xref: /dflybsd-src/sys/netinet/tcp_input.c (revision a42c8ee581107512c9160b3b352135f5c5eb90fe)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
68  */
69 
70 #include "opt_inet.h"
71 #include "opt_inet6.h"
72 #include "opt_ipsec.h"
73 #include "opt_tcpdebug.h"
74 #include "opt_tcp_input.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/sysctl.h>
80 #include <sys/malloc.h>
81 #include <sys/mbuf.h>
82 #include <sys/proc.h>		/* for proc0 declaration */
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/syslog.h>
87 #include <sys/in_cksum.h>
88 
89 #include <sys/socketvar2.h>
90 
91 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
92 #include <machine/stdarg.h>
93 
94 #include <net/if.h>
95 #include <net/route.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
101 #include <netinet/in_var.h>
102 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
103 #include <netinet/in_pcb.h>
104 #include <netinet/ip_var.h>
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
117 #include <netinet/tcpip.h>
118 
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 
122 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
123 struct tcphdr tcp_savetcp;
124 #endif
125 
126 #ifdef FAST_IPSEC
127 #include <netproto/ipsec/ipsec.h>
128 #include <netproto/ipsec/ipsec6.h>
129 #endif
130 
131 #ifdef IPSEC
132 #include <netinet6/ipsec.h>
133 #include <netinet6/ipsec6.h>
134 #include <netproto/key/key.h>
135 #endif
136 
137 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
138 
139 static int log_in_vain = 0;
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
141     &log_in_vain, 0, "Log all incoming TCP connections");
142 
143 static int blackhole = 0;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
145     &blackhole, 0, "Do not send RST when dropping refused connections");
146 
147 int tcp_delack_enabled = 1;
148 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
149     &tcp_delack_enabled, 0,
150     "Delay ACK to try and piggyback it onto a data packet");
151 
152 #ifdef TCP_DROP_SYNFIN
153 static int drop_synfin = 0;
154 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
155     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
156 #endif
157 
158 static int tcp_do_limitedtransmit = 1;
159 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
160     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
161 
162 static int tcp_do_early_retransmit = 1;
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
164     &tcp_do_early_retransmit, 0, "Early retransmit");
165 
166 int tcp_aggregate_acks = 1;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
168     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
169 
170 static int tcp_do_eifel_detect = 1;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
172     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
173 
174 static int tcp_do_abc = 1;
175 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
176     &tcp_do_abc, 0,
177     "TCP Appropriate Byte Counting (RFC 3465)");
178 
179 /*
180  * Define as tunable for easy testing with SACK on and off.
181  * Warning:  do not change setting in the middle of an existing active TCP flow,
182  *   else strange things might happen to that flow.
183  */
184 int tcp_do_sack = 1;
185 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
186     &tcp_do_sack, 0, "Enable SACK Algorithms");
187 
188 int tcp_do_smartsack = 1;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
190     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
191 
192 int tcp_do_rescuesack = 1;
193 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rescuesack, CTLFLAG_RW,
194     &tcp_do_rescuesack, 0, "Rescue retransmission for SACK");
195 
196 int tcp_aggressive_rescuesack = 0;
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rescuesack_agg, CTLFLAG_RW,
198     &tcp_aggressive_rescuesack, 0, "Aggressive rescue retransmission for SACK");
199 
200 int tcp_do_rfc3517bis = 0;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3517bis, CTLFLAG_RW,
202     &tcp_do_rfc3517bis, 0, "Enable RFC3517 update");
203 
204 int tcp_rfc3517bis_rxt = 0;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3517bis_rxt, CTLFLAG_RW,
206     &tcp_rfc3517bis_rxt, 0, "Enable RFC3517 retransmit update");
207 
208 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
209     "TCP Segment Reassembly Queue");
210 
211 int tcp_reass_maxseg = 0;
212 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
213     &tcp_reass_maxseg, 0,
214     "Global maximum number of TCP Segments in Reassembly Queue");
215 
216 int tcp_reass_qsize = 0;
217 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
218     &tcp_reass_qsize, 0,
219     "Global number of TCP Segments currently in Reassembly Queue");
220 
221 static int tcp_reass_overflows = 0;
222 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
223     &tcp_reass_overflows, 0,
224     "Global number of TCP Segment Reassembly Queue Overflows");
225 
226 int tcp_do_autorcvbuf = 1;
227 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
228     &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
229 
230 int tcp_autorcvbuf_inc = 16*1024;
231 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
232     &tcp_autorcvbuf_inc, 0,
233     "Incrementor step size of automatic receive buffer");
234 
235 int tcp_autorcvbuf_max = 2*1024*1024;
236 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
237     &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
238 
239 int tcp_sosend_agglim = 2;
240 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosend_agglim, CTLFLAG_RW,
241     &tcp_sosend_agglim, 0, "TCP sosend mbuf aggregation limit");
242 
243 int tcp_sosend_async = 1;
244 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosend_async, CTLFLAG_RW,
245     &tcp_sosend_async, 0, "TCP asynchronized pru_send");
246 
247 static int tcp_ignore_redun_dsack = 1;
248 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ignore_redun_dsack, CTLFLAG_RW,
249     &tcp_ignore_redun_dsack, 0, "Ignore redundant DSACK");
250 
251 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t,
252 		    tcp_seq);
253 static void	 tcp_pulloutofband(struct socket *,
254 		     struct tcphdr *, struct mbuf *, int);
255 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
256 		     struct mbuf *);
257 static void	 tcp_xmit_timer(struct tcpcb *, int, tcp_seq);
258 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
259 static void	 tcp_sack_rexmt(struct tcpcb *, struct tcphdr *);
260 static boolean_t tcp_sack_limitedxmit(struct tcpcb *);
261 static int	 tcp_rmx_msl(const struct tcpcb *);
262 static void	 tcp_established(struct tcpcb *);
263 
264 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
265 #ifdef INET6
266 #define ND6_HINT(tp) \
267 do { \
268 	if ((tp) && (tp)->t_inpcb && \
269 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
270 	    (tp)->t_inpcb->in6p_route.ro_rt) \
271 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
272 } while (0)
273 #else
274 #define ND6_HINT(tp)
275 #endif
276 
277 /*
278  * Indicate whether this ack should be delayed.  We can delay the ack if
279  *	- delayed acks are enabled and
280  *	- there is no delayed ack timer in progress and
281  *	- our last ack wasn't a 0-sized window.  We never want to delay
282  *	  the ack that opens up a 0-sized window.
283  */
284 #define DELAY_ACK(tp) \
285 	(tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
286 	!(tp->t_flags & TF_RXWIN0SENT))
287 
288 #define acceptable_window_update(tp, th, tiwin)				\
289     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
290      (tp->snd_wl1 == th->th_seq &&					\
291       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
292        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
293 
294 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
295 #define need_early_retransmit(tp, ownd) \
296     (tcp_do_early_retransmit && \
297      (tcp_do_eifel_detect && (tp->t_flags & TF_RCVD_TSTMP)) && \
298      ownd < ((tp->t_rxtthresh + 1) * tp->t_maxseg) && \
299      tp->t_dupacks + 1 >= iceildiv(ownd, tp->t_maxseg) && \
300      (!TCP_DO_SACK(tp) || ownd <= tp->t_maxseg || \
301       tcp_sack_has_sacked(&tp->scb, ownd - tp->t_maxseg)))
302 
303 static int
304 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
305 {
306 	struct tseg_qent *q;
307 	struct tseg_qent *p = NULL;
308 	struct tseg_qent *te;
309 	struct socket *so = tp->t_inpcb->inp_socket;
310 	int flags;
311 
312 	/*
313 	 * Call with th == NULL after become established to
314 	 * force pre-ESTABLISHED data up to user socket.
315 	 */
316 	if (th == NULL)
317 		goto present;
318 
319 	/*
320 	 * Limit the number of segments in the reassembly queue to prevent
321 	 * holding on to too many segments (and thus running out of mbufs).
322 	 * Make sure to let the missing segment through which caused this
323 	 * queue.  Always keep one global queue entry spare to be able to
324 	 * process the missing segment.
325 	 */
326 	if (th->th_seq != tp->rcv_nxt &&
327 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
328 		tcp_reass_overflows++;
329 		tcpstat.tcps_rcvmemdrop++;
330 		m_freem(m);
331 		/* no SACK block to report */
332 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
333 		return (0);
334 	}
335 
336 	/* Allocate a new queue entry. */
337 	te = kmalloc(sizeof(struct tseg_qent), M_TSEGQ, M_INTWAIT | M_NULLOK);
338 	if (te == NULL) {
339 		tcpstat.tcps_rcvmemdrop++;
340 		m_freem(m);
341 		/* no SACK block to report */
342 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
343 		return (0);
344 	}
345 	atomic_add_int(&tcp_reass_qsize, 1);
346 
347 	/*
348 	 * Find a segment which begins after this one does.
349 	 */
350 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
351 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
352 			break;
353 		p = q;
354 	}
355 
356 	/*
357 	 * If there is a preceding segment, it may provide some of
358 	 * our data already.  If so, drop the data from the incoming
359 	 * segment.  If it provides all of our data, drop us.
360 	 */
361 	if (p != NULL) {
362 		tcp_seq_diff_t i;
363 
364 		/* conversion to int (in i) handles seq wraparound */
365 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
366 		if (i > 0) {		/* overlaps preceding segment */
367 			tp->sack_flags |=
368 			    (TSACK_F_DUPSEG | TSACK_F_ENCLOSESEG);
369 			/* enclosing block starts w/ preceding segment */
370 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
371 			if (i >= *tlenp) {
372 				/* preceding encloses incoming segment */
373 				tp->encloseblk.rblk_end = TCP_SACK_BLKEND(
374 				    p->tqe_th->th_seq + p->tqe_len,
375 				    p->tqe_th->th_flags);
376 				tcpstat.tcps_rcvduppack++;
377 				tcpstat.tcps_rcvdupbyte += *tlenp;
378 				m_freem(m);
379 				kfree(te, M_TSEGQ);
380 				atomic_add_int(&tcp_reass_qsize, -1);
381 				/*
382 				 * Try to present any queued data
383 				 * at the left window edge to the user.
384 				 * This is needed after the 3-WHS
385 				 * completes.
386 				 */
387 				goto present;	/* ??? */
388 			}
389 			m_adj(m, i);
390 			*tlenp -= i;
391 			th->th_seq += i;
392 			/* incoming segment end is enclosing block end */
393 			tp->encloseblk.rblk_end = TCP_SACK_BLKEND(
394 			    th->th_seq + *tlenp, th->th_flags);
395 			/* trim end of reported D-SACK block */
396 			tp->reportblk.rblk_end = th->th_seq;
397 		}
398 	}
399 	tcpstat.tcps_rcvoopack++;
400 	tcpstat.tcps_rcvoobyte += *tlenp;
401 
402 	/*
403 	 * While we overlap succeeding segments trim them or,
404 	 * if they are completely covered, dequeue them.
405 	 */
406 	while (q) {
407 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
408 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
409 		tcp_seq qend_sack = TCP_SACK_BLKEND(qend, q->tqe_th->th_flags);
410 		struct tseg_qent *nq;
411 
412 		if (i <= 0)
413 			break;
414 		if (!(tp->sack_flags & TSACK_F_DUPSEG)) {
415 			/* first time through */
416 			tp->sack_flags |= (TSACK_F_DUPSEG | TSACK_F_ENCLOSESEG);
417 			tp->encloseblk = tp->reportblk;
418 			/* report trailing duplicate D-SACK segment */
419 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
420 		}
421 		if ((tp->sack_flags & TSACK_F_ENCLOSESEG) &&
422 		    SEQ_GT(qend_sack, tp->encloseblk.rblk_end)) {
423 			/* extend enclosing block if one exists */
424 			tp->encloseblk.rblk_end = qend_sack;
425 		}
426 		if (i < q->tqe_len) {
427 			q->tqe_th->th_seq += i;
428 			q->tqe_len -= i;
429 			m_adj(q->tqe_m, i);
430 			break;
431 		}
432 
433 		nq = LIST_NEXT(q, tqe_q);
434 		LIST_REMOVE(q, tqe_q);
435 		m_freem(q->tqe_m);
436 		kfree(q, M_TSEGQ);
437 		atomic_add_int(&tcp_reass_qsize, -1);
438 		q = nq;
439 	}
440 
441 	/* Insert the new segment queue entry into place. */
442 	te->tqe_m = m;
443 	te->tqe_th = th;
444 	te->tqe_len = *tlenp;
445 
446 	/* check if can coalesce with following segment */
447 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
448 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
449 		tcp_seq tend_sack = TCP_SACK_BLKEND(tend, te->tqe_th->th_flags);
450 
451 		te->tqe_len += q->tqe_len;
452 		if (q->tqe_th->th_flags & TH_FIN)
453 			te->tqe_th->th_flags |= TH_FIN;
454 		m_cat(te->tqe_m, q->tqe_m);
455 		tp->encloseblk.rblk_end = tend_sack;
456 		/*
457 		 * When not reporting a duplicate segment, use
458 		 * the larger enclosing block as the SACK block.
459 		 */
460 		if (!(tp->sack_flags & TSACK_F_DUPSEG))
461 			tp->reportblk.rblk_end = tend_sack;
462 		LIST_REMOVE(q, tqe_q);
463 		kfree(q, M_TSEGQ);
464 		atomic_add_int(&tcp_reass_qsize, -1);
465 	}
466 
467 	if (p == NULL) {
468 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
469 	} else {
470 		/* check if can coalesce with preceding segment */
471 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
472 			p->tqe_len += te->tqe_len;
473 			m_cat(p->tqe_m, te->tqe_m);
474 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
475 			/*
476 			 * When not reporting a duplicate segment, use
477 			 * the larger enclosing block as the SACK block.
478 			 */
479 			if (!(tp->sack_flags & TSACK_F_DUPSEG))
480 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
481 			kfree(te, M_TSEGQ);
482 			atomic_add_int(&tcp_reass_qsize, -1);
483 		} else {
484 			LIST_INSERT_AFTER(p, te, tqe_q);
485 		}
486 	}
487 
488 present:
489 	/*
490 	 * Present data to user, advancing rcv_nxt through
491 	 * completed sequence space.
492 	 */
493 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
494 		return (0);
495 	q = LIST_FIRST(&tp->t_segq);
496 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
497 		return (0);
498 	tp->rcv_nxt += q->tqe_len;
499 	if (!(tp->sack_flags & TSACK_F_DUPSEG))	{
500 		/* no SACK block to report since ACK advanced */
501 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
502 	}
503 	/* no enclosing block to report since ACK advanced */
504 	tp->sack_flags &= ~TSACK_F_ENCLOSESEG;
505 	flags = q->tqe_th->th_flags & TH_FIN;
506 	LIST_REMOVE(q, tqe_q);
507 	KASSERT(LIST_EMPTY(&tp->t_segq) ||
508 		LIST_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
509 		("segment not coalesced"));
510 	if (so->so_state & SS_CANTRCVMORE) {
511 		m_freem(q->tqe_m);
512 	} else {
513 		lwkt_gettoken(&so->so_rcv.ssb_token);
514 		ssb_appendstream(&so->so_rcv, q->tqe_m);
515 		lwkt_reltoken(&so->so_rcv.ssb_token);
516 	}
517 	kfree(q, M_TSEGQ);
518 	atomic_add_int(&tcp_reass_qsize, -1);
519 	ND6_HINT(tp);
520 	sorwakeup(so);
521 	return (flags);
522 }
523 
524 /*
525  * TCP input routine, follows pages 65-76 of the
526  * protocol specification dated September, 1981 very closely.
527  */
528 #ifdef INET6
529 int
530 tcp6_input(struct mbuf **mp, int *offp, int proto)
531 {
532 	struct mbuf *m = *mp;
533 	struct in6_ifaddr *ia6;
534 
535 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
536 
537 	/*
538 	 * draft-itojun-ipv6-tcp-to-anycast
539 	 * better place to put this in?
540 	 */
541 	ia6 = ip6_getdstifaddr(m);
542 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
543 		struct ip6_hdr *ip6;
544 
545 		ip6 = mtod(m, struct ip6_hdr *);
546 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
547 			    offsetof(struct ip6_hdr, ip6_dst));
548 		return (IPPROTO_DONE);
549 	}
550 
551 	tcp_input(mp, offp, proto);
552 	return (IPPROTO_DONE);
553 }
554 #endif
555 
556 int
557 tcp_input(struct mbuf **mp, int *offp, int proto)
558 {
559 	int off0;
560 	struct tcphdr *th;
561 	struct ip *ip = NULL;
562 	struct ipovly *ipov;
563 	struct inpcb *inp = NULL;
564 	u_char *optp = NULL;
565 	int optlen = 0;
566 	int tlen, off;
567 	int len = 0;
568 	int drop_hdrlen;
569 	struct tcpcb *tp = NULL;
570 	int thflags;
571 	struct socket *so = NULL;
572 	int todrop, acked;
573 	boolean_t ourfinisacked, needoutput = FALSE;
574 	u_long tiwin;
575 	int recvwin;
576 	struct tcpopt to;		/* options in this segment */
577 	struct sockaddr_in *next_hop = NULL;
578 	int rstreason; /* For badport_bandlim accounting purposes */
579 	int cpu;
580 	struct ip6_hdr *ip6 = NULL;
581 	struct mbuf *m;
582 #ifdef INET6
583 	boolean_t isipv6;
584 #else
585 	const boolean_t isipv6 = FALSE;
586 #endif
587 #ifdef TCPDEBUG
588 	short ostate = 0;
589 #endif
590 
591 	off0 = *offp;
592 	m = *mp;
593 	*mp = NULL;
594 
595 	tcpstat.tcps_rcvtotal++;
596 
597 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
598 		struct m_tag *mtag;
599 
600 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
601 		KKASSERT(mtag != NULL);
602 		next_hop = m_tag_data(mtag);
603 	}
604 
605 #ifdef INET6
606 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
607 #endif
608 
609 	if (isipv6) {
610 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
611 		ip6 = mtod(m, struct ip6_hdr *);
612 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
613 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
614 			tcpstat.tcps_rcvbadsum++;
615 			goto drop;
616 		}
617 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
618 
619 		/*
620 		 * Be proactive about unspecified IPv6 address in source.
621 		 * As we use all-zero to indicate unbounded/unconnected pcb,
622 		 * unspecified IPv6 address can be used to confuse us.
623 		 *
624 		 * Note that packets with unspecified IPv6 destination is
625 		 * already dropped in ip6_input.
626 		 */
627 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
628 			/* XXX stat */
629 			goto drop;
630 		}
631 	} else {
632 		/*
633 		 * Get IP and TCP header together in first mbuf.
634 		 * Note: IP leaves IP header in first mbuf.
635 		 */
636 		if (off0 > sizeof(struct ip)) {
637 			ip_stripoptions(m);
638 			off0 = sizeof(struct ip);
639 		}
640 		/* already checked and pulled up in ip_demux() */
641 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
642 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
643 		ip = mtod(m, struct ip *);
644 		ipov = (struct ipovly *)ip;
645 		th = (struct tcphdr *)((caddr_t)ip + off0);
646 		tlen = ip->ip_len;
647 
648 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
649 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
650 				th->th_sum = m->m_pkthdr.csum_data;
651 			else
652 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
653 						ip->ip_dst.s_addr,
654 						htonl(m->m_pkthdr.csum_data +
655 							ip->ip_len +
656 							IPPROTO_TCP));
657 			th->th_sum ^= 0xffff;
658 		} else {
659 			/*
660 			 * Checksum extended TCP header and data.
661 			 */
662 			len = sizeof(struct ip) + tlen;
663 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
664 			ipov->ih_len = (u_short)tlen;
665 			ipov->ih_len = htons(ipov->ih_len);
666 			th->th_sum = in_cksum(m, len);
667 		}
668 		if (th->th_sum) {
669 			tcpstat.tcps_rcvbadsum++;
670 			goto drop;
671 		}
672 #ifdef INET6
673 		/* Re-initialization for later version check */
674 		ip->ip_v = IPVERSION;
675 #endif
676 	}
677 
678 	/*
679 	 * Check that TCP offset makes sense,
680 	 * pull out TCP options and adjust length.		XXX
681 	 */
682 	off = th->th_off << 2;
683 	/* already checked and pulled up in ip_demux() */
684 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
685 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
686 	tlen -= off;	/* tlen is used instead of ti->ti_len */
687 	if (off > sizeof(struct tcphdr)) {
688 		if (isipv6) {
689 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
690 			ip6 = mtod(m, struct ip6_hdr *);
691 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
692 		} else {
693 			/* already pulled up in ip_demux() */
694 			KASSERT(m->m_len >= sizeof(struct ip) + off,
695 			    ("TCP header and options not in one mbuf: "
696 			     "m_len %d, off %d", m->m_len, off));
697 		}
698 		optlen = off - sizeof(struct tcphdr);
699 		optp = (u_char *)(th + 1);
700 	}
701 	thflags = th->th_flags;
702 
703 #ifdef TCP_DROP_SYNFIN
704 	/*
705 	 * If the drop_synfin option is enabled, drop all packets with
706 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
707 	 * identifying the TCP/IP stack.
708 	 *
709 	 * This is a violation of the TCP specification.
710 	 */
711 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
712 		goto drop;
713 #endif
714 
715 	/*
716 	 * Convert TCP protocol specific fields to host format.
717 	 */
718 	th->th_seq = ntohl(th->th_seq);
719 	th->th_ack = ntohl(th->th_ack);
720 	th->th_win = ntohs(th->th_win);
721 	th->th_urp = ntohs(th->th_urp);
722 
723 	/*
724 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
725 	 * until after ip6_savecontrol() is called and before other functions
726 	 * which don't want those proto headers.
727 	 * Because ip6_savecontrol() is going to parse the mbuf to
728 	 * search for data to be passed up to user-land, it wants mbuf
729 	 * parameters to be unchanged.
730 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
731 	 * latest version of the advanced API (20020110).
732 	 */
733 	drop_hdrlen = off0 + off;
734 
735 	/*
736 	 * Locate pcb for segment.
737 	 */
738 findpcb:
739 	/* IPFIREWALL_FORWARD section */
740 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
741 		/*
742 		 * Transparently forwarded. Pretend to be the destination.
743 		 * already got one like this?
744 		 */
745 		cpu = mycpu->gd_cpuid;
746 		inp = in_pcblookup_hash(&tcbinfo[cpu],
747 					ip->ip_src, th->th_sport,
748 					ip->ip_dst, th->th_dport,
749 					0, m->m_pkthdr.rcvif);
750 		if (!inp) {
751 			/*
752 			 * It's new.  Try to find the ambushing socket.
753 			 */
754 
755 			/*
756 			 * The rest of the ipfw code stores the port in
757 			 * host order.  XXX
758 			 * (The IP address is still in network order.)
759 			 */
760 			in_port_t dport = next_hop->sin_port ?
761 						htons(next_hop->sin_port) :
762 						th->th_dport;
763 
764 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
765 					  next_hop->sin_addr.s_addr, dport);
766 			inp = in_pcblookup_hash(&tcbinfo[cpu],
767 						ip->ip_src, th->th_sport,
768 						next_hop->sin_addr, dport,
769 						1, m->m_pkthdr.rcvif);
770 		}
771 	} else {
772 		if (isipv6) {
773 			inp = in6_pcblookup_hash(&tcbinfo[0],
774 						 &ip6->ip6_src, th->th_sport,
775 						 &ip6->ip6_dst, th->th_dport,
776 						 1, m->m_pkthdr.rcvif);
777 		} else {
778 			cpu = mycpu->gd_cpuid;
779 			inp = in_pcblookup_hash(&tcbinfo[cpu],
780 						ip->ip_src, th->th_sport,
781 						ip->ip_dst, th->th_dport,
782 						1, m->m_pkthdr.rcvif);
783 		}
784 	}
785 
786 	/*
787 	 * If the state is CLOSED (i.e., TCB does not exist) then
788 	 * all data in the incoming segment is discarded.
789 	 * If the TCB exists but is in CLOSED state, it is embryonic,
790 	 * but should either do a listen or a connect soon.
791 	 */
792 	if (inp == NULL) {
793 		if (log_in_vain) {
794 #ifdef INET6
795 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
796 #else
797 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
798 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
799 #endif
800 			if (isipv6) {
801 				strcpy(dbuf, "[");
802 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
803 				strcat(dbuf, "]");
804 				strcpy(sbuf, "[");
805 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
806 				strcat(sbuf, "]");
807 			} else {
808 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
809 				strcpy(sbuf, inet_ntoa(ip->ip_src));
810 			}
811 			switch (log_in_vain) {
812 			case 1:
813 				if (!(thflags & TH_SYN))
814 					break;
815 			case 2:
816 				log(LOG_INFO,
817 				    "Connection attempt to TCP %s:%d "
818 				    "from %s:%d flags:0x%02x\n",
819 				    dbuf, ntohs(th->th_dport), sbuf,
820 				    ntohs(th->th_sport), thflags);
821 				break;
822 			default:
823 				break;
824 			}
825 		}
826 		if (blackhole) {
827 			switch (blackhole) {
828 			case 1:
829 				if (thflags & TH_SYN)
830 					goto drop;
831 				break;
832 			case 2:
833 				goto drop;
834 			default:
835 				goto drop;
836 			}
837 		}
838 		rstreason = BANDLIM_RST_CLOSEDPORT;
839 		goto dropwithreset;
840 	}
841 
842 #ifdef IPSEC
843 	if (isipv6) {
844 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
845 			ipsec6stat.in_polvio++;
846 			goto drop;
847 		}
848 	} else {
849 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
850 			ipsecstat.in_polvio++;
851 			goto drop;
852 		}
853 	}
854 #endif
855 #ifdef FAST_IPSEC
856 	if (isipv6) {
857 		if (ipsec6_in_reject(m, inp))
858 			goto drop;
859 	} else {
860 		if (ipsec4_in_reject(m, inp))
861 			goto drop;
862 	}
863 #endif
864 	/* Check the minimum TTL for socket. */
865 #ifdef INET6
866 	if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
867 		goto drop;
868 #endif
869 
870 	tp = intotcpcb(inp);
871 	if (tp == NULL) {
872 		rstreason = BANDLIM_RST_CLOSEDPORT;
873 		goto dropwithreset;
874 	}
875 	if (tp->t_state <= TCPS_CLOSED)
876 		goto drop;
877 
878 	so = inp->inp_socket;
879 
880 #ifdef TCPDEBUG
881 	if (so->so_options & SO_DEBUG) {
882 		ostate = tp->t_state;
883 		if (isipv6)
884 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
885 		else
886 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
887 		tcp_savetcp = *th;
888 	}
889 #endif
890 
891 	bzero(&to, sizeof to);
892 
893 	if (so->so_options & SO_ACCEPTCONN) {
894 		struct in_conninfo inc;
895 
896 #ifdef INET6
897 		inc.inc_isipv6 = (isipv6 == TRUE);
898 #endif
899 		if (isipv6) {
900 			inc.inc6_faddr = ip6->ip6_src;
901 			inc.inc6_laddr = ip6->ip6_dst;
902 			inc.inc6_route.ro_rt = NULL;		/* XXX */
903 		} else {
904 			inc.inc_faddr = ip->ip_src;
905 			inc.inc_laddr = ip->ip_dst;
906 			inc.inc_route.ro_rt = NULL;		/* XXX */
907 		}
908 		inc.inc_fport = th->th_sport;
909 		inc.inc_lport = th->th_dport;
910 
911 		/*
912 		 * If the state is LISTEN then ignore segment if it contains
913 		 * a RST.  If the segment contains an ACK then it is bad and
914 		 * send a RST.  If it does not contain a SYN then it is not
915 		 * interesting; drop it.
916 		 *
917 		 * If the state is SYN_RECEIVED (syncache) and seg contains
918 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
919 		 * contains a RST, check the sequence number to see if it
920 		 * is a valid reset segment.
921 		 */
922 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
923 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
924 				if (!syncache_expand(&inc, th, &so, m)) {
925 					/*
926 					 * No syncache entry, or ACK was not
927 					 * for our SYN/ACK.  Send a RST.
928 					 */
929 					tcpstat.tcps_badsyn++;
930 					rstreason = BANDLIM_RST_OPENPORT;
931 					goto dropwithreset;
932 				}
933 
934 				/*
935 				 * Could not complete 3-way handshake,
936 				 * connection is being closed down, and
937 				 * syncache will free mbuf.
938 				 */
939 				if (so == NULL)
940 					return(IPPROTO_DONE);
941 
942 				/*
943 				 * We must be in the correct protocol thread
944 				 * for this connection.
945 				 */
946 				KKASSERT(so->so_port == &curthread->td_msgport);
947 
948 				/*
949 				 * Socket is created in state SYN_RECEIVED.
950 				 * Continue processing segment.
951 				 */
952 				inp = so->so_pcb;
953 				tp = intotcpcb(inp);
954 				/*
955 				 * This is what would have happened in
956 				 * tcp_output() when the SYN,ACK was sent.
957 				 */
958 				tp->snd_up = tp->snd_una;
959 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
960 				tp->last_ack_sent = tp->rcv_nxt;
961 
962 				goto after_listen;
963 			}
964 			if (thflags & TH_RST) {
965 				syncache_chkrst(&inc, th);
966 				goto drop;
967 			}
968 			if (thflags & TH_ACK) {
969 				syncache_badack(&inc);
970 				tcpstat.tcps_badsyn++;
971 				rstreason = BANDLIM_RST_OPENPORT;
972 				goto dropwithreset;
973 			}
974 			goto drop;
975 		}
976 
977 		/*
978 		 * Segment's flags are (SYN) or (SYN | FIN).
979 		 */
980 #ifdef INET6
981 		/*
982 		 * If deprecated address is forbidden,
983 		 * we do not accept SYN to deprecated interface
984 		 * address to prevent any new inbound connection from
985 		 * getting established.
986 		 * When we do not accept SYN, we send a TCP RST,
987 		 * with deprecated source address (instead of dropping
988 		 * it).  We compromise it as it is much better for peer
989 		 * to send a RST, and RST will be the final packet
990 		 * for the exchange.
991 		 *
992 		 * If we do not forbid deprecated addresses, we accept
993 		 * the SYN packet.  RFC2462 does not suggest dropping
994 		 * SYN in this case.
995 		 * If we decipher RFC2462 5.5.4, it says like this:
996 		 * 1. use of deprecated addr with existing
997 		 *    communication is okay - "SHOULD continue to be
998 		 *    used"
999 		 * 2. use of it with new communication:
1000 		 *   (2a) "SHOULD NOT be used if alternate address
1001 		 *	  with sufficient scope is available"
1002 		 *   (2b) nothing mentioned otherwise.
1003 		 * Here we fall into (2b) case as we have no choice in
1004 		 * our source address selection - we must obey the peer.
1005 		 *
1006 		 * The wording in RFC2462 is confusing, and there are
1007 		 * multiple description text for deprecated address
1008 		 * handling - worse, they are not exactly the same.
1009 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1010 		 */
1011 		if (isipv6 && !ip6_use_deprecated) {
1012 			struct in6_ifaddr *ia6;
1013 
1014 			if ((ia6 = ip6_getdstifaddr(m)) &&
1015 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1016 				tp = NULL;
1017 				rstreason = BANDLIM_RST_OPENPORT;
1018 				goto dropwithreset;
1019 			}
1020 		}
1021 #endif
1022 		/*
1023 		 * If it is from this socket, drop it, it must be forged.
1024 		 * Don't bother responding if the destination was a broadcast.
1025 		 */
1026 		if (th->th_dport == th->th_sport) {
1027 			if (isipv6) {
1028 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1029 						       &ip6->ip6_src))
1030 					goto drop;
1031 			} else {
1032 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1033 					goto drop;
1034 			}
1035 		}
1036 		/*
1037 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1038 		 *
1039 		 * Note that it is quite possible to receive unicast
1040 		 * link-layer packets with a broadcast IP address. Use
1041 		 * in_broadcast() to find them.
1042 		 */
1043 		if (m->m_flags & (M_BCAST | M_MCAST))
1044 			goto drop;
1045 		if (isipv6) {
1046 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1047 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1048 				goto drop;
1049 		} else {
1050 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1051 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1052 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1053 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1054 				goto drop;
1055 		}
1056 		/*
1057 		 * SYN appears to be valid; create compressed TCP state
1058 		 * for syncache, or perform t/tcp connection.
1059 		 */
1060 		if (so->so_qlen <= so->so_qlimit) {
1061 			tcp_dooptions(&to, optp, optlen, TRUE, th->th_ack);
1062 			if (!syncache_add(&inc, &to, th, so, m))
1063 				goto drop;
1064 
1065 			/*
1066 			 * Entry added to syncache, mbuf used to
1067 			 * send SYN,ACK packet.
1068 			 */
1069 			return(IPPROTO_DONE);
1070 		}
1071 		goto drop;
1072 	}
1073 
1074 after_listen:
1075 	/*
1076 	 * Should not happen - syncache should pick up these connections.
1077 	 *
1078 	 * Once we are past handling listen sockets we must be in the
1079 	 * correct protocol processing thread.
1080 	 */
1081 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1082 	KKASSERT(so->so_port == &curthread->td_msgport);
1083 
1084 	/* Unscale the window into a 32-bit value. */
1085 	if (!(thflags & TH_SYN))
1086 		tiwin = th->th_win << tp->snd_scale;
1087 	else
1088 		tiwin = th->th_win;
1089 
1090 	/*
1091 	 * This is the second part of the MSS DoS prevention code (after
1092 	 * minmss on the sending side) and it deals with too many too small
1093 	 * tcp packets in a too short timeframe (1 second).
1094 	 *
1095 	 * XXX Removed.  This code was crap.  It does not scale to network
1096 	 *     speed, and default values break NFS.  Gone.
1097 	 */
1098 	/* REMOVED */
1099 
1100 	/*
1101 	 * Segment received on connection.
1102 	 *
1103 	 * Reset idle time and keep-alive timer.  Don't waste time if less
1104 	 * then a second has elapsed.
1105 	 */
1106 	if ((int)(ticks - tp->t_rcvtime) > hz)
1107 		tcp_timer_keep_activity(tp, thflags);
1108 
1109 	/*
1110 	 * Process options.
1111 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1112 	 */
1113 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0, th->th_ack);
1114 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1115 		if ((to.to_flags & TOF_SCALE) && (tp->t_flags & TF_REQ_SCALE)) {
1116 			tp->t_flags |= TF_RCVD_SCALE;
1117 			tp->snd_scale = to.to_requested_s_scale;
1118 		}
1119 
1120 		/*
1121 		 * Initial send window; will be updated upon next ACK
1122 		 */
1123 		tp->snd_wnd = th->th_win;
1124 
1125 		if (to.to_flags & TOF_TS) {
1126 			tp->t_flags |= TF_RCVD_TSTMP;
1127 			tp->ts_recent = to.to_tsval;
1128 			tp->ts_recent_age = ticks;
1129 		}
1130 		if (!(to.to_flags & TOF_MSS))
1131 			to.to_mss = 0;
1132 		tcp_mss(tp, to.to_mss);
1133 		/*
1134 		 * Only set the TF_SACK_PERMITTED per-connection flag
1135 		 * if we got a SACK_PERMITTED option from the other side
1136 		 * and the global tcp_do_sack variable is true.
1137 		 */
1138 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1139 			tp->t_flags |= TF_SACK_PERMITTED;
1140 	}
1141 
1142 	/*
1143 	 * Header prediction: check for the two common cases
1144 	 * of a uni-directional data xfer.  If the packet has
1145 	 * no control flags, is in-sequence, the window didn't
1146 	 * change and we're not retransmitting, it's a
1147 	 * candidate.  If the length is zero and the ack moved
1148 	 * forward, we're the sender side of the xfer.  Just
1149 	 * free the data acked & wake any higher level process
1150 	 * that was blocked waiting for space.  If the length
1151 	 * is non-zero and the ack didn't move, we're the
1152 	 * receiver side.  If we're getting packets in-order
1153 	 * (the reassembly queue is empty), add the data to
1154 	 * the socket buffer and note that we need a delayed ack.
1155 	 * Make sure that the hidden state-flags are also off.
1156 	 * Since we check for TCPS_ESTABLISHED above, it can only
1157 	 * be TH_NEEDSYN.
1158 	 */
1159 	if (tp->t_state == TCPS_ESTABLISHED &&
1160 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1161 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1162 	    (!(to.to_flags & TOF_TS) ||
1163 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1164 	    th->th_seq == tp->rcv_nxt &&
1165 	    tp->snd_nxt == tp->snd_max) {
1166 
1167 		/*
1168 		 * If last ACK falls within this segment's sequence numbers,
1169 		 * record the timestamp.
1170 		 * NOTE that the test is modified according to the latest
1171 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1172 		 */
1173 		if ((to.to_flags & TOF_TS) &&
1174 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1175 			tp->ts_recent_age = ticks;
1176 			tp->ts_recent = to.to_tsval;
1177 		}
1178 
1179 		if (tlen == 0) {
1180 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1181 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1182 			    tp->snd_cwnd >= tp->snd_wnd &&
1183 			    !IN_FASTRECOVERY(tp)) {
1184 				/*
1185 				 * This is a pure ack for outstanding data.
1186 				 */
1187 				++tcpstat.tcps_predack;
1188 				/*
1189 				 * "bad retransmit" recovery
1190 				 *
1191 				 * If Eifel detection applies, then
1192 				 * it is deterministic, so use it
1193 				 * unconditionally over the old heuristic.
1194 				 * Otherwise, fall back to the old heuristic.
1195 				 */
1196 				if (tcp_do_eifel_detect &&
1197 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1198 				    (tp->rxt_flags & TRXT_F_FIRSTACCACK)) {
1199 					/* Eifel detection applicable. */
1200 					if (to.to_tsecr < tp->t_rexmtTS) {
1201 						tcp_revert_congestion_state(tp);
1202 						++tcpstat.tcps_eifeldetected;
1203 						if (tp->t_rxtshift != 1 ||
1204 						    ticks >= tp->t_badrxtwin)
1205 							++tcpstat.tcps_rttcantdetect;
1206 					}
1207 				} else if (tp->t_rxtshift == 1 &&
1208 					   ticks < tp->t_badrxtwin) {
1209 					tcp_revert_congestion_state(tp);
1210 					++tcpstat.tcps_rttdetected;
1211 				}
1212 				tp->rxt_flags &= ~(TRXT_F_FIRSTACCACK |
1213 				    TRXT_F_FASTREXMT | TRXT_F_EARLYREXMT);
1214 				/*
1215 				 * Recalculate the retransmit timer / rtt.
1216 				 *
1217 				 * Some machines (certain windows boxes)
1218 				 * send broken timestamp replies during the
1219 				 * SYN+ACK phase, ignore timestamps of 0.
1220 				 */
1221 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1222 					tcp_xmit_timer(tp,
1223 					    ticks - to.to_tsecr + 1,
1224 					    th->th_ack);
1225 				} else if (tp->t_rtttime &&
1226 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1227 					tcp_xmit_timer(tp,
1228 					    ticks - tp->t_rtttime,
1229 					    th->th_ack);
1230 				}
1231 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1232 				acked = th->th_ack - tp->snd_una;
1233 				tcpstat.tcps_rcvackpack++;
1234 				tcpstat.tcps_rcvackbyte += acked;
1235 				sbdrop(&so->so_snd.sb, acked);
1236 				tp->snd_recover = th->th_ack - 1;
1237 				tp->snd_una = th->th_ack;
1238 				tp->t_dupacks = 0;
1239 				/*
1240 				 * Update window information.
1241 				 */
1242 				if (tiwin != tp->snd_wnd &&
1243 				    acceptable_window_update(tp, th, tiwin)) {
1244 					/* keep track of pure window updates */
1245 					if (tp->snd_wl2 == th->th_ack &&
1246 					    tiwin > tp->snd_wnd)
1247 						tcpstat.tcps_rcvwinupd++;
1248 					tp->snd_wnd = tiwin;
1249 					tp->snd_wl1 = th->th_seq;
1250 					tp->snd_wl2 = th->th_ack;
1251 					if (tp->snd_wnd > tp->max_sndwnd)
1252 						tp->max_sndwnd = tp->snd_wnd;
1253 				}
1254 				m_freem(m);
1255 				ND6_HINT(tp); /* some progress has been done */
1256 				/*
1257 				 * If all outstanding data are acked, stop
1258 				 * retransmit timer, otherwise restart timer
1259 				 * using current (possibly backed-off) value.
1260 				 * If process is waiting for space,
1261 				 * wakeup/selwakeup/signal.  If data
1262 				 * are ready to send, let tcp_output
1263 				 * decide between more output or persist.
1264 				 */
1265 				if (tp->snd_una == tp->snd_max) {
1266 					tcp_callout_stop(tp, tp->tt_rexmt);
1267 				} else if (!tcp_callout_active(tp,
1268 					    tp->tt_persist)) {
1269 					tcp_callout_reset(tp, tp->tt_rexmt,
1270 					    tp->t_rxtcur, tcp_timer_rexmt);
1271 				}
1272 				sowwakeup(so);
1273 				if (so->so_snd.ssb_cc > 0)
1274 					tcp_output(tp);
1275 				return(IPPROTO_DONE);
1276 			}
1277 		} else if (tiwin == tp->snd_wnd &&
1278 		    th->th_ack == tp->snd_una &&
1279 		    LIST_EMPTY(&tp->t_segq) &&
1280 		    tlen <= ssb_space(&so->so_rcv)) {
1281 			u_long newsize = 0;	/* automatic sockbuf scaling */
1282 			/*
1283 			 * This is a pure, in-sequence data packet
1284 			 * with nothing on the reassembly queue and
1285 			 * we have enough buffer space to take it.
1286 			 */
1287 			++tcpstat.tcps_preddat;
1288 			tp->rcv_nxt += tlen;
1289 			tcpstat.tcps_rcvpack++;
1290 			tcpstat.tcps_rcvbyte += tlen;
1291 			ND6_HINT(tp);	/* some progress has been done */
1292 		/*
1293 		 * Automatic sizing of receive socket buffer.  Often the send
1294 		 * buffer size is not optimally adjusted to the actual network
1295 		 * conditions at hand (delay bandwidth product).  Setting the
1296 		 * buffer size too small limits throughput on links with high
1297 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1298 		 *
1299 		 * On the receive side the socket buffer memory is only rarely
1300 		 * used to any significant extent.  This allows us to be much
1301 		 * more aggressive in scaling the receive socket buffer.  For
1302 		 * the case that the buffer space is actually used to a large
1303 		 * extent and we run out of kernel memory we can simply drop
1304 		 * the new segments; TCP on the sender will just retransmit it
1305 		 * later.  Setting the buffer size too big may only consume too
1306 		 * much kernel memory if the application doesn't read() from
1307 		 * the socket or packet loss or reordering makes use of the
1308 		 * reassembly queue.
1309 		 *
1310 		 * The criteria to step up the receive buffer one notch are:
1311 		 *  1. the number of bytes received during the time it takes
1312 		 *     one timestamp to be reflected back to us (the RTT);
1313 		 *  2. received bytes per RTT is within seven eighth of the
1314 		 *     current socket buffer size;
1315 		 *  3. receive buffer size has not hit maximal automatic size;
1316 		 *
1317 		 * This algorithm does one step per RTT at most and only if
1318 		 * we receive a bulk stream w/o packet losses or reorderings.
1319 		 * Shrinking the buffer during idle times is not necessary as
1320 		 * it doesn't consume any memory when idle.
1321 		 *
1322 		 * TODO: Only step up if the application is actually serving
1323 		 * the buffer to better manage the socket buffer resources.
1324 		 */
1325 			if (tcp_do_autorcvbuf &&
1326 			    to.to_tsecr &&
1327 			    (so->so_rcv.ssb_flags & SSB_AUTOSIZE)) {
1328 				if (to.to_tsecr > tp->rfbuf_ts &&
1329 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1330 					if (tp->rfbuf_cnt >
1331 					    (so->so_rcv.ssb_hiwat / 8 * 7) &&
1332 					    so->so_rcv.ssb_hiwat <
1333 					    tcp_autorcvbuf_max) {
1334 						newsize =
1335 						    ulmin(so->so_rcv.ssb_hiwat +
1336 							  tcp_autorcvbuf_inc,
1337 							  tcp_autorcvbuf_max);
1338 					}
1339 					/* Start over with next RTT. */
1340 					tp->rfbuf_ts = 0;
1341 					tp->rfbuf_cnt = 0;
1342 				} else
1343 					tp->rfbuf_cnt += tlen;	/* add up */
1344 			}
1345 			/*
1346 			 * Add data to socket buffer.
1347 			 */
1348 			if (so->so_state & SS_CANTRCVMORE) {
1349 				m_freem(m);
1350 			} else {
1351 				/*
1352 				 * Set new socket buffer size, give up when
1353 				 * limit is reached.
1354 				 *
1355 				 * Adjusting the size can mess up ACK
1356 				 * sequencing when pure window updates are
1357 				 * being avoided (which is the default),
1358 				 * so force an ack.
1359 				 */
1360 				lwkt_gettoken(&so->so_rcv.ssb_token);
1361 				if (newsize) {
1362 					tp->t_flags |= TF_RXRESIZED;
1363 					if (!ssb_reserve(&so->so_rcv, newsize,
1364 							 so, NULL)) {
1365 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1366 					}
1367 					if (newsize >=
1368 					    (TCP_MAXWIN << tp->rcv_scale)) {
1369 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1370 					}
1371 				}
1372 				m_adj(m, drop_hdrlen); /* delayed header drop */
1373 				ssb_appendstream(&so->so_rcv, m);
1374 				lwkt_reltoken(&so->so_rcv.ssb_token);
1375 			}
1376 			sorwakeup(so);
1377 			/*
1378 			 * This code is responsible for most of the ACKs
1379 			 * the TCP stack sends back after receiving a data
1380 			 * packet.  Note that the DELAY_ACK check fails if
1381 			 * the delack timer is already running, which results
1382 			 * in an ack being sent every other packet (which is
1383 			 * what we want).
1384 			 *
1385 			 * We then further aggregate acks by not actually
1386 			 * sending one until the protocol thread has completed
1387 			 * processing the current backlog of packets.  This
1388 			 * does not delay the ack any further, but allows us
1389 			 * to take advantage of the packet aggregation that
1390 			 * high speed NICs do (usually blocks of 8-10 packets)
1391 			 * to send a single ack rather then four or five acks,
1392 			 * greatly reducing the ack rate, the return channel
1393 			 * bandwidth, and the protocol overhead on both ends.
1394 			 *
1395 			 * Since this also has the effect of slowing down
1396 			 * the exponential slow-start ramp-up, systems with
1397 			 * very large bandwidth-delay products might want
1398 			 * to turn the feature off.
1399 			 */
1400 			if (DELAY_ACK(tp)) {
1401 				tcp_callout_reset(tp, tp->tt_delack,
1402 				    tcp_delacktime, tcp_timer_delack);
1403 			} else if (tcp_aggregate_acks) {
1404 				tp->t_flags |= TF_ACKNOW;
1405 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1406 					tp->t_flags |= TF_ONOUTPUTQ;
1407 					tp->tt_cpu = mycpu->gd_cpuid;
1408 					TAILQ_INSERT_TAIL(
1409 					    &tcpcbackq[tp->tt_cpu],
1410 					    tp, t_outputq);
1411 				}
1412 			} else {
1413 				tp->t_flags |= TF_ACKNOW;
1414 				tcp_output(tp);
1415 			}
1416 			return(IPPROTO_DONE);
1417 		}
1418 	}
1419 
1420 	/*
1421 	 * Calculate amount of space in receive window,
1422 	 * and then do TCP input processing.
1423 	 * Receive window is amount of space in rcv queue,
1424 	 * but not less than advertised window.
1425 	 */
1426 	recvwin = ssb_space(&so->so_rcv);
1427 	if (recvwin < 0)
1428 		recvwin = 0;
1429 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1430 
1431 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1432 	tp->rfbuf_ts = 0;
1433 	tp->rfbuf_cnt = 0;
1434 
1435 	switch (tp->t_state) {
1436 	/*
1437 	 * If the state is SYN_RECEIVED:
1438 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1439 	 */
1440 	case TCPS_SYN_RECEIVED:
1441 		if ((thflags & TH_ACK) &&
1442 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1443 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1444 				rstreason = BANDLIM_RST_OPENPORT;
1445 				goto dropwithreset;
1446 		}
1447 		break;
1448 
1449 	/*
1450 	 * If the state is SYN_SENT:
1451 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1452 	 *	if seg contains a RST, then drop the connection.
1453 	 *	if seg does not contain SYN, then drop it.
1454 	 * Otherwise this is an acceptable SYN segment
1455 	 *	initialize tp->rcv_nxt and tp->irs
1456 	 *	if seg contains ack then advance tp->snd_una
1457 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1458 	 *	arrange for segment to be acked (eventually)
1459 	 *	continue processing rest of data/controls, beginning with URG
1460 	 */
1461 	case TCPS_SYN_SENT:
1462 		if ((thflags & TH_ACK) &&
1463 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1464 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1465 			rstreason = BANDLIM_UNLIMITED;
1466 			goto dropwithreset;
1467 		}
1468 		if (thflags & TH_RST) {
1469 			if (thflags & TH_ACK)
1470 				tp = tcp_drop(tp, ECONNREFUSED);
1471 			goto drop;
1472 		}
1473 		if (!(thflags & TH_SYN))
1474 			goto drop;
1475 
1476 		tp->irs = th->th_seq;
1477 		tcp_rcvseqinit(tp);
1478 		if (thflags & TH_ACK) {
1479 			/* Our SYN was acked. */
1480 			tcpstat.tcps_connects++;
1481 			soisconnected(so);
1482 			/* Do window scaling on this connection? */
1483 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1484 			    (TF_RCVD_SCALE | TF_REQ_SCALE))
1485 				tp->rcv_scale = tp->request_r_scale;
1486 			tp->rcv_adv += tp->rcv_wnd;
1487 			tp->snd_una++;		/* SYN is acked */
1488 			tcp_callout_stop(tp, tp->tt_rexmt);
1489 			/*
1490 			 * If there's data, delay ACK; if there's also a FIN
1491 			 * ACKNOW will be turned on later.
1492 			 */
1493 			if (DELAY_ACK(tp) && tlen != 0) {
1494 				tcp_callout_reset(tp, tp->tt_delack,
1495 				    tcp_delacktime, tcp_timer_delack);
1496 			} else {
1497 				tp->t_flags |= TF_ACKNOW;
1498 			}
1499 			/*
1500 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1501 			 * Transitions:
1502 			 *	SYN_SENT  --> ESTABLISHED
1503 			 *	SYN_SENT* --> FIN_WAIT_1
1504 			 */
1505 			tp->t_starttime = ticks;
1506 			if (tp->t_flags & TF_NEEDFIN) {
1507 				tp->t_state = TCPS_FIN_WAIT_1;
1508 				tp->t_flags &= ~TF_NEEDFIN;
1509 				thflags &= ~TH_SYN;
1510 			} else {
1511 				tcp_established(tp);
1512 			}
1513 		} else {
1514 			/*
1515 			 * Received initial SYN in SYN-SENT[*] state =>
1516 			 * simultaneous open.
1517 			 * Do 3-way handshake:
1518 			 *	  SYN-SENT -> SYN-RECEIVED
1519 			 *	  SYN-SENT* -> SYN-RECEIVED*
1520 			 */
1521 			tp->t_flags |= TF_ACKNOW;
1522 			tcp_callout_stop(tp, tp->tt_rexmt);
1523 			tp->t_state = TCPS_SYN_RECEIVED;
1524 		}
1525 
1526 		/*
1527 		 * Advance th->th_seq to correspond to first data byte.
1528 		 * If data, trim to stay within window,
1529 		 * dropping FIN if necessary.
1530 		 */
1531 		th->th_seq++;
1532 		if (tlen > tp->rcv_wnd) {
1533 			todrop = tlen - tp->rcv_wnd;
1534 			m_adj(m, -todrop);
1535 			tlen = tp->rcv_wnd;
1536 			thflags &= ~TH_FIN;
1537 			tcpstat.tcps_rcvpackafterwin++;
1538 			tcpstat.tcps_rcvbyteafterwin += todrop;
1539 		}
1540 		tp->snd_wl1 = th->th_seq - 1;
1541 		tp->rcv_up = th->th_seq;
1542 		/*
1543 		 * Client side of transaction: already sent SYN and data.
1544 		 * If the remote host used T/TCP to validate the SYN,
1545 		 * our data will be ACK'd; if so, enter normal data segment
1546 		 * processing in the middle of step 5, ack processing.
1547 		 * Otherwise, goto step 6.
1548 		 */
1549 		if (thflags & TH_ACK)
1550 			goto process_ACK;
1551 
1552 		goto step6;
1553 
1554 	/*
1555 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1556 	 *	do normal processing (we no longer bother with T/TCP).
1557 	 */
1558 	case TCPS_LAST_ACK:
1559 	case TCPS_CLOSING:
1560 	case TCPS_TIME_WAIT:
1561 		break;  /* continue normal processing */
1562 	}
1563 
1564 	/*
1565 	 * States other than LISTEN or SYN_SENT.
1566 	 * First check the RST flag and sequence number since reset segments
1567 	 * are exempt from the timestamp and connection count tests.  This
1568 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1569 	 * below which allowed reset segments in half the sequence space
1570 	 * to fall though and be processed (which gives forged reset
1571 	 * segments with a random sequence number a 50 percent chance of
1572 	 * killing a connection).
1573 	 * Then check timestamp, if present.
1574 	 * Then check the connection count, if present.
1575 	 * Then check that at least some bytes of segment are within
1576 	 * receive window.  If segment begins before rcv_nxt,
1577 	 * drop leading data (and SYN); if nothing left, just ack.
1578 	 *
1579 	 *
1580 	 * If the RST bit is set, check the sequence number to see
1581 	 * if this is a valid reset segment.
1582 	 * RFC 793 page 37:
1583 	 *   In all states except SYN-SENT, all reset (RST) segments
1584 	 *   are validated by checking their SEQ-fields.  A reset is
1585 	 *   valid if its sequence number is in the window.
1586 	 * Note: this does not take into account delayed ACKs, so
1587 	 *   we should test against last_ack_sent instead of rcv_nxt.
1588 	 *   The sequence number in the reset segment is normally an
1589 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1590 	 *   send a reset with the sequence number at the rightmost edge
1591 	 *   of our receive window, and we have to handle this case.
1592 	 * If we have multiple segments in flight, the intial reset
1593 	 * segment sequence numbers will be to the left of last_ack_sent,
1594 	 * but they will eventually catch up.
1595 	 * In any case, it never made sense to trim reset segments to
1596 	 * fit the receive window since RFC 1122 says:
1597 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1598 	 *
1599 	 *    A TCP SHOULD allow a received RST segment to include data.
1600 	 *
1601 	 *    DISCUSSION
1602 	 *	   It has been suggested that a RST segment could contain
1603 	 *	   ASCII text that encoded and explained the cause of the
1604 	 *	   RST.  No standard has yet been established for such
1605 	 *	   data.
1606 	 *
1607 	 * If the reset segment passes the sequence number test examine
1608 	 * the state:
1609 	 *    SYN_RECEIVED STATE:
1610 	 *	If passive open, return to LISTEN state.
1611 	 *	If active open, inform user that connection was refused.
1612 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1613 	 *	Inform user that connection was reset, and close tcb.
1614 	 *    CLOSING, LAST_ACK STATES:
1615 	 *	Close the tcb.
1616 	 *    TIME_WAIT STATE:
1617 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1618 	 *	RFC 1337.
1619 	 */
1620 	if (thflags & TH_RST) {
1621 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1622 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1623 			switch (tp->t_state) {
1624 
1625 			case TCPS_SYN_RECEIVED:
1626 				so->so_error = ECONNREFUSED;
1627 				goto close;
1628 
1629 			case TCPS_ESTABLISHED:
1630 			case TCPS_FIN_WAIT_1:
1631 			case TCPS_FIN_WAIT_2:
1632 			case TCPS_CLOSE_WAIT:
1633 				so->so_error = ECONNRESET;
1634 			close:
1635 				tp->t_state = TCPS_CLOSED;
1636 				tcpstat.tcps_drops++;
1637 				tp = tcp_close(tp);
1638 				break;
1639 
1640 			case TCPS_CLOSING:
1641 			case TCPS_LAST_ACK:
1642 				tp = tcp_close(tp);
1643 				break;
1644 
1645 			case TCPS_TIME_WAIT:
1646 				break;
1647 			}
1648 		}
1649 		goto drop;
1650 	}
1651 
1652 	/*
1653 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1654 	 * and it's less than ts_recent, drop it.
1655 	 */
1656 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1657 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1658 
1659 		/* Check to see if ts_recent is over 24 days old.  */
1660 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1661 			/*
1662 			 * Invalidate ts_recent.  If this segment updates
1663 			 * ts_recent, the age will be reset later and ts_recent
1664 			 * will get a valid value.  If it does not, setting
1665 			 * ts_recent to zero will at least satisfy the
1666 			 * requirement that zero be placed in the timestamp
1667 			 * echo reply when ts_recent isn't valid.  The
1668 			 * age isn't reset until we get a valid ts_recent
1669 			 * because we don't want out-of-order segments to be
1670 			 * dropped when ts_recent is old.
1671 			 */
1672 			tp->ts_recent = 0;
1673 		} else {
1674 			tcpstat.tcps_rcvduppack++;
1675 			tcpstat.tcps_rcvdupbyte += tlen;
1676 			tcpstat.tcps_pawsdrop++;
1677 			if (tlen)
1678 				goto dropafterack;
1679 			goto drop;
1680 		}
1681 	}
1682 
1683 	/*
1684 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1685 	 * this connection before trimming the data to fit the receive
1686 	 * window.  Check the sequence number versus IRS since we know
1687 	 * the sequence numbers haven't wrapped.  This is a partial fix
1688 	 * for the "LAND" DoS attack.
1689 	 */
1690 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1691 		rstreason = BANDLIM_RST_OPENPORT;
1692 		goto dropwithreset;
1693 	}
1694 
1695 	todrop = tp->rcv_nxt - th->th_seq;
1696 	if (todrop > 0) {
1697 		if (TCP_DO_SACK(tp)) {
1698 			/* Report duplicate segment at head of packet. */
1699 			tp->reportblk.rblk_start = th->th_seq;
1700 			tp->reportblk.rblk_end = TCP_SACK_BLKEND(
1701 			    th->th_seq + tlen, thflags);
1702 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1703 				tp->reportblk.rblk_end = tp->rcv_nxt;
1704 			tp->sack_flags |= (TSACK_F_DUPSEG | TSACK_F_SACKLEFT);
1705 			tp->t_flags |= TF_ACKNOW;
1706 		}
1707 		if (thflags & TH_SYN) {
1708 			thflags &= ~TH_SYN;
1709 			th->th_seq++;
1710 			if (th->th_urp > 1)
1711 				th->th_urp--;
1712 			else
1713 				thflags &= ~TH_URG;
1714 			todrop--;
1715 		}
1716 		/*
1717 		 * Following if statement from Stevens, vol. 2, p. 960.
1718 		 */
1719 		if (todrop > tlen ||
1720 		    (todrop == tlen && !(thflags & TH_FIN))) {
1721 			/*
1722 			 * Any valid FIN must be to the left of the window.
1723 			 * At this point the FIN must be a duplicate or out
1724 			 * of sequence; drop it.
1725 			 */
1726 			thflags &= ~TH_FIN;
1727 
1728 			/*
1729 			 * Send an ACK to resynchronize and drop any data.
1730 			 * But keep on processing for RST or ACK.
1731 			 */
1732 			tp->t_flags |= TF_ACKNOW;
1733 			todrop = tlen;
1734 			tcpstat.tcps_rcvduppack++;
1735 			tcpstat.tcps_rcvdupbyte += todrop;
1736 		} else {
1737 			tcpstat.tcps_rcvpartduppack++;
1738 			tcpstat.tcps_rcvpartdupbyte += todrop;
1739 		}
1740 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1741 		th->th_seq += todrop;
1742 		tlen -= todrop;
1743 		if (th->th_urp > todrop)
1744 			th->th_urp -= todrop;
1745 		else {
1746 			thflags &= ~TH_URG;
1747 			th->th_urp = 0;
1748 		}
1749 	}
1750 
1751 	/*
1752 	 * If new data are received on a connection after the
1753 	 * user processes are gone, then RST the other end.
1754 	 */
1755 	if ((so->so_state & SS_NOFDREF) &&
1756 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1757 		tp = tcp_close(tp);
1758 		tcpstat.tcps_rcvafterclose++;
1759 		rstreason = BANDLIM_UNLIMITED;
1760 		goto dropwithreset;
1761 	}
1762 
1763 	/*
1764 	 * If segment ends after window, drop trailing data
1765 	 * (and PUSH and FIN); if nothing left, just ACK.
1766 	 */
1767 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1768 	if (todrop > 0) {
1769 		tcpstat.tcps_rcvpackafterwin++;
1770 		if (todrop >= tlen) {
1771 			tcpstat.tcps_rcvbyteafterwin += tlen;
1772 			/*
1773 			 * If a new connection request is received
1774 			 * while in TIME_WAIT, drop the old connection
1775 			 * and start over if the sequence numbers
1776 			 * are above the previous ones.
1777 			 */
1778 			if (thflags & TH_SYN &&
1779 			    tp->t_state == TCPS_TIME_WAIT &&
1780 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1781 				tp = tcp_close(tp);
1782 				goto findpcb;
1783 			}
1784 			/*
1785 			 * If window is closed can only take segments at
1786 			 * window edge, and have to drop data and PUSH from
1787 			 * incoming segments.  Continue processing, but
1788 			 * remember to ack.  Otherwise, drop segment
1789 			 * and ack.
1790 			 */
1791 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1792 				tp->t_flags |= TF_ACKNOW;
1793 				tcpstat.tcps_rcvwinprobe++;
1794 			} else
1795 				goto dropafterack;
1796 		} else
1797 			tcpstat.tcps_rcvbyteafterwin += todrop;
1798 		m_adj(m, -todrop);
1799 		tlen -= todrop;
1800 		thflags &= ~(TH_PUSH | TH_FIN);
1801 	}
1802 
1803 	/*
1804 	 * If last ACK falls within this segment's sequence numbers,
1805 	 * record its timestamp.
1806 	 * NOTE:
1807 	 * 1) That the test incorporates suggestions from the latest
1808 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1809 	 * 2) That updating only on newer timestamps interferes with
1810 	 *    our earlier PAWS tests, so this check should be solely
1811 	 *    predicated on the sequence space of this segment.
1812 	 * 3) That we modify the segment boundary check to be
1813 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1814 	 *    instead of RFC1323's
1815 	 *        Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1816 	 *    This modified check allows us to overcome RFC1323's
1817 	 *    limitations as described in Stevens TCP/IP Illustrated
1818 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1819 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1820 	 */
1821 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1822 	    SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1823 					+ ((thflags & TH_SYN) != 0)
1824 					+ ((thflags & TH_FIN) != 0)))) {
1825 		tp->ts_recent_age = ticks;
1826 		tp->ts_recent = to.to_tsval;
1827 	}
1828 
1829 	/*
1830 	 * If a SYN is in the window, then this is an
1831 	 * error and we send an RST and drop the connection.
1832 	 */
1833 	if (thflags & TH_SYN) {
1834 		tp = tcp_drop(tp, ECONNRESET);
1835 		rstreason = BANDLIM_UNLIMITED;
1836 		goto dropwithreset;
1837 	}
1838 
1839 	/*
1840 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1841 	 * flag is on (half-synchronized state), then queue data for
1842 	 * later processing; else drop segment and return.
1843 	 */
1844 	if (!(thflags & TH_ACK)) {
1845 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1846 		    (tp->t_flags & TF_NEEDSYN))
1847 			goto step6;
1848 		else
1849 			goto drop;
1850 	}
1851 
1852 	/*
1853 	 * Ack processing.
1854 	 */
1855 	switch (tp->t_state) {
1856 	/*
1857 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1858 	 * ESTABLISHED state and continue processing.
1859 	 * The ACK was checked above.
1860 	 */
1861 	case TCPS_SYN_RECEIVED:
1862 
1863 		tcpstat.tcps_connects++;
1864 		soisconnected(so);
1865 		/* Do window scaling? */
1866 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1867 		    (TF_RCVD_SCALE | TF_REQ_SCALE))
1868 			tp->rcv_scale = tp->request_r_scale;
1869 		/*
1870 		 * Make transitions:
1871 		 *      SYN-RECEIVED  -> ESTABLISHED
1872 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1873 		 */
1874 		tp->t_starttime = ticks;
1875 		if (tp->t_flags & TF_NEEDFIN) {
1876 			tp->t_state = TCPS_FIN_WAIT_1;
1877 			tp->t_flags &= ~TF_NEEDFIN;
1878 		} else {
1879 			tcp_established(tp);
1880 		}
1881 		/*
1882 		 * If segment contains data or ACK, will call tcp_reass()
1883 		 * later; if not, do so now to pass queued data to user.
1884 		 */
1885 		if (tlen == 0 && !(thflags & TH_FIN))
1886 			tcp_reass(tp, NULL, NULL, NULL);
1887 		/* fall into ... */
1888 
1889 	/*
1890 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1891 	 * ACKs.  If the ack is in the range
1892 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1893 	 * then advance tp->snd_una to th->th_ack and drop
1894 	 * data from the retransmission queue.  If this ACK reflects
1895 	 * more up to date window information we update our window information.
1896 	 */
1897 	case TCPS_ESTABLISHED:
1898 	case TCPS_FIN_WAIT_1:
1899 	case TCPS_FIN_WAIT_2:
1900 	case TCPS_CLOSE_WAIT:
1901 	case TCPS_CLOSING:
1902 	case TCPS_LAST_ACK:
1903 	case TCPS_TIME_WAIT:
1904 
1905 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1906 			if (TCP_DO_SACK(tp))
1907 				tcp_sack_update_scoreboard(tp, &to);
1908 			if (!tcp_callout_active(tp, tp->tt_rexmt) ||
1909 			    th->th_ack != tp->snd_una) {
1910 				if (tlen == 0 && tiwin == tp->snd_wnd)
1911 					tcpstat.tcps_rcvdupack++;
1912 				tp->t_dupacks = 0;
1913 				break;
1914 			}
1915 			if (tlen != 0 || tiwin != tp->snd_wnd) {
1916 				if (!tcp_do_rfc3517bis ||
1917 				    !TCP_DO_SACK(tp) ||
1918 				    (to.to_flags &
1919 				     (TOF_SACK | TOF_SACK_REDUNDANT))
1920 				     != TOF_SACK) {
1921 					tp->t_dupacks = 0;
1922 					break;
1923 				}
1924 				/*
1925 				 * Update window information.
1926 				 */
1927 				if (tiwin != tp->snd_wnd &&
1928 				    acceptable_window_update(tp, th, tiwin)) {
1929 					/* keep track of pure window updates */
1930 					if (tlen == 0 &&
1931 					    tp->snd_wl2 == th->th_ack &&
1932 					    tiwin > tp->snd_wnd)
1933 						tcpstat.tcps_rcvwinupd++;
1934 					tp->snd_wnd = tiwin;
1935 					tp->snd_wl1 = th->th_seq;
1936 					tp->snd_wl2 = th->th_ack;
1937 					if (tp->snd_wnd > tp->max_sndwnd)
1938 						tp->max_sndwnd = tp->snd_wnd;
1939 				}
1940 			}
1941 			tcpstat.tcps_rcvdupack++;
1942 
1943 			/*
1944 			 * We have outstanding data (other than
1945 			 * a window probe), this is a completely
1946 			 * duplicate ack (ie, window info didn't
1947 			 * change), the ack is the biggest we've
1948 			 * seen and we've seen exactly our rexmt
1949 			 * threshhold of them, so assume a packet
1950 			 * has been dropped and retransmit it.
1951 			 * Kludge snd_nxt & the congestion
1952 			 * window so we send only this one
1953 			 * packet.
1954 			 */
1955 			if (IN_FASTRECOVERY(tp)) {
1956 				if (TCP_DO_SACK(tp)) {
1957 					/* No artifical cwnd inflation. */
1958 					tcp_sack_rexmt(tp, th);
1959 				} else {
1960 					/*
1961 					 * Dup acks mean that packets
1962 					 * have left the network
1963 					 * (they're now cached at the
1964 					 * receiver) so bump cwnd by
1965 					 * the amount in the receiver
1966 					 * to keep a constant cwnd
1967 					 * packets in the network.
1968 					 */
1969 					tp->snd_cwnd += tp->t_maxseg;
1970 					tcp_output(tp);
1971 				}
1972 			} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1973 				tp->t_dupacks = 0;
1974 				break;
1975 			} else if (tcp_ignore_redun_dsack && TCP_DO_SACK(tp) &&
1976 			    (to.to_flags & (TOF_DSACK | TOF_SACK_REDUNDANT)) ==
1977 			    (TOF_DSACK | TOF_SACK_REDUNDANT)) {
1978 				/*
1979 				 * If the ACK carries DSACK and other
1980 				 * SACK blocks carry information that
1981 				 * we have already known, don't count
1982 				 * this ACK as duplicate ACK.  This
1983 				 * prevents spurious early retransmit
1984 				 * and fast retransmit.  This also
1985 				 * meets the requirement of RFC3042
1986 				 * that new segments should not be sent
1987 				 * if the SACK blocks do not contain
1988 				 * new information (XXX we actually
1989 				 * loosen the requirment that only DSACK
1990 				 * is checked here).
1991 				 *
1992 				 * This kind of ACKs are usually sent
1993 				 * after spurious retransmit.
1994 				 */
1995 				/* Do nothing; don't change t_dupacks */
1996 			} else if (++tp->t_dupacks == tp->t_rxtthresh) {
1997 				tcp_seq old_snd_nxt;
1998 				u_int win;
1999 
2000 fastretransmit:
2001 				if (tcp_do_eifel_detect &&
2002 				    (tp->t_flags & TF_RCVD_TSTMP)) {
2003 					tcp_save_congestion_state(tp);
2004 					tp->rxt_flags |= TRXT_F_FASTREXMT;
2005 				}
2006 				/*
2007 				 * We know we're losing at the current
2008 				 * window size, so do congestion avoidance:
2009 				 * set ssthresh to half the current window
2010 				 * and pull our congestion window back to the
2011 				 * new ssthresh.
2012 				 */
2013 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
2014 				    tp->t_maxseg;
2015 				if (win < 2)
2016 					win = 2;
2017 				tp->snd_ssthresh = win * tp->t_maxseg;
2018 				ENTER_FASTRECOVERY(tp);
2019 				tp->snd_recover = tp->snd_max;
2020 				tcp_callout_stop(tp, tp->tt_rexmt);
2021 				tp->t_rtttime = 0;
2022 				old_snd_nxt = tp->snd_nxt;
2023 				tp->snd_nxt = th->th_ack;
2024 				tp->snd_cwnd = tp->t_maxseg;
2025 				tcp_output(tp);
2026 				++tcpstat.tcps_sndfastrexmit;
2027 				tp->snd_cwnd = tp->snd_ssthresh;
2028 				tp->rexmt_high = tp->snd_nxt;
2029 				tp->sack_flags &= ~TSACK_F_SACKRESCUED;
2030 				if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
2031 					tp->snd_nxt = old_snd_nxt;
2032 				KASSERT(tp->snd_limited <= 2,
2033 				    ("tp->snd_limited too big"));
2034 				if (TCP_DO_SACK(tp))
2035 					tcp_sack_rexmt(tp, th);
2036 				else
2037 					tp->snd_cwnd += tp->t_maxseg *
2038 					    (tp->t_dupacks - tp->snd_limited);
2039 			} else if (tcp_do_rfc3517bis && TCP_DO_SACK(tp)) {
2040 				if (tcp_rfc3517bis_rxt &&
2041 				    tcp_sack_islost(&tp->scb, tp->snd_una))
2042 					goto fastretransmit;
2043 				if (tcp_do_limitedtransmit) {
2044 					/* outstanding data */
2045 					uint32_t ownd =
2046 					    tp->snd_max - tp->snd_una;
2047 
2048 					if (!tcp_sack_limitedxmit(tp) &&
2049 					    need_early_retransmit(tp, ownd)) {
2050 						++tcpstat.tcps_sndearlyrexmit;
2051 						tp->rxt_flags |=
2052 						    TRXT_F_EARLYREXMT;
2053 						goto fastretransmit;
2054 					}
2055 				}
2056 			} else if (tcp_do_limitedtransmit) {
2057 				u_long oldcwnd = tp->snd_cwnd;
2058 				tcp_seq oldsndmax = tp->snd_max;
2059 				tcp_seq oldsndnxt = tp->snd_nxt;
2060 				/* outstanding data */
2061 				uint32_t ownd = tp->snd_max - tp->snd_una;
2062 				u_int sent;
2063 
2064 				KASSERT(tp->t_dupacks == 1 ||
2065 					tp->t_dupacks == 2,
2066 				    ("dupacks not 1 or 2"));
2067 				if (tp->t_dupacks == 1)
2068 					tp->snd_limited = 0;
2069 				tp->snd_nxt = tp->snd_max;
2070 				tp->snd_cwnd = ownd +
2071 				    (tp->t_dupacks - tp->snd_limited) *
2072 				    tp->t_maxseg;
2073 				tcp_output(tp);
2074 
2075 				if (SEQ_LT(oldsndnxt, oldsndmax)) {
2076 					KASSERT(SEQ_GEQ(oldsndnxt, tp->snd_una),
2077 					    ("snd_una moved in other threads"));
2078 					tp->snd_nxt = oldsndnxt;
2079 				}
2080 				tp->snd_cwnd = oldcwnd;
2081 				sent = tp->snd_max - oldsndmax;
2082 				if (sent > tp->t_maxseg) {
2083 					KASSERT((tp->t_dupacks == 2 &&
2084 						 tp->snd_limited == 0) ||
2085 						(sent == tp->t_maxseg + 1 &&
2086 						 tp->t_flags & TF_SENTFIN),
2087 					    ("sent too much"));
2088 					KASSERT(sent <= tp->t_maxseg * 2,
2089 					    ("sent too many segments"));
2090 					tp->snd_limited = 2;
2091 					tcpstat.tcps_sndlimited += 2;
2092 				} else if (sent > 0) {
2093 					++tp->snd_limited;
2094 					++tcpstat.tcps_sndlimited;
2095 				} else if (need_early_retransmit(tp, ownd)) {
2096 					++tcpstat.tcps_sndearlyrexmit;
2097 					tp->rxt_flags |= TRXT_F_EARLYREXMT;
2098 					goto fastretransmit;
2099 				}
2100 			}
2101 			if (tlen != 0)
2102 				break;
2103 			else
2104 				goto drop;
2105 		}
2106 
2107 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2108 		tp->t_dupacks = 0;
2109 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2110 			/*
2111 			 * Detected optimistic ACK attack.
2112 			 * Force slow-start to de-synchronize attack.
2113 			 */
2114 			tp->snd_cwnd = tp->t_maxseg;
2115 			tp->snd_wacked = 0;
2116 
2117 			tcpstat.tcps_rcvacktoomuch++;
2118 			goto dropafterack;
2119 		}
2120 		/*
2121 		 * If we reach this point, ACK is not a duplicate,
2122 		 *     i.e., it ACKs something we sent.
2123 		 */
2124 		if (tp->t_flags & TF_NEEDSYN) {
2125 			/*
2126 			 * T/TCP: Connection was half-synchronized, and our
2127 			 * SYN has been ACK'd (so connection is now fully
2128 			 * synchronized).  Go to non-starred state,
2129 			 * increment snd_una for ACK of SYN, and check if
2130 			 * we can do window scaling.
2131 			 */
2132 			tp->t_flags &= ~TF_NEEDSYN;
2133 			tp->snd_una++;
2134 			/* Do window scaling? */
2135 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2136 			    (TF_RCVD_SCALE | TF_REQ_SCALE))
2137 				tp->rcv_scale = tp->request_r_scale;
2138 		}
2139 
2140 process_ACK:
2141 		acked = th->th_ack - tp->snd_una;
2142 		tcpstat.tcps_rcvackpack++;
2143 		tcpstat.tcps_rcvackbyte += acked;
2144 
2145 		if (tcp_do_eifel_detect && acked > 0 &&
2146 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2147 		    (tp->rxt_flags & TRXT_F_FIRSTACCACK)) {
2148 			/* Eifel detection applicable. */
2149 			if (to.to_tsecr < tp->t_rexmtTS) {
2150 				++tcpstat.tcps_eifeldetected;
2151 				tcp_revert_congestion_state(tp);
2152 				if (tp->t_rxtshift != 1 ||
2153 				    ticks >= tp->t_badrxtwin)
2154 					++tcpstat.tcps_rttcantdetect;
2155 			}
2156 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2157 			/*
2158 			 * If we just performed our first retransmit,
2159 			 * and the ACK arrives within our recovery window,
2160 			 * then it was a mistake to do the retransmit
2161 			 * in the first place.  Recover our original cwnd
2162 			 * and ssthresh, and proceed to transmit where we
2163 			 * left off.
2164 			 */
2165 			tcp_revert_congestion_state(tp);
2166 			++tcpstat.tcps_rttdetected;
2167 		}
2168 
2169 		/*
2170 		 * If we have a timestamp reply, update smoothed
2171 		 * round trip time.  If no timestamp is present but
2172 		 * transmit timer is running and timed sequence
2173 		 * number was acked, update smoothed round trip time.
2174 		 * Since we now have an rtt measurement, cancel the
2175 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2176 		 * Recompute the initial retransmit timer.
2177 		 *
2178 		 * Some machines (certain windows boxes) send broken
2179 		 * timestamp replies during the SYN+ACK phase, ignore
2180 		 * timestamps of 0.
2181 		 */
2182 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2183 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1, th->th_ack);
2184 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2185 			tcp_xmit_timer(tp, ticks - tp->t_rtttime, th->th_ack);
2186 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2187 
2188 		/*
2189 		 * If no data (only SYN) was ACK'd,
2190 		 *    skip rest of ACK processing.
2191 		 */
2192 		if (acked == 0)
2193 			goto step6;
2194 
2195 		/* Stop looking for an acceptable ACK since one was received. */
2196 		tp->rxt_flags &= ~(TRXT_F_FIRSTACCACK |
2197 		    TRXT_F_FASTREXMT | TRXT_F_EARLYREXMT);
2198 
2199 		if (acked > so->so_snd.ssb_cc) {
2200 			tp->snd_wnd -= so->so_snd.ssb_cc;
2201 			sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2202 			ourfinisacked = TRUE;
2203 		} else {
2204 			sbdrop(&so->so_snd.sb, acked);
2205 			tp->snd_wnd -= acked;
2206 			ourfinisacked = FALSE;
2207 		}
2208 		sowwakeup(so);
2209 
2210 		/*
2211 		 * Update window information.
2212 		 */
2213 		if (acceptable_window_update(tp, th, tiwin)) {
2214 			/* keep track of pure window updates */
2215 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2216 			    tiwin > tp->snd_wnd)
2217 				tcpstat.tcps_rcvwinupd++;
2218 			tp->snd_wnd = tiwin;
2219 			tp->snd_wl1 = th->th_seq;
2220 			tp->snd_wl2 = th->th_ack;
2221 			if (tp->snd_wnd > tp->max_sndwnd)
2222 				tp->max_sndwnd = tp->snd_wnd;
2223 			needoutput = TRUE;
2224 		}
2225 
2226 		tp->snd_una = th->th_ack;
2227 		if (TCP_DO_SACK(tp))
2228 			tcp_sack_update_scoreboard(tp, &to);
2229 		if (IN_FASTRECOVERY(tp)) {
2230 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2231 				EXIT_FASTRECOVERY(tp);
2232 				needoutput = TRUE;
2233 				/*
2234 				 * If the congestion window was inflated
2235 				 * to account for the other side's
2236 				 * cached packets, retract it.
2237 				 */
2238 				if (!TCP_DO_SACK(tp))
2239 					tp->snd_cwnd = tp->snd_ssthresh;
2240 
2241 				/*
2242 				 * Window inflation should have left us
2243 				 * with approximately snd_ssthresh outstanding
2244 				 * data.  But, in case we would be inclined
2245 				 * to send a burst, better do it using
2246 				 * slow start.
2247 				 */
2248 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2249 					   tp->snd_max + 2 * tp->t_maxseg))
2250 					tp->snd_cwnd =
2251 					    (tp->snd_max - tp->snd_una) +
2252 					    2 * tp->t_maxseg;
2253 
2254 				tp->snd_wacked = 0;
2255 			} else {
2256 				if (TCP_DO_SACK(tp)) {
2257 					tp->snd_max_rexmt = tp->snd_max;
2258 					tcp_sack_rexmt(tp, th);
2259 				} else {
2260 					tcp_newreno_partial_ack(tp, th, acked);
2261 				}
2262 				needoutput = FALSE;
2263 			}
2264 		} else {
2265 			/*
2266 			 * Open the congestion window.  When in slow-start,
2267 			 * open exponentially: maxseg per packet.  Otherwise,
2268 			 * open linearly: maxseg per window.
2269 			 */
2270 			if (tp->snd_cwnd <= tp->snd_ssthresh) {
2271 				u_int abc_sslimit =
2272 				    (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2273 				     tp->t_maxseg : 2 * tp->t_maxseg);
2274 
2275 				/* slow-start */
2276 				tp->snd_cwnd += tcp_do_abc ?
2277 				    min(acked, abc_sslimit) : tp->t_maxseg;
2278 			} else {
2279 				/* linear increase */
2280 				tp->snd_wacked += tcp_do_abc ? acked :
2281 				    tp->t_maxseg;
2282 				if (tp->snd_wacked >= tp->snd_cwnd) {
2283 					tp->snd_wacked -= tp->snd_cwnd;
2284 					tp->snd_cwnd += tp->t_maxseg;
2285 				}
2286 			}
2287 			tp->snd_cwnd = min(tp->snd_cwnd,
2288 					   TCP_MAXWIN << tp->snd_scale);
2289 			tp->snd_recover = th->th_ack - 1;
2290 		}
2291 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2292 			tp->snd_nxt = tp->snd_una;
2293 
2294 		/*
2295 		 * If all outstanding data is acked, stop retransmit
2296 		 * timer and remember to restart (more output or persist).
2297 		 * If there is more data to be acked, restart retransmit
2298 		 * timer, using current (possibly backed-off) value.
2299 		 */
2300 		if (th->th_ack == tp->snd_max) {
2301 			tcp_callout_stop(tp, tp->tt_rexmt);
2302 			needoutput = TRUE;
2303 		} else if (!tcp_callout_active(tp, tp->tt_persist)) {
2304 			tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur,
2305 			    tcp_timer_rexmt);
2306 		}
2307 
2308 		switch (tp->t_state) {
2309 		/*
2310 		 * In FIN_WAIT_1 STATE in addition to the processing
2311 		 * for the ESTABLISHED state if our FIN is now acknowledged
2312 		 * then enter FIN_WAIT_2.
2313 		 */
2314 		case TCPS_FIN_WAIT_1:
2315 			if (ourfinisacked) {
2316 				/*
2317 				 * If we can't receive any more
2318 				 * data, then closing user can proceed.
2319 				 * Starting the timer is contrary to the
2320 				 * specification, but if we don't get a FIN
2321 				 * we'll hang forever.
2322 				 */
2323 				if (so->so_state & SS_CANTRCVMORE) {
2324 					soisdisconnected(so);
2325 					tcp_callout_reset(tp, tp->tt_2msl,
2326 					    tp->t_maxidle, tcp_timer_2msl);
2327 				}
2328 				tp->t_state = TCPS_FIN_WAIT_2;
2329 			}
2330 			break;
2331 
2332 		/*
2333 		 * In CLOSING STATE in addition to the processing for
2334 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2335 		 * then enter the TIME-WAIT state, otherwise ignore
2336 		 * the segment.
2337 		 */
2338 		case TCPS_CLOSING:
2339 			if (ourfinisacked) {
2340 				tp->t_state = TCPS_TIME_WAIT;
2341 				tcp_canceltimers(tp);
2342 				tcp_callout_reset(tp, tp->tt_2msl,
2343 					    2 * tcp_rmx_msl(tp),
2344 					    tcp_timer_2msl);
2345 				soisdisconnected(so);
2346 			}
2347 			break;
2348 
2349 		/*
2350 		 * In LAST_ACK, we may still be waiting for data to drain
2351 		 * and/or to be acked, as well as for the ack of our FIN.
2352 		 * If our FIN is now acknowledged, delete the TCB,
2353 		 * enter the closed state and return.
2354 		 */
2355 		case TCPS_LAST_ACK:
2356 			if (ourfinisacked) {
2357 				tp = tcp_close(tp);
2358 				goto drop;
2359 			}
2360 			break;
2361 
2362 		/*
2363 		 * In TIME_WAIT state the only thing that should arrive
2364 		 * is a retransmission of the remote FIN.  Acknowledge
2365 		 * it and restart the finack timer.
2366 		 */
2367 		case TCPS_TIME_WAIT:
2368 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2369 			    tcp_timer_2msl);
2370 			goto dropafterack;
2371 		}
2372 	}
2373 
2374 step6:
2375 	/*
2376 	 * Update window information.
2377 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2378 	 */
2379 	if ((thflags & TH_ACK) &&
2380 	    acceptable_window_update(tp, th, tiwin)) {
2381 		/* keep track of pure window updates */
2382 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2383 		    tiwin > tp->snd_wnd)
2384 			tcpstat.tcps_rcvwinupd++;
2385 		tp->snd_wnd = tiwin;
2386 		tp->snd_wl1 = th->th_seq;
2387 		tp->snd_wl2 = th->th_ack;
2388 		if (tp->snd_wnd > tp->max_sndwnd)
2389 			tp->max_sndwnd = tp->snd_wnd;
2390 		needoutput = TRUE;
2391 	}
2392 
2393 	/*
2394 	 * Process segments with URG.
2395 	 */
2396 	if ((thflags & TH_URG) && th->th_urp &&
2397 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2398 		/*
2399 		 * This is a kludge, but if we receive and accept
2400 		 * random urgent pointers, we'll crash in
2401 		 * soreceive.  It's hard to imagine someone
2402 		 * actually wanting to send this much urgent data.
2403 		 */
2404 		if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2405 			th->th_urp = 0;			/* XXX */
2406 			thflags &= ~TH_URG;		/* XXX */
2407 			goto dodata;			/* XXX */
2408 		}
2409 		/*
2410 		 * If this segment advances the known urgent pointer,
2411 		 * then mark the data stream.  This should not happen
2412 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2413 		 * a FIN has been received from the remote side.
2414 		 * In these states we ignore the URG.
2415 		 *
2416 		 * According to RFC961 (Assigned Protocols),
2417 		 * the urgent pointer points to the last octet
2418 		 * of urgent data.  We continue, however,
2419 		 * to consider it to indicate the first octet
2420 		 * of data past the urgent section as the original
2421 		 * spec states (in one of two places).
2422 		 */
2423 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2424 			tp->rcv_up = th->th_seq + th->th_urp;
2425 			so->so_oobmark = so->so_rcv.ssb_cc +
2426 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2427 			if (so->so_oobmark == 0)
2428 				sosetstate(so, SS_RCVATMARK);
2429 			sohasoutofband(so);
2430 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2431 		}
2432 		/*
2433 		 * Remove out of band data so doesn't get presented to user.
2434 		 * This can happen independent of advancing the URG pointer,
2435 		 * but if two URG's are pending at once, some out-of-band
2436 		 * data may creep in... ick.
2437 		 */
2438 		if (th->th_urp <= (u_long)tlen &&
2439 		    !(so->so_options & SO_OOBINLINE)) {
2440 			/* hdr drop is delayed */
2441 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2442 		}
2443 	} else {
2444 		/*
2445 		 * If no out of band data is expected,
2446 		 * pull receive urgent pointer along
2447 		 * with the receive window.
2448 		 */
2449 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2450 			tp->rcv_up = tp->rcv_nxt;
2451 	}
2452 
2453 dodata:							/* XXX */
2454 	/*
2455 	 * Process the segment text, merging it into the TCP sequencing queue,
2456 	 * and arranging for acknowledgment of receipt if necessary.
2457 	 * This process logically involves adjusting tp->rcv_wnd as data
2458 	 * is presented to the user (this happens in tcp_usrreq.c,
2459 	 * case PRU_RCVD).  If a FIN has already been received on this
2460 	 * connection then we just ignore the text.
2461 	 */
2462 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2463 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2464 		/*
2465 		 * Insert segment which includes th into TCP reassembly queue
2466 		 * with control block tp.  Set thflags to whether reassembly now
2467 		 * includes a segment with FIN.  This handles the common case
2468 		 * inline (segment is the next to be received on an established
2469 		 * connection, and the queue is empty), avoiding linkage into
2470 		 * and removal from the queue and repetition of various
2471 		 * conversions.
2472 		 * Set DELACK for segments received in order, but ack
2473 		 * immediately when segments are out of order (so
2474 		 * fast retransmit can work).
2475 		 */
2476 		if (th->th_seq == tp->rcv_nxt &&
2477 		    LIST_EMPTY(&tp->t_segq) &&
2478 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2479 			if (DELAY_ACK(tp)) {
2480 				tcp_callout_reset(tp, tp->tt_delack,
2481 				    tcp_delacktime, tcp_timer_delack);
2482 			} else {
2483 				tp->t_flags |= TF_ACKNOW;
2484 			}
2485 			tp->rcv_nxt += tlen;
2486 			thflags = th->th_flags & TH_FIN;
2487 			tcpstat.tcps_rcvpack++;
2488 			tcpstat.tcps_rcvbyte += tlen;
2489 			ND6_HINT(tp);
2490 			if (so->so_state & SS_CANTRCVMORE) {
2491 				m_freem(m);
2492 			} else {
2493 				lwkt_gettoken(&so->so_rcv.ssb_token);
2494 				ssb_appendstream(&so->so_rcv, m);
2495 				lwkt_reltoken(&so->so_rcv.ssb_token);
2496 			}
2497 			sorwakeup(so);
2498 		} else {
2499 			if (!(tp->sack_flags & TSACK_F_DUPSEG)) {
2500 				/* Initialize SACK report block. */
2501 				tp->reportblk.rblk_start = th->th_seq;
2502 				tp->reportblk.rblk_end = TCP_SACK_BLKEND(
2503 				    th->th_seq + tlen, thflags);
2504 			}
2505 			thflags = tcp_reass(tp, th, &tlen, m);
2506 			tp->t_flags |= TF_ACKNOW;
2507 		}
2508 
2509 		/*
2510 		 * Note the amount of data that peer has sent into
2511 		 * our window, in order to estimate the sender's
2512 		 * buffer size.
2513 		 */
2514 		len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2515 	} else {
2516 		m_freem(m);
2517 		thflags &= ~TH_FIN;
2518 	}
2519 
2520 	/*
2521 	 * If FIN is received ACK the FIN and let the user know
2522 	 * that the connection is closing.
2523 	 */
2524 	if (thflags & TH_FIN) {
2525 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2526 			socantrcvmore(so);
2527 			/*
2528 			 * If connection is half-synchronized
2529 			 * (ie NEEDSYN flag on) then delay ACK,
2530 			 * so it may be piggybacked when SYN is sent.
2531 			 * Otherwise, since we received a FIN then no
2532 			 * more input can be expected, send ACK now.
2533 			 */
2534 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2535 				tcp_callout_reset(tp, tp->tt_delack,
2536 				    tcp_delacktime, tcp_timer_delack);
2537 			} else {
2538 				tp->t_flags |= TF_ACKNOW;
2539 			}
2540 			tp->rcv_nxt++;
2541 		}
2542 
2543 		switch (tp->t_state) {
2544 		/*
2545 		 * In SYN_RECEIVED and ESTABLISHED STATES
2546 		 * enter the CLOSE_WAIT state.
2547 		 */
2548 		case TCPS_SYN_RECEIVED:
2549 			tp->t_starttime = ticks;
2550 			/*FALLTHROUGH*/
2551 		case TCPS_ESTABLISHED:
2552 			tp->t_state = TCPS_CLOSE_WAIT;
2553 			break;
2554 
2555 		/*
2556 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2557 		 * enter the CLOSING state.
2558 		 */
2559 		case TCPS_FIN_WAIT_1:
2560 			tp->t_state = TCPS_CLOSING;
2561 			break;
2562 
2563 		/*
2564 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2565 		 * starting the time-wait timer, turning off the other
2566 		 * standard timers.
2567 		 */
2568 		case TCPS_FIN_WAIT_2:
2569 			tp->t_state = TCPS_TIME_WAIT;
2570 			tcp_canceltimers(tp);
2571 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2572 				    tcp_timer_2msl);
2573 			soisdisconnected(so);
2574 			break;
2575 
2576 		/*
2577 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2578 		 */
2579 		case TCPS_TIME_WAIT:
2580 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2581 			    tcp_timer_2msl);
2582 			break;
2583 		}
2584 	}
2585 
2586 #ifdef TCPDEBUG
2587 	if (so->so_options & SO_DEBUG)
2588 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2589 #endif
2590 
2591 	/*
2592 	 * Return any desired output.
2593 	 */
2594 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2595 		tcp_output(tp);
2596 	tcp_sack_report_cleanup(tp);
2597 	return(IPPROTO_DONE);
2598 
2599 dropafterack:
2600 	/*
2601 	 * Generate an ACK dropping incoming segment if it occupies
2602 	 * sequence space, where the ACK reflects our state.
2603 	 *
2604 	 * We can now skip the test for the RST flag since all
2605 	 * paths to this code happen after packets containing
2606 	 * RST have been dropped.
2607 	 *
2608 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2609 	 * segment we received passes the SYN-RECEIVED ACK test.
2610 	 * If it fails send a RST.  This breaks the loop in the
2611 	 * "LAND" DoS attack, and also prevents an ACK storm
2612 	 * between two listening ports that have been sent forged
2613 	 * SYN segments, each with the source address of the other.
2614 	 */
2615 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2616 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2617 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2618 		rstreason = BANDLIM_RST_OPENPORT;
2619 		goto dropwithreset;
2620 	}
2621 #ifdef TCPDEBUG
2622 	if (so->so_options & SO_DEBUG)
2623 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2624 #endif
2625 	m_freem(m);
2626 	tp->t_flags |= TF_ACKNOW;
2627 	tcp_output(tp);
2628 	tcp_sack_report_cleanup(tp);
2629 	return(IPPROTO_DONE);
2630 
2631 dropwithreset:
2632 	/*
2633 	 * Generate a RST, dropping incoming segment.
2634 	 * Make ACK acceptable to originator of segment.
2635 	 * Don't bother to respond if destination was broadcast/multicast.
2636 	 */
2637 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2638 		goto drop;
2639 	if (isipv6) {
2640 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2641 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2642 			goto drop;
2643 	} else {
2644 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2645 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2646 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2647 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2648 			goto drop;
2649 	}
2650 	/* IPv6 anycast check is done at tcp6_input() */
2651 
2652 	/*
2653 	 * Perform bandwidth limiting.
2654 	 */
2655 #ifdef ICMP_BANDLIM
2656 	if (badport_bandlim(rstreason) < 0)
2657 		goto drop;
2658 #endif
2659 
2660 #ifdef TCPDEBUG
2661 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2662 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2663 #endif
2664 	if (thflags & TH_ACK)
2665 		/* mtod() below is safe as long as hdr dropping is delayed */
2666 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2667 			    TH_RST);
2668 	else {
2669 		if (thflags & TH_SYN)
2670 			tlen++;
2671 		/* mtod() below is safe as long as hdr dropping is delayed */
2672 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2673 			    (tcp_seq)0, TH_RST | TH_ACK);
2674 	}
2675 	if (tp != NULL)
2676 		tcp_sack_report_cleanup(tp);
2677 	return(IPPROTO_DONE);
2678 
2679 drop:
2680 	/*
2681 	 * Drop space held by incoming segment and return.
2682 	 */
2683 #ifdef TCPDEBUG
2684 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2685 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2686 #endif
2687 	m_freem(m);
2688 	if (tp != NULL)
2689 		tcp_sack_report_cleanup(tp);
2690 	return(IPPROTO_DONE);
2691 }
2692 
2693 /*
2694  * Parse TCP options and place in tcpopt.
2695  */
2696 static void
2697 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn,
2698     tcp_seq ack)
2699 {
2700 	int opt, optlen, i;
2701 
2702 	to->to_flags = 0;
2703 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2704 		opt = cp[0];
2705 		if (opt == TCPOPT_EOL)
2706 			break;
2707 		if (opt == TCPOPT_NOP)
2708 			optlen = 1;
2709 		else {
2710 			if (cnt < 2)
2711 				break;
2712 			optlen = cp[1];
2713 			if (optlen < 2 || optlen > cnt)
2714 				break;
2715 		}
2716 		switch (opt) {
2717 		case TCPOPT_MAXSEG:
2718 			if (optlen != TCPOLEN_MAXSEG)
2719 				continue;
2720 			if (!is_syn)
2721 				continue;
2722 			to->to_flags |= TOF_MSS;
2723 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2724 			to->to_mss = ntohs(to->to_mss);
2725 			break;
2726 		case TCPOPT_WINDOW:
2727 			if (optlen != TCPOLEN_WINDOW)
2728 				continue;
2729 			if (!is_syn)
2730 				continue;
2731 			to->to_flags |= TOF_SCALE;
2732 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2733 			break;
2734 		case TCPOPT_TIMESTAMP:
2735 			if (optlen != TCPOLEN_TIMESTAMP)
2736 				continue;
2737 			to->to_flags |= TOF_TS;
2738 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2739 			to->to_tsval = ntohl(to->to_tsval);
2740 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2741 			to->to_tsecr = ntohl(to->to_tsecr);
2742 			/*
2743 			 * If echoed timestamp is later than the current time,
2744 			 * fall back to non RFC1323 RTT calculation.
2745 			 */
2746 			if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2747 				to->to_tsecr = 0;
2748 			break;
2749 		case TCPOPT_SACK_PERMITTED:
2750 			if (optlen != TCPOLEN_SACK_PERMITTED)
2751 				continue;
2752 			if (!is_syn)
2753 				continue;
2754 			to->to_flags |= TOF_SACK_PERMITTED;
2755 			break;
2756 		case TCPOPT_SACK:
2757 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2758 				continue;
2759 			to->to_nsackblocks = (optlen - 2) / 8;
2760 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2761 			to->to_flags |= TOF_SACK;
2762 			for (i = 0; i < to->to_nsackblocks; i++) {
2763 				struct raw_sackblock *r = &to->to_sackblocks[i];
2764 
2765 				r->rblk_start = ntohl(r->rblk_start);
2766 				r->rblk_end = ntohl(r->rblk_end);
2767 
2768 				if (SEQ_LEQ(r->rblk_end, r->rblk_start)) {
2769 					/*
2770 					 * Invalid SACK block; discard all
2771 					 * SACK blocks
2772 					 */
2773 					tcpstat.tcps_rcvbadsackopt++;
2774 					to->to_nsackblocks = 0;
2775 					to->to_sackblocks = NULL;
2776 					to->to_flags &= ~TOF_SACK;
2777 					break;
2778 				}
2779 			}
2780 			if ((to->to_flags & TOF_SACK) &&
2781 			    tcp_sack_ndsack_blocks(to->to_sackblocks,
2782 			    to->to_nsackblocks, ack))
2783 				to->to_flags |= TOF_DSACK;
2784 			break;
2785 #ifdef TCP_SIGNATURE
2786 		/*
2787 		 * XXX In order to reply to a host which has set the
2788 		 * TCP_SIGNATURE option in its initial SYN, we have to
2789 		 * record the fact that the option was observed here
2790 		 * for the syncache code to perform the correct response.
2791 		 */
2792 		case TCPOPT_SIGNATURE:
2793 			if (optlen != TCPOLEN_SIGNATURE)
2794 				continue;
2795 			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2796 			break;
2797 #endif /* TCP_SIGNATURE */
2798 		default:
2799 			continue;
2800 		}
2801 	}
2802 }
2803 
2804 /*
2805  * Pull out of band byte out of a segment so
2806  * it doesn't appear in the user's data queue.
2807  * It is still reflected in the segment length for
2808  * sequencing purposes.
2809  * "off" is the delayed to be dropped hdrlen.
2810  */
2811 static void
2812 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2813 {
2814 	int cnt = off + th->th_urp - 1;
2815 
2816 	while (cnt >= 0) {
2817 		if (m->m_len > cnt) {
2818 			char *cp = mtod(m, caddr_t) + cnt;
2819 			struct tcpcb *tp = sototcpcb(so);
2820 
2821 			tp->t_iobc = *cp;
2822 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2823 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2824 			m->m_len--;
2825 			if (m->m_flags & M_PKTHDR)
2826 				m->m_pkthdr.len--;
2827 			return;
2828 		}
2829 		cnt -= m->m_len;
2830 		m = m->m_next;
2831 		if (m == NULL)
2832 			break;
2833 	}
2834 	panic("tcp_pulloutofband");
2835 }
2836 
2837 /*
2838  * Collect new round-trip time estimate
2839  * and update averages and current timeout.
2840  */
2841 static void
2842 tcp_xmit_timer(struct tcpcb *tp, int rtt, tcp_seq ack)
2843 {
2844 	int rebaserto = 0;
2845 
2846 	tcpstat.tcps_rttupdated++;
2847 	tp->t_rttupdated++;
2848 	if ((tp->rxt_flags & TRXT_F_REBASERTO) &&
2849 	    SEQ_GT(ack, tp->snd_max_prev)) {
2850 #ifdef DEBUG_EIFEL_RESPONSE
2851 		kprintf("srtt/rttvar, prev %d/%d, cur %d/%d, ",
2852 		    tp->t_srtt_prev, tp->t_rttvar_prev,
2853 		    tp->t_srtt, tp->t_rttvar);
2854 #endif
2855 
2856 		tcpstat.tcps_eifelresponse++;
2857 		rebaserto = 1;
2858 		tp->rxt_flags &= ~TRXT_F_REBASERTO;
2859 		tp->t_srtt = max(tp->t_srtt_prev, (rtt << TCP_RTT_SHIFT));
2860 		tp->t_rttvar = max(tp->t_rttvar_prev,
2861 		    (rtt << (TCP_RTTVAR_SHIFT - 1)));
2862 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2863 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2864 
2865 #ifdef DEBUG_EIFEL_RESPONSE
2866 		kprintf("new %d/%d ", tp->t_srtt, tp->t_rttvar);
2867 #endif
2868 	} else if (tp->t_srtt != 0) {
2869 		int delta;
2870 
2871 		/*
2872 		 * srtt is stored as fixed point with 5 bits after the
2873 		 * binary point (i.e., scaled by 8).  The following magic
2874 		 * is equivalent to the smoothing algorithm in rfc793 with
2875 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2876 		 * point).  Adjust rtt to origin 0.
2877 		 */
2878 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2879 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2880 
2881 		if ((tp->t_srtt += delta) <= 0)
2882 			tp->t_srtt = 1;
2883 
2884 		/*
2885 		 * We accumulate a smoothed rtt variance (actually, a
2886 		 * smoothed mean difference), then set the retransmit
2887 		 * timer to smoothed rtt + 4 times the smoothed variance.
2888 		 * rttvar is stored as fixed point with 4 bits after the
2889 		 * binary point (scaled by 16).  The following is
2890 		 * equivalent to rfc793 smoothing with an alpha of .75
2891 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2892 		 * rfc793's wired-in beta.
2893 		 */
2894 		if (delta < 0)
2895 			delta = -delta;
2896 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2897 		if ((tp->t_rttvar += delta) <= 0)
2898 			tp->t_rttvar = 1;
2899 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2900 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2901 	} else {
2902 		/*
2903 		 * No rtt measurement yet - use the unsmoothed rtt.
2904 		 * Set the variance to half the rtt (so our first
2905 		 * retransmit happens at 3*rtt).
2906 		 */
2907 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2908 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2909 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2910 	}
2911 	tp->t_rtttime = 0;
2912 	tp->t_rxtshift = 0;
2913 
2914 #ifdef DEBUG_EIFEL_RESPONSE
2915 	if (rebaserto) {
2916 		kprintf("| rxtcur prev %d, old %d, ",
2917 		    tp->t_rxtcur_prev, tp->t_rxtcur);
2918 	}
2919 #endif
2920 
2921 	/*
2922 	 * the retransmit should happen at rtt + 4 * rttvar.
2923 	 * Because of the way we do the smoothing, srtt and rttvar
2924 	 * will each average +1/2 tick of bias.  When we compute
2925 	 * the retransmit timer, we want 1/2 tick of rounding and
2926 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2927 	 * firing of the timer.  The bias will give us exactly the
2928 	 * 1.5 tick we need.  But, because the bias is
2929 	 * statistical, we have to test that we don't drop below
2930 	 * the minimum feasible timer (which is 2 ticks).
2931 	 */
2932 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2933 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2934 
2935 	if (rebaserto) {
2936 		if (tp->t_rxtcur < tp->t_rxtcur_prev + tcp_eifel_rtoinc) {
2937 			/*
2938 			 * RFC4015 requires that the new RTO is at least
2939 			 * 2*G (tcp_eifel_rtoinc) greater then the RTO
2940 			 * (t_rxtcur_prev) when the spurious retransmit
2941 			 * timeout happens.
2942 			 *
2943 			 * The above condition could be true, if the SRTT
2944 			 * and RTTVAR used to calculate t_rxtcur_prev
2945 			 * resulted in a value less than t_rttmin.  So
2946 			 * simply increasing SRTT by tcp_eifel_rtoinc when
2947 			 * preparing for the Eifel response in
2948 			 * tcp_save_congestion_state() could not ensure
2949 			 * that the new RTO will be tcp_eifel_rtoinc greater
2950 			 * t_rxtcur_prev.
2951 			 */
2952 			tp->t_rxtcur = tp->t_rxtcur_prev + tcp_eifel_rtoinc;
2953 		}
2954 #ifdef DEBUG_EIFEL_RESPONSE
2955 		kprintf("new %d\n", tp->t_rxtcur);
2956 #endif
2957 	}
2958 
2959 	/*
2960 	 * We received an ack for a packet that wasn't retransmitted;
2961 	 * it is probably safe to discard any error indications we've
2962 	 * received recently.  This isn't quite right, but close enough
2963 	 * for now (a route might have failed after we sent a segment,
2964 	 * and the return path might not be symmetrical).
2965 	 */
2966 	tp->t_softerror = 0;
2967 }
2968 
2969 /*
2970  * Determine a reasonable value for maxseg size.
2971  * If the route is known, check route for mtu.
2972  * If none, use an mss that can be handled on the outgoing
2973  * interface without forcing IP to fragment; if bigger than
2974  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2975  * to utilize large mbufs.  If no route is found, route has no mtu,
2976  * or the destination isn't local, use a default, hopefully conservative
2977  * size (usually 512 or the default IP max size, but no more than the mtu
2978  * of the interface), as we can't discover anything about intervening
2979  * gateways or networks.  We also initialize the congestion/slow start
2980  * window to be a single segment if the destination isn't local.
2981  * While looking at the routing entry, we also initialize other path-dependent
2982  * parameters from pre-set or cached values in the routing entry.
2983  *
2984  * Also take into account the space needed for options that we
2985  * send regularly.  Make maxseg shorter by that amount to assure
2986  * that we can send maxseg amount of data even when the options
2987  * are present.  Store the upper limit of the length of options plus
2988  * data in maxopd.
2989  *
2990  * NOTE that this routine is only called when we process an incoming
2991  * segment, for outgoing segments only tcp_mssopt is called.
2992  */
2993 void
2994 tcp_mss(struct tcpcb *tp, int offer)
2995 {
2996 	struct rtentry *rt;
2997 	struct ifnet *ifp;
2998 	int rtt, mss;
2999 	u_long bufsize;
3000 	struct inpcb *inp = tp->t_inpcb;
3001 	struct socket *so;
3002 #ifdef INET6
3003 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3004 	size_t min_protoh = isipv6 ?
3005 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3006 			    sizeof(struct tcpiphdr);
3007 #else
3008 	const boolean_t isipv6 = FALSE;
3009 	const size_t min_protoh = sizeof(struct tcpiphdr);
3010 #endif
3011 
3012 	if (isipv6)
3013 		rt = tcp_rtlookup6(&inp->inp_inc);
3014 	else
3015 		rt = tcp_rtlookup(&inp->inp_inc);
3016 	if (rt == NULL) {
3017 		tp->t_maxopd = tp->t_maxseg =
3018 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3019 		return;
3020 	}
3021 	ifp = rt->rt_ifp;
3022 	so = inp->inp_socket;
3023 
3024 	/*
3025 	 * Offer == 0 means that there was no MSS on the SYN segment,
3026 	 * in this case we use either the interface mtu or tcp_mssdflt.
3027 	 *
3028 	 * An offer which is too large will be cut down later.
3029 	 */
3030 	if (offer == 0) {
3031 		if (isipv6) {
3032 			if (in6_localaddr(&inp->in6p_faddr)) {
3033 				offer = ND_IFINFO(rt->rt_ifp)->linkmtu -
3034 					min_protoh;
3035 			} else {
3036 				offer = tcp_v6mssdflt;
3037 			}
3038 		} else {
3039 			if (in_localaddr(inp->inp_faddr))
3040 				offer = ifp->if_mtu - min_protoh;
3041 			else
3042 				offer = tcp_mssdflt;
3043 		}
3044 	}
3045 
3046 	/*
3047 	 * Prevent DoS attack with too small MSS. Round up
3048 	 * to at least minmss.
3049 	 *
3050 	 * Sanity check: make sure that maxopd will be large
3051 	 * enough to allow some data on segments even is the
3052 	 * all the option space is used (40bytes).  Otherwise
3053 	 * funny things may happen in tcp_output.
3054 	 */
3055 	offer = max(offer, tcp_minmss);
3056 	offer = max(offer, 64);
3057 
3058 	rt->rt_rmx.rmx_mssopt = offer;
3059 
3060 	/*
3061 	 * While we're here, check if there's an initial rtt
3062 	 * or rttvar.  Convert from the route-table units
3063 	 * to scaled multiples of the slow timeout timer.
3064 	 */
3065 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
3066 		/*
3067 		 * XXX the lock bit for RTT indicates that the value
3068 		 * is also a minimum value; this is subject to time.
3069 		 */
3070 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
3071 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
3072 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
3073 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
3074 		tcpstat.tcps_usedrtt++;
3075 		if (rt->rt_rmx.rmx_rttvar) {
3076 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
3077 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
3078 			tcpstat.tcps_usedrttvar++;
3079 		} else {
3080 			/* default variation is +- 1 rtt */
3081 			tp->t_rttvar =
3082 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3083 		}
3084 		TCPT_RANGESET(tp->t_rxtcur,
3085 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3086 			      tp->t_rttmin, TCPTV_REXMTMAX);
3087 	}
3088 
3089 	/*
3090 	 * if there's an mtu associated with the route, use it
3091 	 * else, use the link mtu.  Take the smaller of mss or offer
3092 	 * as our final mss.
3093 	 */
3094 	if (rt->rt_rmx.rmx_mtu) {
3095 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
3096 	} else {
3097 		if (isipv6)
3098 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
3099 		else
3100 			mss = ifp->if_mtu - min_protoh;
3101 	}
3102 	mss = min(mss, offer);
3103 
3104 	/*
3105 	 * maxopd stores the maximum length of data AND options
3106 	 * in a segment; maxseg is the amount of data in a normal
3107 	 * segment.  We need to store this value (maxopd) apart
3108 	 * from maxseg, because now every segment carries options
3109 	 * and thus we normally have somewhat less data in segments.
3110 	 */
3111 	tp->t_maxopd = mss;
3112 
3113 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
3114 	    ((tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3115 		mss -= TCPOLEN_TSTAMP_APPA;
3116 
3117 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3118 	if (mss > MCLBYTES)
3119 		mss &= ~(MCLBYTES-1);
3120 #else
3121 	if (mss > MCLBYTES)
3122 		mss = mss / MCLBYTES * MCLBYTES;
3123 #endif
3124 	/*
3125 	 * If there's a pipesize, change the socket buffer
3126 	 * to that size.  Make the socket buffers an integral
3127 	 * number of mss units; if the mss is larger than
3128 	 * the socket buffer, decrease the mss.
3129 	 */
3130 #ifdef RTV_SPIPE
3131 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
3132 #endif
3133 		bufsize = so->so_snd.ssb_hiwat;
3134 	if (bufsize < mss)
3135 		mss = bufsize;
3136 	else {
3137 		bufsize = roundup(bufsize, mss);
3138 		if (bufsize > sb_max)
3139 			bufsize = sb_max;
3140 		if (bufsize > so->so_snd.ssb_hiwat)
3141 			ssb_reserve(&so->so_snd, bufsize, so, NULL);
3142 	}
3143 	tp->t_maxseg = mss;
3144 
3145 #ifdef RTV_RPIPE
3146 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3147 #endif
3148 		bufsize = so->so_rcv.ssb_hiwat;
3149 	if (bufsize > mss) {
3150 		bufsize = roundup(bufsize, mss);
3151 		if (bufsize > sb_max)
3152 			bufsize = sb_max;
3153 		if (bufsize > so->so_rcv.ssb_hiwat) {
3154 			lwkt_gettoken(&so->so_rcv.ssb_token);
3155 			ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3156 			lwkt_reltoken(&so->so_rcv.ssb_token);
3157 		}
3158 	}
3159 
3160 	/*
3161 	 * Set the slow-start flight size
3162 	 *
3163 	 * NOTE: t_maxseg must have been configured!
3164 	 */
3165 	tp->snd_cwnd = tcp_initial_window(tp);
3166 
3167 	if (rt->rt_rmx.rmx_ssthresh) {
3168 		/*
3169 		 * There's some sort of gateway or interface
3170 		 * buffer limit on the path.  Use this to set
3171 		 * the slow start threshhold, but set the
3172 		 * threshold to no less than 2*mss.
3173 		 */
3174 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3175 		tcpstat.tcps_usedssthresh++;
3176 	}
3177 }
3178 
3179 /*
3180  * Determine the MSS option to send on an outgoing SYN.
3181  */
3182 int
3183 tcp_mssopt(struct tcpcb *tp)
3184 {
3185 	struct rtentry *rt;
3186 #ifdef INET6
3187 	boolean_t isipv6 =
3188 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3189 	int min_protoh = isipv6 ?
3190 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3191 			     sizeof(struct tcpiphdr);
3192 #else
3193 	const boolean_t isipv6 = FALSE;
3194 	const size_t min_protoh = sizeof(struct tcpiphdr);
3195 #endif
3196 
3197 	if (isipv6)
3198 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3199 	else
3200 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3201 	if (rt == NULL)
3202 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3203 
3204 	return (rt->rt_ifp->if_mtu - min_protoh);
3205 }
3206 
3207 /*
3208  * When a partial ack arrives, force the retransmission of the
3209  * next unacknowledged segment.  Do not exit Fast Recovery.
3210  *
3211  * Implement the Slow-but-Steady variant of NewReno by restarting the
3212  * the retransmission timer.  Turn it off here so it can be restarted
3213  * later in tcp_output().
3214  */
3215 static void
3216 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3217 {
3218 	tcp_seq old_snd_nxt = tp->snd_nxt;
3219 	u_long ocwnd = tp->snd_cwnd;
3220 
3221 	tcp_callout_stop(tp, tp->tt_rexmt);
3222 	tp->t_rtttime = 0;
3223 	tp->snd_nxt = th->th_ack;
3224 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3225 	tp->snd_cwnd = tp->t_maxseg;
3226 	tp->t_flags |= TF_ACKNOW;
3227 	tcp_output(tp);
3228 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3229 		tp->snd_nxt = old_snd_nxt;
3230 	/* partial window deflation */
3231 	if (ocwnd > acked)
3232 		tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3233 	else
3234 		tp->snd_cwnd = tp->t_maxseg;
3235 }
3236 
3237 /*
3238  * In contrast to the Slow-but-Steady NewReno variant,
3239  * we do not reset the retransmission timer for SACK retransmissions,
3240  * except when retransmitting snd_una.
3241  */
3242 static void
3243 tcp_sack_rexmt(struct tcpcb *tp, struct tcphdr *th)
3244 {
3245 	tcp_seq old_snd_nxt = tp->snd_nxt;
3246 	u_long ocwnd = tp->snd_cwnd;
3247 	uint32_t pipe;
3248 	int nseg = 0;		/* consecutive new segments */
3249 	int nseg_rexmt = 0;	/* retransmitted segments */
3250 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3251 
3252 	tp->t_rtttime = 0;
3253 	pipe = tcp_sack_compute_pipe(tp);
3254 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3255 	    (!tcp_do_smartsack || nseg < MAXBURST)) {
3256 		tcp_seq old_snd_max, old_rexmt_high, nextrexmt;
3257 		uint32_t sent, seglen;
3258 		boolean_t rescue;
3259 		int error;
3260 
3261 		old_rexmt_high = tp->rexmt_high;
3262 	    	if (!tcp_sack_nextseg(tp, &nextrexmt, &seglen, &rescue)) {
3263 			tp->rexmt_high = old_rexmt_high;
3264 			break;
3265 		}
3266 
3267 		/*
3268 		 * If the next tranmission is a rescue retranmission,
3269 		 * we check whether we have already sent some data
3270 		 * (either new segments or retransmitted segments)
3271 		 * into the the network or not.  Since the idea of rescue
3272 		 * retransmission is to sustain ACK clock, as long as
3273 		 * some segments are in the network, ACK clock will be
3274 		 * kept ticking.
3275 		 */
3276 		if (rescue && (nseg_rexmt > 0 || nseg > 0)) {
3277 			tp->rexmt_high = old_rexmt_high;
3278 			break;
3279 		}
3280 
3281 		if (nextrexmt == tp->snd_max)
3282 			++nseg;
3283 		else
3284 			++nseg_rexmt;
3285 		tp->snd_nxt = nextrexmt;
3286 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3287 		old_snd_max = tp->snd_max;
3288 		if (nextrexmt == tp->snd_una)
3289 			tcp_callout_stop(tp, tp->tt_rexmt);
3290 		error = tcp_output(tp);
3291 		if (error != 0) {
3292 			tp->rexmt_high = old_rexmt_high;
3293 			break;
3294 		}
3295 		sent = tp->snd_nxt - nextrexmt;
3296 		if (sent <= 0) {
3297 			tp->rexmt_high = old_rexmt_high;
3298 			break;
3299 		}
3300 		pipe += sent;
3301 		tcpstat.tcps_sndsackpack++;
3302 		tcpstat.tcps_sndsackbyte += sent;
3303 
3304 		if (rescue) {
3305 			tcpstat.tcps_sackrescue++;
3306 			tp->rexmt_rescue = tp->snd_nxt;
3307 			tp->sack_flags |= TSACK_F_SACKRESCUED;
3308 			break;
3309 		}
3310 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3311 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt)) {
3312 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3313 			if (tcp_aggressive_rescuesack &&
3314 			    (tp->sack_flags & TSACK_F_SACKRESCUED) &&
3315 			    SEQ_LT(tp->rexmt_rescue, tp->rexmt_high)) {
3316 				/* Drag RescueRxt along with HighRxt */
3317 				tp->rexmt_rescue = tp->rexmt_high;
3318 			}
3319 		}
3320 	}
3321 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3322 		tp->snd_nxt = old_snd_nxt;
3323 	tp->snd_cwnd = ocwnd;
3324 }
3325 
3326 static boolean_t
3327 tcp_sack_limitedxmit(struct tcpcb *tp)
3328 {
3329 	tcp_seq oldsndnxt = tp->snd_nxt;
3330 	tcp_seq oldsndmax = tp->snd_max;
3331 	u_long ocwnd = tp->snd_cwnd;
3332 	uint32_t pipe;
3333 	boolean_t ret = FALSE;
3334 
3335 	tp->rexmt_high = tp->snd_una - 1;
3336 	pipe = tcp_sack_compute_pipe(tp);
3337 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg) {
3338 		uint32_t sent;
3339 		tcp_seq next;
3340 		int error;
3341 
3342 		next = tp->snd_nxt = tp->snd_max;
3343 		tp->snd_cwnd = tp->snd_nxt - tp->snd_una + tp->t_maxseg;
3344 
3345 		error = tcp_output(tp);
3346 		if (error)
3347 			break;
3348 
3349 		sent = tp->snd_nxt - next;
3350 		if (sent <= 0)
3351 			break;
3352 		pipe += sent;
3353 		++tcpstat.tcps_sndlimited;
3354 		ret = TRUE;
3355 	}
3356 
3357 	if (SEQ_LT(oldsndnxt, oldsndmax)) {
3358 		KASSERT(SEQ_GEQ(oldsndnxt, tp->snd_una),
3359 		    ("snd_una moved in other threads"));
3360 		tp->snd_nxt = oldsndnxt;
3361 	}
3362 	tp->snd_cwnd = ocwnd;
3363 
3364 	return ret;
3365 }
3366 
3367 /*
3368  * Reset idle time and keep-alive timer, typically called when a valid
3369  * tcp packet is received but may also be called when FASTKEEP is set
3370  * to prevent the previous long-timeout from calculating to a drop.
3371  *
3372  * Only update t_rcvtime for non-SYN packets.
3373  *
3374  * Handle the case where one side thinks the connection is established
3375  * but the other side has, say, rebooted without cleaning out the
3376  * connection.   The SYNs could be construed as an attack and wind
3377  * up ignored, but in case it isn't an attack we can validate the
3378  * connection by forcing a keepalive.
3379  */
3380 void
3381 tcp_timer_keep_activity(struct tcpcb *tp, int thflags)
3382 {
3383 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3384 		if ((thflags & (TH_SYN | TH_ACK)) == TH_SYN) {
3385 			tp->t_flags |= TF_KEEPALIVE;
3386 			tcp_callout_reset(tp, tp->tt_keep, hz / 2,
3387 					  tcp_timer_keep);
3388 		} else {
3389 			tp->t_rcvtime = ticks;
3390 			tp->t_flags &= ~TF_KEEPALIVE;
3391 			tcp_callout_reset(tp, tp->tt_keep,
3392 					  tp->t_keepidle,
3393 					  tcp_timer_keep);
3394 		}
3395 	}
3396 }
3397 
3398 static int
3399 tcp_rmx_msl(const struct tcpcb *tp)
3400 {
3401 	struct rtentry *rt;
3402 	struct inpcb *inp = tp->t_inpcb;
3403 	int msl;
3404 #ifdef INET6
3405 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3406 #else
3407 	const boolean_t isipv6 = FALSE;
3408 #endif
3409 
3410 	if (isipv6)
3411 		rt = tcp_rtlookup6(&inp->inp_inc);
3412 	else
3413 		rt = tcp_rtlookup(&inp->inp_inc);
3414 	if (rt == NULL || rt->rt_rmx.rmx_msl == 0)
3415 		return tcp_msl;
3416 
3417 	msl = (rt->rt_rmx.rmx_msl * hz) / 1000;
3418 	if (msl == 0)
3419 		msl = 1;
3420 
3421 	return msl;
3422 }
3423 
3424 static void
3425 tcp_established(struct tcpcb *tp)
3426 {
3427 	tp->t_state = TCPS_ESTABLISHED;
3428 	tcp_callout_reset(tp, tp->tt_keep, tp->t_keepidle, tcp_timer_keep);
3429 
3430 	if (tp->t_rxtsyn > 0) {
3431 		/*
3432 		 * RFC6298:
3433 		 * "If the timer expires awaiting the ACK of a SYN segment
3434 		 *  and the TCP implementation is using an RTO less than 3
3435 		 *  seconds, the RTO MUST be re-initialized to 3 seconds
3436 		 *  when data transmission begins"
3437 		 */
3438 		if (tp->t_rxtcur < TCPTV_RTOBASE3)
3439 			tp->t_rxtcur = TCPTV_RTOBASE3;
3440 	}
3441 }
3442