > sizeof(struct tcphdr)) {
655 		if (isipv6) {
656 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
657 			ip6 = mtod(m, struct ip6_hdr *);
658 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
659 		} else {
660 			/* already pulled up in ip_demux() */
661 			KASSERT(m->m_len >= sizeof(struct ip) + off,
662 			    ("TCP header and options not in one mbuf: "
663 			     "m_len %d, off %d", m->m_len, off));
664 		}
665 		optlen = off - sizeof(struct tcphdr);
666 		optp = (u_char *)(th + 1);
667 	}
668 	thflags = th->th_flags;
669 
670 #ifdef TCP_DROP_SYNFIN
671 	/*
672 	 * If the drop_synfin option is enabled, drop all packets with
673 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
674 	 * identifying the TCP/IP stack.
675 	 *
676 	 * This is a violation of the TCP specification.
677 	 */
678 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
679 		goto drop;
680 #endif
681 
682 	/*
683 	 * Convert TCP protocol specific fields to host format.
684 	 */
685 	th->th_seq = ntohl(th->th_seq);
686 	th->th_ack = ntohl(th->th_ack);
687 	th->th_win = ntohs(th->th_win);
688 	th->th_urp = ntohs(th->th_urp);
689 
690 	/*
691 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
692 	 * until after ip6_savecontrol() is called and before other functions
693 	 * which don't want those proto headers.
694 	 * Because ip6_savecontrol() is going to parse the mbuf to
695 	 * search for data to be passed up to user-land, it wants mbuf
696 	 * parameters to be unchanged.
697 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
698 	 * latest version of the advanced API (20020110).
699 	 */
700 	drop_hdrlen = off0 + off;
701 
702 	/*
703 	 * Locate pcb for segment.
704 	 */
705 findpcb:
706 	/* IPFIREWALL_FORWARD section */
707 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
708 		/*
709 		 * Transparently forwarded. Pretend to be the destination.
710 		 * already got one like this?
711 		 */
712 		cpu = mycpu->gd_cpuid;
713 		inp = in_pcblookup_hash(&tcbinfo[cpu],
714 					ip->ip_src, th->th_sport,
715 					ip->ip_dst, th->th_dport,
716 					0, m->m_pkthdr.rcvif);
717 		if (!inp) {
718 			/*
719 			 * It's new.  Try to find the ambushing socket.
720 			 */
721 
722 			/*
723 			 * The rest of the ipfw code stores the port in
724 			 * host order.  XXX
725 			 * (The IP address is still in network order.)
726 			 */
727 			in_port_t dport = next_hop->sin_port ?
728 						htons(next_hop->sin_port) :
729 						th->th_dport;
730 
731 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
732 					  next_hop->sin_addr.s_addr, dport);
733 			inp = in_pcblookup_hash(&tcbinfo[cpu],
734 						ip->ip_src, th->th_sport,
735 						next_hop->sin_addr, dport,
736 						1, m->m_pkthdr.rcvif);
737 		}
738 	} else {
739 		if (isipv6) {
740 			inp = in6_pcblookup_hash(&tcbinfo[0],
741 						 &ip6->ip6_src, th->th_sport,
742 						 &ip6->ip6_dst, th->th_dport,
743 						 1, m->m_pkthdr.rcvif);
744 		} else {
745 			cpu = mycpu->gd_cpuid;
746 			inp = in_pcblookup_hash(&tcbinfo[cpu],
747 						ip->ip_src, th->th_sport,
748 						ip->ip_dst, th->th_dport,
749 						1, m->m_pkthdr.rcvif);
750 		}
751 	}
752 
753 	/*
754 	 * If the state is CLOSED (i.e., TCB does not exist) then
755 	 * all data in the incoming segment is discarded.
756 	 * If the TCB exists but is in CLOSED state, it is embryonic,
757 	 * but should either do a listen or a connect soon.
758 	 */
759 	if (inp == NULL) {
760 		if (log_in_vain) {
761 #ifdef INET6
762 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
763 #else
764 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
765 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
766 #endif
767 			if (isipv6) {
768 				strcpy(dbuf, "[");
769 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
770 				strcat(dbuf, "]");
771 				strcpy(sbuf, "[");
772 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
773 				strcat(sbuf, "]");
774 			} else {
775 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
776 				strcpy(sbuf, inet_ntoa(ip->ip_src));
777 			}
778 			switch (log_in_vain) {
779 			case 1:
780 				if (!(thflags & TH_SYN))
781 					break;
782 			case 2:
783 				log(LOG_INFO,
784 				    "Connection attempt to TCP %s:%d "
785 				    "from %s:%d flags:0x%02x\n",
786 				    dbuf, ntohs(th->th_dport), sbuf,
787 				    ntohs(th->th_sport), thflags);
788 				break;
789 			default:
790 				break;
791 			}
792 		}
793 		if (blackhole) {
794 			switch (blackhole) {
795 			case 1:
796 				if (thflags & TH_SYN)
797 					goto drop;
798 				break;
799 			case 2:
800 				goto drop;
801 			default:
802 				goto drop;
803 			}
804 		}
805 		rstreason = BANDLIM_RST_CLOSEDPORT;
806 		goto dropwithreset;
807 	}
808 
809 #ifdef IPSEC
810 	if (isipv6) {
811 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
812 			ipsec6stat.in_polvio++;
813 			goto drop;
814 		}
815 	} else {
816 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
817 			ipsecstat.in_polvio++;
818 			goto drop;
819 		}
820 	}
821 #endif
822 #ifdef FAST_IPSEC
823 	if (isipv6) {
824 		if (ipsec6_in_reject(m, inp))
825 			goto drop;
826 	} else {
827 		if (ipsec4_in_reject(m, inp))
828 			goto drop;
829 	}
830 #endif
831 	/* Check the minimum TTL for socket. */
832 #ifdef INET6
833 	if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
834 		goto drop;
835 #endif
836 
837 	tp = intotcpcb(inp);
838 	if (tp == NULL) {
839 		rstreason = BANDLIM_RST_CLOSEDPORT;
840 		goto dropwithreset;
841 	}
842 	if (tp->t_state <= TCPS_CLOSED)
843 		goto drop;
844 
845 	/* Unscale the window into a 32-bit value. */
846 	if (!(thflags & TH_SYN))
847 		tiwin = th->th_win << tp->snd_scale;
848 	else
849 		tiwin = th->th_win;
850 
851 	so = inp->inp_socket;
852 
853 #ifdef TCPDEBUG
854 	if (so->so_options & SO_DEBUG) {
855 		ostate = tp->t_state;
856 		if (isipv6)
857 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
858 		else
859 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
860 		tcp_savetcp = *th;
861 	}
862 #endif
863 
864 	bzero(&to, sizeof to);
865 
866 	if (so->so_options & SO_ACCEPTCONN) {
867 		struct in_conninfo inc;
868 
869 #ifdef INET6
870 		inc.inc_isipv6 = (isipv6 == TRUE);
871 #endif
872 		if (isipv6) {
873 			inc.inc6_faddr = ip6->ip6_src;
874 			inc.inc6_laddr = ip6->ip6_dst;
875 			inc.inc6_route.ro_rt = NULL;		/* XXX */
876 		} else {
877 			inc.inc_faddr = ip->ip_src;
878 			inc.inc_laddr = ip->ip_dst;
879 			inc.inc_route.ro_rt = NULL;		/* XXX */
880 		}
881 		inc.inc_fport = th->th_sport;
882 		inc.inc_lport = th->th_dport;
883 
884 		/*
885 		 * If the state is LISTEN then ignore segment if it contains
886 		 * a RST.  If the segment contains an ACK then it is bad and
887 		 * send a RST.  If it does not contain a SYN then it is not
888 		 * interesting; drop it.
889 		 *
890 		 * If the state is SYN_RECEIVED (syncache) and seg contains
891 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
892 		 * contains a RST, check the sequence number to see if it
893 		 * is a valid reset segment.
894 		 */
895 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
896 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
897 				if (!syncache_expand(&inc, th, &so, m)) {
898 					/*
899 					 * No syncache entry, or ACK was not
900 					 * for our SYN/ACK.  Send a RST.
901 					 */
902 					tcpstat.tcps_badsyn++;
903 					rstreason = BANDLIM_RST_OPENPORT;
904 					goto dropwithreset;
905 				}
906 
907 				/*
908 				 * Could not complete 3-way handshake,
909 				 * connection is being closed down, and
910 				 * syncache will free mbuf.
911 				 */
912 				if (so == NULL)
913 					return(IPPROTO_DONE);
914 
915 				/*
916 				 * We must be in the correct protocol thread
917 				 * for this connection.
918 				 */
919 				KKASSERT(so->so_port == &curthread->td_msgport);
920 
921 				/*
922 				 * Socket is created in state SYN_RECEIVED.
923 				 * Continue processing segment.
924 				 */
925 				inp = so->so_pcb;
926 				tp = intotcpcb(inp);
927 				/*
928 				 * This is what would have happened in
929 				 * tcp_output() when the SYN,ACK was sent.
930 				 */
931 				tp->snd_up = tp->snd_una;
932 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
933 				tp->last_ack_sent = tp->rcv_nxt;
934 /*
935  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
936  * until the _second_ ACK is received:
937  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
938  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
939  *	  move to ESTAB, set snd_wnd to tiwin.
940  */
941 				tp->snd_wnd = tiwin;	/* unscaled */
942 				goto after_listen;
943 			}
944 			if (thflags & TH_RST) {
945 				syncache_chkrst(&inc, th);
946 				goto drop;
947 			}
948 			if (thflags & TH_ACK) {
949 				syncache_badack(&inc);
950 				tcpstat.tcps_badsyn++;
951 				rstreason = BANDLIM_RST_OPENPORT;
952 				goto dropwithreset;
953 			}
954 			goto drop;
955 		}
956 
957 		/*
958 		 * Segment's flags are (SYN) or (SYN | FIN).
959 		 */
960 #ifdef INET6
961 		/*
962 		 * If deprecated address is forbidden,
963 		 * we do not accept SYN to deprecated interface
964 		 * address to prevent any new inbound connection from
965 		 * getting established.
966 		 * When we do not accept SYN, we send a TCP RST,
967 		 * with deprecated source address (instead of dropping
968 		 * it).  We compromise it as it is much better for peer
969 		 * to send a RST, and RST will be the final packet
970 		 * for the exchange.
971 		 *
972 		 * If we do not forbid deprecated addresses, we accept
973 		 * the SYN packet.  RFC2462 does not suggest dropping
974 		 * SYN in this case.
975 		 * If we decipher RFC2462 5.5.4, it says like this:
976 		 * 1. use of deprecated addr with existing
977 		 *    communication is okay - "SHOULD continue to be
978 		 *    used"
979 		 * 2. use of it with new communication:
980 		 *   (2a) "SHOULD NOT be used if alternate address
981 		 *	  with sufficient scope is available"
982 		 *   (2b) nothing mentioned otherwise.
983 		 * Here we fall into (2b) case as we have no choice in
984 		 * our source address selection - we must obey the peer.
985 		 *
986 		 * The wording in RFC2462 is confusing, and there are
987 		 * multiple description text for deprecated address
988 		 * handling - worse, they are not exactly the same.
989 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
990 		 */
991 		if (isipv6 && !ip6_use_deprecated) {
992 			struct in6_ifaddr *ia6;
993 
994 			if ((ia6 = ip6_getdstifaddr(m)) &&
995 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
996 				tp = NULL;
997 				rstreason = BANDLIM_RST_OPENPORT;
998 				goto dropwithreset;
999 			}
1000 		}
1001 #endif
1002 		/*
1003 		 * If it is from this socket, drop it, it must be forged.
1004 		 * Don't bother responding if the destination was a broadcast.
1005 		 */
1006 		if (th->th_dport == th->th_sport) {
1007 			if (isipv6) {
1008 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1009 						       &ip6->ip6_src))
1010 					goto drop;
1011 			} else {
1012 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1013 					goto drop;
1014 			}
1015 		}
1016 		/*
1017 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1018 		 *
1019 		 * Note that it is quite possible to receive unicast
1020 		 * link-layer packets with a broadcast IP address. Use
1021 		 * in_broadcast() to find them.
1022 		 */
1023 		if (m->m_flags & (M_BCAST | M_MCAST))
1024 			goto drop;
1025 		if (isipv6) {
1026 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1027 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1028 				goto drop;
1029 		} else {
1030 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1031 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1032 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1033 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1034 				goto drop;
1035 		}
1036 		/*
1037 		 * SYN appears to be valid; create compressed TCP state
1038 		 * for syncache, or perform t/tcp connection.
1039 		 */
1040 		if (so->so_qlen <= so->so_qlimit) {
1041 			tcp_dooptions(&to, optp, optlen, TRUE);
1042 			if (!syncache_add(&inc, &to, th, so, m))
1043 				goto drop;
1044 
1045 			/*
1046 			 * Entry added to syncache, mbuf used to
1047 			 * send SYN,ACK packet.
1048 			 */
1049 			return(IPPROTO_DONE);
1050 		}
1051 		goto drop;
1052 	}
1053 
1054 after_listen:
1055 	/*
1056 	 * Should not happen - syncache should pick up these connections.
1057 	 *
1058 	 * Once we are past handling listen sockets we must be in the
1059 	 * correct protocol processing thread.
1060 	 */
1061 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1062 	KKASSERT(so->so_port == &curthread->td_msgport);
1063 
1064 	/*
1065 	 * This is the second part of the MSS DoS prevention code (after
1066 	 * minmss on the sending side) and it deals with too many too small
1067 	 * tcp packets in a too short timeframe (1 second).
1068 	 *
1069 	 * XXX Removed.  This code was crap.  It does not scale to network
1070 	 *     speed, and default values break NFS.  Gone.
1071 	 */
1072 	/* REMOVED */
1073 
1074 	/*
1075 	 * Segment received on connection.
1076 	 *
1077 	 * Reset idle time and keep-alive timer.  Don't waste time if less
1078 	 * then a second has elapsed.
1079 	 */
1080 	if ((int)(ticks - tp->t_rcvtime) > hz)
1081 		tcp_timer_keep_activity(tp, thflags);
1082 
1083 	/*
1084 	 * Process options.
1085 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1086 	 */
1087 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0);
1088 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1089 		if (to.to_flags & TOF_SCALE) {
1090 			tp->t_flags |= TF_RCVD_SCALE;
1091 			tp->requested_s_scale = to.to_requested_s_scale;
1092 		}
1093 		if (to.to_flags & TOF_TS) {
1094 			tp->t_flags |= TF_RCVD_TSTMP;
1095 			tp->ts_recent = to.to_tsval;
1096 			tp->ts_recent_age = ticks;
1097 		}
1098 		if (!(to.to_flags & TOF_MSS))
1099 			to.to_mss = 0;
1100 		tcp_mss(tp, to.to_mss);
1101 		/*
1102 		 * Only set the TF_SACK_PERMITTED per-connection flag
1103 		 * if we got a SACK_PERMITTED option from the other side
1104 		 * and the global tcp_do_sack variable is true.
1105 		 */
1106 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1107 			tp->t_flags |= TF_SACK_PERMITTED;
1108 	}
1109 
1110 	/*
1111 	 * Header prediction: check for the two common cases
1112 	 * of a uni-directional data xfer.  If the packet has
1113 	 * no control flags, is in-sequence, the window didn't
1114 	 * change and we're not retransmitting, it's a
1115 	 * candidate.  If the length is zero and the ack moved
1116 	 * forward, we're the sender side of the xfer.  Just
1117 	 * free the data acked & wake any higher level process
1118 	 * that was blocked waiting for space.  If the length
1119 	 * is non-zero and the ack didn't move, we're the
1120 	 * receiver side.  If we're getting packets in-order
1121 	 * (the reassembly queue is empty), add the data to
1122 	 * the socket buffer and note that we need a delayed ack.
1123 	 * Make sure that the hidden state-flags are also off.
1124 	 * Since we check for TCPS_ESTABLISHED above, it can only
1125 	 * be TH_NEEDSYN.
1126 	 */
1127 	if (tp->t_state == TCPS_ESTABLISHED &&
1128 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1129 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1130 	    (!(to.to_flags & TOF_TS) ||
1131 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1132 	    th->th_seq == tp->rcv_nxt &&
1133 	    tp->snd_nxt == tp->snd_max) {
1134 
1135 		/*
1136 		 * If last ACK falls within this segment's sequence numbers,
1137 		 * record the timestamp.
1138 		 * NOTE that the test is modified according to the latest
1139 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1140 		 */
1141 		if ((to.to_flags & TOF_TS) &&
1142 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1143 			tp->ts_recent_age = ticks;
1144 			tp->ts_recent = to.to_tsval;
1145 		}
1146 
1147 		if (tlen == 0) {
1148 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1149 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1150 			    tp->snd_cwnd >= tp->snd_wnd &&
1151 			    !IN_FASTRECOVERY(tp)) {
1152 				/*
1153 				 * This is a pure ack for outstanding data.
1154 				 */
1155 				++tcpstat.tcps_predack;
1156 				/*
1157 				 * "bad retransmit" recovery
1158 				 *
1159 				 * If Eifel detection applies, then
1160 				 * it is deterministic, so use it
1161 				 * unconditionally over the old heuristic.
1162 				 * Otherwise, fall back to the old heuristic.
1163 				 */
1164 				if (tcp_do_eifel_detect &&
1165 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1166 				    (tp->t_flags & TF_FIRSTACCACK)) {
1167 					/* Eifel detection applicable. */
1168 					if (to.to_tsecr < tp->t_rexmtTS) {
1169 						tcp_revert_congestion_state(tp);
1170 						++tcpstat.tcps_eifeldetected;
1171 						if (tp->t_rxtshift != 1 ||
1172 						    ticks >= tp->t_badrxtwin)
1173 							++tcpstat.tcps_rttcantdetect;
1174 					}
1175 				} else if (tp->t_rxtshift == 1 &&
1176 					   ticks < tp->t_badrxtwin) {
1177 					tcp_revert_congestion_state(tp);
1178 					++tcpstat.tcps_rttdetected;
1179 				}
1180 				tp->t_flags &= ~(TF_FIRSTACCACK |
1181 						 TF_FASTREXMT | TF_EARLYREXMT);
1182 				/*
1183 				 * Recalculate the retransmit timer / rtt.
1184 				 *
1185 				 * Some machines (certain windows boxes)
1186 				 * send broken timestamp replies during the
1187 				 * SYN+ACK phase, ignore timestamps of 0.
1188 				 */
1189 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1190 					tcp_xmit_timer(tp,
1191 						       ticks - to.to_tsecr + 1);
1192 				} else if (tp->t_rtttime &&
1193 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1194 					tcp_xmit_timer(tp,
1195 						       ticks - tp->t_rtttime);
1196 				}
1197 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1198 				acked = th->th_ack - tp->snd_una;
1199 				tcpstat.tcps_rcvackpack++;
1200 				tcpstat.tcps_rcvackbyte += acked;
1201 				sbdrop(&so->so_snd.sb, acked);
1202 				tp->snd_recover = th->th_ack - 1;
1203 				tp->snd_una = th->th_ack;
1204 				tp->t_dupacks = 0;
1205 				/*
1206 				 * Update window information.
1207 				 */
1208 				if (tiwin != tp->snd_wnd &&
1209 				    acceptable_window_update(tp, th, tiwin)) {
1210 					/* keep track of pure window updates */
1211 					if (tp->snd_wl2 == th->th_ack &&
1212 					    tiwin > tp->snd_wnd)
1213 						tcpstat.tcps_rcvwinupd++;
1214 					tp->snd_wnd = tiwin;
1215 					tp->snd_wl1 = th->th_seq;
1216 					tp->snd_wl2 = th->th_ack;
1217 					if (tp->snd_wnd > tp->max_sndwnd)
1218 						tp->max_sndwnd = tp->snd_wnd;
1219 				}
1220 				m_freem(m);
1221 				ND6_HINT(tp); /* some progress has been done */
1222 				/*
1223 				 * If all outstanding data are acked, stop
1224 				 * retransmit timer, otherwise restart timer
1225 				 * using current (possibly backed-off) value.
1226 				 * If process is waiting for space,
1227 				 * wakeup/selwakeup/signal.  If data
1228 				 * are ready to send, let tcp_output
1229 				 * decide between more output or persist.
1230 				 */
1231 				if (tp->snd_una == tp->snd_max) {
1232 					tcp_callout_stop(tp, tp->tt_rexmt);
1233 				} else if (!tcp_callout_active(tp,
1234 					    tp->tt_persist)) {
1235 					tcp_callout_reset(tp, tp->tt_rexmt,
1236 					    tp->t_rxtcur, tcp_timer_rexmt);
1237 				}
1238 				sowwakeup(so);
1239 				if (so->so_snd.ssb_cc > 0)
1240 					tcp_output(tp);
1241 				return(IPPROTO_DONE);
1242 			}
1243 		} else if (tiwin == tp->snd_wnd &&
1244 		    th->th_ack == tp->snd_una &&
1245 		    LIST_EMPTY(&tp->t_segq) &&
1246 		    tlen <= ssb_space(&so->so_rcv)) {
1247 			u_long newsize = 0;	/* automatic sockbuf scaling */
1248 			/*
1249 			 * This is a pure, in-sequence data packet
1250 			 * with nothing on the reassembly queue and
1251 			 * we have enough buffer space to take it.
1252 			 */
1253 			++tcpstat.tcps_preddat;
1254 			tp->rcv_nxt += tlen;
1255 			tcpstat.tcps_rcvpack++;
1256 			tcpstat.tcps_rcvbyte += tlen;
1257 			ND6_HINT(tp);	/* some progress has been done */
1258 		/*
1259 		 * Automatic sizing of receive socket buffer.  Often the send
1260 		 * buffer size is not optimally adjusted to the actual network
1261 		 * conditions at hand (delay bandwidth product).  Setting the
1262 		 * buffer size too small limits throughput on links with high
1263 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1264 		 *
1265 		 * On the receive side the socket buffer memory is only rarely
1266 		 * used to any significant extent.  This allows us to be much
1267 		 * more aggressive in scaling the receive socket buffer.  For
1268 		 * the case that the buffer space is actually used to a large
1269 		 * extent and we run out of kernel memory we can simply drop
1270 		 * the new segments; TCP on the sender will just retransmit it
1271 		 * later.  Setting the buffer size too big may only consume too
1272 		 * much kernel memory if the application doesn't read() from
1273 		 * the socket or packet loss or reordering makes use of the
1274 		 * reassembly queue.
1275 		 *
1276 		 * The criteria to step up the receive buffer one notch are:
1277 		 *  1. the number of bytes received during the time it takes
1278 		 *     one timestamp to be reflected back to us (the RTT);
1279 		 *  2. received bytes per RTT is within seven eighth of the
1280 		 *     current socket buffer size;
1281 		 *  3. receive buffer size has not hit maximal automatic size;
1282 		 *
1283 		 * This algorithm does one step per RTT at most and only if
1284 		 * we receive a bulk stream w/o packet losses or reorderings.
1285 		 * Shrinking the buffer during idle times is not necessary as
1286 		 * it doesn't consume any memory when idle.
1287 		 *
1288 		 * TODO: Only step up if the application is actually serving
1289 		 * the buffer to better manage the socket buffer resources.
1290 		 */
1291 			if (tcp_do_autorcvbuf &&
1292 			    to.to_tsecr &&
1293 			    (so->so_rcv.ssb_flags & SSB_AUTOSIZE)) {
1294 				if (to.to_tsecr > tp->rfbuf_ts &&
1295 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1296 					if (tp->rfbuf_cnt >
1297 					    (so->so_rcv.ssb_hiwat / 8 * 7) &&
1298 					    so->so_rcv.ssb_hiwat <
1299 					    tcp_autorcvbuf_max) {
1300 						newsize =
1301 						    ulmin(so->so_rcv.ssb_hiwat +
1302 							  tcp_autorcvbuf_inc,
1303 							  tcp_autorcvbuf_max);
1304 					}
1305 					/* Start over with next RTT. */
1306 					tp->rfbuf_ts = 0;
1307 					tp->rfbuf_cnt = 0;
1308 				} else
1309 					tp->rfbuf_cnt += tlen;	/* add up */
1310 			}
1311 			/*
1312 			 * Add data to socket buffer.
1313 			 */
1314 			if (so->so_state & SS_CANTRCVMORE) {
1315 				m_freem(m);
1316 			} else {
1317 				/*
1318 				 * Set new socket buffer size, give up when
1319 				 * limit is reached.
1320 				 *
1321 				 * Adjusting the size can mess up ACK
1322 				 * sequencing when pure window updates are
1323 				 * being avoided (which is the default),
1324 				 * so force an ack.
1325 				 */
1326 				lwkt_gettoken(&so->so_rcv.ssb_token);
1327 				if (newsize) {
1328 					tp->t_flags |= TF_RXRESIZED;
1329 					if (!ssb_reserve(&so->so_rcv, newsize,
1330 							 so, NULL)) {
1331 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1332 					}
1333 					if (newsize >=
1334 					    (TCP_MAXWIN << tp->rcv_scale)) {
1335 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1336 					}
1337 				}
1338 				m_adj(m, drop_hdrlen); /* delayed header drop */
1339 				ssb_appendstream(&so->so_rcv, m);
1340 				lwkt_reltoken(&so->so_rcv.ssb_token);
1341 			}
1342 			sorwakeup(so);
1343 			/*
1344 			 * This code is responsible for most of the ACKs
1345 			 * the TCP stack sends back after receiving a data
1346 			 * packet.  Note that the DELAY_ACK check fails if
1347 			 * the delack timer is already running, which results
1348 			 * in an ack being sent every other packet (which is
1349 			 * what we want).
1350 			 *
1351 			 * We then further aggregate acks by not actually
1352 			 * sending one until the protocol thread has completed
1353 			 * processing the current backlog of packets.  This
1354 			 * does not delay the ack any further, but allows us
1355 			 * to take advantage of the packet aggregation that
1356 			 * high speed NICs do (usually blocks of 8-10 packets)
1357 			 * to send a single ack rather then four or five acks,
1358 			 * greatly reducing the ack rate, the return channel
1359 			 * bandwidth, and the protocol overhead on both ends.
1360 			 *
1361 			 * Since this also has the effect of slowing down
1362 			 * the exponential slow-start ramp-up, systems with
1363 			 * very large bandwidth-delay products might want
1364 			 * to turn the feature off.
1365 			 */
1366 			if (DELAY_ACK(tp)) {
1367 				tcp_callout_reset(tp, tp->tt_delack,
1368 				    tcp_delacktime, tcp_timer_delack);
1369 			} else if (tcp_aggregate_acks) {
1370 				tp->t_flags |= TF_ACKNOW;
1371 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1372 					tp->t_flags |= TF_ONOUTPUTQ;
1373 					tp->tt_cpu = mycpu->gd_cpuid;
1374 					TAILQ_INSERT_TAIL(
1375 					    &tcpcbackq[tp->tt_cpu],
1376 					    tp, t_outputq);
1377 				}
1378 			} else {
1379 				tp->t_flags |= TF_ACKNOW;
1380 				tcp_output(tp);
1381 			}
1382 			return(IPPROTO_DONE);
1383 		}
1384 	}
1385 
1386 	/*
1387 	 * Calculate amount of space in receive window,
1388 	 * and then do TCP input processing.
1389 	 * Receive window is amount of space in rcv queue,
1390 	 * but not less than advertised window.
1391 	 */
1392 	recvwin = ssb_space(&so->so_rcv);
1393 	if (recvwin < 0)
1394 		recvwin = 0;
1395 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1396 
1397 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1398 	tp->rfbuf_ts = 0;
1399 	tp->rfbuf_cnt = 0;
1400 
1401 	switch (tp->t_state) {
1402 	/*
1403 	 * If the state is SYN_RECEIVED:
1404 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1405 	 */
1406 	case TCPS_SYN_RECEIVED:
1407 		if ((thflags & TH_ACK) &&
1408 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1409 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1410 				rstreason = BANDLIM_RST_OPENPORT;
1411 				goto dropwithreset;
1412 		}
1413 		break;
1414 
1415 	/*
1416 	 * If the state is SYN_SENT:
1417 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1418 	 *	if seg contains a RST, then drop the connection.
1419 	 *	if seg does not contain SYN, then drop it.
1420 	 * Otherwise this is an acceptable SYN segment
1421 	 *	initialize tp->rcv_nxt and tp->irs
1422 	 *	if seg contains ack then advance tp->snd_una
1423 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1424 	 *	arrange for segment to be acked (eventually)
1425 	 *	continue processing rest of data/controls, beginning with URG
1426 	 */
1427 	case TCPS_SYN_SENT:
1428 		if ((thflags & TH_ACK) &&
1429 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1430 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1431 			rstreason = BANDLIM_UNLIMITED;
1432 			goto dropwithreset;
1433 		}
1434 		if (thflags & TH_RST) {
1435 			if (thflags & TH_ACK)
1436 				tp = tcp_drop(tp, ECONNREFUSED);
1437 			goto drop;
1438 		}
1439 		if (!(thflags & TH_SYN))
1440 			goto drop;
1441 		tp->snd_wnd = th->th_win;	/* initial send window */
1442 
1443 		tp->irs = th->th_seq;
1444 		tcp_rcvseqinit(tp);
1445 		if (thflags & TH_ACK) {
1446 			/* Our SYN was acked. */
1447 			tcpstat.tcps_connects++;
1448 			soisconnected(so);
1449 			/* Do window scaling on this connection? */
1450 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1451 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1452 				tp->snd_scale = tp->requested_s_scale;
1453 				tp->rcv_scale = tp->request_r_scale;
1454 			}
1455 			tp->rcv_adv += tp->rcv_wnd;
1456 			tp->snd_una++;		/* SYN is acked */
1457 			tcp_callout_stop(tp, tp->tt_rexmt);
1458 			/*
1459 			 * If there's data, delay ACK; if there's also a FIN
1460 			 * ACKNOW will be turned on later.
1461 			 */
1462 			if (DELAY_ACK(tp) && tlen != 0) {
1463 				tcp_callout_reset(tp, tp->tt_delack,
1464 				    tcp_delacktime, tcp_timer_delack);
1465 			} else {
1466 				tp->t_flags |= TF_ACKNOW;
1467 			}
1468 			/*
1469 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1470 			 * Transitions:
1471 			 *	SYN_SENT  --> ESTABLISHED
1472 			 *	SYN_SENT* --> FIN_WAIT_1
1473 			 */
1474 			tp->t_starttime = ticks;
1475 			if (tp->t_flags & TF_NEEDFIN) {
1476 				tp->t_state = TCPS_FIN_WAIT_1;
1477 				tp->t_flags &= ~TF_NEEDFIN;
1478 				thflags &= ~TH_SYN;
1479 			} else {
1480 				tcp_established(tp);
1481 			}
1482 		} else {
1483 			/*
1484 			 * Received initial SYN in SYN-SENT[*] state =>
1485 			 * simultaneous open.
1486 			 * Do 3-way handshake:
1487 			 *	  SYN-SENT -> SYN-RECEIVED
1488 			 *	  SYN-SENT* -> SYN-RECEIVED*
1489 			 */
1490 			tp->t_flags |= TF_ACKNOW;
1491 			tcp_callout_stop(tp, tp->tt_rexmt);
1492 			tp->t_state = TCPS_SYN_RECEIVED;
1493 		}
1494 
1495 		/*
1496 		 * Advance th->th_seq to correspond to first data byte.
1497 		 * If data, trim to stay within window,
1498 		 * dropping FIN if necessary.
1499 		 */
1500 		th->th_seq++;
1501 		if (tlen > tp->rcv_wnd) {
1502 			todrop = tlen - tp->rcv_wnd;
1503 			m_adj(m, -todrop);
1504 			tlen = tp->rcv_wnd;
1505 			thflags &= ~TH_FIN;
1506 			tcpstat.tcps_rcvpackafterwin++;
1507 			tcpstat.tcps_rcvbyteafterwin += todrop;
1508 		}
1509 		tp->snd_wl1 = th->th_seq - 1;
1510 		tp->rcv_up = th->th_seq;
1511 		/*
1512 		 * Client side of transaction: already sent SYN and data.
1513 		 * If the remote host used T/TCP to validate the SYN,
1514 		 * our data will be ACK'd; if so, enter normal data segment
1515 		 * processing in the middle of step 5, ack processing.
1516 		 * Otherwise, goto step 6.
1517 		 */
1518 		if (thflags & TH_ACK)
1519 			goto process_ACK;
1520 
1521 		goto step6;
1522 
1523 	/*
1524 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1525 	 *	do normal processing (we no longer bother with T/TCP).
1526 	 */
1527 	case TCPS_LAST_ACK:
1528 	case TCPS_CLOSING:
1529 	case TCPS_TIME_WAIT:
1530 		break;  /* continue normal processing */
1531 	}
1532 
1533 	/*
1534 	 * States other than LISTEN or SYN_SENT.
1535 	 * First check the RST flag and sequence number since reset segments
1536 	 * are exempt from the timestamp and connection count tests.  This
1537 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1538 	 * below which allowed reset segments in half the sequence space
1539 	 * to fall though and be processed (which gives forged reset
1540 	 * segments with a random sequence number a 50 percent chance of
1541 	 * killing a connection).
1542 	 * Then check timestamp, if present.
1543 	 * Then check the connection count, if present.
1544 	 * Then check that at least some bytes of segment are within
1545 	 * receive window.  If segment begins before rcv_nxt,
1546 	 * drop leading data (and SYN); if nothing left, just ack.
1547 	 *
1548 	 *
1549 	 * If the RST bit is set, check the sequence number to see
1550 	 * if this is a valid reset segment.
1551 	 * RFC 793 page 37:
1552 	 *   In all states except SYN-SENT, all reset (RST) segments
1553 	 *   are validated by checking their SEQ-fields.  A reset is
1554 	 *   valid if its sequence number is in the window.
1555 	 * Note: this does not take into account delayed ACKs, so
1556 	 *   we should test against last_ack_sent instead of rcv_nxt.
1557 	 *   The sequence number in the reset segment is normally an
1558 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1559 	 *   send a reset with the sequence number at the rightmost edge
1560 	 *   of our receive window, and we have to handle this case.
1561 	 * If we have multiple segments in flight, the intial reset
1562 	 * segment sequence numbers will be to the left of last_ack_sent,
1563 	 * but they will eventually catch up.
1564 	 * In any case, it never made sense to trim reset segments to
1565 	 * fit the receive window since RFC 1122 says:
1566 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1567 	 *
1568 	 *    A TCP SHOULD allow a received RST segment to include data.
1569 	 *
1570 	 *    DISCUSSION
1571 	 *	   It has been suggested that a RST segment could contain
1572 	 *	   ASCII text that encoded and explained the cause of the
1573 	 *	   RST.  No standard has yet been established for such
1574 	 *	   data.
1575 	 *
1576 	 * If the reset segment passes the sequence number test examine
1577 	 * the state:
1578 	 *    SYN_RECEIVED STATE:
1579 	 *	If passive open, return to LISTEN state.
1580 	 *	If active open, inform user that connection was refused.
1581 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1582 	 *	Inform user that connection was reset, and close tcb.
1583 	 *    CLOSING, LAST_ACK STATES:
1584 	 *	Close the tcb.
1585 	 *    TIME_WAIT STATE:
1586 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1587 	 *	RFC 1337.
1588 	 */
1589 	if (thflags & TH_RST) {
1590 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1591 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1592 			switch (tp->t_state) {
1593 
1594 			case TCPS_SYN_RECEIVED:
1595 				so->so_error = ECONNREFUSED;
1596 				goto close;
1597 
1598 			case TCPS_ESTABLISHED:
1599 			case TCPS_FIN_WAIT_1:
1600 			case TCPS_FIN_WAIT_2:
1601 			case TCPS_CLOSE_WAIT:
1602 				so->so_error = ECONNRESET;
1603 			close:
1604 				tp->t_state = TCPS_CLOSED;
1605 				tcpstat.tcps_drops++;
1606 				tp = tcp_close(tp);
1607 				break;
1608 
1609 			case TCPS_CLOSING:
1610 			case TCPS_LAST_ACK:
1611 				tp = tcp_close(tp);
1612 				break;
1613 
1614 			case TCPS_TIME_WAIT:
1615 				break;
1616 			}
1617 		}
1618 		goto drop;
1619 	}
1620 
1621 	/*
1622 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1623 	 * and it's less than ts_recent, drop it.
1624 	 */
1625 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1626 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1627 
1628 		/* Check to see if ts_recent is over 24 days old.  */
1629 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1630 			/*
1631 			 * Invalidate ts_recent.  If this segment updates
1632 			 * ts_recent, the age will be reset later and ts_recent
1633 			 * will get a valid value.  If it does not, setting
1634 			 * ts_recent to zero will at least satisfy the
1635 			 * requirement that zero be placed in the timestamp
1636 			 * echo reply when ts_recent isn't valid.  The
1637 			 * age isn't reset until we get a valid ts_recent
1638 			 * because we don't want out-of-order segments to be
1639 			 * dropped when ts_recent is old.
1640 			 */
1641 			tp->ts_recent = 0;
1642 		} else {
1643 			tcpstat.tcps_rcvduppack++;
1644 			tcpstat.tcps_rcvdupbyte += tlen;
1645 			tcpstat.tcps_pawsdrop++;
1646 			if (tlen)
1647 				goto dropafterack;
1648 			goto drop;
1649 		}
1650 	}
1651 
1652 	/*
1653 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1654 	 * this connection before trimming the data to fit the receive
1655 	 * window.  Check the sequence number versus IRS since we know
1656 	 * the sequence numbers haven't wrapped.  This is a partial fix
1657 	 * for the "LAND" DoS attack.
1658 	 */
1659 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1660 		rstreason = BANDLIM_RST_OPENPORT;
1661 		goto dropwithreset;
1662 	}
1663 
1664 	todrop = tp->rcv_nxt - th->th_seq;
1665 	if (todrop > 0) {
1666 		if (TCP_DO_SACK(tp)) {
1667 			/* Report duplicate segment at head of packet. */
1668 			tp->reportblk.rblk_start = th->th_seq;
1669 			tp->reportblk.rblk_end = TCP_SACK_BLKEND(
1670 			    th->th_seq + tlen, thflags);
1671 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1672 				tp->reportblk.rblk_end = tp->rcv_nxt;
1673 			tp->t_flags |= (TF_DUPSEG | TF_SACKLEFT | TF_ACKNOW);
1674 		}
1675 		if (thflags & TH_SYN) {
1676 			thflags &= ~TH_SYN;
1677 			th->th_seq++;
1678 			if (th->th_urp > 1)
1679 				th->th_urp--;
1680 			else
1681 				thflags &= ~TH_URG;
1682 			todrop--;
1683 		}
1684 		/*
1685 		 * Following if statement from Stevens, vol. 2, p. 960.
1686 		 */
1687 		if (todrop > tlen ||
1688 		    (todrop == tlen && !(thflags & TH_FIN))) {
1689 			/*
1690 			 * Any valid FIN must be to the left of the window.
1691 			 * At this point the FIN must be a duplicate or out
1692 			 * of sequence; drop it.
1693 			 */
1694 			thflags &= ~TH_FIN;
1695 
1696 			/*
1697 			 * Send an ACK to resynchronize and drop any data.
1698 			 * But keep on processing for RST or ACK.
1699 			 */
1700 			tp->t_flags |= TF_ACKNOW;
1701 			todrop = tlen;
1702 			tcpstat.tcps_rcvduppack++;
1703 			tcpstat.tcps_rcvdupbyte += todrop;
1704 		} else {
1705 			tcpstat.tcps_rcvpartduppack++;
1706 			tcpstat.tcps_rcvpartdupbyte += todrop;
1707 		}
1708 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1709 		th->th_seq += todrop;
1710 		tlen -= todrop;
1711 		if (th->th_urp > todrop)
1712 			th->th_urp -= todrop;
1713 		else {
1714 			thflags &= ~TH_URG;
1715 			th->th_urp = 0;
1716 		}
1717 	}
1718 
1719 	/*
1720 	 * If new data are received on a connection after the
1721 	 * user processes are gone, then RST the other end.
1722 	 */
1723 	if ((so->so_state & SS_NOFDREF) &&
1724 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1725 		tp = tcp_close(tp);
1726 		tcpstat.tcps_rcvafterclose++;
1727 		rstreason = BANDLIM_UNLIMITED;
1728 		goto dropwithreset;
1729 	}
1730 
1731 	/*
1732 	 * If segment ends after window, drop trailing data
1733 	 * (and PUSH and FIN); if nothing left, just ACK.
1734 	 */
1735 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1736 	if (todrop > 0) {
1737 		tcpstat.tcps_rcvpackafterwin++;
1738 		if (todrop >= tlen) {
1739 			tcpstat.tcps_rcvbyteafterwin += tlen;
1740 			/*
1741 			 * If a new connection request is received
1742 			 * while in TIME_WAIT, drop the old connection
1743 			 * and start over if the sequence numbers
1744 			 * are above the previous ones.
1745 			 */
1746 			if (thflags & TH_SYN &&
1747 			    tp->t_state == TCPS_TIME_WAIT &&
1748 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1749 				tp = tcp_close(tp);
1750 				goto findpcb;
1751 			}
1752 			/*
1753 			 * If window is closed can only take segments at
1754 			 * window edge, and have to drop data and PUSH from
1755 			 * incoming segments.  Continue processing, but
1756 			 * remember to ack.  Otherwise, drop segment
1757 			 * and ack.
1758 			 */
1759 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1760 				tp->t_flags |= TF_ACKNOW;
1761 				tcpstat.tcps_rcvwinprobe++;
1762 			} else
1763 				goto dropafterack;
1764 		} else
1765 			tcpstat.tcps_rcvbyteafterwin += todrop;
1766 		m_adj(m, -todrop);
1767 		tlen -= todrop;
1768 		thflags &= ~(TH_PUSH | TH_FIN);
1769 	}
1770 
1771 	/*
1772 	 * If last ACK falls within this segment's sequence numbers,
1773 	 * record its timestamp.
1774 	 * NOTE:
1775 	 * 1) That the test incorporates suggestions from the latest
1776 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1777 	 * 2) That updating only on newer timestamps interferes with
1778 	 *    our earlier PAWS tests, so this check should be solely
1779 	 *    predicated on the sequence space of this segment.
1780 	 * 3) That we modify the segment boundary check to be
1781 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1782 	 *    instead of RFC1323's
1783 	 *        Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1784 	 *    This modified check allows us to overcome RFC1323's
1785 	 *    limitations as described in Stevens TCP/IP Illustrated
1786 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1787 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1788 	 */
1789 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1790 	    SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1791 					+ ((thflags & TH_SYN) != 0)
1792 					+ ((thflags & TH_FIN) != 0)))) {
1793 		tp->ts_recent_age = ticks;
1794 		tp->ts_recent = to.to_tsval;
1795 	}
1796 
1797 	/*
1798 	 * If a SYN is in the window, then this is an
1799 	 * error and we send an RST and drop the connection.
1800 	 */
1801 	if (thflags & TH_SYN) {
1802 		tp = tcp_drop(tp, ECONNRESET);
1803 		rstreason = BANDLIM_UNLIMITED;
1804 		goto dropwithreset;
1805 	}
1806 
1807 	/*
1808 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1809 	 * flag is on (half-synchronized state), then queue data for
1810 	 * later processing; else drop segment and return.
1811 	 */
1812 	if (!(thflags & TH_ACK)) {
1813 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1814 		    (tp->t_flags & TF_NEEDSYN))
1815 			goto step6;
1816 		else
1817 			goto drop;
1818 	}
1819 
1820 	/*
1821 	 * Ack processing.
1822 	 */
1823 	switch (tp->t_state) {
1824 	/*
1825 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1826 	 * ESTABLISHED state and continue processing.
1827 	 * The ACK was checked above.
1828 	 */
1829 	case TCPS_SYN_RECEIVED:
1830 
1831 		tcpstat.tcps_connects++;
1832 		soisconnected(so);
1833 		/* Do window scaling? */
1834 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1835 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1836 			tp->snd_scale = tp->requested_s_scale;
1837 			tp->rcv_scale = tp->request_r_scale;
1838 		}
1839 		/*
1840 		 * Make transitions:
1841 		 *      SYN-RECEIVED  -> ESTABLISHED
1842 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1843 		 */
1844 		tp->t_starttime = ticks;
1845 		if (tp->t_flags & TF_NEEDFIN) {
1846 			tp->t_state = TCPS_FIN_WAIT_1;
1847 			tp->t_flags &= ~TF_NEEDFIN;
1848 		} else {
1849 			tcp_established(tp);
1850 		}
1851 		/*
1852 		 * If segment contains data or ACK, will call tcp_reass()
1853 		 * later; if not, do so now to pass queued data to user.
1854 		 */
1855 		if (tlen == 0 && !(thflags & TH_FIN))
1856 			tcp_reass(tp, NULL, NULL, NULL);
1857 		/* fall into ... */
1858 
1859 	/*
1860 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1861 	 * ACKs.  If the ack is in the range
1862 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1863 	 * then advance tp->snd_una to th->th_ack and drop
1864 	 * data from the retransmission queue.  If this ACK reflects
1865 	 * more up to date window information we update our window information.
1866 	 */
1867 	case TCPS_ESTABLISHED:
1868 	case TCPS_FIN_WAIT_1:
1869 	case TCPS_FIN_WAIT_2:
1870 	case TCPS_CLOSE_WAIT:
1871 	case TCPS_CLOSING:
1872 	case TCPS_LAST_ACK:
1873 	case TCPS_TIME_WAIT:
1874 
1875 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1876 			if (TCP_DO_SACK(tp))
1877 				tcp_sack_update_scoreboard(tp, &to);
1878 			if (tlen != 0 || tiwin != tp->snd_wnd) {
1879 				tp->t_dupacks = 0;
1880 				break;
1881 			}
1882 			tcpstat.tcps_rcvdupack++;
1883 			if (!tcp_callout_active(tp, tp->tt_rexmt) ||
1884 			    th->th_ack != tp->snd_una) {
1885 				tp->t_dupacks = 0;
1886 				break;
1887 			}
1888 			/*
1889 			 * We have outstanding data (other than
1890 			 * a window probe), this is a completely
1891 			 * duplicate ack (ie, window info didn't
1892 			 * change), the ack is the biggest we've
1893 			 * seen and we've seen exactly our rexmt
1894 			 * threshhold of them, so assume a packet
1895 			 * has been dropped and retransmit it.
1896 			 * Kludge snd_nxt & the congestion
1897 			 * window so we send only this one
1898 			 * packet.
1899 			 */
1900 			if (IN_FASTRECOVERY(tp)) {
1901 				if (TCP_DO_SACK(tp)) {
1902 					/* No artifical cwnd inflation. */
1903 					tcp_sack_rexmt(tp, th);
1904 				} else {
1905 					/*
1906 					 * Dup acks mean that packets
1907 					 * have left the network
1908 					 * (they're now cached at the
1909 					 * receiver) so bump cwnd by
1910 					 * the amount in the receiver
1911 					 * to keep a constant cwnd
1912 					 * packets in the network.
1913 					 */
1914 					tp->snd_cwnd += tp->t_maxseg;
1915 					tcp_output(tp);
1916 				}
1917 			} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1918 				tp->t_dupacks = 0;
1919 				break;
1920 			} else if (++tp->t_dupacks == tcprexmtthresh) {
1921 				tcp_seq old_snd_nxt;
1922 				u_int win;
1923 
1924 fastretransmit:
1925 				if (tcp_do_eifel_detect &&
1926 				    (tp->t_flags & TF_RCVD_TSTMP)) {
1927 					tcp_save_congestion_state(tp);
1928 					tp->t_flags |= TF_FASTREXMT;
1929 				}
1930 				/*
1931 				 * We know we're losing at the current
1932 				 * window size, so do congestion avoidance:
1933 				 * set ssthresh to half the current window
1934 				 * and pull our congestion window back to the
1935 				 * new ssthresh.
1936 				 */
1937 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1938 				    tp->t_maxseg;
1939 				if (win < 2)
1940 					win = 2;
1941 				tp->snd_ssthresh = win * tp->t_maxseg;
1942 				ENTER_FASTRECOVERY(tp);
1943 				tp->snd_recover = tp->snd_max;
1944 				tcp_callout_stop(tp, tp->tt_rexmt);
1945 				tp->t_rtttime = 0;
1946 				old_snd_nxt = tp->snd_nxt;
1947 				tp->snd_nxt = th->th_ack;
1948 				tp->snd_cwnd = tp->t_maxseg;
1949 				tcp_output(tp);
1950 				++tcpstat.tcps_sndfastrexmit;
1951 				tp->snd_cwnd = tp->snd_ssthresh;
1952 				tp->rexmt_high = tp->snd_nxt;
1953 				if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
1954 					tp->snd_nxt = old_snd_nxt;
1955 				KASSERT(tp->snd_limited <= 2,
1956 				    ("tp->snd_limited too big"));
1957 				if (TCP_DO_SACK(tp))
1958 					tcp_sack_rexmt(tp, th);
1959 				else
1960 					tp->snd_cwnd += tp->t_maxseg *
1961 					    (tp->t_dupacks - tp->snd_limited);
1962 			} else if (tcp_do_limitedtransmit) {
1963 				u_long oldcwnd = tp->snd_cwnd;
1964 				tcp_seq oldsndmax = tp->snd_max;
1965 				tcp_seq oldsndnxt = tp->snd_nxt;
1966 				/* outstanding data */
1967 				uint32_t ownd = tp->snd_max - tp->snd_una;
1968 				u_int sent;
1969 
1970 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
1971 
1972 				KASSERT(tp->t_dupacks == 1 ||
1973 					tp->t_dupacks == 2,
1974 				    ("dupacks not 1 or 2"));
1975 				if (tp->t_dupacks == 1)
1976 					tp->snd_limited = 0;
1977 				tp->snd_nxt = tp->snd_max;
1978 				tp->snd_cwnd = ownd +
1979 				    (tp->t_dupacks - tp->snd_limited) *
1980 				    tp->t_maxseg;
1981 				tcp_output(tp);
1982 
1983 				if (SEQ_LT(oldsndnxt, oldsndmax)) {
1984 					KASSERT(SEQ_GEQ(oldsndnxt, tp->snd_una),
1985 					    ("snd_una moved in other threads"));
1986 					tp->snd_nxt = oldsndnxt;
1987 				}
1988 				tp->snd_cwnd = oldcwnd;
1989 				sent = tp->snd_max - oldsndmax;
1990 				if (sent > tp->t_maxseg) {
1991 					KASSERT((tp->t_dupacks == 2 &&
1992 						 tp->snd_limited == 0) ||
1993 						(sent == tp->t_maxseg + 1 &&
1994 						 tp->t_flags & TF_SENTFIN),
1995 					    ("sent too much"));
1996 					KASSERT(sent <= tp->t_maxseg * 2,
1997 					    ("sent too many segments"));
1998 					tp->snd_limited = 2;
1999 					tcpstat.tcps_sndlimited += 2;
2000 				} else if (sent > 0) {
2001 					++tp->snd_limited;
2002 					++tcpstat.tcps_sndlimited;
2003 				} else if (tcp_do_early_retransmit &&
2004 				    (tcp_do_eifel_detect &&
2005 				     (tp->t_flags & TF_RCVD_TSTMP)) &&
2006 				    ownd < 4 * tp->t_maxseg &&
2007 				    tp->t_dupacks + 1 >=
2008 				      iceildiv(ownd, tp->t_maxseg) &&
2009 				    (!TCP_DO_SACK(tp) ||
2010 				     ownd <= tp->t_maxseg ||
2011 				     tcp_sack_has_sacked(&tp->scb,
2012 							ownd - tp->t_maxseg))) {
2013 					++tcpstat.tcps_sndearlyrexmit;
2014 					tp->t_flags |= TF_EARLYREXMT;
2015 					goto fastretransmit;
2016 				}
2017 			}
2018 			goto drop;
2019 		}
2020 
2021 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2022 		tp->t_dupacks = 0;
2023 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2024 			/*
2025 			 * Detected optimistic ACK attack.
2026 			 * Force slow-start to de-synchronize attack.
2027 			 */
2028 			tp->snd_cwnd = tp->t_maxseg;
2029 			tp->snd_wacked = 0;
2030 
2031 			tcpstat.tcps_rcvacktoomuch++;
2032 			goto dropafterack;
2033 		}
2034 		/*
2035 		 * If we reach this point, ACK is not a duplicate,
2036 		 *     i.e., it ACKs something we sent.
2037 		 */
2038 		if (tp->t_flags & TF_NEEDSYN) {
2039 			/*
2040 			 * T/TCP: Connection was half-synchronized, and our
2041 			 * SYN has been ACK'd (so connection is now fully
2042 			 * synchronized).  Go to non-starred state,
2043 			 * increment snd_una for ACK of SYN, and check if
2044 			 * we can do window scaling.
2045 			 */
2046 			tp->t_flags &= ~TF_NEEDSYN;
2047 			tp->snd_una++;
2048 			/* Do window scaling? */
2049 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2050 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
2051 				tp->snd_scale = tp->requested_s_scale;
2052 				tp->rcv_scale = tp->request_r_scale;
2053 			}
2054 		}
2055 
2056 process_ACK:
2057 		acked = th->th_ack - tp->snd_una;
2058 		tcpstat.tcps_rcvackpack++;
2059 		tcpstat.tcps_rcvackbyte += acked;
2060 
2061 		if (tcp_do_eifel_detect && acked > 0 &&
2062 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2063 		    (tp->t_flags & TF_FIRSTACCACK)) {
2064 			/* Eifel detection applicable. */
2065 			if (to.to_tsecr < tp->t_rexmtTS) {
2066 				++tcpstat.tcps_eifeldetected;
2067 				tcp_revert_congestion_state(tp);
2068 				if (tp->t_rxtshift != 1 ||
2069 				    ticks >= tp->t_badrxtwin)
2070 					++tcpstat.tcps_rttcantdetect;
2071 			}
2072 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2073 			/*
2074 			 * If we just performed our first retransmit,
2075 			 * and the ACK arrives within our recovery window,
2076 			 * then it was a mistake to do the retransmit
2077 			 * in the first place.  Recover our original cwnd
2078 			 * and ssthresh, and proceed to transmit where we
2079 			 * left off.
2080 			 */
2081 			tcp_revert_congestion_state(tp);
2082 			++tcpstat.tcps_rttdetected;
2083 		}
2084 
2085 		/*
2086 		 * If we have a timestamp reply, update smoothed
2087 		 * round trip time.  If no timestamp is present but
2088 		 * transmit timer is running and timed sequence
2089 		 * number was acked, update smoothed round trip time.
2090 		 * Since we now have an rtt measurement, cancel the
2091 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2092 		 * Recompute the initial retransmit timer.
2093 		 *
2094 		 * Some machines (certain windows boxes) send broken
2095 		 * timestamp replies during the SYN+ACK phase, ignore
2096 		 * timestamps of 0.
2097 		 */
2098 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2099 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2100 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2101 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2102 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2103 
2104 		/*
2105 		 * If no data (only SYN) was ACK'd,
2106 		 *    skip rest of ACK processing.
2107 		 */
2108 		if (acked == 0)
2109 			goto step6;
2110 
2111 		/* Stop looking for an acceptable ACK since one was received. */
2112 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
2113 
2114 		if (acked > so->so_snd.ssb_cc) {
2115 			tp->snd_wnd -= so->so_snd.ssb_cc;
2116 			sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2117 			ourfinisacked = TRUE;
2118 		} else {
2119 			sbdrop(&so->so_snd.sb, acked);
2120 			tp->snd_wnd -= acked;
2121 			ourfinisacked = FALSE;
2122 		}
2123 		sowwakeup(so);
2124 
2125 		/*
2126 		 * Update window information.
2127 		 */
2128 		if (acceptable_window_update(tp, th, tiwin)) {
2129 			/* keep track of pure window updates */
2130 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2131 			    tiwin > tp->snd_wnd)
2132 				tcpstat.tcps_rcvwinupd++;
2133 			tp->snd_wnd = tiwin;
2134 			tp->snd_wl1 = th->th_seq;
2135 			tp->snd_wl2 = th->th_ack;
2136 			if (tp->snd_wnd > tp->max_sndwnd)
2137 				tp->max_sndwnd = tp->snd_wnd;
2138 			needoutput = TRUE;
2139 		}
2140 
2141 		tp->snd_una = th->th_ack;
2142 		if (TCP_DO_SACK(tp))
2143 			tcp_sack_update_scoreboard(tp, &to);
2144 		if (IN_FASTRECOVERY(tp)) {
2145 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2146 				EXIT_FASTRECOVERY(tp);
2147 				needoutput = TRUE;
2148 				/*
2149 				 * If the congestion window was inflated
2150 				 * to account for the other side's
2151 				 * cached packets, retract it.
2152 				 */
2153 				if (!TCP_DO_SACK(tp))
2154 					tp->snd_cwnd = tp->snd_ssthresh;
2155 
2156 				/*
2157 				 * Window inflation should have left us
2158 				 * with approximately snd_ssthresh outstanding
2159 				 * data.  But, in case we would be inclined
2160 				 * to send a burst, better do it using
2161 				 * slow start.
2162 				 */
2163 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2164 					   tp->snd_max + 2 * tp->t_maxseg))
2165 					tp->snd_cwnd =
2166 					    (tp->snd_max - tp->snd_una) +
2167 					    2 * tp->t_maxseg;
2168 
2169 				tp->snd_wacked = 0;
2170 			} else {
2171 				if (TCP_DO_SACK(tp)) {
2172 					tp->snd_max_rexmt = tp->snd_max;
2173 					tcp_sack_rexmt(tp, th);
2174 				} else {
2175 					tcp_newreno_partial_ack(tp, th, acked);
2176 				}
2177 				needoutput = FALSE;
2178 			}
2179 		} else {
2180 			/*
2181 			 * Open the congestion window.  When in slow-start,
2182 			 * open exponentially: maxseg per packet.  Otherwise,
2183 			 * open linearly: maxseg per window.
2184 			 */
2185 			if (tp->snd_cwnd <= tp->snd_ssthresh) {
2186 				u_int abc_sslimit =
2187 				    (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2188 				     tp->t_maxseg : 2 * tp->t_maxseg);
2189 
2190 				/* slow-start */
2191 				tp->snd_cwnd += tcp_do_abc ?
2192 				    min(acked, abc_sslimit) : tp->t_maxseg;
2193 			} else {
2194 				/* linear increase */
2195 				tp->snd_wacked += tcp_do_abc ? acked :
2196 				    tp->t_maxseg;
2197 				if (tp->snd_wacked >= tp->snd_cwnd) {
2198 					tp->snd_wacked -= tp->snd_cwnd;
2199 					tp->snd_cwnd += tp->t_maxseg;
2200 				}
2201 			}
2202 			tp->snd_cwnd = min(tp->snd_cwnd,
2203 					   TCP_MAXWIN << tp->snd_scale);
2204 			tp->snd_recover = th->th_ack - 1;
2205 		}
2206 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2207 			tp->snd_nxt = tp->snd_una;
2208 
2209 		/*
2210 		 * If all outstanding data is acked, stop retransmit
2211 		 * timer and remember to restart (more output or persist).
2212 		 * If there is more data to be acked, restart retransmit
2213 		 * timer, using current (possibly backed-off) value.
2214 		 */
2215 		if (th->th_ack == tp->snd_max) {
2216 			tcp_callout_stop(tp, tp->tt_rexmt);
2217 			needoutput = TRUE;
2218 		} else if (!tcp_callout_active(tp, tp->tt_persist)) {
2219 			tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur,
2220 			    tcp_timer_rexmt);
2221 		}
2222 
2223 		switch (tp->t_state) {
2224 		/*
2225 		 * In FIN_WAIT_1 STATE in addition to the processing
2226 		 * for the ESTABLISHED state if our FIN is now acknowledged
2227 		 * then enter FIN_WAIT_2.
2228 		 */
2229 		case TCPS_FIN_WAIT_1:
2230 			if (ourfinisacked) {
2231 				/*
2232 				 * If we can't receive any more
2233 				 * data, then closing user can proceed.
2234 				 * Starting the timer is contrary to the
2235 				 * specification, but if we don't get a FIN
2236 				 * we'll hang forever.
2237 				 */
2238 				if (so->so_state & SS_CANTRCVMORE) {
2239 					soisdisconnected(so);
2240 					tcp_callout_reset(tp, tp->tt_2msl,
2241 					    tp->t_maxidle, tcp_timer_2msl);
2242 				}
2243 				tp->t_state = TCPS_FIN_WAIT_2;
2244 			}
2245 			break;
2246 
2247 		/*
2248 		 * In CLOSING STATE in addition to the processing for
2249 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2250 		 * then enter the TIME-WAIT state, otherwise ignore
2251 		 * the segment.
2252 		 */
2253 		case TCPS_CLOSING:
2254 			if (ourfinisacked) {
2255 				tp->t_state = TCPS_TIME_WAIT;
2256 				tcp_canceltimers(tp);
2257 				tcp_callout_reset(tp, tp->tt_2msl,
2258 					    2 * tcp_rmx_msl(tp),
2259 					    tcp_timer_2msl);
2260 				soisdisconnected(so);
2261 			}
2262 			break;
2263 
2264 		/*
2265 		 * In LAST_ACK, we may still be waiting for data to drain
2266 		 * and/or to be acked, as well as for the ack of our FIN.
2267 		 * If our FIN is now acknowledged, delete the TCB,
2268 		 * enter the closed state and return.
2269 		 */
2270 		case TCPS_LAST_ACK:
2271 			if (ourfinisacked) {
2272 				tp = tcp_close(tp);
2273 				goto drop;
2274 			}
2275 			break;
2276 
2277 		/*
2278 		 * In TIME_WAIT state the only thing that should arrive
2279 		 * is a retransmission of the remote FIN.  Acknowledge
2280 		 * it and restart the finack timer.
2281 		 */
2282 		case TCPS_TIME_WAIT:
2283 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2284 			    tcp_timer_2msl);
2285 			goto dropafterack;
2286 		}
2287 	}
2288 
2289 step6:
2290 	/*
2291 	 * Update window information.
2292 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2293 	 */
2294 	if ((thflags & TH_ACK) &&
2295 	    acceptable_window_update(tp, th, tiwin)) {
2296 		/* keep track of pure window updates */
2297 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2298 		    tiwin > tp->snd_wnd)
2299 			tcpstat.tcps_rcvwinupd++;
2300 		tp->snd_wnd = tiwin;
2301 		tp->snd_wl1 = th->th_seq;
2302 		tp->snd_wl2 = th->th_ack;
2303 		if (tp->snd_wnd > tp->max_sndwnd)
2304 			tp->max_sndwnd = tp->snd_wnd;
2305 		needoutput = TRUE;
2306 	}
2307 
2308 	/*
2309 	 * Process segments with URG.
2310 	 */
2311 	if ((thflags & TH_URG) && th->th_urp &&
2312 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2313 		/*
2314 		 * This is a kludge, but if we receive and accept
2315 		 * random urgent pointers, we'll crash in
2316 		 * soreceive.  It's hard to imagine someone
2317 		 * actually wanting to send this much urgent data.
2318 		 */
2319 		if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2320 			th->th_urp = 0;			/* XXX */
2321 			thflags &= ~TH_URG;		/* XXX */
2322 			goto dodata;			/* XXX */
2323 		}
2324 		/*
2325 		 * If this segment advances the known urgent pointer,
2326 		 * then mark the data stream.  This should not happen
2327 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2328 		 * a FIN has been received from the remote side.
2329 		 * In these states we ignore the URG.
2330 		 *
2331 		 * According to RFC961 (Assigned Protocols),
2332 		 * the urgent pointer points to the last octet
2333 		 * of urgent data.  We continue, however,
2334 		 * to consider it to indicate the first octet
2335 		 * of data past the urgent section as the original
2336 		 * spec states (in one of two places).
2337 		 */
2338 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2339 			tp->rcv_up = th->th_seq + th->th_urp;
2340 			so->so_oobmark = so->so_rcv.ssb_cc +
2341 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2342 			if (so->so_oobmark == 0)
2343 				sosetstate(so, SS_RCVATMARK);
2344 			sohasoutofband(so);
2345 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2346 		}
2347 		/*
2348 		 * Remove out of band data so doesn't get presented to user.
2349 		 * This can happen independent of advancing the URG pointer,
2350 		 * but if two URG's are pending at once, some out-of-band
2351 		 * data may creep in... ick.
2352 		 */
2353 		if (th->th_urp <= (u_long)tlen &&
2354 		    !(so->so_options & SO_OOBINLINE)) {
2355 			/* hdr drop is delayed */
2356 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2357 		}
2358 	} else {
2359 		/*
2360 		 * If no out of band data is expected,
2361 		 * pull receive urgent pointer along
2362 		 * with the receive window.
2363 		 */
2364 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2365 			tp->rcv_up = tp->rcv_nxt;
2366 	}
2367 
2368 dodata:							/* XXX */
2369 	/*
2370 	 * Process the segment text, merging it into the TCP sequencing queue,
2371 	 * and arranging for acknowledgment of receipt if necessary.
2372 	 * This process logically involves adjusting tp->rcv_wnd as data
2373 	 * is presented to the user (this happens in tcp_usrreq.c,
2374 	 * case PRU_RCVD).  If a FIN has already been received on this
2375 	 * connection then we just ignore the text.
2376 	 */
2377 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2378 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2379 		/*
2380 		 * Insert segment which includes th into TCP reassembly queue
2381 		 * with control block tp.  Set thflags to whether reassembly now
2382 		 * includes a segment with FIN.  This handles the common case
2383 		 * inline (segment is the next to be received on an established
2384 		 * connection, and the queue is empty), avoiding linkage into
2385 		 * and removal from the queue and repetition of various
2386 		 * conversions.
2387 		 * Set DELACK for segments received in order, but ack
2388 		 * immediately when segments are out of order (so
2389 		 * fast retransmit can work).
2390 		 */
2391 		if (th->th_seq == tp->rcv_nxt &&
2392 		    LIST_EMPTY(&tp->t_segq) &&
2393 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2394 			if (DELAY_ACK(tp)) {
2395 				tcp_callout_reset(tp, tp->tt_delack,
2396 				    tcp_delacktime, tcp_timer_delack);
2397 			} else {
2398 				tp->t_flags |= TF_ACKNOW;
2399 			}
2400 			tp->rcv_nxt += tlen;
2401 			thflags = th->th_flags & TH_FIN;
2402 			tcpstat.tcps_rcvpack++;
2403 			tcpstat.tcps_rcvbyte += tlen;
2404 			ND6_HINT(tp);
2405 			if (so->so_state & SS_CANTRCVMORE) {
2406 				m_freem(m);
2407 			} else {
2408 				lwkt_gettoken(&so->so_rcv.ssb_token);
2409 				ssb_appendstream(&so->so_rcv, m);
2410 				lwkt_reltoken(&so->so_rcv.ssb_token);
2411 			}
2412 			sorwakeup(so);
2413 		} else {
2414 			if (!(tp->t_flags & TF_DUPSEG)) {
2415 				/* Initialize SACK report block. */
2416 				tp->reportblk.rblk_start = th->th_seq;
2417 				tp->reportblk.rblk_end = TCP_SACK_BLKEND(
2418 				    th->th_seq + tlen, thflags);
2419 			}
2420 			thflags = tcp_reass(tp, th, &tlen, m);
2421 			tp->t_flags |= TF_ACKNOW;
2422 		}
2423 
2424 		/*
2425 		 * Note the amount of data that peer has sent into
2426 		 * our window, in order to estimate the sender's
2427 		 * buffer size.
2428 		 */
2429 		len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2430 	} else {
2431 		m_freem(m);
2432 		thflags &= ~TH_FIN;
2433 	}
2434 
2435 	/*
2436 	 * If FIN is received ACK the FIN and let the user know
2437 	 * that the connection is closing.
2438 	 */
2439 	if (thflags & TH_FIN) {
2440 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2441 			socantrcvmore(so);
2442 			/*
2443 			 * If connection is half-synchronized
2444 			 * (ie NEEDSYN flag on) then delay ACK,
2445 			 * so it may be piggybacked when SYN is sent.
2446 			 * Otherwise, since we received a FIN then no
2447 			 * more input can be expected, send ACK now.
2448 			 */
2449 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2450 				tcp_callout_reset(tp, tp->tt_delack,
2451 				    tcp_delacktime, tcp_timer_delack);
2452 			} else {
2453 				tp->t_flags |= TF_ACKNOW;
2454 			}
2455 			tp->rcv_nxt++;
2456 		}
2457 
2458 		switch (tp->t_state) {
2459 		/*
2460 		 * In SYN_RECEIVED and ESTABLISHED STATES
2461 		 * enter the CLOSE_WAIT state.
2462 		 */
2463 		case TCPS_SYN_RECEIVED:
2464 			tp->t_starttime = ticks;
2465 			/*FALLTHROUGH*/
2466 		case TCPS_ESTABLISHED:
2467 			tp->t_state = TCPS_CLOSE_WAIT;
2468 			break;
2469 
2470 		/*
2471 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2472 		 * enter the CLOSING state.
2473 		 */
2474 		case TCPS_FIN_WAIT_1:
2475 			tp->t_state = TCPS_CLOSING;
2476 			break;
2477 
2478 		/*
2479 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2480 		 * starting the time-wait timer, turning off the other
2481 		 * standard timers.
2482 		 */
2483 		case TCPS_FIN_WAIT_2:
2484 			tp->t_state = TCPS_TIME_WAIT;
2485 			tcp_canceltimers(tp);
2486 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2487 				    tcp_timer_2msl);
2488 			soisdisconnected(so);
2489 			break;
2490 
2491 		/*
2492 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2493 		 */
2494 		case TCPS_TIME_WAIT:
2495 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2496 			    tcp_timer_2msl);
2497 			break;
2498 		}
2499 	}
2500 
2501 #ifdef TCPDEBUG
2502 	if (so->so_options & SO_DEBUG)
2503 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2504 #endif
2505 
2506 	/*
2507 	 * Return any desired output.
2508 	 */
2509 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2510 		tcp_output(tp);
2511 	tcp_sack_report_cleanup(tp);
2512 	return(IPPROTO_DONE);
2513 
2514 dropafterack:
2515 	/*
2516 	 * Generate an ACK dropping incoming segment if it occupies
2517 	 * sequence space, where the ACK reflects our state.
2518 	 *
2519 	 * We can now skip the test for the RST flag since all
2520 	 * paths to this code happen after packets containing
2521 	 * RST have been dropped.
2522 	 *
2523 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2524 	 * segment we received passes the SYN-RECEIVED ACK test.
2525 	 * If it fails send a RST.  This breaks the loop in the
2526 	 * "LAND" DoS attack, and also prevents an ACK storm
2527 	 * between two listening ports that have been sent forged
2528 	 * SYN segments, each with the source address of the other.
2529 	 */
2530 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2531 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2532 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2533 		rstreason = BANDLIM_RST_OPENPORT;
2534 		goto dropwithreset;
2535 	}
2536 #ifdef TCPDEBUG
2537 	if (so->so_options & SO_DEBUG)
2538 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2539 #endif
2540 	m_freem(m);
2541 	tp->t_flags |= TF_ACKNOW;
2542 	tcp_output(tp);
2543 	tcp_sack_report_cleanup(tp);
2544 	return(IPPROTO_DONE);
2545 
2546 dropwithreset:
2547 	/*
2548 	 * Generate a RST, dropping incoming segment.
2549 	 * Make ACK acceptable to originator of segment.
2550 	 * Don't bother to respond if destination was broadcast/multicast.
2551 	 */
2552 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2553 		goto drop;
2554 	if (isipv6) {
2555 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2556 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2557 			goto drop;
2558 	} else {
2559 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2560 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2561 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2562 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2563 			goto drop;
2564 	}
2565 	/* IPv6 anycast check is done at tcp6_input() */
2566 
2567 	/*
2568 	 * Perform bandwidth limiting.
2569 	 */
2570 #ifdef ICMP_BANDLIM
2571 	if (badport_bandlim(rstreason) < 0)
2572 		goto drop;
2573 #endif
2574 
2575 #ifdef TCPDEBUG
2576 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2577 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2578 #endif
2579 	if (thflags & TH_ACK)
2580 		/* mtod() below is safe as long as hdr dropping is delayed */
2581 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2582 			    TH_RST);
2583 	else {
2584 		if (thflags & TH_SYN)
2585 			tlen++;
2586 		/* mtod() below is safe as long as hdr dropping is delayed */
2587 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2588 			    (tcp_seq)0, TH_RST | TH_ACK);
2589 	}
2590 	if (tp != NULL)
2591 		tcp_sack_report_cleanup(tp);
2592 	return(IPPROTO_DONE);
2593 
2594 drop:
2595 	/*
2596 	 * Drop space held by incoming segment and return.
2597 	 */
2598 #ifdef TCPDEBUG
2599 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2600 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2601 #endif
2602 	m_freem(m);
2603 	if (tp != NULL)
2604 		tcp_sack_report_cleanup(tp);
2605 	return(IPPROTO_DONE);
2606 }
2607 
2608 /*
2609  * Parse TCP options and place in tcpopt.
2610  */
2611 static void
2612 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn)
2613 {
2614 	int opt, optlen, i;
2615 
2616 	to->to_flags = 0;
2617 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2618 		opt = cp[0];
2619 		if (opt == TCPOPT_EOL)
2620 			break;
2621 		if (opt == TCPOPT_NOP)
2622 			optlen = 1;
2623 		else {
2624 			if (cnt < 2)
2625 				break;
2626 			optlen = cp[1];
2627 			if (optlen < 2 || optlen > cnt)
2628 				break;
2629 		}
2630 		switch (opt) {
2631 		case TCPOPT_MAXSEG:
2632 			if (optlen != TCPOLEN_MAXSEG)
2633 				continue;
2634 			if (!is_syn)
2635 				continue;
2636 			to->to_flags |= TOF_MSS;
2637 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2638 			to->to_mss = ntohs(to->to_mss);
2639 			break;
2640 		case TCPOPT_WINDOW:
2641 			if (optlen != TCPOLEN_WINDOW)
2642 				continue;
2643 			if (!is_syn)
2644 				continue;
2645 			to->to_flags |= TOF_SCALE;
2646 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2647 			break;
2648 		case TCPOPT_TIMESTAMP:
2649 			if (optlen != TCPOLEN_TIMESTAMP)
2650 				continue;
2651 			to->to_flags |= TOF_TS;
2652 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2653 			to->to_tsval = ntohl(to->to_tsval);
2654 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2655 			to->to_tsecr = ntohl(to->to_tsecr);
2656 			/*
2657 			 * If echoed timestamp is later than the current time,
2658 			 * fall back to non RFC1323 RTT calculation.
2659 			 */
2660 			if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2661 				to->to_tsecr = 0;
2662 			break;
2663 		case TCPOPT_SACK_PERMITTED:
2664 			if (optlen != TCPOLEN_SACK_PERMITTED)
2665 				continue;
2666 			if (!is_syn)
2667 				continue;
2668 			to->to_flags |= TOF_SACK_PERMITTED;
2669 			break;
2670 		case TCPOPT_SACK:
2671 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2672 				continue;
2673 			to->to_nsackblocks = (optlen - 2) / 8;
2674 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2675 			to->to_flags |= TOF_SACK;
2676 			for (i = 0; i < to->to_nsackblocks; i++) {
2677 				struct raw_sackblock *r = &to->to_sackblocks[i];
2678 
2679 				r->rblk_start = ntohl(r->rblk_start);
2680 				r->rblk_end = ntohl(r->rblk_end);
2681 
2682 				if (SEQ_LEQ(r->rblk_end, r->rblk_start)) {
2683 					/*
2684 					 * Invalid SACK block; discard all
2685 					 * SACK blocks
2686 					 */
2687 					tcpstat.tcps_rcvbadsackopt++;
2688 					to->to_nsackblocks = 0;
2689 					to->to_sackblocks = NULL;
2690 					to->to_flags &= ~TOF_SACK;
2691 					break;
2692 				}
2693 			}
2694 			break;
2695 #ifdef TCP_SIGNATURE
2696 		/*
2697 		 * XXX In order to reply to a host which has set the
2698 		 * TCP_SIGNATURE option in its initial SYN, we have to
2699 		 * record the fact that the option was observed here
2700 		 * for the syncache code to perform the correct response.
2701 		 */
2702 		case TCPOPT_SIGNATURE:
2703 			if (optlen != TCPOLEN_SIGNATURE)
2704 				continue;
2705 			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2706 			break;
2707 #endif /* TCP_SIGNATURE */
2708 		default:
2709 			continue;
2710 		}
2711 	}
2712 }
2713 
2714 /*
2715  * Pull out of band byte out of a segment so
2716  * it doesn't appear in the user's data queue.
2717  * It is still reflected in the segment length for
2718  * sequencing purposes.
2719  * "off" is the delayed to be dropped hdrlen.
2720  */
2721 static void
2722 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2723 {
2724 	int cnt = off + th->th_urp - 1;
2725 
2726 	while (cnt >= 0) {
2727 		if (m->m_len > cnt) {
2728 			char *cp = mtod(m, caddr_t) + cnt;
2729 			struct tcpcb *tp = sototcpcb(so);
2730 
2731 			tp->t_iobc = *cp;
2732 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2733 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2734 			m->m_len--;
2735 			if (m->m_flags & M_PKTHDR)
2736 				m->m_pkthdr.len--;
2737 			return;
2738 		}
2739 		cnt -= m->m_len;
2740 		m = m->m_next;
2741 		if (m == NULL)
2742 			break;
2743 	}
2744 	panic("tcp_pulloutofband");
2745 }
2746 
2747 /*
2748  * Collect new round-trip time estimate
2749  * and update averages and current timeout.
2750  */
2751 static void
2752 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2753 {
2754 	int delta;
2755 
2756 	tcpstat.tcps_rttupdated++;
2757 	tp->t_rttupdated++;
2758 	if (tp->t_srtt != 0) {
2759 		/*
2760 		 * srtt is stored as fixed point with 5 bits after the
2761 		 * binary point (i.e., scaled by 8).  The following magic
2762 		 * is equivalent to the smoothing algorithm in rfc793 with
2763 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2764 		 * point).  Adjust rtt to origin 0.
2765 		 */
2766 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2767 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2768 
2769 		if ((tp->t_srtt += delta) <= 0)
2770 			tp->t_srtt = 1;
2771 
2772 		/*
2773 		 * We accumulate a smoothed rtt variance (actually, a
2774 		 * smoothed mean difference), then set the retransmit
2775 		 * timer to smoothed rtt + 4 times the smoothed variance.
2776 		 * rttvar is stored as fixed point with 4 bits after the
2777 		 * binary point (scaled by 16).  The following is
2778 		 * equivalent to rfc793 smoothing with an alpha of .75
2779 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2780 		 * rfc793's wired-in beta.
2781 		 */
2782 		if (delta < 0)
2783 			delta = -delta;
2784 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2785 		if ((tp->t_rttvar += delta) <= 0)
2786 			tp->t_rttvar = 1;
2787 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2788 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2789 	} else {
2790 		/*
2791 		 * No rtt measurement yet - use the unsmoothed rtt.
2792 		 * Set the variance to half the rtt (so our first
2793 		 * retransmit happens at 3*rtt).
2794 		 */
2795 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2796 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2797 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2798 	}
2799 	tp->t_rtttime = 0;
2800 	tp->t_rxtshift = 0;
2801 
2802 	/*
2803 	 * the retransmit should happen at rtt + 4 * rttvar.
2804 	 * Because of the way we do the smoothing, srtt and rttvar
2805 	 * will each average +1/2 tick of bias.  When we compute
2806 	 * the retransmit timer, we want 1/2 tick of rounding and
2807 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2808 	 * firing of the timer.  The bias will give us exactly the
2809 	 * 1.5 tick we need.  But, because the bias is
2810 	 * statistical, we have to test that we don't drop below
2811 	 * the minimum feasible timer (which is 2 ticks).
2812 	 */
2813 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2814 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2815 
2816 	/*
2817 	 * We received an ack for a packet that wasn't retransmitted;
2818 	 * it is probably safe to discard any error indications we've
2819 	 * received recently.  This isn't quite right, but close enough
2820 	 * for now (a route might have failed after we sent a segment,
2821 	 * and the return path might not be symmetrical).
2822 	 */
2823 	tp->t_softerror = 0;
2824 }
2825 
2826 /*
2827  * Determine a reasonable value for maxseg size.
2828  * If the route is known, check route for mtu.
2829  * If none, use an mss that can be handled on the outgoing
2830  * interface without forcing IP to fragment; if bigger than
2831  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2832  * to utilize large mbufs.  If no route is found, route has no mtu,
2833  * or the destination isn't local, use a default, hopefully conservative
2834  * size (usually 512 or the default IP max size, but no more than the mtu
2835  * of the interface), as we can't discover anything about intervening
2836  * gateways or networks.  We also initialize the congestion/slow start
2837  * window to be a single segment if the destination isn't local.
2838  * While looking at the routing entry, we also initialize other path-dependent
2839  * parameters from pre-set or cached values in the routing entry.
2840  *
2841  * Also take into account the space needed for options that we
2842  * send regularly.  Make maxseg shorter by that amount to assure
2843  * that we can send maxseg amount of data even when the options
2844  * are present.  Store the upper limit of the length of options plus
2845  * data in maxopd.
2846  *
2847  * NOTE that this routine is only called when we process an incoming
2848  * segment, for outgoing segments only tcp_mssopt is called.
2849  */
2850 void
2851 tcp_mss(struct tcpcb *tp, int offer)
2852 {
2853 	struct rtentry *rt;
2854 	struct ifnet *ifp;
2855 	int rtt, mss;
2856 	u_long bufsize;
2857 	struct inpcb *inp = tp->t_inpcb;
2858 	struct socket *so;
2859 #ifdef INET6
2860 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2861 	size_t min_protoh = isipv6 ?
2862 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2863 			    sizeof(struct tcpiphdr);
2864 #else
2865 	const boolean_t isipv6 = FALSE;
2866 	const size_t min_protoh = sizeof(struct tcpiphdr);
2867 #endif
2868 
2869 	if (isipv6)
2870 		rt = tcp_rtlookup6(&inp->inp_inc);
2871 	else
2872 		rt = tcp_rtlookup(&inp->inp_inc);
2873 	if (rt == NULL) {
2874 		tp->t_maxopd = tp->t_maxseg =
2875 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2876 		return;
2877 	}
2878 	ifp = rt->rt_ifp;
2879 	so = inp->inp_socket;
2880 
2881 	/*
2882 	 * Offer == 0 means that there was no MSS on the SYN segment,
2883 	 * in this case we use either the interface mtu or tcp_mssdflt.
2884 	 *
2885 	 * An offer which is too large will be cut down later.
2886 	 */
2887 	if (offer == 0) {
2888 		if (isipv6) {
2889 			if (in6_localaddr(&inp->in6p_faddr)) {
2890 				offer = ND_IFINFO(rt->rt_ifp)->linkmtu -
2891 					min_protoh;
2892 			} else {
2893 				offer = tcp_v6mssdflt;
2894 			}
2895 		} else {
2896 			if (in_localaddr(inp->inp_faddr))
2897 				offer = ifp->if_mtu - min_protoh;
2898 			else
2899 				offer = tcp_mssdflt;
2900 		}
2901 	}
2902 
2903 	/*
2904 	 * Prevent DoS attack with too small MSS. Round up
2905 	 * to at least minmss.
2906 	 *
2907 	 * Sanity check: make sure that maxopd will be large
2908 	 * enough to allow some data on segments even is the
2909 	 * all the option space is used (40bytes).  Otherwise
2910 	 * funny things may happen in tcp_output.
2911 	 */
2912 	offer = max(offer, tcp_minmss);
2913 	offer = max(offer, 64);
2914 
2915 	rt->rt_rmx.rmx_mssopt = offer;
2916 
2917 	/*
2918 	 * While we're here, check if there's an initial rtt
2919 	 * or rttvar.  Convert from the route-table units
2920 	 * to scaled multiples of the slow timeout timer.
2921 	 */
2922 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2923 		/*
2924 		 * XXX the lock bit for RTT indicates that the value
2925 		 * is also a minimum value; this is subject to time.
2926 		 */
2927 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2928 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2929 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2930 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2931 		tcpstat.tcps_usedrtt++;
2932 		if (rt->rt_rmx.rmx_rttvar) {
2933 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2934 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2935 			tcpstat.tcps_usedrttvar++;
2936 		} else {
2937 			/* default variation is +- 1 rtt */
2938 			tp->t_rttvar =
2939 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2940 		}
2941 		TCPT_RANGESET(tp->t_rxtcur,
2942 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2943 			      tp->t_rttmin, TCPTV_REXMTMAX);
2944 	}
2945 
2946 	/*
2947 	 * if there's an mtu associated with the route, use it
2948 	 * else, use the link mtu.  Take the smaller of mss or offer
2949 	 * as our final mss.
2950 	 */
2951 	if (rt->rt_rmx.rmx_mtu) {
2952 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2953 	} else {
2954 		if (isipv6)
2955 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
2956 		else
2957 			mss = ifp->if_mtu - min_protoh;
2958 	}
2959 	mss = min(mss, offer);
2960 
2961 	/*
2962 	 * maxopd stores the maximum length of data AND options
2963 	 * in a segment; maxseg is the amount of data in a normal
2964 	 * segment.  We need to store this value (maxopd) apart
2965 	 * from maxseg, because now every segment carries options
2966 	 * and thus we normally have somewhat less data in segments.
2967 	 */
2968 	tp->t_maxopd = mss;
2969 
2970 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
2971 	    ((tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2972 		mss -= TCPOLEN_TSTAMP_APPA;
2973 
2974 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2975 		if (mss > MCLBYTES)
2976 			mss &= ~(MCLBYTES-1);
2977 #else
2978 		if (mss > MCLBYTES)
2979 			mss = mss / MCLBYTES * MCLBYTES;
2980 #endif
2981 	/*
2982 	 * If there's a pipesize, change the socket buffer
2983 	 * to that size.  Make the socket buffers an integral
2984 	 * number of mss units; if the mss is larger than
2985 	 * the socket buffer, decrease the mss.
2986 	 */
2987 #ifdef RTV_SPIPE
2988 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
2989 #endif
2990 		bufsize = so->so_snd.ssb_hiwat;
2991 	if (bufsize < mss)
2992 		mss = bufsize;
2993 	else {
2994 		bufsize = roundup(bufsize, mss);
2995 		if (bufsize > sb_max)
2996 			bufsize = sb_max;
2997 		if (bufsize > so->so_snd.ssb_hiwat)
2998 			ssb_reserve(&so->so_snd, bufsize, so, NULL);
2999 	}
3000 	tp->t_maxseg = mss;
3001 
3002 #ifdef RTV_RPIPE
3003 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3004 #endif
3005 		bufsize = so->so_rcv.ssb_hiwat;
3006 	if (bufsize > mss) {
3007 		bufsize = roundup(bufsize, mss);
3008 		if (bufsize > sb_max)
3009 			bufsize = sb_max;
3010 		if (bufsize > so->so_rcv.ssb_hiwat) {
3011 			lwkt_gettoken(&so->so_rcv.ssb_token);
3012 			ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3013 			lwkt_reltoken(&so->so_rcv.ssb_token);
3014 		}
3015 	}
3016 
3017 	/*
3018 	 * Set the slow-start flight size
3019 	 *
3020 	 * NOTE: t_maxseg must have been configured!
3021 	 */
3022 	tp->snd_cwnd = tcp_initial_window(tp);
3023 
3024 	if (rt->rt_rmx.rmx_ssthresh) {
3025 		/*
3026 		 * There's some sort of gateway or interface
3027 		 * buffer limit on the path.  Use this to set
3028 		 * the slow start threshhold, but set the
3029 		 * threshold to no less than 2*mss.
3030 		 */
3031 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3032 		tcpstat.tcps_usedssthresh++;
3033 	}
3034 }
3035 
3036 /*
3037  * Determine the MSS option to send on an outgoing SYN.
3038  */
3039 int
3040 tcp_mssopt(struct tcpcb *tp)
3041 {
3042 	struct rtentry *rt;
3043 #ifdef INET6
3044 	boolean_t isipv6 =
3045 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3046 	int min_protoh = isipv6 ?
3047 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3048 			     sizeof(struct tcpiphdr);
3049 #else
3050 	const boolean_t isipv6 = FALSE;
3051 	const size_t min_protoh = sizeof(struct tcpiphdr);
3052 #endif
3053 
3054 	if (isipv6)
3055 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3056 	else
3057 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3058 	if (rt == NULL)
3059 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3060 
3061 	return (rt->rt_ifp->if_mtu - min_protoh);
3062 }
3063 
3064 /*
3065  * When a partial ack arrives, force the retransmission of the
3066  * next unacknowledged segment.  Do not exit Fast Recovery.
3067  *
3068  * Implement the Slow-but-Steady variant of NewReno by restarting the
3069  * the retransmission timer.  Turn it off here so it can be restarted
3070  * later in tcp_output().
3071  */
3072 static void
3073 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3074 {
3075 	tcp_seq old_snd_nxt = tp->snd_nxt;
3076 	u_long ocwnd = tp->snd_cwnd;
3077 
3078 	tcp_callout_stop(tp, tp->tt_rexmt);
3079 	tp->t_rtttime = 0;
3080 	tp->snd_nxt = th->th_ack;
3081 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3082 	tp->snd_cwnd = tp->t_maxseg;
3083 	tp->t_flags |= TF_ACKNOW;
3084 	tcp_output(tp);
3085 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3086 		tp->snd_nxt = old_snd_nxt;
3087 	/* partial window deflation */
3088 	if (ocwnd > acked)
3089 		tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3090 	else
3091 		tp->snd_cwnd = tp->t_maxseg;
3092 }
3093 
3094 /*
3095  * In contrast to the Slow-but-Steady NewReno variant,
3096  * we do not reset the retransmission timer for SACK retransmissions,
3097  * except when retransmitting snd_una.
3098  */
3099 static void
3100 tcp_sack_rexmt(struct tcpcb *tp, struct tcphdr *th)
3101 {
3102 	uint32_t pipe, seglen;
3103 	tcp_seq nextrexmt;
3104 	boolean_t lostdup;
3105 	tcp_seq old_snd_nxt = tp->snd_nxt;
3106 	u_long ocwnd = tp->snd_cwnd;
3107 	int nseg = 0;		/* consecutive new segments */
3108 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3109 
3110 	tp->t_rtttime = 0;
3111 	pipe = tcp_sack_compute_pipe(tp);
3112 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3113 	    (!tcp_do_smartsack || nseg < MAXBURST) &&
3114 	    tcp_sack_nextseg(tp, &nextrexmt, &seglen, &lostdup)) {
3115 		uint32_t sent;
3116 		tcp_seq old_snd_max;
3117 		int error;
3118 
3119 		if (nextrexmt == tp->snd_max)
3120 			++nseg;
3121 		tp->snd_nxt = nextrexmt;
3122 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3123 		old_snd_max = tp->snd_max;
3124 		if (nextrexmt == tp->snd_una)
3125 			tcp_callout_stop(tp, tp->tt_rexmt);
3126 		error = tcp_output(tp);
3127 		if (error != 0)
3128 			break;
3129 		sent = tp->snd_nxt - nextrexmt;
3130 		if (sent <= 0)
3131 			break;
3132 		if (!lostdup)
3133 			pipe += sent;
3134 		tcpstat.tcps_sndsackpack++;
3135 		tcpstat.tcps_sndsackbyte += sent;
3136 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3137 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt))
3138 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3139 	}
3140 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3141 		tp->snd_nxt = old_snd_nxt;
3142 	tp->snd_cwnd = ocwnd;
3143 }
3144 
3145 /*
3146  * Reset idle time and keep-alive timer, typically called when a valid
3147  * tcp packet is received but may also be called when FASTKEEP is set
3148  * to prevent the previous long-timeout from calculating to a drop.
3149  *
3150  * Only update t_rcvtime for non-SYN packets.
3151  *
3152  * Handle the case where one side thinks the connection is established
3153  * but the other side has, say, rebooted without cleaning out the
3154  * connection.   The SYNs could be construed as an attack and wind
3155  * up ignored, but in case it isn't an attack we can validate the
3156  * connection by forcing a keepalive.
3157  */
3158 void
3159 tcp_timer_keep_activity(struct tcpcb *tp, int thflags)
3160 {
3161 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3162 		if ((thflags & (TH_SYN | TH_ACK)) == TH_SYN) {
3163 			tp->t_flags |= TF_KEEPALIVE;
3164 			tcp_callout_reset(tp, tp->tt_keep, hz / 2,
3165 					  tcp_timer_keep);
3166 		} else {
3167 			tp->t_rcvtime = ticks;
3168 			tp->t_flags &= ~TF_KEEPALIVE;
3169 			tcp_callout_reset(tp, tp->tt_keep,
3170 					  tp->t_keepidle,
3171 					  tcp_timer_keep);
3172 		}
3173 	}
3174 }
3175 
3176 static int
3177 tcp_rmx_msl(const struct tcpcb *tp)
3178 {
3179 	struct rtentry *rt;
3180 	struct inpcb *inp = tp->t_inpcb;
3181 	int msl;
3182 #ifdef INET6
3183 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3184 #else
3185 	const boolean_t isipv6 = FALSE;
3186 #endif
3187 
3188 	if (isipv6)
3189 		rt = tcp_rtlookup6(&inp->inp_inc);
3190 	else
3191 		rt = tcp_rtlookup(&inp->inp_inc);
3192 	if (rt == NULL || rt->rt_rmx.rmx_msl == 0)
3193 		return tcp_msl;
3194 
3195 	msl = (rt->rt_rmx.rmx_msl * hz) / 1000;
3196 	if (msl == 0)
3197 		msl = 1;
3198 
3199 	return msl;
3200 }
3201 
3202 static void
3203 tcp_established(struct tcpcb *tp)
3204 {
3205 	tp->t_state = TCPS_ESTABLISHED;
3206 	tcp_callout_reset(tp, tp->tt_keep, tp->t_keepidle, tcp_timer_keep);
3207 
3208 	if (tp->t_rxtsyn > 0) {
3209 		/*
3210 		 * RFC6298:
3211 		 * "If the timer expires awaiting the ACK of a SYN segment
3212 		 *  and the TCP implementation is using an RTO less than 3
3213 		 *  seconds, the RTO MUST be re-initialized to 3 seconds
3214 		 *  when data transmission begins"
3215 		 */
3216 		if (tp->t_rxtcur < TCPTV_RTOBASE3)
3217 			tp->t_rxtcur = TCPTV_RTOBASE3;
3218 	}
3219 }
3220