xref: /dflybsd-src/sys/netinet/tcp_input.c (revision 881dac8bcf7f6e26635fa38f071b93347ef92192)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
68  * $DragonFly: src/sys/netinet/tcp_input.c,v 1.68 2008/08/22 09:14:17 sephe Exp $
69  */
70 
71 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
72 #include "opt_inet.h"
73 #include "opt_inet6.h"
74 #include "opt_ipsec.h"
75 #include "opt_tcpdebug.h"
76 #include "opt_tcp_input.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/proc.h>		/* for proc0 declaration */
85 #include <sys/protosw.h>
86 #include <sys/socket.h>
87 #include <sys/socketvar.h>
88 #include <sys/syslog.h>
89 #include <sys/in_cksum.h>
90 
91 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
92 #include <machine/stdarg.h>
93 
94 #include <net/if.h>
95 #include <net/route.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
101 #include <netinet/in_var.h>
102 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
103 #include <netinet/in_pcb.h>
104 #include <netinet/ip_var.h>
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
117 #include <netinet/tcpip.h>
118 
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 
122 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
123 struct tcphdr tcp_savetcp;
124 #endif
125 
126 #ifdef FAST_IPSEC
127 #include <netproto/ipsec/ipsec.h>
128 #include <netproto/ipsec/ipsec6.h>
129 #endif
130 
131 #ifdef IPSEC
132 #include <netinet6/ipsec.h>
133 #include <netinet6/ipsec6.h>
134 #include <netproto/key/key.h>
135 #endif
136 
137 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
138 
139 static int log_in_vain = 0;
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
141     &log_in_vain, 0, "Log all incoming TCP connections");
142 
143 static int blackhole = 0;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
145     &blackhole, 0, "Do not send RST when dropping refused connections");
146 
147 int tcp_delack_enabled = 1;
148 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
149     &tcp_delack_enabled, 0,
150     "Delay ACK to try and piggyback it onto a data packet");
151 
152 #ifdef TCP_DROP_SYNFIN
153 static int drop_synfin = 0;
154 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
155     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
156 #endif
157 
158 static int tcp_do_limitedtransmit = 1;
159 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
160     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
161 
162 static int tcp_do_early_retransmit = 1;
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
164     &tcp_do_early_retransmit, 0, "Early retransmit");
165 
166 int tcp_aggregate_acks = 1;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
168     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
169 
170 int tcp_do_rfc3390 = 1;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
172     &tcp_do_rfc3390, 0,
173     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
174 
175 static int tcp_do_eifel_detect = 1;
176 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
177     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
178 
179 static int tcp_do_abc = 1;
180 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
181     &tcp_do_abc, 0,
182     "TCP Appropriate Byte Counting (RFC 3465)");
183 
184 /*
185  * Define as tunable for easy testing with SACK on and off.
186  * Warning:  do not change setting in the middle of an existing active TCP flow,
187  *   else strange things might happen to that flow.
188  */
189 int tcp_do_sack = 1;
190 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
191     &tcp_do_sack, 0, "Enable SACK Algorithms");
192 
193 int tcp_do_smartsack = 1;
194 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
195     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
196 
197 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
198     "TCP Segment Reassembly Queue");
199 
200 int tcp_reass_maxseg = 0;
201 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
202     &tcp_reass_maxseg, 0,
203     "Global maximum number of TCP Segments in Reassembly Queue");
204 
205 int tcp_reass_qsize = 0;
206 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
207     &tcp_reass_qsize, 0,
208     "Global number of TCP Segments currently in Reassembly Queue");
209 
210 static int tcp_reass_overflows = 0;
211 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
212     &tcp_reass_overflows, 0,
213     "Global number of TCP Segment Reassembly Queue Overflows");
214 
215 int tcp_do_autorcvbuf = 1;
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
217     &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
218 
219 int tcp_autorcvbuf_inc = 16*1024;
220 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
221     &tcp_autorcvbuf_inc, 0,
222     "Incrementor step size of automatic receive buffer");
223 
224 int tcp_autorcvbuf_max = 2*1024*1024;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
226     &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
227 
228 
229 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t);
230 static void	 tcp_pulloutofband(struct socket *,
231 		     struct tcphdr *, struct mbuf *, int);
232 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
233 		     struct mbuf *);
234 static void	 tcp_xmit_timer(struct tcpcb *, int);
235 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
236 static void	 tcp_sack_rexmt(struct tcpcb *, struct tcphdr *);
237 
238 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
239 #ifdef INET6
240 #define ND6_HINT(tp) \
241 do { \
242 	if ((tp) && (tp)->t_inpcb && \
243 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
244 	    (tp)->t_inpcb->in6p_route.ro_rt) \
245 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
246 } while (0)
247 #else
248 #define ND6_HINT(tp)
249 #endif
250 
251 /*
252  * Indicate whether this ack should be delayed.  We can delay the ack if
253  *	- delayed acks are enabled and
254  *	- there is no delayed ack timer in progress and
255  *	- our last ack wasn't a 0-sized window.  We never want to delay
256  *	  the ack that opens up a 0-sized window.
257  */
258 #define DELAY_ACK(tp) \
259 	(tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
260 	!(tp->t_flags & TF_RXWIN0SENT))
261 
262 #define acceptable_window_update(tp, th, tiwin)				\
263     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
264      (tp->snd_wl1 == th->th_seq &&					\
265       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
266        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
267 
268 static int
269 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
270 {
271 	struct tseg_qent *q;
272 	struct tseg_qent *p = NULL;
273 	struct tseg_qent *te;
274 	struct socket *so = tp->t_inpcb->inp_socket;
275 	int flags;
276 
277 	/*
278 	 * Call with th == NULL after become established to
279 	 * force pre-ESTABLISHED data up to user socket.
280 	 */
281 	if (th == NULL)
282 		goto present;
283 
284 	/*
285 	 * Limit the number of segments in the reassembly queue to prevent
286 	 * holding on to too many segments (and thus running out of mbufs).
287 	 * Make sure to let the missing segment through which caused this
288 	 * queue.  Always keep one global queue entry spare to be able to
289 	 * process the missing segment.
290 	 */
291 	if (th->th_seq != tp->rcv_nxt &&
292 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
293 		tcp_reass_overflows++;
294 		tcpstat.tcps_rcvmemdrop++;
295 		m_freem(m);
296 		/* no SACK block to report */
297 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
298 		return (0);
299 	}
300 
301 	/* Allocate a new queue entry. */
302 	MALLOC(te, struct tseg_qent *, sizeof(struct tseg_qent), M_TSEGQ,
303 	       M_INTWAIT | M_NULLOK);
304 	if (te == NULL) {
305 		tcpstat.tcps_rcvmemdrop++;
306 		m_freem(m);
307 		/* no SACK block to report */
308 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
309 		return (0);
310 	}
311 	atomic_add_int(&tcp_reass_qsize, 1);
312 
313 	/*
314 	 * Find a segment which begins after this one does.
315 	 */
316 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
317 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
318 			break;
319 		p = q;
320 	}
321 
322 	/*
323 	 * If there is a preceding segment, it may provide some of
324 	 * our data already.  If so, drop the data from the incoming
325 	 * segment.  If it provides all of our data, drop us.
326 	 */
327 	if (p != NULL) {
328 		tcp_seq_diff_t i;
329 
330 		/* conversion to int (in i) handles seq wraparound */
331 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
332 		if (i > 0) {		/* overlaps preceding segment */
333 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
334 			/* enclosing block starts w/ preceding segment */
335 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
336 			if (i >= *tlenp) {
337 				/* preceding encloses incoming segment */
338 				tp->encloseblk.rblk_end = p->tqe_th->th_seq +
339 				    p->tqe_len;
340 				tcpstat.tcps_rcvduppack++;
341 				tcpstat.tcps_rcvdupbyte += *tlenp;
342 				m_freem(m);
343 				kfree(te, M_TSEGQ);
344 				atomic_add_int(&tcp_reass_qsize, -1);
345 				/*
346 				 * Try to present any queued data
347 				 * at the left window edge to the user.
348 				 * This is needed after the 3-WHS
349 				 * completes.
350 				 */
351 				goto present;	/* ??? */
352 			}
353 			m_adj(m, i);
354 			*tlenp -= i;
355 			th->th_seq += i;
356 			/* incoming segment end is enclosing block end */
357 			tp->encloseblk.rblk_end = th->th_seq + *tlenp +
358 			    ((th->th_flags & TH_FIN) != 0);
359 			/* trim end of reported D-SACK block */
360 			tp->reportblk.rblk_end = th->th_seq;
361 		}
362 	}
363 	tcpstat.tcps_rcvoopack++;
364 	tcpstat.tcps_rcvoobyte += *tlenp;
365 
366 	/*
367 	 * While we overlap succeeding segments trim them or,
368 	 * if they are completely covered, dequeue them.
369 	 */
370 	while (q) {
371 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
372 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
373 		struct tseg_qent *nq;
374 
375 		if (i <= 0)
376 			break;
377 		if (!(tp->t_flags & TF_DUPSEG)) {    /* first time through */
378 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
379 			tp->encloseblk = tp->reportblk;
380 			/* report trailing duplicate D-SACK segment */
381 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
382 		}
383 		if ((tp->t_flags & TF_ENCLOSESEG) &&
384 		    SEQ_GT(qend, tp->encloseblk.rblk_end)) {
385 			/* extend enclosing block if one exists */
386 			tp->encloseblk.rblk_end = qend;
387 		}
388 		if (i < q->tqe_len) {
389 			q->tqe_th->th_seq += i;
390 			q->tqe_len -= i;
391 			m_adj(q->tqe_m, i);
392 			break;
393 		}
394 
395 		nq = LIST_NEXT(q, tqe_q);
396 		LIST_REMOVE(q, tqe_q);
397 		m_freem(q->tqe_m);
398 		kfree(q, M_TSEGQ);
399 		atomic_add_int(&tcp_reass_qsize, -1);
400 		q = nq;
401 	}
402 
403 	/* Insert the new segment queue entry into place. */
404 	te->tqe_m = m;
405 	te->tqe_th = th;
406 	te->tqe_len = *tlenp;
407 
408 	/* check if can coalesce with following segment */
409 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
410 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
411 
412 		te->tqe_len += q->tqe_len;
413 		if (q->tqe_th->th_flags & TH_FIN)
414 			te->tqe_th->th_flags |= TH_FIN;
415 		m_cat(te->tqe_m, q->tqe_m);
416 		tp->encloseblk.rblk_end = tend;
417 		/*
418 		 * When not reporting a duplicate segment, use
419 		 * the larger enclosing block as the SACK block.
420 		 */
421 		if (!(tp->t_flags & TF_DUPSEG))
422 			tp->reportblk.rblk_end = tend;
423 		LIST_REMOVE(q, tqe_q);
424 		kfree(q, M_TSEGQ);
425 		atomic_add_int(&tcp_reass_qsize, -1);
426 	}
427 
428 	if (p == NULL) {
429 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
430 	} else {
431 		/* check if can coalesce with preceding segment */
432 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
433 			p->tqe_len += te->tqe_len;
434 			m_cat(p->tqe_m, te->tqe_m);
435 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
436 			/*
437 			 * When not reporting a duplicate segment, use
438 			 * the larger enclosing block as the SACK block.
439 			 */
440 			if (!(tp->t_flags & TF_DUPSEG))
441 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
442 			kfree(te, M_TSEGQ);
443 			atomic_add_int(&tcp_reass_qsize, -1);
444 		} else {
445 			LIST_INSERT_AFTER(p, te, tqe_q);
446 		}
447 	}
448 
449 present:
450 	/*
451 	 * Present data to user, advancing rcv_nxt through
452 	 * completed sequence space.
453 	 */
454 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
455 		return (0);
456 	q = LIST_FIRST(&tp->t_segq);
457 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
458 		return (0);
459 	tp->rcv_nxt += q->tqe_len;
460 	if (!(tp->t_flags & TF_DUPSEG))	{
461 		/* no SACK block to report since ACK advanced */
462 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
463 	}
464 	/* no enclosing block to report since ACK advanced */
465 	tp->t_flags &= ~TF_ENCLOSESEG;
466 	flags = q->tqe_th->th_flags & TH_FIN;
467 	LIST_REMOVE(q, tqe_q);
468 	KASSERT(LIST_EMPTY(&tp->t_segq) ||
469 		LIST_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
470 		("segment not coalesced"));
471 	if (so->so_state & SS_CANTRCVMORE)
472 		m_freem(q->tqe_m);
473 	else
474 		ssb_appendstream(&so->so_rcv, q->tqe_m);
475 	kfree(q, M_TSEGQ);
476 	atomic_add_int(&tcp_reass_qsize, -1);
477 	ND6_HINT(tp);
478 	sorwakeup(so);
479 	return (flags);
480 }
481 
482 /*
483  * TCP input routine, follows pages 65-76 of the
484  * protocol specification dated September, 1981 very closely.
485  */
486 #ifdef INET6
487 int
488 tcp6_input(struct mbuf **mp, int *offp, int proto)
489 {
490 	struct mbuf *m = *mp;
491 	struct in6_ifaddr *ia6;
492 
493 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
494 
495 	/*
496 	 * draft-itojun-ipv6-tcp-to-anycast
497 	 * better place to put this in?
498 	 */
499 	ia6 = ip6_getdstifaddr(m);
500 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
501 		struct ip6_hdr *ip6;
502 
503 		ip6 = mtod(m, struct ip6_hdr *);
504 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
505 			    offsetof(struct ip6_hdr, ip6_dst));
506 		return (IPPROTO_DONE);
507 	}
508 
509 	tcp_input(m, *offp, proto);
510 	return (IPPROTO_DONE);
511 }
512 #endif
513 
514 void
515 tcp_input(struct mbuf *m, ...)
516 {
517 	__va_list ap;
518 	int off0, proto;
519 	struct tcphdr *th;
520 	struct ip *ip = NULL;
521 	struct ipovly *ipov;
522 	struct inpcb *inp = NULL;
523 	u_char *optp = NULL;
524 	int optlen = 0;
525 	int tlen, off;
526 	int len = 0;
527 	int drop_hdrlen;
528 	struct tcpcb *tp = NULL;
529 	int thflags;
530 	struct socket *so = 0;
531 	int todrop, acked;
532 	boolean_t ourfinisacked, needoutput = FALSE;
533 	u_long tiwin;
534 	int recvwin;
535 	struct tcpopt to;		/* options in this segment */
536 	struct sockaddr_in *next_hop = NULL;
537 	int rstreason; /* For badport_bandlim accounting purposes */
538 	int cpu;
539 	struct ip6_hdr *ip6 = NULL;
540 #ifdef INET6
541 	boolean_t isipv6;
542 #else
543 	const boolean_t isipv6 = FALSE;
544 #endif
545 #ifdef TCPDEBUG
546 	short ostate = 0;
547 #endif
548 
549 	__va_start(ap, m);
550 	off0 = __va_arg(ap, int);
551 	proto = __va_arg(ap, int);
552 	__va_end(ap);
553 
554 	tcpstat.tcps_rcvtotal++;
555 
556 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
557 		struct m_tag *mtag;
558 
559 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
560 		KKASSERT(mtag != NULL);
561 		next_hop = m_tag_data(mtag);
562 	}
563 
564 #ifdef INET6
565 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
566 #endif
567 
568 	if (isipv6) {
569 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
570 		ip6 = mtod(m, struct ip6_hdr *);
571 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
572 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
573 			tcpstat.tcps_rcvbadsum++;
574 			goto drop;
575 		}
576 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
577 
578 		/*
579 		 * Be proactive about unspecified IPv6 address in source.
580 		 * As we use all-zero to indicate unbounded/unconnected pcb,
581 		 * unspecified IPv6 address can be used to confuse us.
582 		 *
583 		 * Note that packets with unspecified IPv6 destination is
584 		 * already dropped in ip6_input.
585 		 */
586 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
587 			/* XXX stat */
588 			goto drop;
589 		}
590 	} else {
591 		/*
592 		 * Get IP and TCP header together in first mbuf.
593 		 * Note: IP leaves IP header in first mbuf.
594 		 */
595 		if (off0 > sizeof(struct ip)) {
596 			ip_stripoptions(m);
597 			off0 = sizeof(struct ip);
598 		}
599 		/* already checked and pulled up in ip_demux() */
600 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
601 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
602 		ip = mtod(m, struct ip *);
603 		ipov = (struct ipovly *)ip;
604 		th = (struct tcphdr *)((caddr_t)ip + off0);
605 		tlen = ip->ip_len;
606 
607 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
608 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
609 				th->th_sum = m->m_pkthdr.csum_data;
610 			else
611 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
612 						ip->ip_dst.s_addr,
613 						htonl(m->m_pkthdr.csum_data +
614 							ip->ip_len +
615 							IPPROTO_TCP));
616 			th->th_sum ^= 0xffff;
617 		} else {
618 			/*
619 			 * Checksum extended TCP header and data.
620 			 */
621 			len = sizeof(struct ip) + tlen;
622 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
623 			ipov->ih_len = (u_short)tlen;
624 			ipov->ih_len = htons(ipov->ih_len);
625 			th->th_sum = in_cksum(m, len);
626 		}
627 		if (th->th_sum) {
628 			tcpstat.tcps_rcvbadsum++;
629 			goto drop;
630 		}
631 #ifdef INET6
632 		/* Re-initialization for later version check */
633 		ip->ip_v = IPVERSION;
634 #endif
635 	}
636 
637 	/*
638 	 * Check that TCP offset makes sense,
639 	 * pull out TCP options and adjust length.		XXX
640 	 */
641 	off = th->th_off << 2;
642 	/* already checked and pulled up in ip_demux() */
643 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
644 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
645 	tlen -= off;	/* tlen is used instead of ti->ti_len */
646 	if (off > sizeof(struct tcphdr)) {
647 		if (isipv6) {
648 			IP6_EXTHDR_CHECK(m, off0, off, );
649 			ip6 = mtod(m, struct ip6_hdr *);
650 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
651 		} else {
652 			/* already pulled up in ip_demux() */
653 			KASSERT(m->m_len >= sizeof(struct ip) + off,
654 			    ("TCP header and options not in one mbuf: "
655 			     "m_len %d, off %d", m->m_len, off));
656 		}
657 		optlen = off - sizeof(struct tcphdr);
658 		optp = (u_char *)(th + 1);
659 	}
660 	thflags = th->th_flags;
661 
662 #ifdef TCP_DROP_SYNFIN
663 	/*
664 	 * If the drop_synfin option is enabled, drop all packets with
665 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
666 	 * identifying the TCP/IP stack.
667 	 *
668 	 * This is a violation of the TCP specification.
669 	 */
670 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
671 		goto drop;
672 #endif
673 
674 	/*
675 	 * Convert TCP protocol specific fields to host format.
676 	 */
677 	th->th_seq = ntohl(th->th_seq);
678 	th->th_ack = ntohl(th->th_ack);
679 	th->th_win = ntohs(th->th_win);
680 	th->th_urp = ntohs(th->th_urp);
681 
682 	/*
683 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
684 	 * until after ip6_savecontrol() is called and before other functions
685 	 * which don't want those proto headers.
686 	 * Because ip6_savecontrol() is going to parse the mbuf to
687 	 * search for data to be passed up to user-land, it wants mbuf
688 	 * parameters to be unchanged.
689 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
690 	 * latest version of the advanced API (20020110).
691 	 */
692 	drop_hdrlen = off0 + off;
693 
694 	/*
695 	 * Locate pcb for segment.
696 	 */
697 findpcb:
698 	/* IPFIREWALL_FORWARD section */
699 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
700 		/*
701 		 * Transparently forwarded. Pretend to be the destination.
702 		 * already got one like this?
703 		 */
704 		cpu = mycpu->gd_cpuid;
705 		inp = in_pcblookup_hash(&tcbinfo[cpu],
706 					ip->ip_src, th->th_sport,
707 					ip->ip_dst, th->th_dport,
708 					0, m->m_pkthdr.rcvif);
709 		if (!inp) {
710 			/*
711 			 * It's new.  Try to find the ambushing socket.
712 			 */
713 
714 			/*
715 			 * The rest of the ipfw code stores the port in
716 			 * host order.  XXX
717 			 * (The IP address is still in network order.)
718 			 */
719 			in_port_t dport = next_hop->sin_port ?
720 						htons(next_hop->sin_port) :
721 						th->th_dport;
722 
723 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
724 					  next_hop->sin_addr.s_addr, dport);
725 			inp = in_pcblookup_hash(&tcbinfo[cpu],
726 						ip->ip_src, th->th_sport,
727 						next_hop->sin_addr, dport,
728 						1, m->m_pkthdr.rcvif);
729 		}
730 	} else {
731 		if (isipv6) {
732 			inp = in6_pcblookup_hash(&tcbinfo[0],
733 						 &ip6->ip6_src, th->th_sport,
734 						 &ip6->ip6_dst, th->th_dport,
735 						 1, m->m_pkthdr.rcvif);
736 		} else {
737 			cpu = mycpu->gd_cpuid;
738 			inp = in_pcblookup_hash(&tcbinfo[cpu],
739 						ip->ip_src, th->th_sport,
740 						ip->ip_dst, th->th_dport,
741 						1, m->m_pkthdr.rcvif);
742 		}
743 	}
744 
745 	/*
746 	 * If the state is CLOSED (i.e., TCB does not exist) then
747 	 * all data in the incoming segment is discarded.
748 	 * If the TCB exists but is in CLOSED state, it is embryonic,
749 	 * but should either do a listen or a connect soon.
750 	 */
751 	if (inp == NULL) {
752 		if (log_in_vain) {
753 #ifdef INET6
754 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
755 #else
756 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
757 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
758 #endif
759 			if (isipv6) {
760 				strcpy(dbuf, "[");
761 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
762 				strcat(dbuf, "]");
763 				strcpy(sbuf, "[");
764 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
765 				strcat(sbuf, "]");
766 			} else {
767 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
768 				strcpy(sbuf, inet_ntoa(ip->ip_src));
769 			}
770 			switch (log_in_vain) {
771 			case 1:
772 				if (!(thflags & TH_SYN))
773 					break;
774 			case 2:
775 				log(LOG_INFO,
776 				    "Connection attempt to TCP %s:%d "
777 				    "from %s:%d flags:0x%02x\n",
778 				    dbuf, ntohs(th->th_dport), sbuf,
779 				    ntohs(th->th_sport), thflags);
780 				break;
781 			default:
782 				break;
783 			}
784 		}
785 		if (blackhole) {
786 			switch (blackhole) {
787 			case 1:
788 				if (thflags & TH_SYN)
789 					goto drop;
790 				break;
791 			case 2:
792 				goto drop;
793 			default:
794 				goto drop;
795 			}
796 		}
797 		rstreason = BANDLIM_RST_CLOSEDPORT;
798 		goto dropwithreset;
799 	}
800 
801 #ifdef IPSEC
802 	if (isipv6) {
803 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
804 			ipsec6stat.in_polvio++;
805 			goto drop;
806 		}
807 	} else {
808 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
809 			ipsecstat.in_polvio++;
810 			goto drop;
811 		}
812 	}
813 #endif
814 #ifdef FAST_IPSEC
815 	if (isipv6) {
816 		if (ipsec6_in_reject(m, inp))
817 			goto drop;
818 	} else {
819 		if (ipsec4_in_reject(m, inp))
820 			goto drop;
821 	}
822 #endif
823 	/* Check the minimum TTL for socket. */
824 #ifdef INET6
825 	if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
826 		goto drop;
827 #endif
828 
829 	tp = intotcpcb(inp);
830 	if (tp == NULL) {
831 		rstreason = BANDLIM_RST_CLOSEDPORT;
832 		goto dropwithreset;
833 	}
834 	if (tp->t_state <= TCPS_CLOSED)
835 		goto drop;
836 
837 	/* Unscale the window into a 32-bit value. */
838 	if (!(thflags & TH_SYN))
839 		tiwin = th->th_win << tp->snd_scale;
840 	else
841 		tiwin = th->th_win;
842 
843 	so = inp->inp_socket;
844 
845 #ifdef TCPDEBUG
846 	if (so->so_options & SO_DEBUG) {
847 		ostate = tp->t_state;
848 		if (isipv6)
849 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
850 		else
851 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
852 		tcp_savetcp = *th;
853 	}
854 #endif
855 
856 	bzero(&to, sizeof to);
857 
858 	if (so->so_options & SO_ACCEPTCONN) {
859 		struct in_conninfo inc;
860 
861 #ifdef INET6
862 		inc.inc_isipv6 = (isipv6 == TRUE);
863 #endif
864 		if (isipv6) {
865 			inc.inc6_faddr = ip6->ip6_src;
866 			inc.inc6_laddr = ip6->ip6_dst;
867 			inc.inc6_route.ro_rt = NULL;		/* XXX */
868 		} else {
869 			inc.inc_faddr = ip->ip_src;
870 			inc.inc_laddr = ip->ip_dst;
871 			inc.inc_route.ro_rt = NULL;		/* XXX */
872 		}
873 		inc.inc_fport = th->th_sport;
874 		inc.inc_lport = th->th_dport;
875 
876 		/*
877 		 * If the state is LISTEN then ignore segment if it contains
878 		 * a RST.  If the segment contains an ACK then it is bad and
879 		 * send a RST.  If it does not contain a SYN then it is not
880 		 * interesting; drop it.
881 		 *
882 		 * If the state is SYN_RECEIVED (syncache) and seg contains
883 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
884 		 * contains a RST, check the sequence number to see if it
885 		 * is a valid reset segment.
886 		 */
887 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
888 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
889 				if (!syncache_expand(&inc, th, &so, m)) {
890 					/*
891 					 * No syncache entry, or ACK was not
892 					 * for our SYN/ACK.  Send a RST.
893 					 */
894 					tcpstat.tcps_badsyn++;
895 					rstreason = BANDLIM_RST_OPENPORT;
896 					goto dropwithreset;
897 				}
898 
899 				/*
900 				 * Could not complete 3-way handshake,
901 				 * connection is being closed down, and
902 				 * syncache will free mbuf.
903 				 */
904 				if (so == NULL)
905 					return;
906 
907 				/*
908 				 * We must be in the correct protocol thread
909 				 * for this connection.
910 				 */
911 				KKASSERT(so->so_port == &curthread->td_msgport);
912 
913 				/*
914 				 * Socket is created in state SYN_RECEIVED.
915 				 * Continue processing segment.
916 				 */
917 				inp = so->so_pcb;
918 				tp = intotcpcb(inp);
919 				/*
920 				 * This is what would have happened in
921 				 * tcp_output() when the SYN,ACK was sent.
922 				 */
923 				tp->snd_up = tp->snd_una;
924 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
925 				tp->last_ack_sent = tp->rcv_nxt;
926 /*
927  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
928  * until the _second_ ACK is received:
929  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
930  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
931  *	  move to ESTAB, set snd_wnd to tiwin.
932  */
933 				tp->snd_wnd = tiwin;	/* unscaled */
934 				goto after_listen;
935 			}
936 			if (thflags & TH_RST) {
937 				syncache_chkrst(&inc, th);
938 				goto drop;
939 			}
940 			if (thflags & TH_ACK) {
941 				syncache_badack(&inc);
942 				tcpstat.tcps_badsyn++;
943 				rstreason = BANDLIM_RST_OPENPORT;
944 				goto dropwithreset;
945 			}
946 			goto drop;
947 		}
948 
949 		/*
950 		 * Segment's flags are (SYN) or (SYN | FIN).
951 		 */
952 #ifdef INET6
953 		/*
954 		 * If deprecated address is forbidden,
955 		 * we do not accept SYN to deprecated interface
956 		 * address to prevent any new inbound connection from
957 		 * getting established.
958 		 * When we do not accept SYN, we send a TCP RST,
959 		 * with deprecated source address (instead of dropping
960 		 * it).  We compromise it as it is much better for peer
961 		 * to send a RST, and RST will be the final packet
962 		 * for the exchange.
963 		 *
964 		 * If we do not forbid deprecated addresses, we accept
965 		 * the SYN packet.  RFC2462 does not suggest dropping
966 		 * SYN in this case.
967 		 * If we decipher RFC2462 5.5.4, it says like this:
968 		 * 1. use of deprecated addr with existing
969 		 *    communication is okay - "SHOULD continue to be
970 		 *    used"
971 		 * 2. use of it with new communication:
972 		 *   (2a) "SHOULD NOT be used if alternate address
973 		 *	  with sufficient scope is available"
974 		 *   (2b) nothing mentioned otherwise.
975 		 * Here we fall into (2b) case as we have no choice in
976 		 * our source address selection - we must obey the peer.
977 		 *
978 		 * The wording in RFC2462 is confusing, and there are
979 		 * multiple description text for deprecated address
980 		 * handling - worse, they are not exactly the same.
981 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
982 		 */
983 		if (isipv6 && !ip6_use_deprecated) {
984 			struct in6_ifaddr *ia6;
985 
986 			if ((ia6 = ip6_getdstifaddr(m)) &&
987 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
988 				tp = NULL;
989 				rstreason = BANDLIM_RST_OPENPORT;
990 				goto dropwithreset;
991 			}
992 		}
993 #endif
994 		/*
995 		 * If it is from this socket, drop it, it must be forged.
996 		 * Don't bother responding if the destination was a broadcast.
997 		 */
998 		if (th->th_dport == th->th_sport) {
999 			if (isipv6) {
1000 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1001 						       &ip6->ip6_src))
1002 					goto drop;
1003 			} else {
1004 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1005 					goto drop;
1006 			}
1007 		}
1008 		/*
1009 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1010 		 *
1011 		 * Note that it is quite possible to receive unicast
1012 		 * link-layer packets with a broadcast IP address. Use
1013 		 * in_broadcast() to find them.
1014 		 */
1015 		if (m->m_flags & (M_BCAST | M_MCAST))
1016 			goto drop;
1017 		if (isipv6) {
1018 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1019 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1020 				goto drop;
1021 		} else {
1022 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1023 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1024 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1025 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1026 				goto drop;
1027 		}
1028 		/*
1029 		 * SYN appears to be valid; create compressed TCP state
1030 		 * for syncache, or perform t/tcp connection.
1031 		 */
1032 		if (so->so_qlen <= so->so_qlimit) {
1033 			tcp_dooptions(&to, optp, optlen, TRUE);
1034 			if (!syncache_add(&inc, &to, th, &so, m))
1035 				goto drop;
1036 
1037 			/*
1038 			 * Entry added to syncache, mbuf used to
1039 			 * send SYN,ACK packet.
1040 			 */
1041 			if (so == NULL)
1042 				return;
1043 
1044 			/*
1045 			 * We must be in the correct protocol thread for
1046 			 * this connection.
1047 			 */
1048 			KKASSERT(so->so_port == &curthread->td_msgport);
1049 
1050 			inp = so->so_pcb;
1051 			tp = intotcpcb(inp);
1052 			tp->snd_wnd = tiwin;
1053 			tp->t_starttime = ticks;
1054 			tp->t_state = TCPS_ESTABLISHED;
1055 
1056 			/*
1057 			 * If there is a FIN, or if there is data and the
1058 			 * connection is local, then delay SYN,ACK(SYN) in
1059 			 * the hope of piggy-backing it on a response
1060 			 * segment.  Otherwise must send ACK now in case
1061 			 * the other side is slow starting.
1062 			 */
1063 			if (DELAY_ACK(tp) &&
1064 			    ((thflags & TH_FIN) ||
1065 			     (tlen != 0 &&
1066 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
1067 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
1068 				tcp_callout_reset(tp, tp->tt_delack,
1069 				    tcp_delacktime, tcp_timer_delack);
1070 				tp->t_flags |= TF_NEEDSYN;
1071 			} else {
1072 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1073 			}
1074 
1075 			tcpstat.tcps_connects++;
1076 			soisconnected(so);
1077 			goto trimthenstep6;
1078 		}
1079 		goto drop;
1080 	}
1081 
1082 after_listen:
1083 	/*
1084 	 * Should not happen - syncache should pick up these connections.
1085 	 *
1086 	 * Once we are past handling listen sockets we must be in the
1087 	 * correct protocol processing thread.
1088 	 */
1089 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1090 	KKASSERT(so->so_port == &curthread->td_msgport);
1091 
1092 	/*
1093 	 * This is the second part of the MSS DoS prevention code (after
1094 	 * minmss on the sending side) and it deals with too many too small
1095 	 * tcp packets in a too short timeframe (1 second).
1096 	 *
1097 	 * XXX Removed.  This code was crap.  It does not scale to network
1098 	 *     speed, and default values break NFS.  Gone.
1099 	 */
1100 	/* REMOVED */
1101 
1102 	/*
1103 	 * Segment received on connection.
1104 	 *
1105 	 * Reset idle time and keep-alive timer.  Don't waste time if less
1106 	 * then a second has elapsed.  Only update t_rcvtime for non-SYN
1107 	 * packets.
1108 	 *
1109 	 * Handle the case where one side thinks the connection is established
1110 	 * but the other side has, say, rebooted without cleaning out the
1111 	 * connection.   The SYNs could be construed as an attack and wind
1112 	 * up ignored, but in case it isn't an attack we can validate the
1113 	 * connection by forcing a keepalive.
1114 	 */
1115 	if (TCPS_HAVEESTABLISHED(tp->t_state) && (ticks - tp->t_rcvtime) > hz) {
1116 		if ((thflags & (TH_SYN | TH_ACK)) == TH_SYN) {
1117 			tp->t_flags |= TF_KEEPALIVE;
1118 			tcp_callout_reset(tp, tp->tt_keep, hz / 2,
1119 					  tcp_timer_keep);
1120 		} else {
1121 			tp->t_rcvtime = ticks;
1122 			tp->t_flags &= ~TF_KEEPALIVE;
1123 			tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1124 					  tcp_timer_keep);
1125 		}
1126 	}
1127 
1128 	/*
1129 	 * Process options.
1130 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1131 	 */
1132 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0);
1133 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1134 		if (to.to_flags & TOF_SCALE) {
1135 			tp->t_flags |= TF_RCVD_SCALE;
1136 			tp->requested_s_scale = to.to_requested_s_scale;
1137 		}
1138 		if (to.to_flags & TOF_TS) {
1139 			tp->t_flags |= TF_RCVD_TSTMP;
1140 			tp->ts_recent = to.to_tsval;
1141 			tp->ts_recent_age = ticks;
1142 		}
1143 		if (to.to_flags & TOF_MSS)
1144 			tcp_mss(tp, to.to_mss);
1145 		/*
1146 		 * Only set the TF_SACK_PERMITTED per-connection flag
1147 		 * if we got a SACK_PERMITTED option from the other side
1148 		 * and the global tcp_do_sack variable is true.
1149 		 */
1150 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1151 			tp->t_flags |= TF_SACK_PERMITTED;
1152 	}
1153 
1154 	/*
1155 	 * Header prediction: check for the two common cases
1156 	 * of a uni-directional data xfer.  If the packet has
1157 	 * no control flags, is in-sequence, the window didn't
1158 	 * change and we're not retransmitting, it's a
1159 	 * candidate.  If the length is zero and the ack moved
1160 	 * forward, we're the sender side of the xfer.  Just
1161 	 * free the data acked & wake any higher level process
1162 	 * that was blocked waiting for space.  If the length
1163 	 * is non-zero and the ack didn't move, we're the
1164 	 * receiver side.  If we're getting packets in-order
1165 	 * (the reassembly queue is empty), add the data to
1166 	 * the socket buffer and note that we need a delayed ack.
1167 	 * Make sure that the hidden state-flags are also off.
1168 	 * Since we check for TCPS_ESTABLISHED above, it can only
1169 	 * be TH_NEEDSYN.
1170 	 */
1171 	if (tp->t_state == TCPS_ESTABLISHED &&
1172 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1173 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1174 	    (!(to.to_flags & TOF_TS) ||
1175 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1176 	    th->th_seq == tp->rcv_nxt &&
1177 	    tp->snd_nxt == tp->snd_max) {
1178 
1179 		/*
1180 		 * If last ACK falls within this segment's sequence numbers,
1181 		 * record the timestamp.
1182 		 * NOTE that the test is modified according to the latest
1183 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1184 		 */
1185 		if ((to.to_flags & TOF_TS) &&
1186 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1187 			tp->ts_recent_age = ticks;
1188 			tp->ts_recent = to.to_tsval;
1189 		}
1190 
1191 		if (tlen == 0) {
1192 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1193 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1194 			    tp->snd_cwnd >= tp->snd_wnd &&
1195 			    !IN_FASTRECOVERY(tp)) {
1196 				/*
1197 				 * This is a pure ack for outstanding data.
1198 				 */
1199 				++tcpstat.tcps_predack;
1200 				/*
1201 				 * "bad retransmit" recovery
1202 				 *
1203 				 * If Eifel detection applies, then
1204 				 * it is deterministic, so use it
1205 				 * unconditionally over the old heuristic.
1206 				 * Otherwise, fall back to the old heuristic.
1207 				 */
1208 				if (tcp_do_eifel_detect &&
1209 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1210 				    (tp->t_flags & TF_FIRSTACCACK)) {
1211 					/* Eifel detection applicable. */
1212 					if (to.to_tsecr < tp->t_rexmtTS) {
1213 						tcp_revert_congestion_state(tp);
1214 						++tcpstat.tcps_eifeldetected;
1215 					}
1216 				} else if (tp->t_rxtshift == 1 &&
1217 					   ticks < tp->t_badrxtwin) {
1218 					tcp_revert_congestion_state(tp);
1219 					++tcpstat.tcps_rttdetected;
1220 				}
1221 				tp->t_flags &= ~(TF_FIRSTACCACK |
1222 						 TF_FASTREXMT | TF_EARLYREXMT);
1223 				/*
1224 				 * Recalculate the retransmit timer / rtt.
1225 				 *
1226 				 * Some machines (certain windows boxes)
1227 				 * send broken timestamp replies during the
1228 				 * SYN+ACK phase, ignore timestamps of 0.
1229 				 */
1230 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1231 					tcp_xmit_timer(tp,
1232 						       ticks - to.to_tsecr + 1);
1233 				} else if (tp->t_rtttime &&
1234 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1235 					tcp_xmit_timer(tp,
1236 						       ticks - tp->t_rtttime);
1237 				}
1238 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1239 				acked = th->th_ack - tp->snd_una;
1240 				tcpstat.tcps_rcvackpack++;
1241 				tcpstat.tcps_rcvackbyte += acked;
1242 				sbdrop(&so->so_snd.sb, acked);
1243 				tp->snd_recover = th->th_ack - 1;
1244 				tp->snd_una = th->th_ack;
1245 				tp->t_dupacks = 0;
1246 				/*
1247 				 * Update window information.
1248 				 */
1249 				if (tiwin != tp->snd_wnd &&
1250 				    acceptable_window_update(tp, th, tiwin)) {
1251 					/* keep track of pure window updates */
1252 					if (tp->snd_wl2 == th->th_ack &&
1253 					    tiwin > tp->snd_wnd)
1254 						tcpstat.tcps_rcvwinupd++;
1255 					tp->snd_wnd = tiwin;
1256 					tp->snd_wl1 = th->th_seq;
1257 					tp->snd_wl2 = th->th_ack;
1258 					if (tp->snd_wnd > tp->max_sndwnd)
1259 						tp->max_sndwnd = tp->snd_wnd;
1260 				}
1261 				m_freem(m);
1262 				ND6_HINT(tp); /* some progress has been done */
1263 				/*
1264 				 * If all outstanding data are acked, stop
1265 				 * retransmit timer, otherwise restart timer
1266 				 * using current (possibly backed-off) value.
1267 				 * If process is waiting for space,
1268 				 * wakeup/selwakeup/signal.  If data
1269 				 * are ready to send, let tcp_output
1270 				 * decide between more output or persist.
1271 				 */
1272 				if (tp->snd_una == tp->snd_max) {
1273 					tcp_callout_stop(tp, tp->tt_rexmt);
1274 				} else if (!tcp_callout_active(tp,
1275 					    tp->tt_persist)) {
1276 					tcp_callout_reset(tp, tp->tt_rexmt,
1277 					    tp->t_rxtcur, tcp_timer_rexmt);
1278 				}
1279 				sowwakeup(so);
1280 				if (so->so_snd.ssb_cc > 0)
1281 					tcp_output(tp);
1282 				return;
1283 			}
1284 		} else if (tiwin == tp->snd_wnd &&
1285 		    th->th_ack == tp->snd_una &&
1286 		    LIST_EMPTY(&tp->t_segq) &&
1287 		    tlen <= ssb_space(&so->so_rcv)) {
1288 			u_long newsize = 0;	/* automatic sockbuf scaling */
1289 			/*
1290 			 * This is a pure, in-sequence data packet
1291 			 * with nothing on the reassembly queue and
1292 			 * we have enough buffer space to take it.
1293 			 */
1294 			++tcpstat.tcps_preddat;
1295 			tp->rcv_nxt += tlen;
1296 			tcpstat.tcps_rcvpack++;
1297 			tcpstat.tcps_rcvbyte += tlen;
1298 			ND6_HINT(tp);	/* some progress has been done */
1299 		/*
1300 		 * Automatic sizing of receive socket buffer.  Often the send
1301 		 * buffer size is not optimally adjusted to the actual network
1302 		 * conditions at hand (delay bandwidth product).  Setting the
1303 		 * buffer size too small limits throughput on links with high
1304 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1305 		 *
1306 		 * On the receive side the socket buffer memory is only rarely
1307 		 * used to any significant extent.  This allows us to be much
1308 		 * more aggressive in scaling the receive socket buffer.  For
1309 		 * the case that the buffer space is actually used to a large
1310 		 * extent and we run out of kernel memory we can simply drop
1311 		 * the new segments; TCP on the sender will just retransmit it
1312 		 * later.  Setting the buffer size too big may only consume too
1313 		 * much kernel memory if the application doesn't read() from
1314 		 * the socket or packet loss or reordering makes use of the
1315 		 * reassembly queue.
1316 		 *
1317 		 * The criteria to step up the receive buffer one notch are:
1318 		 *  1. the number of bytes received during the time it takes
1319 		 *     one timestamp to be reflected back to us (the RTT);
1320 		 *  2. received bytes per RTT is within seven eighth of the
1321 		 *     current socket buffer size;
1322 		 *  3. receive buffer size has not hit maximal automatic size;
1323 		 *
1324 		 * This algorithm does one step per RTT at most and only if
1325 		 * we receive a bulk stream w/o packet losses or reorderings.
1326 		 * Shrinking the buffer during idle times is not necessary as
1327 		 * it doesn't consume any memory when idle.
1328 		 *
1329 		 * TODO: Only step up if the application is actually serving
1330 		 * the buffer to better manage the socket buffer resources.
1331 		 */
1332 			if (tcp_do_autorcvbuf &&
1333 			    to.to_tsecr &&
1334 			    (so->so_rcv.ssb_flags & SSB_AUTOSIZE)) {
1335 				if (to.to_tsecr > tp->rfbuf_ts &&
1336 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1337 					if (tp->rfbuf_cnt >
1338 					    (so->so_rcv.ssb_hiwat / 8 * 7) &&
1339 					    so->so_rcv.ssb_hiwat <
1340 					    tcp_autorcvbuf_max) {
1341 						newsize =
1342 						    ulmin(so->so_rcv.ssb_hiwat +
1343 							  tcp_autorcvbuf_inc,
1344 							  tcp_autorcvbuf_max);
1345 					}
1346 					/* Start over with next RTT. */
1347 					tp->rfbuf_ts = 0;
1348 					tp->rfbuf_cnt = 0;
1349 				} else
1350 					tp->rfbuf_cnt += tlen;	/* add up */
1351 			}
1352 			/*
1353 			 * Add data to socket buffer.
1354 			 */
1355 			if (so->so_state & SS_CANTRCVMORE) {
1356 				m_freem(m);
1357 			} else {
1358 				/*
1359 				 * Set new socket buffer size, give up when
1360 				 * limit is reached.
1361 				 *
1362 				 * Adjusting the size can mess up ACK
1363 				 * sequencing when pure window updates are
1364 				 * being avoided (which is the default),
1365 				 * so force an ack.
1366 				 */
1367 				if (newsize) {
1368 					tp->t_flags |= TF_RXRESIZED;
1369 					if (!ssb_reserve(&so->so_rcv, newsize,
1370 							 so, NULL)) {
1371 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1372 					}
1373 					if (newsize >=
1374 					    (TCP_MAXWIN << tp->rcv_scale)) {
1375 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1376 					}
1377 				}
1378 				m_adj(m, drop_hdrlen); /* delayed header drop */
1379 				ssb_appendstream(&so->so_rcv, m);
1380 			}
1381 			sorwakeup(so);
1382 			/*
1383 			 * This code is responsible for most of the ACKs
1384 			 * the TCP stack sends back after receiving a data
1385 			 * packet.  Note that the DELAY_ACK check fails if
1386 			 * the delack timer is already running, which results
1387 			 * in an ack being sent every other packet (which is
1388 			 * what we want).
1389 			 *
1390 			 * We then further aggregate acks by not actually
1391 			 * sending one until the protocol thread has completed
1392 			 * processing the current backlog of packets.  This
1393 			 * does not delay the ack any further, but allows us
1394 			 * to take advantage of the packet aggregation that
1395 			 * high speed NICs do (usually blocks of 8-10 packets)
1396 			 * to send a single ack rather then four or five acks,
1397 			 * greatly reducing the ack rate, the return channel
1398 			 * bandwidth, and the protocol overhead on both ends.
1399 			 *
1400 			 * Since this also has the effect of slowing down
1401 			 * the exponential slow-start ramp-up, systems with
1402 			 * very large bandwidth-delay products might want
1403 			 * to turn the feature off.
1404 			 */
1405 			if (DELAY_ACK(tp)) {
1406 				tcp_callout_reset(tp, tp->tt_delack,
1407 				    tcp_delacktime, tcp_timer_delack);
1408 			} else if (tcp_aggregate_acks) {
1409 				tp->t_flags |= TF_ACKNOW;
1410 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1411 					tp->t_flags |= TF_ONOUTPUTQ;
1412 					tp->tt_cpu = mycpu->gd_cpuid;
1413 					TAILQ_INSERT_TAIL(
1414 					    &tcpcbackq[tp->tt_cpu],
1415 					    tp, t_outputq);
1416 				}
1417 			} else {
1418 				tp->t_flags |= TF_ACKNOW;
1419 				tcp_output(tp);
1420 			}
1421 			return;
1422 		}
1423 	}
1424 
1425 	/*
1426 	 * Calculate amount of space in receive window,
1427 	 * and then do TCP input processing.
1428 	 * Receive window is amount of space in rcv queue,
1429 	 * but not less than advertised window.
1430 	 */
1431 	recvwin = ssb_space(&so->so_rcv);
1432 	if (recvwin < 0)
1433 		recvwin = 0;
1434 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1435 
1436 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1437 	tp->rfbuf_ts = 0;
1438 	tp->rfbuf_cnt = 0;
1439 
1440 	switch (tp->t_state) {
1441 	/*
1442 	 * If the state is SYN_RECEIVED:
1443 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1444 	 */
1445 	case TCPS_SYN_RECEIVED:
1446 		if ((thflags & TH_ACK) &&
1447 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1448 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1449 				rstreason = BANDLIM_RST_OPENPORT;
1450 				goto dropwithreset;
1451 		}
1452 		break;
1453 
1454 	/*
1455 	 * If the state is SYN_SENT:
1456 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1457 	 *	if seg contains a RST, then drop the connection.
1458 	 *	if seg does not contain SYN, then drop it.
1459 	 * Otherwise this is an acceptable SYN segment
1460 	 *	initialize tp->rcv_nxt and tp->irs
1461 	 *	if seg contains ack then advance tp->snd_una
1462 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1463 	 *	arrange for segment to be acked (eventually)
1464 	 *	continue processing rest of data/controls, beginning with URG
1465 	 */
1466 	case TCPS_SYN_SENT:
1467 		if ((thflags & TH_ACK) &&
1468 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1469 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1470 			rstreason = BANDLIM_UNLIMITED;
1471 			goto dropwithreset;
1472 		}
1473 		if (thflags & TH_RST) {
1474 			if (thflags & TH_ACK)
1475 				tp = tcp_drop(tp, ECONNREFUSED);
1476 			goto drop;
1477 		}
1478 		if (!(thflags & TH_SYN))
1479 			goto drop;
1480 		tp->snd_wnd = th->th_win;	/* initial send window */
1481 
1482 		tp->irs = th->th_seq;
1483 		tcp_rcvseqinit(tp);
1484 		if (thflags & TH_ACK) {
1485 			/* Our SYN was acked. */
1486 			tcpstat.tcps_connects++;
1487 			soisconnected(so);
1488 			/* Do window scaling on this connection? */
1489 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1490 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1491 				tp->snd_scale = tp->requested_s_scale;
1492 				tp->rcv_scale = tp->request_r_scale;
1493 			}
1494 			tp->rcv_adv += tp->rcv_wnd;
1495 			tp->snd_una++;		/* SYN is acked */
1496 			tcp_callout_stop(tp, tp->tt_rexmt);
1497 			/*
1498 			 * If there's data, delay ACK; if there's also a FIN
1499 			 * ACKNOW will be turned on later.
1500 			 */
1501 			if (DELAY_ACK(tp) && tlen != 0) {
1502 				tcp_callout_reset(tp, tp->tt_delack,
1503 				    tcp_delacktime, tcp_timer_delack);
1504 			} else {
1505 				tp->t_flags |= TF_ACKNOW;
1506 			}
1507 			/*
1508 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1509 			 * Transitions:
1510 			 *	SYN_SENT  --> ESTABLISHED
1511 			 *	SYN_SENT* --> FIN_WAIT_1
1512 			 */
1513 			tp->t_starttime = ticks;
1514 			if (tp->t_flags & TF_NEEDFIN) {
1515 				tp->t_state = TCPS_FIN_WAIT_1;
1516 				tp->t_flags &= ~TF_NEEDFIN;
1517 				thflags &= ~TH_SYN;
1518 			} else {
1519 				tp->t_state = TCPS_ESTABLISHED;
1520 				tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1521 				    tcp_timer_keep);
1522 			}
1523 		} else {
1524 			/*
1525 			 * Received initial SYN in SYN-SENT[*] state =>
1526 			 * simultaneous open.
1527 			 * Do 3-way handshake:
1528 			 *	  SYN-SENT -> SYN-RECEIVED
1529 			 *	  SYN-SENT* -> SYN-RECEIVED*
1530 			 */
1531 			tp->t_flags |= TF_ACKNOW;
1532 			tcp_callout_stop(tp, tp->tt_rexmt);
1533 			tp->t_state = TCPS_SYN_RECEIVED;
1534 		}
1535 
1536 trimthenstep6:
1537 		/*
1538 		 * Advance th->th_seq to correspond to first data byte.
1539 		 * If data, trim to stay within window,
1540 		 * dropping FIN if necessary.
1541 		 */
1542 		th->th_seq++;
1543 		if (tlen > tp->rcv_wnd) {
1544 			todrop = tlen - tp->rcv_wnd;
1545 			m_adj(m, -todrop);
1546 			tlen = tp->rcv_wnd;
1547 			thflags &= ~TH_FIN;
1548 			tcpstat.tcps_rcvpackafterwin++;
1549 			tcpstat.tcps_rcvbyteafterwin += todrop;
1550 		}
1551 		tp->snd_wl1 = th->th_seq - 1;
1552 		tp->rcv_up = th->th_seq;
1553 		/*
1554 		 * Client side of transaction: already sent SYN and data.
1555 		 * If the remote host used T/TCP to validate the SYN,
1556 		 * our data will be ACK'd; if so, enter normal data segment
1557 		 * processing in the middle of step 5, ack processing.
1558 		 * Otherwise, goto step 6.
1559 		 */
1560 		if (thflags & TH_ACK)
1561 			goto process_ACK;
1562 
1563 		goto step6;
1564 
1565 	/*
1566 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1567 	 *	do normal processing (we no longer bother with T/TCP).
1568 	 */
1569 	case TCPS_LAST_ACK:
1570 	case TCPS_CLOSING:
1571 	case TCPS_TIME_WAIT:
1572 		break;  /* continue normal processing */
1573 	}
1574 
1575 	/*
1576 	 * States other than LISTEN or SYN_SENT.
1577 	 * First check the RST flag and sequence number since reset segments
1578 	 * are exempt from the timestamp and connection count tests.  This
1579 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1580 	 * below which allowed reset segments in half the sequence space
1581 	 * to fall though and be processed (which gives forged reset
1582 	 * segments with a random sequence number a 50 percent chance of
1583 	 * killing a connection).
1584 	 * Then check timestamp, if present.
1585 	 * Then check the connection count, if present.
1586 	 * Then check that at least some bytes of segment are within
1587 	 * receive window.  If segment begins before rcv_nxt,
1588 	 * drop leading data (and SYN); if nothing left, just ack.
1589 	 *
1590 	 *
1591 	 * If the RST bit is set, check the sequence number to see
1592 	 * if this is a valid reset segment.
1593 	 * RFC 793 page 37:
1594 	 *   In all states except SYN-SENT, all reset (RST) segments
1595 	 *   are validated by checking their SEQ-fields.  A reset is
1596 	 *   valid if its sequence number is in the window.
1597 	 * Note: this does not take into account delayed ACKs, so
1598 	 *   we should test against last_ack_sent instead of rcv_nxt.
1599 	 *   The sequence number in the reset segment is normally an
1600 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1601 	 *   send a reset with the sequence number at the rightmost edge
1602 	 *   of our receive window, and we have to handle this case.
1603 	 * If we have multiple segments in flight, the intial reset
1604 	 * segment sequence numbers will be to the left of last_ack_sent,
1605 	 * but they will eventually catch up.
1606 	 * In any case, it never made sense to trim reset segments to
1607 	 * fit the receive window since RFC 1122 says:
1608 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1609 	 *
1610 	 *    A TCP SHOULD allow a received RST segment to include data.
1611 	 *
1612 	 *    DISCUSSION
1613 	 *	   It has been suggested that a RST segment could contain
1614 	 *	   ASCII text that encoded and explained the cause of the
1615 	 *	   RST.  No standard has yet been established for such
1616 	 *	   data.
1617 	 *
1618 	 * If the reset segment passes the sequence number test examine
1619 	 * the state:
1620 	 *    SYN_RECEIVED STATE:
1621 	 *	If passive open, return to LISTEN state.
1622 	 *	If active open, inform user that connection was refused.
1623 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1624 	 *	Inform user that connection was reset, and close tcb.
1625 	 *    CLOSING, LAST_ACK STATES:
1626 	 *	Close the tcb.
1627 	 *    TIME_WAIT STATE:
1628 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1629 	 *	RFC 1337.
1630 	 */
1631 	if (thflags & TH_RST) {
1632 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1633 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1634 			switch (tp->t_state) {
1635 
1636 			case TCPS_SYN_RECEIVED:
1637 				so->so_error = ECONNREFUSED;
1638 				goto close;
1639 
1640 			case TCPS_ESTABLISHED:
1641 			case TCPS_FIN_WAIT_1:
1642 			case TCPS_FIN_WAIT_2:
1643 			case TCPS_CLOSE_WAIT:
1644 				so->so_error = ECONNRESET;
1645 			close:
1646 				tp->t_state = TCPS_CLOSED;
1647 				tcpstat.tcps_drops++;
1648 				tp = tcp_close(tp);
1649 				break;
1650 
1651 			case TCPS_CLOSING:
1652 			case TCPS_LAST_ACK:
1653 				tp = tcp_close(tp);
1654 				break;
1655 
1656 			case TCPS_TIME_WAIT:
1657 				break;
1658 			}
1659 		}
1660 		goto drop;
1661 	}
1662 
1663 	/*
1664 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1665 	 * and it's less than ts_recent, drop it.
1666 	 */
1667 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1668 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1669 
1670 		/* Check to see if ts_recent is over 24 days old.  */
1671 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1672 			/*
1673 			 * Invalidate ts_recent.  If this segment updates
1674 			 * ts_recent, the age will be reset later and ts_recent
1675 			 * will get a valid value.  If it does not, setting
1676 			 * ts_recent to zero will at least satisfy the
1677 			 * requirement that zero be placed in the timestamp
1678 			 * echo reply when ts_recent isn't valid.  The
1679 			 * age isn't reset until we get a valid ts_recent
1680 			 * because we don't want out-of-order segments to be
1681 			 * dropped when ts_recent is old.
1682 			 */
1683 			tp->ts_recent = 0;
1684 		} else {
1685 			tcpstat.tcps_rcvduppack++;
1686 			tcpstat.tcps_rcvdupbyte += tlen;
1687 			tcpstat.tcps_pawsdrop++;
1688 			if (tlen)
1689 				goto dropafterack;
1690 			goto drop;
1691 		}
1692 	}
1693 
1694 	/*
1695 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1696 	 * this connection before trimming the data to fit the receive
1697 	 * window.  Check the sequence number versus IRS since we know
1698 	 * the sequence numbers haven't wrapped.  This is a partial fix
1699 	 * for the "LAND" DoS attack.
1700 	 */
1701 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1702 		rstreason = BANDLIM_RST_OPENPORT;
1703 		goto dropwithreset;
1704 	}
1705 
1706 	todrop = tp->rcv_nxt - th->th_seq;
1707 	if (todrop > 0) {
1708 		if (TCP_DO_SACK(tp)) {
1709 			/* Report duplicate segment at head of packet. */
1710 			tp->reportblk.rblk_start = th->th_seq;
1711 			tp->reportblk.rblk_end = th->th_seq + tlen;
1712 			if (thflags & TH_FIN)
1713 				++tp->reportblk.rblk_end;
1714 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1715 				tp->reportblk.rblk_end = tp->rcv_nxt;
1716 			tp->t_flags |= (TF_DUPSEG | TF_SACKLEFT | TF_ACKNOW);
1717 		}
1718 		if (thflags & TH_SYN) {
1719 			thflags &= ~TH_SYN;
1720 			th->th_seq++;
1721 			if (th->th_urp > 1)
1722 				th->th_urp--;
1723 			else
1724 				thflags &= ~TH_URG;
1725 			todrop--;
1726 		}
1727 		/*
1728 		 * Following if statement from Stevens, vol. 2, p. 960.
1729 		 */
1730 		if (todrop > tlen ||
1731 		    (todrop == tlen && !(thflags & TH_FIN))) {
1732 			/*
1733 			 * Any valid FIN must be to the left of the window.
1734 			 * At this point the FIN must be a duplicate or out
1735 			 * of sequence; drop it.
1736 			 */
1737 			thflags &= ~TH_FIN;
1738 
1739 			/*
1740 			 * Send an ACK to resynchronize and drop any data.
1741 			 * But keep on processing for RST or ACK.
1742 			 */
1743 			tp->t_flags |= TF_ACKNOW;
1744 			todrop = tlen;
1745 			tcpstat.tcps_rcvduppack++;
1746 			tcpstat.tcps_rcvdupbyte += todrop;
1747 		} else {
1748 			tcpstat.tcps_rcvpartduppack++;
1749 			tcpstat.tcps_rcvpartdupbyte += todrop;
1750 		}
1751 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1752 		th->th_seq += todrop;
1753 		tlen -= todrop;
1754 		if (th->th_urp > todrop)
1755 			th->th_urp -= todrop;
1756 		else {
1757 			thflags &= ~TH_URG;
1758 			th->th_urp = 0;
1759 		}
1760 	}
1761 
1762 	/*
1763 	 * If new data are received on a connection after the
1764 	 * user processes are gone, then RST the other end.
1765 	 */
1766 	if ((so->so_state & SS_NOFDREF) &&
1767 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1768 		tp = tcp_close(tp);
1769 		tcpstat.tcps_rcvafterclose++;
1770 		rstreason = BANDLIM_UNLIMITED;
1771 		goto dropwithreset;
1772 	}
1773 
1774 	/*
1775 	 * If segment ends after window, drop trailing data
1776 	 * (and PUSH and FIN); if nothing left, just ACK.
1777 	 */
1778 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1779 	if (todrop > 0) {
1780 		tcpstat.tcps_rcvpackafterwin++;
1781 		if (todrop >= tlen) {
1782 			tcpstat.tcps_rcvbyteafterwin += tlen;
1783 			/*
1784 			 * If a new connection request is received
1785 			 * while in TIME_WAIT, drop the old connection
1786 			 * and start over if the sequence numbers
1787 			 * are above the previous ones.
1788 			 */
1789 			if (thflags & TH_SYN &&
1790 			    tp->t_state == TCPS_TIME_WAIT &&
1791 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1792 				tp = tcp_close(tp);
1793 				goto findpcb;
1794 			}
1795 			/*
1796 			 * If window is closed can only take segments at
1797 			 * window edge, and have to drop data and PUSH from
1798 			 * incoming segments.  Continue processing, but
1799 			 * remember to ack.  Otherwise, drop segment
1800 			 * and ack.
1801 			 */
1802 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1803 				tp->t_flags |= TF_ACKNOW;
1804 				tcpstat.tcps_rcvwinprobe++;
1805 			} else
1806 				goto dropafterack;
1807 		} else
1808 			tcpstat.tcps_rcvbyteafterwin += todrop;
1809 		m_adj(m, -todrop);
1810 		tlen -= todrop;
1811 		thflags &= ~(TH_PUSH | TH_FIN);
1812 	}
1813 
1814 	/*
1815 	 * If last ACK falls within this segment's sequence numbers,
1816 	 * record its timestamp.
1817 	 * NOTE:
1818 	 * 1) That the test incorporates suggestions from the latest
1819 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1820 	 * 2) That updating only on newer timestamps interferes with
1821 	 *    our earlier PAWS tests, so this check should be solely
1822 	 *    predicated on the sequence space of this segment.
1823 	 * 3) That we modify the segment boundary check to be
1824 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1825 	 *    instead of RFC1323's
1826 	 *        Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1827 	 *    This modified check allows us to overcome RFC1323's
1828 	 *    limitations as described in Stevens TCP/IP Illustrated
1829 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1830 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1831 	 */
1832 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1833 	    SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1834 					+ ((thflags & TH_SYN) != 0)
1835 					+ ((thflags & TH_FIN) != 0)))) {
1836 		tp->ts_recent_age = ticks;
1837 		tp->ts_recent = to.to_tsval;
1838 	}
1839 
1840 	/*
1841 	 * If a SYN is in the window, then this is an
1842 	 * error and we send an RST and drop the connection.
1843 	 */
1844 	if (thflags & TH_SYN) {
1845 		tp = tcp_drop(tp, ECONNRESET);
1846 		rstreason = BANDLIM_UNLIMITED;
1847 		goto dropwithreset;
1848 	}
1849 
1850 	/*
1851 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1852 	 * flag is on (half-synchronized state), then queue data for
1853 	 * later processing; else drop segment and return.
1854 	 */
1855 	if (!(thflags & TH_ACK)) {
1856 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1857 		    (tp->t_flags & TF_NEEDSYN))
1858 			goto step6;
1859 		else
1860 			goto drop;
1861 	}
1862 
1863 	/*
1864 	 * Ack processing.
1865 	 */
1866 	switch (tp->t_state) {
1867 	/*
1868 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1869 	 * ESTABLISHED state and continue processing.
1870 	 * The ACK was checked above.
1871 	 */
1872 	case TCPS_SYN_RECEIVED:
1873 
1874 		tcpstat.tcps_connects++;
1875 		soisconnected(so);
1876 		/* Do window scaling? */
1877 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1878 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1879 			tp->snd_scale = tp->requested_s_scale;
1880 			tp->rcv_scale = tp->request_r_scale;
1881 		}
1882 		/*
1883 		 * Make transitions:
1884 		 *      SYN-RECEIVED  -> ESTABLISHED
1885 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1886 		 */
1887 		tp->t_starttime = ticks;
1888 		if (tp->t_flags & TF_NEEDFIN) {
1889 			tp->t_state = TCPS_FIN_WAIT_1;
1890 			tp->t_flags &= ~TF_NEEDFIN;
1891 		} else {
1892 			tp->t_state = TCPS_ESTABLISHED;
1893 			tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1894 			    tcp_timer_keep);
1895 		}
1896 		/*
1897 		 * If segment contains data or ACK, will call tcp_reass()
1898 		 * later; if not, do so now to pass queued data to user.
1899 		 */
1900 		if (tlen == 0 && !(thflags & TH_FIN))
1901 			tcp_reass(tp, NULL, NULL, NULL);
1902 		/* fall into ... */
1903 
1904 	/*
1905 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1906 	 * ACKs.  If the ack is in the range
1907 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1908 	 * then advance tp->snd_una to th->th_ack and drop
1909 	 * data from the retransmission queue.  If this ACK reflects
1910 	 * more up to date window information we update our window information.
1911 	 */
1912 	case TCPS_ESTABLISHED:
1913 	case TCPS_FIN_WAIT_1:
1914 	case TCPS_FIN_WAIT_2:
1915 	case TCPS_CLOSE_WAIT:
1916 	case TCPS_CLOSING:
1917 	case TCPS_LAST_ACK:
1918 	case TCPS_TIME_WAIT:
1919 
1920 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1921 			if (TCP_DO_SACK(tp))
1922 				tcp_sack_update_scoreboard(tp, &to);
1923 			if (tlen != 0 || tiwin != tp->snd_wnd) {
1924 				tp->t_dupacks = 0;
1925 				break;
1926 			}
1927 			tcpstat.tcps_rcvdupack++;
1928 			if (!tcp_callout_active(tp, tp->tt_rexmt) ||
1929 			    th->th_ack != tp->snd_una) {
1930 				tp->t_dupacks = 0;
1931 				break;
1932 			}
1933 			/*
1934 			 * We have outstanding data (other than
1935 			 * a window probe), this is a completely
1936 			 * duplicate ack (ie, window info didn't
1937 			 * change), the ack is the biggest we've
1938 			 * seen and we've seen exactly our rexmt
1939 			 * threshhold of them, so assume a packet
1940 			 * has been dropped and retransmit it.
1941 			 * Kludge snd_nxt & the congestion
1942 			 * window so we send only this one
1943 			 * packet.
1944 			 */
1945 			if (IN_FASTRECOVERY(tp)) {
1946 				if (TCP_DO_SACK(tp)) {
1947 					/* No artifical cwnd inflation. */
1948 					tcp_sack_rexmt(tp, th);
1949 				} else {
1950 					/*
1951 					 * Dup acks mean that packets
1952 					 * have left the network
1953 					 * (they're now cached at the
1954 					 * receiver) so bump cwnd by
1955 					 * the amount in the receiver
1956 					 * to keep a constant cwnd
1957 					 * packets in the network.
1958 					 */
1959 					tp->snd_cwnd += tp->t_maxseg;
1960 					tcp_output(tp);
1961 				}
1962 			} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1963 				tp->t_dupacks = 0;
1964 				break;
1965 			} else if (++tp->t_dupacks == tcprexmtthresh) {
1966 				tcp_seq old_snd_nxt;
1967 				u_int win;
1968 
1969 fastretransmit:
1970 				if (tcp_do_eifel_detect &&
1971 				    (tp->t_flags & TF_RCVD_TSTMP)) {
1972 					tcp_save_congestion_state(tp);
1973 					tp->t_flags |= TF_FASTREXMT;
1974 				}
1975 				/*
1976 				 * We know we're losing at the current
1977 				 * window size, so do congestion avoidance:
1978 				 * set ssthresh to half the current window
1979 				 * and pull our congestion window back to the
1980 				 * new ssthresh.
1981 				 */
1982 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1983 				    tp->t_maxseg;
1984 				if (win < 2)
1985 					win = 2;
1986 				tp->snd_ssthresh = win * tp->t_maxseg;
1987 				ENTER_FASTRECOVERY(tp);
1988 				tp->snd_recover = tp->snd_max;
1989 				tcp_callout_stop(tp, tp->tt_rexmt);
1990 				tp->t_rtttime = 0;
1991 				old_snd_nxt = tp->snd_nxt;
1992 				tp->snd_nxt = th->th_ack;
1993 				tp->snd_cwnd = tp->t_maxseg;
1994 				tcp_output(tp);
1995 				++tcpstat.tcps_sndfastrexmit;
1996 				tp->snd_cwnd = tp->snd_ssthresh;
1997 				tp->rexmt_high = tp->snd_nxt;
1998 				if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
1999 					tp->snd_nxt = old_snd_nxt;
2000 				KASSERT(tp->snd_limited <= 2,
2001 				    ("tp->snd_limited too big"));
2002 				if (TCP_DO_SACK(tp))
2003 					tcp_sack_rexmt(tp, th);
2004 				else
2005 					tp->snd_cwnd += tp->t_maxseg *
2006 					    (tp->t_dupacks - tp->snd_limited);
2007 			} else if (tcp_do_limitedtransmit) {
2008 				u_long oldcwnd = tp->snd_cwnd;
2009 				tcp_seq oldsndmax = tp->snd_max;
2010 				tcp_seq oldsndnxt = tp->snd_nxt;
2011 				/* outstanding data */
2012 				uint32_t ownd = tp->snd_max - tp->snd_una;
2013 				u_int sent;
2014 
2015 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
2016 
2017 				KASSERT(tp->t_dupacks == 1 ||
2018 					tp->t_dupacks == 2,
2019 				    ("dupacks not 1 or 2"));
2020 				if (tp->t_dupacks == 1)
2021 					tp->snd_limited = 0;
2022 				tp->snd_nxt = tp->snd_max;
2023 				tp->snd_cwnd = ownd +
2024 				    (tp->t_dupacks - tp->snd_limited) *
2025 				    tp->t_maxseg;
2026 				tcp_output(tp);
2027 
2028 				/*
2029 				 * Other acks may have been processed,
2030 				 * snd_nxt cannot be reset to a value less
2031 				 * then snd_una.
2032 				 */
2033 				if (SEQ_LT(oldsndnxt, oldsndmax)) {
2034 				    if (SEQ_GT(oldsndnxt, tp->snd_una))
2035 					tp->snd_nxt = oldsndnxt;
2036 				    else
2037 					tp->snd_nxt = tp->snd_una;
2038 				}
2039 				tp->snd_cwnd = oldcwnd;
2040 				sent = tp->snd_max - oldsndmax;
2041 				if (sent > tp->t_maxseg) {
2042 					KASSERT((tp->t_dupacks == 2 &&
2043 						 tp->snd_limited == 0) ||
2044 						(sent == tp->t_maxseg + 1 &&
2045 						 tp->t_flags & TF_SENTFIN),
2046 					    ("sent too much"));
2047 					KASSERT(sent <= tp->t_maxseg * 2,
2048 					    ("sent too many segments"));
2049 					tp->snd_limited = 2;
2050 					tcpstat.tcps_sndlimited += 2;
2051 				} else if (sent > 0) {
2052 					++tp->snd_limited;
2053 					++tcpstat.tcps_sndlimited;
2054 				} else if (tcp_do_early_retransmit &&
2055 				    (tcp_do_eifel_detect &&
2056 				     (tp->t_flags & TF_RCVD_TSTMP)) &&
2057 				    ownd < 4 * tp->t_maxseg &&
2058 				    tp->t_dupacks + 1 >=
2059 				      iceildiv(ownd, tp->t_maxseg) &&
2060 				    (!TCP_DO_SACK(tp) ||
2061 				     ownd <= tp->t_maxseg ||
2062 				     tcp_sack_has_sacked(&tp->scb,
2063 							ownd - tp->t_maxseg))) {
2064 					++tcpstat.tcps_sndearlyrexmit;
2065 					tp->t_flags |= TF_EARLYREXMT;
2066 					goto fastretransmit;
2067 				}
2068 			}
2069 			goto drop;
2070 		}
2071 
2072 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2073 		tp->t_dupacks = 0;
2074 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2075 			/*
2076 			 * Detected optimistic ACK attack.
2077 			 * Force slow-start to de-synchronize attack.
2078 			 */
2079 			tp->snd_cwnd = tp->t_maxseg;
2080 			tp->snd_wacked = 0;
2081 
2082 			tcpstat.tcps_rcvacktoomuch++;
2083 			goto dropafterack;
2084 		}
2085 		/*
2086 		 * If we reach this point, ACK is not a duplicate,
2087 		 *     i.e., it ACKs something we sent.
2088 		 */
2089 		if (tp->t_flags & TF_NEEDSYN) {
2090 			/*
2091 			 * T/TCP: Connection was half-synchronized, and our
2092 			 * SYN has been ACK'd (so connection is now fully
2093 			 * synchronized).  Go to non-starred state,
2094 			 * increment snd_una for ACK of SYN, and check if
2095 			 * we can do window scaling.
2096 			 */
2097 			tp->t_flags &= ~TF_NEEDSYN;
2098 			tp->snd_una++;
2099 			/* Do window scaling? */
2100 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2101 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
2102 				tp->snd_scale = tp->requested_s_scale;
2103 				tp->rcv_scale = tp->request_r_scale;
2104 			}
2105 		}
2106 
2107 process_ACK:
2108 		acked = th->th_ack - tp->snd_una;
2109 		tcpstat.tcps_rcvackpack++;
2110 		tcpstat.tcps_rcvackbyte += acked;
2111 
2112 		if (tcp_do_eifel_detect && acked > 0 &&
2113 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2114 		    (tp->t_flags & TF_FIRSTACCACK)) {
2115 			/* Eifel detection applicable. */
2116 			if (to.to_tsecr < tp->t_rexmtTS) {
2117 				++tcpstat.tcps_eifeldetected;
2118 				tcp_revert_congestion_state(tp);
2119 				if (tp->t_rxtshift == 1 &&
2120 				    ticks >= tp->t_badrxtwin)
2121 					++tcpstat.tcps_rttcantdetect;
2122 			}
2123 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2124 			/*
2125 			 * If we just performed our first retransmit,
2126 			 * and the ACK arrives within our recovery window,
2127 			 * then it was a mistake to do the retransmit
2128 			 * in the first place.  Recover our original cwnd
2129 			 * and ssthresh, and proceed to transmit where we
2130 			 * left off.
2131 			 */
2132 			tcp_revert_congestion_state(tp);
2133 			++tcpstat.tcps_rttdetected;
2134 		}
2135 
2136 		/*
2137 		 * If we have a timestamp reply, update smoothed
2138 		 * round trip time.  If no timestamp is present but
2139 		 * transmit timer is running and timed sequence
2140 		 * number was acked, update smoothed round trip time.
2141 		 * Since we now have an rtt measurement, cancel the
2142 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2143 		 * Recompute the initial retransmit timer.
2144 		 *
2145 		 * Some machines (certain windows boxes) send broken
2146 		 * timestamp replies during the SYN+ACK phase, ignore
2147 		 * timestamps of 0.
2148 		 */
2149 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2150 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2151 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2152 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2153 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2154 
2155 		/*
2156 		 * If no data (only SYN) was ACK'd,
2157 		 *    skip rest of ACK processing.
2158 		 */
2159 		if (acked == 0)
2160 			goto step6;
2161 
2162 		/* Stop looking for an acceptable ACK since one was received. */
2163 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
2164 
2165 		if (acked > so->so_snd.ssb_cc) {
2166 			tp->snd_wnd -= so->so_snd.ssb_cc;
2167 			sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2168 			ourfinisacked = TRUE;
2169 		} else {
2170 			sbdrop(&so->so_snd.sb, acked);
2171 			tp->snd_wnd -= acked;
2172 			ourfinisacked = FALSE;
2173 		}
2174 		sowwakeup(so);
2175 
2176 		/*
2177 		 * Update window information.
2178 		 * Don't look at window if no ACK:
2179 		 * TAC's send garbage on first SYN.
2180 		 */
2181 		if (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2182 		    (tp->snd_wl1 == th->th_seq &&
2183 		     (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2184 		      (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)))) {
2185 			/* keep track of pure window updates */
2186 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2187 			    tiwin > tp->snd_wnd)
2188 				tcpstat.tcps_rcvwinupd++;
2189 			tp->snd_wnd = tiwin;
2190 			tp->snd_wl1 = th->th_seq;
2191 			tp->snd_wl2 = th->th_ack;
2192 			if (tp->snd_wnd > tp->max_sndwnd)
2193 				tp->max_sndwnd = tp->snd_wnd;
2194 			needoutput = TRUE;
2195 		}
2196 
2197 		tp->snd_una = th->th_ack;
2198 		if (TCP_DO_SACK(tp))
2199 			tcp_sack_update_scoreboard(tp, &to);
2200 		if (IN_FASTRECOVERY(tp)) {
2201 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2202 				EXIT_FASTRECOVERY(tp);
2203 				needoutput = TRUE;
2204 				/*
2205 				 * If the congestion window was inflated
2206 				 * to account for the other side's
2207 				 * cached packets, retract it.
2208 				 */
2209 				if (!TCP_DO_SACK(tp))
2210 					tp->snd_cwnd = tp->snd_ssthresh;
2211 
2212 				/*
2213 				 * Window inflation should have left us
2214 				 * with approximately snd_ssthresh outstanding
2215 				 * data.  But, in case we would be inclined
2216 				 * to send a burst, better do it using
2217 				 * slow start.
2218 				 */
2219 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2220 					   tp->snd_max + 2 * tp->t_maxseg))
2221 					tp->snd_cwnd =
2222 					    (tp->snd_max - tp->snd_una) +
2223 					    2 * tp->t_maxseg;
2224 
2225 				tp->snd_wacked = 0;
2226 			} else {
2227 				if (TCP_DO_SACK(tp)) {
2228 					tp->snd_max_rexmt = tp->snd_max;
2229 					tcp_sack_rexmt(tp, th);
2230 				} else {
2231 					tcp_newreno_partial_ack(tp, th, acked);
2232 				}
2233 				needoutput = FALSE;
2234 			}
2235 		} else {
2236 			/*
2237 			 * Open the congestion window.  When in slow-start,
2238 			 * open exponentially: maxseg per packet.  Otherwise,
2239 			 * open linearly: maxseg per window.
2240 			 */
2241 			if (tp->snd_cwnd <= tp->snd_ssthresh) {
2242 				u_int abc_sslimit =
2243 				    (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2244 				     tp->t_maxseg : 2 * tp->t_maxseg);
2245 
2246 				/* slow-start */
2247 				tp->snd_cwnd += tcp_do_abc ?
2248 				    min(acked, abc_sslimit) : tp->t_maxseg;
2249 			} else {
2250 				/* linear increase */
2251 				tp->snd_wacked += tcp_do_abc ? acked :
2252 				    tp->t_maxseg;
2253 				if (tp->snd_wacked >= tp->snd_cwnd) {
2254 					tp->snd_wacked -= tp->snd_cwnd;
2255 					tp->snd_cwnd += tp->t_maxseg;
2256 				}
2257 			}
2258 			tp->snd_cwnd = min(tp->snd_cwnd,
2259 					   TCP_MAXWIN << tp->snd_scale);
2260 			tp->snd_recover = th->th_ack - 1;
2261 		}
2262 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2263 			tp->snd_nxt = tp->snd_una;
2264 
2265 		/*
2266 		 * If all outstanding data is acked, stop retransmit
2267 		 * timer and remember to restart (more output or persist).
2268 		 * If there is more data to be acked, restart retransmit
2269 		 * timer, using current (possibly backed-off) value.
2270 		 */
2271 		if (th->th_ack == tp->snd_max) {
2272 			tcp_callout_stop(tp, tp->tt_rexmt);
2273 			needoutput = TRUE;
2274 		} else if (!tcp_callout_active(tp, tp->tt_persist)) {
2275 			tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur,
2276 			    tcp_timer_rexmt);
2277 		}
2278 
2279 		switch (tp->t_state) {
2280 		/*
2281 		 * In FIN_WAIT_1 STATE in addition to the processing
2282 		 * for the ESTABLISHED state if our FIN is now acknowledged
2283 		 * then enter FIN_WAIT_2.
2284 		 */
2285 		case TCPS_FIN_WAIT_1:
2286 			if (ourfinisacked) {
2287 				/*
2288 				 * If we can't receive any more
2289 				 * data, then closing user can proceed.
2290 				 * Starting the timer is contrary to the
2291 				 * specification, but if we don't get a FIN
2292 				 * we'll hang forever.
2293 				 */
2294 				if (so->so_state & SS_CANTRCVMORE) {
2295 					soisdisconnected(so);
2296 					tcp_callout_reset(tp, tp->tt_2msl,
2297 					    tcp_maxidle, tcp_timer_2msl);
2298 				}
2299 				tp->t_state = TCPS_FIN_WAIT_2;
2300 			}
2301 			break;
2302 
2303 		/*
2304 		 * In CLOSING STATE in addition to the processing for
2305 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2306 		 * then enter the TIME-WAIT state, otherwise ignore
2307 		 * the segment.
2308 		 */
2309 		case TCPS_CLOSING:
2310 			if (ourfinisacked) {
2311 				tp->t_state = TCPS_TIME_WAIT;
2312 				tcp_canceltimers(tp);
2313 				tcp_callout_reset(tp, tp->tt_2msl,
2314 					    2 * tcp_msl, tcp_timer_2msl);
2315 				soisdisconnected(so);
2316 			}
2317 			break;
2318 
2319 		/*
2320 		 * In LAST_ACK, we may still be waiting for data to drain
2321 		 * and/or to be acked, as well as for the ack of our FIN.
2322 		 * If our FIN is now acknowledged, delete the TCB,
2323 		 * enter the closed state and return.
2324 		 */
2325 		case TCPS_LAST_ACK:
2326 			if (ourfinisacked) {
2327 				tp = tcp_close(tp);
2328 				goto drop;
2329 			}
2330 			break;
2331 
2332 		/*
2333 		 * In TIME_WAIT state the only thing that should arrive
2334 		 * is a retransmission of the remote FIN.  Acknowledge
2335 		 * it and restart the finack timer.
2336 		 */
2337 		case TCPS_TIME_WAIT:
2338 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2339 			    tcp_timer_2msl);
2340 			goto dropafterack;
2341 		}
2342 	}
2343 
2344 step6:
2345 	/*
2346 	 * Update window information.
2347 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2348 	 */
2349 	if ((thflags & TH_ACK) &&
2350 	    acceptable_window_update(tp, th, tiwin)) {
2351 		/* keep track of pure window updates */
2352 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2353 		    tiwin > tp->snd_wnd)
2354 			tcpstat.tcps_rcvwinupd++;
2355 		tp->snd_wnd = tiwin;
2356 		tp->snd_wl1 = th->th_seq;
2357 		tp->snd_wl2 = th->th_ack;
2358 		if (tp->snd_wnd > tp->max_sndwnd)
2359 			tp->max_sndwnd = tp->snd_wnd;
2360 		needoutput = TRUE;
2361 	}
2362 
2363 	/*
2364 	 * Process segments with URG.
2365 	 */
2366 	if ((thflags & TH_URG) && th->th_urp &&
2367 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2368 		/*
2369 		 * This is a kludge, but if we receive and accept
2370 		 * random urgent pointers, we'll crash in
2371 		 * soreceive.  It's hard to imagine someone
2372 		 * actually wanting to send this much urgent data.
2373 		 */
2374 		if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2375 			th->th_urp = 0;			/* XXX */
2376 			thflags &= ~TH_URG;		/* XXX */
2377 			goto dodata;			/* XXX */
2378 		}
2379 		/*
2380 		 * If this segment advances the known urgent pointer,
2381 		 * then mark the data stream.  This should not happen
2382 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2383 		 * a FIN has been received from the remote side.
2384 		 * In these states we ignore the URG.
2385 		 *
2386 		 * According to RFC961 (Assigned Protocols),
2387 		 * the urgent pointer points to the last octet
2388 		 * of urgent data.  We continue, however,
2389 		 * to consider it to indicate the first octet
2390 		 * of data past the urgent section as the original
2391 		 * spec states (in one of two places).
2392 		 */
2393 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2394 			tp->rcv_up = th->th_seq + th->th_urp;
2395 			so->so_oobmark = so->so_rcv.ssb_cc +
2396 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2397 			if (so->so_oobmark == 0)
2398 				so->so_state |= SS_RCVATMARK;
2399 			sohasoutofband(so);
2400 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2401 		}
2402 		/*
2403 		 * Remove out of band data so doesn't get presented to user.
2404 		 * This can happen independent of advancing the URG pointer,
2405 		 * but if two URG's are pending at once, some out-of-band
2406 		 * data may creep in... ick.
2407 		 */
2408 		if (th->th_urp <= (u_long)tlen &&
2409 		    !(so->so_options & SO_OOBINLINE)) {
2410 			/* hdr drop is delayed */
2411 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2412 		}
2413 	} else {
2414 		/*
2415 		 * If no out of band data is expected,
2416 		 * pull receive urgent pointer along
2417 		 * with the receive window.
2418 		 */
2419 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2420 			tp->rcv_up = tp->rcv_nxt;
2421 	}
2422 
2423 dodata:							/* XXX */
2424 	/*
2425 	 * Process the segment text, merging it into the TCP sequencing queue,
2426 	 * and arranging for acknowledgment of receipt if necessary.
2427 	 * This process logically involves adjusting tp->rcv_wnd as data
2428 	 * is presented to the user (this happens in tcp_usrreq.c,
2429 	 * case PRU_RCVD).  If a FIN has already been received on this
2430 	 * connection then we just ignore the text.
2431 	 */
2432 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2433 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2434 		/*
2435 		 * Insert segment which includes th into TCP reassembly queue
2436 		 * with control block tp.  Set thflags to whether reassembly now
2437 		 * includes a segment with FIN.  This handles the common case
2438 		 * inline (segment is the next to be received on an established
2439 		 * connection, and the queue is empty), avoiding linkage into
2440 		 * and removal from the queue and repetition of various
2441 		 * conversions.
2442 		 * Set DELACK for segments received in order, but ack
2443 		 * immediately when segments are out of order (so
2444 		 * fast retransmit can work).
2445 		 */
2446 		if (th->th_seq == tp->rcv_nxt &&
2447 		    LIST_EMPTY(&tp->t_segq) &&
2448 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2449 			if (DELAY_ACK(tp)) {
2450 				tcp_callout_reset(tp, tp->tt_delack,
2451 				    tcp_delacktime, tcp_timer_delack);
2452 			} else {
2453 				tp->t_flags |= TF_ACKNOW;
2454 			}
2455 			tp->rcv_nxt += tlen;
2456 			thflags = th->th_flags & TH_FIN;
2457 			tcpstat.tcps_rcvpack++;
2458 			tcpstat.tcps_rcvbyte += tlen;
2459 			ND6_HINT(tp);
2460 			if (so->so_state & SS_CANTRCVMORE)
2461 				m_freem(m);
2462 			else
2463 				ssb_appendstream(&so->so_rcv, m);
2464 			sorwakeup(so);
2465 		} else {
2466 			if (!(tp->t_flags & TF_DUPSEG)) {
2467 				/* Initialize SACK report block. */
2468 				tp->reportblk.rblk_start = th->th_seq;
2469 				tp->reportblk.rblk_end = th->th_seq + tlen +
2470 				    ((thflags & TH_FIN) != 0);
2471 			}
2472 			thflags = tcp_reass(tp, th, &tlen, m);
2473 			tp->t_flags |= TF_ACKNOW;
2474 		}
2475 
2476 		/*
2477 		 * Note the amount of data that peer has sent into
2478 		 * our window, in order to estimate the sender's
2479 		 * buffer size.
2480 		 */
2481 		len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2482 	} else {
2483 		m_freem(m);
2484 		thflags &= ~TH_FIN;
2485 	}
2486 
2487 	/*
2488 	 * If FIN is received ACK the FIN and let the user know
2489 	 * that the connection is closing.
2490 	 */
2491 	if (thflags & TH_FIN) {
2492 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2493 			socantrcvmore(so);
2494 			/*
2495 			 * If connection is half-synchronized
2496 			 * (ie NEEDSYN flag on) then delay ACK,
2497 			 * so it may be piggybacked when SYN is sent.
2498 			 * Otherwise, since we received a FIN then no
2499 			 * more input can be expected, send ACK now.
2500 			 */
2501 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2502 				tcp_callout_reset(tp, tp->tt_delack,
2503 				    tcp_delacktime, tcp_timer_delack);
2504 			} else {
2505 				tp->t_flags |= TF_ACKNOW;
2506 			}
2507 			tp->rcv_nxt++;
2508 		}
2509 
2510 		switch (tp->t_state) {
2511 		/*
2512 		 * In SYN_RECEIVED and ESTABLISHED STATES
2513 		 * enter the CLOSE_WAIT state.
2514 		 */
2515 		case TCPS_SYN_RECEIVED:
2516 			tp->t_starttime = ticks;
2517 			/*FALLTHROUGH*/
2518 		case TCPS_ESTABLISHED:
2519 			tp->t_state = TCPS_CLOSE_WAIT;
2520 			break;
2521 
2522 		/*
2523 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2524 		 * enter the CLOSING state.
2525 		 */
2526 		case TCPS_FIN_WAIT_1:
2527 			tp->t_state = TCPS_CLOSING;
2528 			break;
2529 
2530 		/*
2531 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2532 		 * starting the time-wait timer, turning off the other
2533 		 * standard timers.
2534 		 */
2535 		case TCPS_FIN_WAIT_2:
2536 			tp->t_state = TCPS_TIME_WAIT;
2537 			tcp_canceltimers(tp);
2538 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2539 				    tcp_timer_2msl);
2540 			soisdisconnected(so);
2541 			break;
2542 
2543 		/*
2544 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2545 		 */
2546 		case TCPS_TIME_WAIT:
2547 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2548 			    tcp_timer_2msl);
2549 			break;
2550 		}
2551 	}
2552 
2553 #ifdef TCPDEBUG
2554 	if (so->so_options & SO_DEBUG)
2555 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2556 #endif
2557 
2558 	/*
2559 	 * Return any desired output.
2560 	 */
2561 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2562 		tcp_output(tp);
2563 	return;
2564 
2565 dropafterack:
2566 	/*
2567 	 * Generate an ACK dropping incoming segment if it occupies
2568 	 * sequence space, where the ACK reflects our state.
2569 	 *
2570 	 * We can now skip the test for the RST flag since all
2571 	 * paths to this code happen after packets containing
2572 	 * RST have been dropped.
2573 	 *
2574 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2575 	 * segment we received passes the SYN-RECEIVED ACK test.
2576 	 * If it fails send a RST.  This breaks the loop in the
2577 	 * "LAND" DoS attack, and also prevents an ACK storm
2578 	 * between two listening ports that have been sent forged
2579 	 * SYN segments, each with the source address of the other.
2580 	 */
2581 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2582 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2583 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2584 		rstreason = BANDLIM_RST_OPENPORT;
2585 		goto dropwithreset;
2586 	}
2587 #ifdef TCPDEBUG
2588 	if (so->so_options & SO_DEBUG)
2589 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2590 #endif
2591 	m_freem(m);
2592 	tp->t_flags |= TF_ACKNOW;
2593 	tcp_output(tp);
2594 	return;
2595 
2596 dropwithreset:
2597 	/*
2598 	 * Generate a RST, dropping incoming segment.
2599 	 * Make ACK acceptable to originator of segment.
2600 	 * Don't bother to respond if destination was broadcast/multicast.
2601 	 */
2602 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2603 		goto drop;
2604 	if (isipv6) {
2605 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2606 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2607 			goto drop;
2608 	} else {
2609 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2610 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2611 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2612 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2613 			goto drop;
2614 	}
2615 	/* IPv6 anycast check is done at tcp6_input() */
2616 
2617 	/*
2618 	 * Perform bandwidth limiting.
2619 	 */
2620 #ifdef ICMP_BANDLIM
2621 	if (badport_bandlim(rstreason) < 0)
2622 		goto drop;
2623 #endif
2624 
2625 #ifdef TCPDEBUG
2626 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2627 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2628 #endif
2629 	if (thflags & TH_ACK)
2630 		/* mtod() below is safe as long as hdr dropping is delayed */
2631 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2632 			    TH_RST);
2633 	else {
2634 		if (thflags & TH_SYN)
2635 			tlen++;
2636 		/* mtod() below is safe as long as hdr dropping is delayed */
2637 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2638 			    (tcp_seq)0, TH_RST | TH_ACK);
2639 	}
2640 	return;
2641 
2642 drop:
2643 	/*
2644 	 * Drop space held by incoming segment and return.
2645 	 */
2646 #ifdef TCPDEBUG
2647 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2648 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2649 #endif
2650 	m_freem(m);
2651 	return;
2652 }
2653 
2654 /*
2655  * Parse TCP options and place in tcpopt.
2656  */
2657 static void
2658 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn)
2659 {
2660 	int opt, optlen, i;
2661 
2662 	to->to_flags = 0;
2663 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2664 		opt = cp[0];
2665 		if (opt == TCPOPT_EOL)
2666 			break;
2667 		if (opt == TCPOPT_NOP)
2668 			optlen = 1;
2669 		else {
2670 			if (cnt < 2)
2671 				break;
2672 			optlen = cp[1];
2673 			if (optlen < 2 || optlen > cnt)
2674 				break;
2675 		}
2676 		switch (opt) {
2677 		case TCPOPT_MAXSEG:
2678 			if (optlen != TCPOLEN_MAXSEG)
2679 				continue;
2680 			if (!is_syn)
2681 				continue;
2682 			to->to_flags |= TOF_MSS;
2683 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2684 			to->to_mss = ntohs(to->to_mss);
2685 			break;
2686 		case TCPOPT_WINDOW:
2687 			if (optlen != TCPOLEN_WINDOW)
2688 				continue;
2689 			if (!is_syn)
2690 				continue;
2691 			to->to_flags |= TOF_SCALE;
2692 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2693 			break;
2694 		case TCPOPT_TIMESTAMP:
2695 			if (optlen != TCPOLEN_TIMESTAMP)
2696 				continue;
2697 			to->to_flags |= TOF_TS;
2698 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2699 			to->to_tsval = ntohl(to->to_tsval);
2700 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2701 			to->to_tsecr = ntohl(to->to_tsecr);
2702 			/*
2703 			 * If echoed timestamp is later than the current time,
2704 			 * fall back to non RFC1323 RTT calculation.
2705 			 */
2706 			if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2707 				to->to_tsecr = 0;
2708 			break;
2709 		case TCPOPT_SACK_PERMITTED:
2710 			if (optlen != TCPOLEN_SACK_PERMITTED)
2711 				continue;
2712 			if (!is_syn)
2713 				continue;
2714 			to->to_flags |= TOF_SACK_PERMITTED;
2715 			break;
2716 		case TCPOPT_SACK:
2717 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2718 				continue;
2719 			to->to_nsackblocks = (optlen - 2) / 8;
2720 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2721 			to->to_flags |= TOF_SACK;
2722 			for (i = 0; i < to->to_nsackblocks; i++) {
2723 				struct raw_sackblock *r = &to->to_sackblocks[i];
2724 
2725 				r->rblk_start = ntohl(r->rblk_start);
2726 				r->rblk_end = ntohl(r->rblk_end);
2727 			}
2728 			break;
2729 #ifdef TCP_SIGNATURE
2730 		/*
2731 		 * XXX In order to reply to a host which has set the
2732 		 * TCP_SIGNATURE option in its initial SYN, we have to
2733 		 * record the fact that the option was observed here
2734 		 * for the syncache code to perform the correct response.
2735 		 */
2736 		case TCPOPT_SIGNATURE:
2737 			if (optlen != TCPOLEN_SIGNATURE)
2738 				continue;
2739 			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2740 			break;
2741 #endif /* TCP_SIGNATURE */
2742 		default:
2743 			continue;
2744 		}
2745 	}
2746 }
2747 
2748 /*
2749  * Pull out of band byte out of a segment so
2750  * it doesn't appear in the user's data queue.
2751  * It is still reflected in the segment length for
2752  * sequencing purposes.
2753  * "off" is the delayed to be dropped hdrlen.
2754  */
2755 static void
2756 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2757 {
2758 	int cnt = off + th->th_urp - 1;
2759 
2760 	while (cnt >= 0) {
2761 		if (m->m_len > cnt) {
2762 			char *cp = mtod(m, caddr_t) + cnt;
2763 			struct tcpcb *tp = sototcpcb(so);
2764 
2765 			tp->t_iobc = *cp;
2766 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2767 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2768 			m->m_len--;
2769 			if (m->m_flags & M_PKTHDR)
2770 				m->m_pkthdr.len--;
2771 			return;
2772 		}
2773 		cnt -= m->m_len;
2774 		m = m->m_next;
2775 		if (m == 0)
2776 			break;
2777 	}
2778 	panic("tcp_pulloutofband");
2779 }
2780 
2781 /*
2782  * Collect new round-trip time estimate
2783  * and update averages and current timeout.
2784  */
2785 static void
2786 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2787 {
2788 	int delta;
2789 
2790 	tcpstat.tcps_rttupdated++;
2791 	tp->t_rttupdated++;
2792 	if (tp->t_srtt != 0) {
2793 		/*
2794 		 * srtt is stored as fixed point with 5 bits after the
2795 		 * binary point (i.e., scaled by 8).  The following magic
2796 		 * is equivalent to the smoothing algorithm in rfc793 with
2797 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2798 		 * point).  Adjust rtt to origin 0.
2799 		 */
2800 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2801 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2802 
2803 		if ((tp->t_srtt += delta) <= 0)
2804 			tp->t_srtt = 1;
2805 
2806 		/*
2807 		 * We accumulate a smoothed rtt variance (actually, a
2808 		 * smoothed mean difference), then set the retransmit
2809 		 * timer to smoothed rtt + 4 times the smoothed variance.
2810 		 * rttvar is stored as fixed point with 4 bits after the
2811 		 * binary point (scaled by 16).  The following is
2812 		 * equivalent to rfc793 smoothing with an alpha of .75
2813 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2814 		 * rfc793's wired-in beta.
2815 		 */
2816 		if (delta < 0)
2817 			delta = -delta;
2818 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2819 		if ((tp->t_rttvar += delta) <= 0)
2820 			tp->t_rttvar = 1;
2821 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2822 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2823 	} else {
2824 		/*
2825 		 * No rtt measurement yet - use the unsmoothed rtt.
2826 		 * Set the variance to half the rtt (so our first
2827 		 * retransmit happens at 3*rtt).
2828 		 */
2829 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2830 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2831 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2832 	}
2833 	tp->t_rtttime = 0;
2834 	tp->t_rxtshift = 0;
2835 
2836 	/*
2837 	 * the retransmit should happen at rtt + 4 * rttvar.
2838 	 * Because of the way we do the smoothing, srtt and rttvar
2839 	 * will each average +1/2 tick of bias.  When we compute
2840 	 * the retransmit timer, we want 1/2 tick of rounding and
2841 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2842 	 * firing of the timer.  The bias will give us exactly the
2843 	 * 1.5 tick we need.  But, because the bias is
2844 	 * statistical, we have to test that we don't drop below
2845 	 * the minimum feasible timer (which is 2 ticks).
2846 	 */
2847 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2848 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2849 
2850 	/*
2851 	 * We received an ack for a packet that wasn't retransmitted;
2852 	 * it is probably safe to discard any error indications we've
2853 	 * received recently.  This isn't quite right, but close enough
2854 	 * for now (a route might have failed after we sent a segment,
2855 	 * and the return path might not be symmetrical).
2856 	 */
2857 	tp->t_softerror = 0;
2858 }
2859 
2860 /*
2861  * Determine a reasonable value for maxseg size.
2862  * If the route is known, check route for mtu.
2863  * If none, use an mss that can be handled on the outgoing
2864  * interface without forcing IP to fragment; if bigger than
2865  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2866  * to utilize large mbufs.  If no route is found, route has no mtu,
2867  * or the destination isn't local, use a default, hopefully conservative
2868  * size (usually 512 or the default IP max size, but no more than the mtu
2869  * of the interface), as we can't discover anything about intervening
2870  * gateways or networks.  We also initialize the congestion/slow start
2871  * window to be a single segment if the destination isn't local.
2872  * While looking at the routing entry, we also initialize other path-dependent
2873  * parameters from pre-set or cached values in the routing entry.
2874  *
2875  * Also take into account the space needed for options that we
2876  * send regularly.  Make maxseg shorter by that amount to assure
2877  * that we can send maxseg amount of data even when the options
2878  * are present.  Store the upper limit of the length of options plus
2879  * data in maxopd.
2880  *
2881  * NOTE that this routine is only called when we process an incoming
2882  * segment, for outgoing segments only tcp_mssopt is called.
2883  */
2884 void
2885 tcp_mss(struct tcpcb *tp, int offer)
2886 {
2887 	struct rtentry *rt;
2888 	struct ifnet *ifp;
2889 	int rtt, mss;
2890 	u_long bufsize;
2891 	struct inpcb *inp = tp->t_inpcb;
2892 	struct socket *so;
2893 #ifdef INET6
2894 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2895 	size_t min_protoh = isipv6 ?
2896 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2897 			    sizeof(struct tcpiphdr);
2898 #else
2899 	const boolean_t isipv6 = FALSE;
2900 	const size_t min_protoh = sizeof(struct tcpiphdr);
2901 #endif
2902 
2903 	if (isipv6)
2904 		rt = tcp_rtlookup6(&inp->inp_inc);
2905 	else
2906 		rt = tcp_rtlookup(&inp->inp_inc);
2907 	if (rt == NULL) {
2908 		tp->t_maxopd = tp->t_maxseg =
2909 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2910 		return;
2911 	}
2912 	ifp = rt->rt_ifp;
2913 	so = inp->inp_socket;
2914 
2915 	/*
2916 	 * Offer == 0 means that there was no MSS on the SYN segment,
2917 	 * in this case we use either the interface mtu or tcp_mssdflt.
2918 	 *
2919 	 * An offer which is too large will be cut down later.
2920 	 */
2921 	if (offer == 0) {
2922 		if (isipv6) {
2923 			if (in6_localaddr(&inp->in6p_faddr)) {
2924 				offer = ND_IFINFO(rt->rt_ifp)->linkmtu -
2925 					min_protoh;
2926 			} else {
2927 				offer = tcp_v6mssdflt;
2928 			}
2929 		} else {
2930 			if (in_localaddr(inp->inp_faddr))
2931 				offer = ifp->if_mtu - min_protoh;
2932 			else
2933 				offer = tcp_mssdflt;
2934 		}
2935 	}
2936 
2937 	/*
2938 	 * Prevent DoS attack with too small MSS. Round up
2939 	 * to at least minmss.
2940 	 *
2941 	 * Sanity check: make sure that maxopd will be large
2942 	 * enough to allow some data on segments even is the
2943 	 * all the option space is used (40bytes).  Otherwise
2944 	 * funny things may happen in tcp_output.
2945 	 */
2946 	offer = max(offer, tcp_minmss);
2947 	offer = max(offer, 64);
2948 
2949 	rt->rt_rmx.rmx_mssopt = offer;
2950 
2951 	/*
2952 	 * While we're here, check if there's an initial rtt
2953 	 * or rttvar.  Convert from the route-table units
2954 	 * to scaled multiples of the slow timeout timer.
2955 	 */
2956 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2957 		/*
2958 		 * XXX the lock bit for RTT indicates that the value
2959 		 * is also a minimum value; this is subject to time.
2960 		 */
2961 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2962 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2963 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2964 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2965 		tcpstat.tcps_usedrtt++;
2966 		if (rt->rt_rmx.rmx_rttvar) {
2967 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2968 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2969 			tcpstat.tcps_usedrttvar++;
2970 		} else {
2971 			/* default variation is +- 1 rtt */
2972 			tp->t_rttvar =
2973 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2974 		}
2975 		TCPT_RANGESET(tp->t_rxtcur,
2976 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2977 			      tp->t_rttmin, TCPTV_REXMTMAX);
2978 	}
2979 
2980 	/*
2981 	 * if there's an mtu associated with the route, use it
2982 	 * else, use the link mtu.  Take the smaller of mss or offer
2983 	 * as our final mss.
2984 	 */
2985 	if (rt->rt_rmx.rmx_mtu) {
2986 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2987 	} else {
2988 		if (isipv6)
2989 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
2990 		else
2991 			mss = ifp->if_mtu - min_protoh;
2992 	}
2993 	mss = min(mss, offer);
2994 
2995 	/*
2996 	 * maxopd stores the maximum length of data AND options
2997 	 * in a segment; maxseg is the amount of data in a normal
2998 	 * segment.  We need to store this value (maxopd) apart
2999 	 * from maxseg, because now every segment carries options
3000 	 * and thus we normally have somewhat less data in segments.
3001 	 */
3002 	tp->t_maxopd = mss;
3003 
3004 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
3005 	    ((tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3006 		mss -= TCPOLEN_TSTAMP_APPA;
3007 
3008 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3009 		if (mss > MCLBYTES)
3010 			mss &= ~(MCLBYTES-1);
3011 #else
3012 		if (mss > MCLBYTES)
3013 			mss = mss / MCLBYTES * MCLBYTES;
3014 #endif
3015 	/*
3016 	 * If there's a pipesize, change the socket buffer
3017 	 * to that size.  Make the socket buffers an integral
3018 	 * number of mss units; if the mss is larger than
3019 	 * the socket buffer, decrease the mss.
3020 	 */
3021 #ifdef RTV_SPIPE
3022 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
3023 #endif
3024 		bufsize = so->so_snd.ssb_hiwat;
3025 	if (bufsize < mss)
3026 		mss = bufsize;
3027 	else {
3028 		bufsize = roundup(bufsize, mss);
3029 		if (bufsize > sb_max)
3030 			bufsize = sb_max;
3031 		if (bufsize > so->so_snd.ssb_hiwat)
3032 			ssb_reserve(&so->so_snd, bufsize, so, NULL);
3033 	}
3034 	tp->t_maxseg = mss;
3035 
3036 #ifdef RTV_RPIPE
3037 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3038 #endif
3039 		bufsize = so->so_rcv.ssb_hiwat;
3040 	if (bufsize > mss) {
3041 		bufsize = roundup(bufsize, mss);
3042 		if (bufsize > sb_max)
3043 			bufsize = sb_max;
3044 		if (bufsize > so->so_rcv.ssb_hiwat)
3045 			ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3046 	}
3047 
3048 	/*
3049 	 * Set the slow-start flight size depending on whether this
3050 	 * is a local network or not.
3051 	 */
3052 	if (tcp_do_rfc3390)
3053 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3054 	else
3055 		tp->snd_cwnd = mss;
3056 
3057 	if (rt->rt_rmx.rmx_ssthresh) {
3058 		/*
3059 		 * There's some sort of gateway or interface
3060 		 * buffer limit on the path.  Use this to set
3061 		 * the slow start threshhold, but set the
3062 		 * threshold to no less than 2*mss.
3063 		 */
3064 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3065 		tcpstat.tcps_usedssthresh++;
3066 	}
3067 }
3068 
3069 /*
3070  * Determine the MSS option to send on an outgoing SYN.
3071  */
3072 int
3073 tcp_mssopt(struct tcpcb *tp)
3074 {
3075 	struct rtentry *rt;
3076 #ifdef INET6
3077 	boolean_t isipv6 =
3078 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3079 	int min_protoh = isipv6 ?
3080 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3081 			     sizeof(struct tcpiphdr);
3082 #else
3083 	const boolean_t isipv6 = FALSE;
3084 	const size_t min_protoh = sizeof(struct tcpiphdr);
3085 #endif
3086 
3087 	if (isipv6)
3088 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3089 	else
3090 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3091 	if (rt == NULL)
3092 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3093 
3094 	return (rt->rt_ifp->if_mtu - min_protoh);
3095 }
3096 
3097 /*
3098  * When a partial ack arrives, force the retransmission of the
3099  * next unacknowledged segment.  Do not exit Fast Recovery.
3100  *
3101  * Implement the Slow-but-Steady variant of NewReno by restarting the
3102  * the retransmission timer.  Turn it off here so it can be restarted
3103  * later in tcp_output().
3104  */
3105 static void
3106 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3107 {
3108 	tcp_seq old_snd_nxt = tp->snd_nxt;
3109 	u_long ocwnd = tp->snd_cwnd;
3110 
3111 	tcp_callout_stop(tp, tp->tt_rexmt);
3112 	tp->t_rtttime = 0;
3113 	tp->snd_nxt = th->th_ack;
3114 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3115 	tp->snd_cwnd = tp->t_maxseg;
3116 	tp->t_flags |= TF_ACKNOW;
3117 	tcp_output(tp);
3118 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3119 		tp->snd_nxt = old_snd_nxt;
3120 	/* partial window deflation */
3121 	if (ocwnd > acked)
3122 		tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3123 	else
3124 		tp->snd_cwnd = tp->t_maxseg;
3125 }
3126 
3127 /*
3128  * In contrast to the Slow-but-Steady NewReno variant,
3129  * we do not reset the retransmission timer for SACK retransmissions,
3130  * except when retransmitting snd_una.
3131  */
3132 static void
3133 tcp_sack_rexmt(struct tcpcb *tp, struct tcphdr *th)
3134 {
3135 	uint32_t pipe, seglen;
3136 	tcp_seq nextrexmt;
3137 	boolean_t lostdup;
3138 	tcp_seq old_snd_nxt = tp->snd_nxt;
3139 	u_long ocwnd = tp->snd_cwnd;
3140 	int nseg = 0;		/* consecutive new segments */
3141 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3142 
3143 	tp->t_rtttime = 0;
3144 	pipe = tcp_sack_compute_pipe(tp);
3145 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3146 	    (!tcp_do_smartsack || nseg < MAXBURST) &&
3147 	    tcp_sack_nextseg(tp, &nextrexmt, &seglen, &lostdup)) {
3148 		uint32_t sent;
3149 		tcp_seq old_snd_max;
3150 		int error;
3151 
3152 		if (nextrexmt == tp->snd_max)
3153 			++nseg;
3154 		tp->snd_nxt = nextrexmt;
3155 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3156 		old_snd_max = tp->snd_max;
3157 		if (nextrexmt == tp->snd_una)
3158 			tcp_callout_stop(tp, tp->tt_rexmt);
3159 		error = tcp_output(tp);
3160 		if (error != 0)
3161 			break;
3162 		sent = tp->snd_nxt - nextrexmt;
3163 		if (sent <= 0)
3164 			break;
3165 		if (!lostdup)
3166 			pipe += sent;
3167 		tcpstat.tcps_sndsackpack++;
3168 		tcpstat.tcps_sndsackbyte += sent;
3169 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3170 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt))
3171 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3172 	}
3173 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3174 		tp->snd_nxt = old_snd_nxt;
3175 	tp->snd_cwnd = ocwnd;
3176 }
3177