xref: /dflybsd-src/sys/netinet/tcp_input.c (revision 6cef7136f04e2b24a6db289e78720d6d8c60274e)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
68  * $DragonFly: src/sys/netinet/tcp_input.c,v 1.68 2008/08/22 09:14:17 sephe Exp $
69  */
70 
71 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
72 #include "opt_inet.h"
73 #include "opt_inet6.h"
74 #include "opt_ipsec.h"
75 #include "opt_tcpdebug.h"
76 #include "opt_tcp_input.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/proc.h>		/* for proc0 declaration */
85 #include <sys/protosw.h>
86 #include <sys/socket.h>
87 #include <sys/socketvar.h>
88 #include <sys/syslog.h>
89 #include <sys/in_cksum.h>
90 
91 #include <sys/socketvar2.h>
92 
93 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
94 #include <machine/stdarg.h>
95 
96 #include <net/if.h>
97 #include <net/route.h>
98 
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #include <netinet/ip.h>
102 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
103 #include <netinet/in_var.h>
104 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
105 #include <netinet/in_pcb.h>
106 #include <netinet/ip_var.h>
107 #include <netinet/ip6.h>
108 #include <netinet/icmp6.h>
109 #include <netinet6/nd6.h>
110 #include <netinet6/ip6_var.h>
111 #include <netinet6/in6_pcb.h>
112 #include <netinet/tcp.h>
113 #include <netinet/tcp_fsm.h>
114 #include <netinet/tcp_seq.h>
115 #include <netinet/tcp_timer.h>
116 #include <netinet/tcp_timer2.h>
117 #include <netinet/tcp_var.h>
118 #include <netinet6/tcp6_var.h>
119 #include <netinet/tcpip.h>
120 
121 #ifdef TCPDEBUG
122 #include <netinet/tcp_debug.h>
123 
124 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
125 struct tcphdr tcp_savetcp;
126 #endif
127 
128 #ifdef FAST_IPSEC
129 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/ipsec6.h>
131 #endif
132 
133 #ifdef IPSEC
134 #include <netinet6/ipsec.h>
135 #include <netinet6/ipsec6.h>
136 #include <netproto/key/key.h>
137 #endif
138 
139 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
140 
141 static int log_in_vain = 0;
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
143     &log_in_vain, 0, "Log all incoming TCP connections");
144 
145 static int blackhole = 0;
146 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
147     &blackhole, 0, "Do not send RST when dropping refused connections");
148 
149 int tcp_delack_enabled = 1;
150 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
151     &tcp_delack_enabled, 0,
152     "Delay ACK to try and piggyback it onto a data packet");
153 
154 #ifdef TCP_DROP_SYNFIN
155 static int drop_synfin = 0;
156 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
157     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
158 #endif
159 
160 static int tcp_do_limitedtransmit = 1;
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
162     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
163 
164 static int tcp_do_early_retransmit = 1;
165 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
166     &tcp_do_early_retransmit, 0, "Early retransmit");
167 
168 int tcp_aggregate_acks = 1;
169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
170     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
171 
172 int tcp_do_rfc3390 = 1;
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
174     &tcp_do_rfc3390, 0,
175     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
176 
177 static int tcp_do_eifel_detect = 1;
178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
179     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
180 
181 static int tcp_do_abc = 1;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
183     &tcp_do_abc, 0,
184     "TCP Appropriate Byte Counting (RFC 3465)");
185 
186 /*
187  * Define as tunable for easy testing with SACK on and off.
188  * Warning:  do not change setting in the middle of an existing active TCP flow,
189  *   else strange things might happen to that flow.
190  */
191 int tcp_do_sack = 1;
192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
193     &tcp_do_sack, 0, "Enable SACK Algorithms");
194 
195 int tcp_do_smartsack = 1;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
197     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
198 
199 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
200     "TCP Segment Reassembly Queue");
201 
202 int tcp_reass_maxseg = 0;
203 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
204     &tcp_reass_maxseg, 0,
205     "Global maximum number of TCP Segments in Reassembly Queue");
206 
207 int tcp_reass_qsize = 0;
208 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
209     &tcp_reass_qsize, 0,
210     "Global number of TCP Segments currently in Reassembly Queue");
211 
212 static int tcp_reass_overflows = 0;
213 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
214     &tcp_reass_overflows, 0,
215     "Global number of TCP Segment Reassembly Queue Overflows");
216 
217 int tcp_do_autorcvbuf = 1;
218 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
219     &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
220 
221 int tcp_autorcvbuf_inc = 16*1024;
222 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
223     &tcp_autorcvbuf_inc, 0,
224     "Incrementor step size of automatic receive buffer");
225 
226 int tcp_autorcvbuf_max = 2*1024*1024;
227 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
228     &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
229 
230 
231 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t);
232 static void	 tcp_pulloutofband(struct socket *,
233 		     struct tcphdr *, struct mbuf *, int);
234 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
235 		     struct mbuf *);
236 static void	 tcp_xmit_timer(struct tcpcb *, int);
237 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
238 static void	 tcp_sack_rexmt(struct tcpcb *, struct tcphdr *);
239 
240 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
241 #ifdef INET6
242 #define ND6_HINT(tp) \
243 do { \
244 	if ((tp) && (tp)->t_inpcb && \
245 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
246 	    (tp)->t_inpcb->in6p_route.ro_rt) \
247 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
248 } while (0)
249 #else
250 #define ND6_HINT(tp)
251 #endif
252 
253 /*
254  * Indicate whether this ack should be delayed.  We can delay the ack if
255  *	- delayed acks are enabled and
256  *	- there is no delayed ack timer in progress and
257  *	- our last ack wasn't a 0-sized window.  We never want to delay
258  *	  the ack that opens up a 0-sized window.
259  */
260 #define DELAY_ACK(tp) \
261 	(tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
262 	!(tp->t_flags & TF_RXWIN0SENT))
263 
264 #define acceptable_window_update(tp, th, tiwin)				\
265     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
266      (tp->snd_wl1 == th->th_seq &&					\
267       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
268        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
269 
270 static int
271 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
272 {
273 	struct tseg_qent *q;
274 	struct tseg_qent *p = NULL;
275 	struct tseg_qent *te;
276 	struct socket *so = tp->t_inpcb->inp_socket;
277 	int flags;
278 
279 	/*
280 	 * Call with th == NULL after become established to
281 	 * force pre-ESTABLISHED data up to user socket.
282 	 */
283 	if (th == NULL)
284 		goto present;
285 
286 	/*
287 	 * Limit the number of segments in the reassembly queue to prevent
288 	 * holding on to too many segments (and thus running out of mbufs).
289 	 * Make sure to let the missing segment through which caused this
290 	 * queue.  Always keep one global queue entry spare to be able to
291 	 * process the missing segment.
292 	 */
293 	if (th->th_seq != tp->rcv_nxt &&
294 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
295 		tcp_reass_overflows++;
296 		tcpstat.tcps_rcvmemdrop++;
297 		m_freem(m);
298 		/* no SACK block to report */
299 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
300 		return (0);
301 	}
302 
303 	/* Allocate a new queue entry. */
304 	MALLOC(te, struct tseg_qent *, sizeof(struct tseg_qent), M_TSEGQ,
305 	       M_INTWAIT | M_NULLOK);
306 	if (te == NULL) {
307 		tcpstat.tcps_rcvmemdrop++;
308 		m_freem(m);
309 		/* no SACK block to report */
310 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
311 		return (0);
312 	}
313 	atomic_add_int(&tcp_reass_qsize, 1);
314 
315 	/*
316 	 * Find a segment which begins after this one does.
317 	 */
318 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
319 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
320 			break;
321 		p = q;
322 	}
323 
324 	/*
325 	 * If there is a preceding segment, it may provide some of
326 	 * our data already.  If so, drop the data from the incoming
327 	 * segment.  If it provides all of our data, drop us.
328 	 */
329 	if (p != NULL) {
330 		tcp_seq_diff_t i;
331 
332 		/* conversion to int (in i) handles seq wraparound */
333 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
334 		if (i > 0) {		/* overlaps preceding segment */
335 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
336 			/* enclosing block starts w/ preceding segment */
337 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
338 			if (i >= *tlenp) {
339 				/* preceding encloses incoming segment */
340 				tp->encloseblk.rblk_end = p->tqe_th->th_seq +
341 				    p->tqe_len;
342 				tcpstat.tcps_rcvduppack++;
343 				tcpstat.tcps_rcvdupbyte += *tlenp;
344 				m_freem(m);
345 				kfree(te, M_TSEGQ);
346 				atomic_add_int(&tcp_reass_qsize, -1);
347 				/*
348 				 * Try to present any queued data
349 				 * at the left window edge to the user.
350 				 * This is needed after the 3-WHS
351 				 * completes.
352 				 */
353 				goto present;	/* ??? */
354 			}
355 			m_adj(m, i);
356 			*tlenp -= i;
357 			th->th_seq += i;
358 			/* incoming segment end is enclosing block end */
359 			tp->encloseblk.rblk_end = th->th_seq + *tlenp +
360 			    ((th->th_flags & TH_FIN) != 0);
361 			/* trim end of reported D-SACK block */
362 			tp->reportblk.rblk_end = th->th_seq;
363 		}
364 	}
365 	tcpstat.tcps_rcvoopack++;
366 	tcpstat.tcps_rcvoobyte += *tlenp;
367 
368 	/*
369 	 * While we overlap succeeding segments trim them or,
370 	 * if they are completely covered, dequeue them.
371 	 */
372 	while (q) {
373 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
374 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
375 		struct tseg_qent *nq;
376 
377 		if (i <= 0)
378 			break;
379 		if (!(tp->t_flags & TF_DUPSEG)) {    /* first time through */
380 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
381 			tp->encloseblk = tp->reportblk;
382 			/* report trailing duplicate D-SACK segment */
383 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
384 		}
385 		if ((tp->t_flags & TF_ENCLOSESEG) &&
386 		    SEQ_GT(qend, tp->encloseblk.rblk_end)) {
387 			/* extend enclosing block if one exists */
388 			tp->encloseblk.rblk_end = qend;
389 		}
390 		if (i < q->tqe_len) {
391 			q->tqe_th->th_seq += i;
392 			q->tqe_len -= i;
393 			m_adj(q->tqe_m, i);
394 			break;
395 		}
396 
397 		nq = LIST_NEXT(q, tqe_q);
398 		LIST_REMOVE(q, tqe_q);
399 		m_freem(q->tqe_m);
400 		kfree(q, M_TSEGQ);
401 		atomic_add_int(&tcp_reass_qsize, -1);
402 		q = nq;
403 	}
404 
405 	/* Insert the new segment queue entry into place. */
406 	te->tqe_m = m;
407 	te->tqe_th = th;
408 	te->tqe_len = *tlenp;
409 
410 	/* check if can coalesce with following segment */
411 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
412 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
413 
414 		te->tqe_len += q->tqe_len;
415 		if (q->tqe_th->th_flags & TH_FIN)
416 			te->tqe_th->th_flags |= TH_FIN;
417 		m_cat(te->tqe_m, q->tqe_m);
418 		tp->encloseblk.rblk_end = tend;
419 		/*
420 		 * When not reporting a duplicate segment, use
421 		 * the larger enclosing block as the SACK block.
422 		 */
423 		if (!(tp->t_flags & TF_DUPSEG))
424 			tp->reportblk.rblk_end = tend;
425 		LIST_REMOVE(q, tqe_q);
426 		kfree(q, M_TSEGQ);
427 		atomic_add_int(&tcp_reass_qsize, -1);
428 	}
429 
430 	if (p == NULL) {
431 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
432 	} else {
433 		/* check if can coalesce with preceding segment */
434 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
435 			p->tqe_len += te->tqe_len;
436 			m_cat(p->tqe_m, te->tqe_m);
437 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
438 			/*
439 			 * When not reporting a duplicate segment, use
440 			 * the larger enclosing block as the SACK block.
441 			 */
442 			if (!(tp->t_flags & TF_DUPSEG))
443 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
444 			kfree(te, M_TSEGQ);
445 			atomic_add_int(&tcp_reass_qsize, -1);
446 		} else {
447 			LIST_INSERT_AFTER(p, te, tqe_q);
448 		}
449 	}
450 
451 present:
452 	/*
453 	 * Present data to user, advancing rcv_nxt through
454 	 * completed sequence space.
455 	 */
456 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
457 		return (0);
458 	q = LIST_FIRST(&tp->t_segq);
459 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
460 		return (0);
461 	tp->rcv_nxt += q->tqe_len;
462 	if (!(tp->t_flags & TF_DUPSEG))	{
463 		/* no SACK block to report since ACK advanced */
464 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
465 	}
466 	/* no enclosing block to report since ACK advanced */
467 	tp->t_flags &= ~TF_ENCLOSESEG;
468 	flags = q->tqe_th->th_flags & TH_FIN;
469 	LIST_REMOVE(q, tqe_q);
470 	KASSERT(LIST_EMPTY(&tp->t_segq) ||
471 		LIST_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
472 		("segment not coalesced"));
473 	if (so->so_state & SS_CANTRCVMORE) {
474 		m_freem(q->tqe_m);
475 	} else {
476 		lwkt_gettoken(&so->so_rcv.ssb_token);
477 		ssb_appendstream(&so->so_rcv, q->tqe_m);
478 		lwkt_reltoken(&so->so_rcv.ssb_token);
479 	}
480 	kfree(q, M_TSEGQ);
481 	atomic_add_int(&tcp_reass_qsize, -1);
482 	ND6_HINT(tp);
483 	sorwakeup(so);
484 	return (flags);
485 }
486 
487 /*
488  * TCP input routine, follows pages 65-76 of the
489  * protocol specification dated September, 1981 very closely.
490  */
491 #ifdef INET6
492 int
493 tcp6_input(struct mbuf **mp, int *offp, int proto)
494 {
495 	struct mbuf *m = *mp;
496 	struct in6_ifaddr *ia6;
497 
498 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
499 
500 	/*
501 	 * draft-itojun-ipv6-tcp-to-anycast
502 	 * better place to put this in?
503 	 */
504 	ia6 = ip6_getdstifaddr(m);
505 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
506 		struct ip6_hdr *ip6;
507 
508 		ip6 = mtod(m, struct ip6_hdr *);
509 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
510 			    offsetof(struct ip6_hdr, ip6_dst));
511 		return (IPPROTO_DONE);
512 	}
513 
514 	tcp_input(m, *offp, proto);
515 	return (IPPROTO_DONE);
516 }
517 #endif
518 
519 void
520 tcp_input(struct mbuf *m, ...)
521 {
522 	__va_list ap;
523 	int off0, proto;
524 	struct tcphdr *th;
525 	struct ip *ip = NULL;
526 	struct ipovly *ipov;
527 	struct inpcb *inp = NULL;
528 	u_char *optp = NULL;
529 	int optlen = 0;
530 	int tlen, off;
531 	int len = 0;
532 	int drop_hdrlen;
533 	struct tcpcb *tp = NULL;
534 	int thflags;
535 	struct socket *so = 0;
536 	int todrop, acked;
537 	boolean_t ourfinisacked, needoutput = FALSE;
538 	u_long tiwin;
539 	int recvwin;
540 	struct tcpopt to;		/* options in this segment */
541 	struct sockaddr_in *next_hop = NULL;
542 	int rstreason; /* For badport_bandlim accounting purposes */
543 	int cpu;
544 	struct ip6_hdr *ip6 = NULL;
545 #ifdef INET6
546 	boolean_t isipv6;
547 #else
548 	const boolean_t isipv6 = FALSE;
549 #endif
550 #ifdef TCPDEBUG
551 	short ostate = 0;
552 #endif
553 
554 	__va_start(ap, m);
555 	off0 = __va_arg(ap, int);
556 	proto = __va_arg(ap, int);
557 	__va_end(ap);
558 
559 	tcpstat.tcps_rcvtotal++;
560 
561 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
562 		struct m_tag *mtag;
563 
564 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
565 		KKASSERT(mtag != NULL);
566 		next_hop = m_tag_data(mtag);
567 	}
568 
569 #ifdef INET6
570 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
571 #endif
572 
573 	if (isipv6) {
574 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
575 		ip6 = mtod(m, struct ip6_hdr *);
576 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
577 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
578 			tcpstat.tcps_rcvbadsum++;
579 			goto drop;
580 		}
581 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
582 
583 		/*
584 		 * Be proactive about unspecified IPv6 address in source.
585 		 * As we use all-zero to indicate unbounded/unconnected pcb,
586 		 * unspecified IPv6 address can be used to confuse us.
587 		 *
588 		 * Note that packets with unspecified IPv6 destination is
589 		 * already dropped in ip6_input.
590 		 */
591 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
592 			/* XXX stat */
593 			goto drop;
594 		}
595 	} else {
596 		/*
597 		 * Get IP and TCP header together in first mbuf.
598 		 * Note: IP leaves IP header in first mbuf.
599 		 */
600 		if (off0 > sizeof(struct ip)) {
601 			ip_stripoptions(m);
602 			off0 = sizeof(struct ip);
603 		}
604 		/* already checked and pulled up in ip_demux() */
605 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
606 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
607 		ip = mtod(m, struct ip *);
608 		ipov = (struct ipovly *)ip;
609 		th = (struct tcphdr *)((caddr_t)ip + off0);
610 		tlen = ip->ip_len;
611 
612 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
613 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
614 				th->th_sum = m->m_pkthdr.csum_data;
615 			else
616 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
617 						ip->ip_dst.s_addr,
618 						htonl(m->m_pkthdr.csum_data +
619 							ip->ip_len +
620 							IPPROTO_TCP));
621 			th->th_sum ^= 0xffff;
622 		} else {
623 			/*
624 			 * Checksum extended TCP header and data.
625 			 */
626 			len = sizeof(struct ip) + tlen;
627 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
628 			ipov->ih_len = (u_short)tlen;
629 			ipov->ih_len = htons(ipov->ih_len);
630 			th->th_sum = in_cksum(m, len);
631 		}
632 		if (th->th_sum) {
633 			tcpstat.tcps_rcvbadsum++;
634 			goto drop;
635 		}
636 #ifdef INET6
637 		/* Re-initialization for later version check */
638 		ip->ip_v = IPVERSION;
639 #endif
640 	}
641 
642 	/*
643 	 * Check that TCP offset makes sense,
644 	 * pull out TCP options and adjust length.		XXX
645 	 */
646 	off = th->th_off << 2;
647 	/* already checked and pulled up in ip_demux() */
648 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
649 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
650 	tlen -= off;	/* tlen is used instead of ti->ti_len */
651 	if (off > sizeof(struct tcphdr)) {
652 		if (isipv6) {
653 			IP6_EXTHDR_CHECK(m, off0, off, );
654 			ip6 = mtod(m, struct ip6_hdr *);
655 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
656 		} else {
657 			/* already pulled up in ip_demux() */
658 			KASSERT(m->m_len >= sizeof(struct ip) + off,
659 			    ("TCP header and options not in one mbuf: "
660 			     "m_len %d, off %d", m->m_len, off));
661 		}
662 		optlen = off - sizeof(struct tcphdr);
663 		optp = (u_char *)(th + 1);
664 	}
665 	thflags = th->th_flags;
666 
667 #ifdef TCP_DROP_SYNFIN
668 	/*
669 	 * If the drop_synfin option is enabled, drop all packets with
670 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
671 	 * identifying the TCP/IP stack.
672 	 *
673 	 * This is a violation of the TCP specification.
674 	 */
675 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
676 		goto drop;
677 #endif
678 
679 	/*
680 	 * Convert TCP protocol specific fields to host format.
681 	 */
682 	th->th_seq = ntohl(th->th_seq);
683 	th->th_ack = ntohl(th->th_ack);
684 	th->th_win = ntohs(th->th_win);
685 	th->th_urp = ntohs(th->th_urp);
686 
687 	/*
688 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
689 	 * until after ip6_savecontrol() is called and before other functions
690 	 * which don't want those proto headers.
691 	 * Because ip6_savecontrol() is going to parse the mbuf to
692 	 * search for data to be passed up to user-land, it wants mbuf
693 	 * parameters to be unchanged.
694 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
695 	 * latest version of the advanced API (20020110).
696 	 */
697 	drop_hdrlen = off0 + off;
698 
699 	/*
700 	 * Locate pcb for segment.
701 	 */
702 findpcb:
703 	/* IPFIREWALL_FORWARD section */
704 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
705 		/*
706 		 * Transparently forwarded. Pretend to be the destination.
707 		 * already got one like this?
708 		 */
709 		cpu = mycpu->gd_cpuid;
710 		inp = in_pcblookup_hash(&tcbinfo[cpu],
711 					ip->ip_src, th->th_sport,
712 					ip->ip_dst, th->th_dport,
713 					0, m->m_pkthdr.rcvif);
714 		if (!inp) {
715 			/*
716 			 * It's new.  Try to find the ambushing socket.
717 			 */
718 
719 			/*
720 			 * The rest of the ipfw code stores the port in
721 			 * host order.  XXX
722 			 * (The IP address is still in network order.)
723 			 */
724 			in_port_t dport = next_hop->sin_port ?
725 						htons(next_hop->sin_port) :
726 						th->th_dport;
727 
728 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
729 					  next_hop->sin_addr.s_addr, dport);
730 			inp = in_pcblookup_hash(&tcbinfo[cpu],
731 						ip->ip_src, th->th_sport,
732 						next_hop->sin_addr, dport,
733 						1, m->m_pkthdr.rcvif);
734 		}
735 	} else {
736 		if (isipv6) {
737 			inp = in6_pcblookup_hash(&tcbinfo[0],
738 						 &ip6->ip6_src, th->th_sport,
739 						 &ip6->ip6_dst, th->th_dport,
740 						 1, m->m_pkthdr.rcvif);
741 		} else {
742 			cpu = mycpu->gd_cpuid;
743 			inp = in_pcblookup_hash(&tcbinfo[cpu],
744 						ip->ip_src, th->th_sport,
745 						ip->ip_dst, th->th_dport,
746 						1, m->m_pkthdr.rcvif);
747 		}
748 	}
749 
750 	/*
751 	 * If the state is CLOSED (i.e., TCB does not exist) then
752 	 * all data in the incoming segment is discarded.
753 	 * If the TCB exists but is in CLOSED state, it is embryonic,
754 	 * but should either do a listen or a connect soon.
755 	 */
756 	if (inp == NULL) {
757 		if (log_in_vain) {
758 #ifdef INET6
759 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
760 #else
761 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
762 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
763 #endif
764 			if (isipv6) {
765 				strcpy(dbuf, "[");
766 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
767 				strcat(dbuf, "]");
768 				strcpy(sbuf, "[");
769 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
770 				strcat(sbuf, "]");
771 			} else {
772 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
773 				strcpy(sbuf, inet_ntoa(ip->ip_src));
774 			}
775 			switch (log_in_vain) {
776 			case 1:
777 				if (!(thflags & TH_SYN))
778 					break;
779 			case 2:
780 				log(LOG_INFO,
781 				    "Connection attempt to TCP %s:%d "
782 				    "from %s:%d flags:0x%02x\n",
783 				    dbuf, ntohs(th->th_dport), sbuf,
784 				    ntohs(th->th_sport), thflags);
785 				break;
786 			default:
787 				break;
788 			}
789 		}
790 		if (blackhole) {
791 			switch (blackhole) {
792 			case 1:
793 				if (thflags & TH_SYN)
794 					goto drop;
795 				break;
796 			case 2:
797 				goto drop;
798 			default:
799 				goto drop;
800 			}
801 		}
802 		rstreason = BANDLIM_RST_CLOSEDPORT;
803 		goto dropwithreset;
804 	}
805 
806 #ifdef IPSEC
807 	if (isipv6) {
808 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
809 			ipsec6stat.in_polvio++;
810 			goto drop;
811 		}
812 	} else {
813 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
814 			ipsecstat.in_polvio++;
815 			goto drop;
816 		}
817 	}
818 #endif
819 #ifdef FAST_IPSEC
820 	if (isipv6) {
821 		if (ipsec6_in_reject(m, inp))
822 			goto drop;
823 	} else {
824 		if (ipsec4_in_reject(m, inp))
825 			goto drop;
826 	}
827 #endif
828 	/* Check the minimum TTL for socket. */
829 #ifdef INET6
830 	if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
831 		goto drop;
832 #endif
833 
834 	tp = intotcpcb(inp);
835 	if (tp == NULL) {
836 		rstreason = BANDLIM_RST_CLOSEDPORT;
837 		goto dropwithreset;
838 	}
839 	if (tp->t_state <= TCPS_CLOSED)
840 		goto drop;
841 
842 	/* Unscale the window into a 32-bit value. */
843 	if (!(thflags & TH_SYN))
844 		tiwin = th->th_win << tp->snd_scale;
845 	else
846 		tiwin = th->th_win;
847 
848 	so = inp->inp_socket;
849 
850 #ifdef TCPDEBUG
851 	if (so->so_options & SO_DEBUG) {
852 		ostate = tp->t_state;
853 		if (isipv6)
854 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
855 		else
856 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
857 		tcp_savetcp = *th;
858 	}
859 #endif
860 
861 	bzero(&to, sizeof to);
862 
863 	if (so->so_options & SO_ACCEPTCONN) {
864 		struct in_conninfo inc;
865 
866 #ifdef INET6
867 		inc.inc_isipv6 = (isipv6 == TRUE);
868 #endif
869 		if (isipv6) {
870 			inc.inc6_faddr = ip6->ip6_src;
871 			inc.inc6_laddr = ip6->ip6_dst;
872 			inc.inc6_route.ro_rt = NULL;		/* XXX */
873 		} else {
874 			inc.inc_faddr = ip->ip_src;
875 			inc.inc_laddr = ip->ip_dst;
876 			inc.inc_route.ro_rt = NULL;		/* XXX */
877 		}
878 		inc.inc_fport = th->th_sport;
879 		inc.inc_lport = th->th_dport;
880 
881 		/*
882 		 * If the state is LISTEN then ignore segment if it contains
883 		 * a RST.  If the segment contains an ACK then it is bad and
884 		 * send a RST.  If it does not contain a SYN then it is not
885 		 * interesting; drop it.
886 		 *
887 		 * If the state is SYN_RECEIVED (syncache) and seg contains
888 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
889 		 * contains a RST, check the sequence number to see if it
890 		 * is a valid reset segment.
891 		 */
892 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
893 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
894 				if (!syncache_expand(&inc, th, &so, m)) {
895 					/*
896 					 * No syncache entry, or ACK was not
897 					 * for our SYN/ACK.  Send a RST.
898 					 */
899 					tcpstat.tcps_badsyn++;
900 					rstreason = BANDLIM_RST_OPENPORT;
901 					goto dropwithreset;
902 				}
903 
904 				/*
905 				 * Could not complete 3-way handshake,
906 				 * connection is being closed down, and
907 				 * syncache will free mbuf.
908 				 */
909 				if (so == NULL)
910 					return;
911 
912 				/*
913 				 * We must be in the correct protocol thread
914 				 * for this connection.
915 				 */
916 				KKASSERT(so->so_port == &curthread->td_msgport);
917 
918 				/*
919 				 * Socket is created in state SYN_RECEIVED.
920 				 * Continue processing segment.
921 				 */
922 				inp = so->so_pcb;
923 				tp = intotcpcb(inp);
924 				/*
925 				 * This is what would have happened in
926 				 * tcp_output() when the SYN,ACK was sent.
927 				 */
928 				tp->snd_up = tp->snd_una;
929 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
930 				tp->last_ack_sent = tp->rcv_nxt;
931 /*
932  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
933  * until the _second_ ACK is received:
934  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
935  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
936  *	  move to ESTAB, set snd_wnd to tiwin.
937  */
938 				tp->snd_wnd = tiwin;	/* unscaled */
939 				goto after_listen;
940 			}
941 			if (thflags & TH_RST) {
942 				syncache_chkrst(&inc, th);
943 				goto drop;
944 			}
945 			if (thflags & TH_ACK) {
946 				syncache_badack(&inc);
947 				tcpstat.tcps_badsyn++;
948 				rstreason = BANDLIM_RST_OPENPORT;
949 				goto dropwithreset;
950 			}
951 			goto drop;
952 		}
953 
954 		/*
955 		 * Segment's flags are (SYN) or (SYN | FIN).
956 		 */
957 #ifdef INET6
958 		/*
959 		 * If deprecated address is forbidden,
960 		 * we do not accept SYN to deprecated interface
961 		 * address to prevent any new inbound connection from
962 		 * getting established.
963 		 * When we do not accept SYN, we send a TCP RST,
964 		 * with deprecated source address (instead of dropping
965 		 * it).  We compromise it as it is much better for peer
966 		 * to send a RST, and RST will be the final packet
967 		 * for the exchange.
968 		 *
969 		 * If we do not forbid deprecated addresses, we accept
970 		 * the SYN packet.  RFC2462 does not suggest dropping
971 		 * SYN in this case.
972 		 * If we decipher RFC2462 5.5.4, it says like this:
973 		 * 1. use of deprecated addr with existing
974 		 *    communication is okay - "SHOULD continue to be
975 		 *    used"
976 		 * 2. use of it with new communication:
977 		 *   (2a) "SHOULD NOT be used if alternate address
978 		 *	  with sufficient scope is available"
979 		 *   (2b) nothing mentioned otherwise.
980 		 * Here we fall into (2b) case as we have no choice in
981 		 * our source address selection - we must obey the peer.
982 		 *
983 		 * The wording in RFC2462 is confusing, and there are
984 		 * multiple description text for deprecated address
985 		 * handling - worse, they are not exactly the same.
986 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
987 		 */
988 		if (isipv6 && !ip6_use_deprecated) {
989 			struct in6_ifaddr *ia6;
990 
991 			if ((ia6 = ip6_getdstifaddr(m)) &&
992 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
993 				tp = NULL;
994 				rstreason = BANDLIM_RST_OPENPORT;
995 				goto dropwithreset;
996 			}
997 		}
998 #endif
999 		/*
1000 		 * If it is from this socket, drop it, it must be forged.
1001 		 * Don't bother responding if the destination was a broadcast.
1002 		 */
1003 		if (th->th_dport == th->th_sport) {
1004 			if (isipv6) {
1005 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1006 						       &ip6->ip6_src))
1007 					goto drop;
1008 			} else {
1009 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1010 					goto drop;
1011 			}
1012 		}
1013 		/*
1014 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1015 		 *
1016 		 * Note that it is quite possible to receive unicast
1017 		 * link-layer packets with a broadcast IP address. Use
1018 		 * in_broadcast() to find them.
1019 		 */
1020 		if (m->m_flags & (M_BCAST | M_MCAST))
1021 			goto drop;
1022 		if (isipv6) {
1023 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1024 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1025 				goto drop;
1026 		} else {
1027 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1028 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1029 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1030 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1031 				goto drop;
1032 		}
1033 		/*
1034 		 * SYN appears to be valid; create compressed TCP state
1035 		 * for syncache, or perform t/tcp connection.
1036 		 */
1037 		if (so->so_qlen <= so->so_qlimit) {
1038 			tcp_dooptions(&to, optp, optlen, TRUE);
1039 			if (!syncache_add(&inc, &to, th, &so, m))
1040 				goto drop;
1041 
1042 			/*
1043 			 * Entry added to syncache, mbuf used to
1044 			 * send SYN,ACK packet.
1045 			 */
1046 			if (so == NULL)
1047 				return;
1048 
1049 			/*
1050 			 * We must be in the correct protocol thread for
1051 			 * this connection.
1052 			 */
1053 			KKASSERT(so->so_port == &curthread->td_msgport);
1054 
1055 			inp = so->so_pcb;
1056 			tp = intotcpcb(inp);
1057 			tp->snd_wnd = tiwin;
1058 			tp->t_starttime = ticks;
1059 			tp->t_state = TCPS_ESTABLISHED;
1060 
1061 			/*
1062 			 * If there is a FIN, or if there is data and the
1063 			 * connection is local, then delay SYN,ACK(SYN) in
1064 			 * the hope of piggy-backing it on a response
1065 			 * segment.  Otherwise must send ACK now in case
1066 			 * the other side is slow starting.
1067 			 */
1068 			if (DELAY_ACK(tp) &&
1069 			    ((thflags & TH_FIN) ||
1070 			     (tlen != 0 &&
1071 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
1072 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
1073 				tcp_callout_reset(tp, tp->tt_delack,
1074 				    tcp_delacktime, tcp_timer_delack);
1075 				tp->t_flags |= TF_NEEDSYN;
1076 			} else {
1077 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1078 			}
1079 
1080 			tcpstat.tcps_connects++;
1081 			soisconnected(so);
1082 			goto trimthenstep6;
1083 		}
1084 		goto drop;
1085 	}
1086 
1087 after_listen:
1088 	/*
1089 	 * Should not happen - syncache should pick up these connections.
1090 	 *
1091 	 * Once we are past handling listen sockets we must be in the
1092 	 * correct protocol processing thread.
1093 	 */
1094 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1095 	KKASSERT(so->so_port == &curthread->td_msgport);
1096 
1097 	/*
1098 	 * This is the second part of the MSS DoS prevention code (after
1099 	 * minmss on the sending side) and it deals with too many too small
1100 	 * tcp packets in a too short timeframe (1 second).
1101 	 *
1102 	 * XXX Removed.  This code was crap.  It does not scale to network
1103 	 *     speed, and default values break NFS.  Gone.
1104 	 */
1105 	/* REMOVED */
1106 
1107 	/*
1108 	 * Segment received on connection.
1109 	 *
1110 	 * Reset idle time and keep-alive timer.  Don't waste time if less
1111 	 * then a second has elapsed.  Only update t_rcvtime for non-SYN
1112 	 * packets.
1113 	 *
1114 	 * Handle the case where one side thinks the connection is established
1115 	 * but the other side has, say, rebooted without cleaning out the
1116 	 * connection.   The SYNs could be construed as an attack and wind
1117 	 * up ignored, but in case it isn't an attack we can validate the
1118 	 * connection by forcing a keepalive.
1119 	 */
1120 	if (TCPS_HAVEESTABLISHED(tp->t_state) && (ticks - tp->t_rcvtime) > hz) {
1121 		if ((thflags & (TH_SYN | TH_ACK)) == TH_SYN) {
1122 			tp->t_flags |= TF_KEEPALIVE;
1123 			tcp_callout_reset(tp, tp->tt_keep, hz / 2,
1124 					  tcp_timer_keep);
1125 		} else {
1126 			tp->t_rcvtime = ticks;
1127 			tp->t_flags &= ~TF_KEEPALIVE;
1128 			tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1129 					  tcp_timer_keep);
1130 		}
1131 	}
1132 
1133 	/*
1134 	 * Process options.
1135 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1136 	 */
1137 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0);
1138 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1139 		if (to.to_flags & TOF_SCALE) {
1140 			tp->t_flags |= TF_RCVD_SCALE;
1141 			tp->requested_s_scale = to.to_requested_s_scale;
1142 		}
1143 		if (to.to_flags & TOF_TS) {
1144 			tp->t_flags |= TF_RCVD_TSTMP;
1145 			tp->ts_recent = to.to_tsval;
1146 			tp->ts_recent_age = ticks;
1147 		}
1148 		if (to.to_flags & TOF_MSS)
1149 			tcp_mss(tp, to.to_mss);
1150 		/*
1151 		 * Only set the TF_SACK_PERMITTED per-connection flag
1152 		 * if we got a SACK_PERMITTED option from the other side
1153 		 * and the global tcp_do_sack variable is true.
1154 		 */
1155 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1156 			tp->t_flags |= TF_SACK_PERMITTED;
1157 	}
1158 
1159 	/*
1160 	 * Header prediction: check for the two common cases
1161 	 * of a uni-directional data xfer.  If the packet has
1162 	 * no control flags, is in-sequence, the window didn't
1163 	 * change and we're not retransmitting, it's a
1164 	 * candidate.  If the length is zero and the ack moved
1165 	 * forward, we're the sender side of the xfer.  Just
1166 	 * free the data acked & wake any higher level process
1167 	 * that was blocked waiting for space.  If the length
1168 	 * is non-zero and the ack didn't move, we're the
1169 	 * receiver side.  If we're getting packets in-order
1170 	 * (the reassembly queue is empty), add the data to
1171 	 * the socket buffer and note that we need a delayed ack.
1172 	 * Make sure that the hidden state-flags are also off.
1173 	 * Since we check for TCPS_ESTABLISHED above, it can only
1174 	 * be TH_NEEDSYN.
1175 	 */
1176 	if (tp->t_state == TCPS_ESTABLISHED &&
1177 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1178 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1179 	    (!(to.to_flags & TOF_TS) ||
1180 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1181 	    th->th_seq == tp->rcv_nxt &&
1182 	    tp->snd_nxt == tp->snd_max) {
1183 
1184 		/*
1185 		 * If last ACK falls within this segment's sequence numbers,
1186 		 * record the timestamp.
1187 		 * NOTE that the test is modified according to the latest
1188 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1189 		 */
1190 		if ((to.to_flags & TOF_TS) &&
1191 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1192 			tp->ts_recent_age = ticks;
1193 			tp->ts_recent = to.to_tsval;
1194 		}
1195 
1196 		if (tlen == 0) {
1197 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1198 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1199 			    tp->snd_cwnd >= tp->snd_wnd &&
1200 			    !IN_FASTRECOVERY(tp)) {
1201 				/*
1202 				 * This is a pure ack for outstanding data.
1203 				 */
1204 				++tcpstat.tcps_predack;
1205 				/*
1206 				 * "bad retransmit" recovery
1207 				 *
1208 				 * If Eifel detection applies, then
1209 				 * it is deterministic, so use it
1210 				 * unconditionally over the old heuristic.
1211 				 * Otherwise, fall back to the old heuristic.
1212 				 */
1213 				if (tcp_do_eifel_detect &&
1214 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1215 				    (tp->t_flags & TF_FIRSTACCACK)) {
1216 					/* Eifel detection applicable. */
1217 					if (to.to_tsecr < tp->t_rexmtTS) {
1218 						tcp_revert_congestion_state(tp);
1219 						++tcpstat.tcps_eifeldetected;
1220 					}
1221 				} else if (tp->t_rxtshift == 1 &&
1222 					   ticks < tp->t_badrxtwin) {
1223 					tcp_revert_congestion_state(tp);
1224 					++tcpstat.tcps_rttdetected;
1225 				}
1226 				tp->t_flags &= ~(TF_FIRSTACCACK |
1227 						 TF_FASTREXMT | TF_EARLYREXMT);
1228 				/*
1229 				 * Recalculate the retransmit timer / rtt.
1230 				 *
1231 				 * Some machines (certain windows boxes)
1232 				 * send broken timestamp replies during the
1233 				 * SYN+ACK phase, ignore timestamps of 0.
1234 				 */
1235 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1236 					tcp_xmit_timer(tp,
1237 						       ticks - to.to_tsecr + 1);
1238 				} else if (tp->t_rtttime &&
1239 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1240 					tcp_xmit_timer(tp,
1241 						       ticks - tp->t_rtttime);
1242 				}
1243 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1244 				acked = th->th_ack - tp->snd_una;
1245 				tcpstat.tcps_rcvackpack++;
1246 				tcpstat.tcps_rcvackbyte += acked;
1247 				sbdrop(&so->so_snd.sb, acked);
1248 				tp->snd_recover = th->th_ack - 1;
1249 				tp->snd_una = th->th_ack;
1250 				tp->t_dupacks = 0;
1251 				/*
1252 				 * Update window information.
1253 				 */
1254 				if (tiwin != tp->snd_wnd &&
1255 				    acceptable_window_update(tp, th, tiwin)) {
1256 					/* keep track of pure window updates */
1257 					if (tp->snd_wl2 == th->th_ack &&
1258 					    tiwin > tp->snd_wnd)
1259 						tcpstat.tcps_rcvwinupd++;
1260 					tp->snd_wnd = tiwin;
1261 					tp->snd_wl1 = th->th_seq;
1262 					tp->snd_wl2 = th->th_ack;
1263 					if (tp->snd_wnd > tp->max_sndwnd)
1264 						tp->max_sndwnd = tp->snd_wnd;
1265 				}
1266 				m_freem(m);
1267 				ND6_HINT(tp); /* some progress has been done */
1268 				/*
1269 				 * If all outstanding data are acked, stop
1270 				 * retransmit timer, otherwise restart timer
1271 				 * using current (possibly backed-off) value.
1272 				 * If process is waiting for space,
1273 				 * wakeup/selwakeup/signal.  If data
1274 				 * are ready to send, let tcp_output
1275 				 * decide between more output or persist.
1276 				 */
1277 				if (tp->snd_una == tp->snd_max) {
1278 					tcp_callout_stop(tp, tp->tt_rexmt);
1279 				} else if (!tcp_callout_active(tp,
1280 					    tp->tt_persist)) {
1281 					tcp_callout_reset(tp, tp->tt_rexmt,
1282 					    tp->t_rxtcur, tcp_timer_rexmt);
1283 				}
1284 				sowwakeup(so);
1285 				if (so->so_snd.ssb_cc > 0)
1286 					tcp_output(tp);
1287 				return;
1288 			}
1289 		} else if (tiwin == tp->snd_wnd &&
1290 		    th->th_ack == tp->snd_una &&
1291 		    LIST_EMPTY(&tp->t_segq) &&
1292 		    tlen <= ssb_space(&so->so_rcv)) {
1293 			u_long newsize = 0;	/* automatic sockbuf scaling */
1294 			/*
1295 			 * This is a pure, in-sequence data packet
1296 			 * with nothing on the reassembly queue and
1297 			 * we have enough buffer space to take it.
1298 			 */
1299 			++tcpstat.tcps_preddat;
1300 			tp->rcv_nxt += tlen;
1301 			tcpstat.tcps_rcvpack++;
1302 			tcpstat.tcps_rcvbyte += tlen;
1303 			ND6_HINT(tp);	/* some progress has been done */
1304 		/*
1305 		 * Automatic sizing of receive socket buffer.  Often the send
1306 		 * buffer size is not optimally adjusted to the actual network
1307 		 * conditions at hand (delay bandwidth product).  Setting the
1308 		 * buffer size too small limits throughput on links with high
1309 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1310 		 *
1311 		 * On the receive side the socket buffer memory is only rarely
1312 		 * used to any significant extent.  This allows us to be much
1313 		 * more aggressive in scaling the receive socket buffer.  For
1314 		 * the case that the buffer space is actually used to a large
1315 		 * extent and we run out of kernel memory we can simply drop
1316 		 * the new segments; TCP on the sender will just retransmit it
1317 		 * later.  Setting the buffer size too big may only consume too
1318 		 * much kernel memory if the application doesn't read() from
1319 		 * the socket or packet loss or reordering makes use of the
1320 		 * reassembly queue.
1321 		 *
1322 		 * The criteria to step up the receive buffer one notch are:
1323 		 *  1. the number of bytes received during the time it takes
1324 		 *     one timestamp to be reflected back to us (the RTT);
1325 		 *  2. received bytes per RTT is within seven eighth of the
1326 		 *     current socket buffer size;
1327 		 *  3. receive buffer size has not hit maximal automatic size;
1328 		 *
1329 		 * This algorithm does one step per RTT at most and only if
1330 		 * we receive a bulk stream w/o packet losses or reorderings.
1331 		 * Shrinking the buffer during idle times is not necessary as
1332 		 * it doesn't consume any memory when idle.
1333 		 *
1334 		 * TODO: Only step up if the application is actually serving
1335 		 * the buffer to better manage the socket buffer resources.
1336 		 */
1337 			if (tcp_do_autorcvbuf &&
1338 			    to.to_tsecr &&
1339 			    (so->so_rcv.ssb_flags & SSB_AUTOSIZE)) {
1340 				if (to.to_tsecr > tp->rfbuf_ts &&
1341 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1342 					if (tp->rfbuf_cnt >
1343 					    (so->so_rcv.ssb_hiwat / 8 * 7) &&
1344 					    so->so_rcv.ssb_hiwat <
1345 					    tcp_autorcvbuf_max) {
1346 						newsize =
1347 						    ulmin(so->so_rcv.ssb_hiwat +
1348 							  tcp_autorcvbuf_inc,
1349 							  tcp_autorcvbuf_max);
1350 					}
1351 					/* Start over with next RTT. */
1352 					tp->rfbuf_ts = 0;
1353 					tp->rfbuf_cnt = 0;
1354 				} else
1355 					tp->rfbuf_cnt += tlen;	/* add up */
1356 			}
1357 			/*
1358 			 * Add data to socket buffer.
1359 			 */
1360 			if (so->so_state & SS_CANTRCVMORE) {
1361 				m_freem(m);
1362 			} else {
1363 				/*
1364 				 * Set new socket buffer size, give up when
1365 				 * limit is reached.
1366 				 *
1367 				 * Adjusting the size can mess up ACK
1368 				 * sequencing when pure window updates are
1369 				 * being avoided (which is the default),
1370 				 * so force an ack.
1371 				 */
1372 				lwkt_gettoken(&so->so_rcv.ssb_token);
1373 				if (newsize) {
1374 					tp->t_flags |= TF_RXRESIZED;
1375 					if (!ssb_reserve(&so->so_rcv, newsize,
1376 							 so, NULL)) {
1377 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1378 					}
1379 					if (newsize >=
1380 					    (TCP_MAXWIN << tp->rcv_scale)) {
1381 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1382 					}
1383 				}
1384 				m_adj(m, drop_hdrlen); /* delayed header drop */
1385 				ssb_appendstream(&so->so_rcv, m);
1386 				lwkt_reltoken(&so->so_rcv.ssb_token);
1387 			}
1388 			sorwakeup(so);
1389 			/*
1390 			 * This code is responsible for most of the ACKs
1391 			 * the TCP stack sends back after receiving a data
1392 			 * packet.  Note that the DELAY_ACK check fails if
1393 			 * the delack timer is already running, which results
1394 			 * in an ack being sent every other packet (which is
1395 			 * what we want).
1396 			 *
1397 			 * We then further aggregate acks by not actually
1398 			 * sending one until the protocol thread has completed
1399 			 * processing the current backlog of packets.  This
1400 			 * does not delay the ack any further, but allows us
1401 			 * to take advantage of the packet aggregation that
1402 			 * high speed NICs do (usually blocks of 8-10 packets)
1403 			 * to send a single ack rather then four or five acks,
1404 			 * greatly reducing the ack rate, the return channel
1405 			 * bandwidth, and the protocol overhead on both ends.
1406 			 *
1407 			 * Since this also has the effect of slowing down
1408 			 * the exponential slow-start ramp-up, systems with
1409 			 * very large bandwidth-delay products might want
1410 			 * to turn the feature off.
1411 			 */
1412 			if (DELAY_ACK(tp)) {
1413 				tcp_callout_reset(tp, tp->tt_delack,
1414 				    tcp_delacktime, tcp_timer_delack);
1415 			} else if (tcp_aggregate_acks) {
1416 				tp->t_flags |= TF_ACKNOW;
1417 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1418 					tp->t_flags |= TF_ONOUTPUTQ;
1419 					tp->tt_cpu = mycpu->gd_cpuid;
1420 					TAILQ_INSERT_TAIL(
1421 					    &tcpcbackq[tp->tt_cpu],
1422 					    tp, t_outputq);
1423 				}
1424 			} else {
1425 				tp->t_flags |= TF_ACKNOW;
1426 				tcp_output(tp);
1427 			}
1428 			return;
1429 		}
1430 	}
1431 
1432 	/*
1433 	 * Calculate amount of space in receive window,
1434 	 * and then do TCP input processing.
1435 	 * Receive window is amount of space in rcv queue,
1436 	 * but not less than advertised window.
1437 	 */
1438 	recvwin = ssb_space(&so->so_rcv);
1439 	if (recvwin < 0)
1440 		recvwin = 0;
1441 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1442 
1443 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1444 	tp->rfbuf_ts = 0;
1445 	tp->rfbuf_cnt = 0;
1446 
1447 	switch (tp->t_state) {
1448 	/*
1449 	 * If the state is SYN_RECEIVED:
1450 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1451 	 */
1452 	case TCPS_SYN_RECEIVED:
1453 		if ((thflags & TH_ACK) &&
1454 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1455 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1456 				rstreason = BANDLIM_RST_OPENPORT;
1457 				goto dropwithreset;
1458 		}
1459 		break;
1460 
1461 	/*
1462 	 * If the state is SYN_SENT:
1463 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1464 	 *	if seg contains a RST, then drop the connection.
1465 	 *	if seg does not contain SYN, then drop it.
1466 	 * Otherwise this is an acceptable SYN segment
1467 	 *	initialize tp->rcv_nxt and tp->irs
1468 	 *	if seg contains ack then advance tp->snd_una
1469 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1470 	 *	arrange for segment to be acked (eventually)
1471 	 *	continue processing rest of data/controls, beginning with URG
1472 	 */
1473 	case TCPS_SYN_SENT:
1474 		if ((thflags & TH_ACK) &&
1475 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1476 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1477 			rstreason = BANDLIM_UNLIMITED;
1478 			goto dropwithreset;
1479 		}
1480 		if (thflags & TH_RST) {
1481 			if (thflags & TH_ACK)
1482 				tp = tcp_drop(tp, ECONNREFUSED);
1483 			goto drop;
1484 		}
1485 		if (!(thflags & TH_SYN))
1486 			goto drop;
1487 		tp->snd_wnd = th->th_win;	/* initial send window */
1488 
1489 		tp->irs = th->th_seq;
1490 		tcp_rcvseqinit(tp);
1491 		if (thflags & TH_ACK) {
1492 			/* Our SYN was acked. */
1493 			tcpstat.tcps_connects++;
1494 			soisconnected(so);
1495 			/* Do window scaling on this connection? */
1496 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1497 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1498 				tp->snd_scale = tp->requested_s_scale;
1499 				tp->rcv_scale = tp->request_r_scale;
1500 			}
1501 			tp->rcv_adv += tp->rcv_wnd;
1502 			tp->snd_una++;		/* SYN is acked */
1503 			tcp_callout_stop(tp, tp->tt_rexmt);
1504 			/*
1505 			 * If there's data, delay ACK; if there's also a FIN
1506 			 * ACKNOW will be turned on later.
1507 			 */
1508 			if (DELAY_ACK(tp) && tlen != 0) {
1509 				tcp_callout_reset(tp, tp->tt_delack,
1510 				    tcp_delacktime, tcp_timer_delack);
1511 			} else {
1512 				tp->t_flags |= TF_ACKNOW;
1513 			}
1514 			/*
1515 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1516 			 * Transitions:
1517 			 *	SYN_SENT  --> ESTABLISHED
1518 			 *	SYN_SENT* --> FIN_WAIT_1
1519 			 */
1520 			tp->t_starttime = ticks;
1521 			if (tp->t_flags & TF_NEEDFIN) {
1522 				tp->t_state = TCPS_FIN_WAIT_1;
1523 				tp->t_flags &= ~TF_NEEDFIN;
1524 				thflags &= ~TH_SYN;
1525 			} else {
1526 				tp->t_state = TCPS_ESTABLISHED;
1527 				tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1528 				    tcp_timer_keep);
1529 			}
1530 		} else {
1531 			/*
1532 			 * Received initial SYN in SYN-SENT[*] state =>
1533 			 * simultaneous open.
1534 			 * Do 3-way handshake:
1535 			 *	  SYN-SENT -> SYN-RECEIVED
1536 			 *	  SYN-SENT* -> SYN-RECEIVED*
1537 			 */
1538 			tp->t_flags |= TF_ACKNOW;
1539 			tcp_callout_stop(tp, tp->tt_rexmt);
1540 			tp->t_state = TCPS_SYN_RECEIVED;
1541 		}
1542 
1543 trimthenstep6:
1544 		/*
1545 		 * Advance th->th_seq to correspond to first data byte.
1546 		 * If data, trim to stay within window,
1547 		 * dropping FIN if necessary.
1548 		 */
1549 		th->th_seq++;
1550 		if (tlen > tp->rcv_wnd) {
1551 			todrop = tlen - tp->rcv_wnd;
1552 			m_adj(m, -todrop);
1553 			tlen = tp->rcv_wnd;
1554 			thflags &= ~TH_FIN;
1555 			tcpstat.tcps_rcvpackafterwin++;
1556 			tcpstat.tcps_rcvbyteafterwin += todrop;
1557 		}
1558 		tp->snd_wl1 = th->th_seq - 1;
1559 		tp->rcv_up = th->th_seq;
1560 		/*
1561 		 * Client side of transaction: already sent SYN and data.
1562 		 * If the remote host used T/TCP to validate the SYN,
1563 		 * our data will be ACK'd; if so, enter normal data segment
1564 		 * processing in the middle of step 5, ack processing.
1565 		 * Otherwise, goto step 6.
1566 		 */
1567 		if (thflags & TH_ACK)
1568 			goto process_ACK;
1569 
1570 		goto step6;
1571 
1572 	/*
1573 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1574 	 *	do normal processing (we no longer bother with T/TCP).
1575 	 */
1576 	case TCPS_LAST_ACK:
1577 	case TCPS_CLOSING:
1578 	case TCPS_TIME_WAIT:
1579 		break;  /* continue normal processing */
1580 	}
1581 
1582 	/*
1583 	 * States other than LISTEN or SYN_SENT.
1584 	 * First check the RST flag and sequence number since reset segments
1585 	 * are exempt from the timestamp and connection count tests.  This
1586 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1587 	 * below which allowed reset segments in half the sequence space
1588 	 * to fall though and be processed (which gives forged reset
1589 	 * segments with a random sequence number a 50 percent chance of
1590 	 * killing a connection).
1591 	 * Then check timestamp, if present.
1592 	 * Then check the connection count, if present.
1593 	 * Then check that at least some bytes of segment are within
1594 	 * receive window.  If segment begins before rcv_nxt,
1595 	 * drop leading data (and SYN); if nothing left, just ack.
1596 	 *
1597 	 *
1598 	 * If the RST bit is set, check the sequence number to see
1599 	 * if this is a valid reset segment.
1600 	 * RFC 793 page 37:
1601 	 *   In all states except SYN-SENT, all reset (RST) segments
1602 	 *   are validated by checking their SEQ-fields.  A reset is
1603 	 *   valid if its sequence number is in the window.
1604 	 * Note: this does not take into account delayed ACKs, so
1605 	 *   we should test against last_ack_sent instead of rcv_nxt.
1606 	 *   The sequence number in the reset segment is normally an
1607 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1608 	 *   send a reset with the sequence number at the rightmost edge
1609 	 *   of our receive window, and we have to handle this case.
1610 	 * If we have multiple segments in flight, the intial reset
1611 	 * segment sequence numbers will be to the left of last_ack_sent,
1612 	 * but they will eventually catch up.
1613 	 * In any case, it never made sense to trim reset segments to
1614 	 * fit the receive window since RFC 1122 says:
1615 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1616 	 *
1617 	 *    A TCP SHOULD allow a received RST segment to include data.
1618 	 *
1619 	 *    DISCUSSION
1620 	 *	   It has been suggested that a RST segment could contain
1621 	 *	   ASCII text that encoded and explained the cause of the
1622 	 *	   RST.  No standard has yet been established for such
1623 	 *	   data.
1624 	 *
1625 	 * If the reset segment passes the sequence number test examine
1626 	 * the state:
1627 	 *    SYN_RECEIVED STATE:
1628 	 *	If passive open, return to LISTEN state.
1629 	 *	If active open, inform user that connection was refused.
1630 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1631 	 *	Inform user that connection was reset, and close tcb.
1632 	 *    CLOSING, LAST_ACK STATES:
1633 	 *	Close the tcb.
1634 	 *    TIME_WAIT STATE:
1635 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1636 	 *	RFC 1337.
1637 	 */
1638 	if (thflags & TH_RST) {
1639 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1640 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1641 			switch (tp->t_state) {
1642 
1643 			case TCPS_SYN_RECEIVED:
1644 				so->so_error = ECONNREFUSED;
1645 				goto close;
1646 
1647 			case TCPS_ESTABLISHED:
1648 			case TCPS_FIN_WAIT_1:
1649 			case TCPS_FIN_WAIT_2:
1650 			case TCPS_CLOSE_WAIT:
1651 				so->so_error = ECONNRESET;
1652 			close:
1653 				tp->t_state = TCPS_CLOSED;
1654 				tcpstat.tcps_drops++;
1655 				tp = tcp_close(tp);
1656 				break;
1657 
1658 			case TCPS_CLOSING:
1659 			case TCPS_LAST_ACK:
1660 				tp = tcp_close(tp);
1661 				break;
1662 
1663 			case TCPS_TIME_WAIT:
1664 				break;
1665 			}
1666 		}
1667 		goto drop;
1668 	}
1669 
1670 	/*
1671 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1672 	 * and it's less than ts_recent, drop it.
1673 	 */
1674 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1675 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1676 
1677 		/* Check to see if ts_recent is over 24 days old.  */
1678 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1679 			/*
1680 			 * Invalidate ts_recent.  If this segment updates
1681 			 * ts_recent, the age will be reset later and ts_recent
1682 			 * will get a valid value.  If it does not, setting
1683 			 * ts_recent to zero will at least satisfy the
1684 			 * requirement that zero be placed in the timestamp
1685 			 * echo reply when ts_recent isn't valid.  The
1686 			 * age isn't reset until we get a valid ts_recent
1687 			 * because we don't want out-of-order segments to be
1688 			 * dropped when ts_recent is old.
1689 			 */
1690 			tp->ts_recent = 0;
1691 		} else {
1692 			tcpstat.tcps_rcvduppack++;
1693 			tcpstat.tcps_rcvdupbyte += tlen;
1694 			tcpstat.tcps_pawsdrop++;
1695 			if (tlen)
1696 				goto dropafterack;
1697 			goto drop;
1698 		}
1699 	}
1700 
1701 	/*
1702 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1703 	 * this connection before trimming the data to fit the receive
1704 	 * window.  Check the sequence number versus IRS since we know
1705 	 * the sequence numbers haven't wrapped.  This is a partial fix
1706 	 * for the "LAND" DoS attack.
1707 	 */
1708 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1709 		rstreason = BANDLIM_RST_OPENPORT;
1710 		goto dropwithreset;
1711 	}
1712 
1713 	todrop = tp->rcv_nxt - th->th_seq;
1714 	if (todrop > 0) {
1715 		if (TCP_DO_SACK(tp)) {
1716 			/* Report duplicate segment at head of packet. */
1717 			tp->reportblk.rblk_start = th->th_seq;
1718 			tp->reportblk.rblk_end = th->th_seq + tlen;
1719 			if (thflags & TH_FIN)
1720 				++tp->reportblk.rblk_end;
1721 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1722 				tp->reportblk.rblk_end = tp->rcv_nxt;
1723 			tp->t_flags |= (TF_DUPSEG | TF_SACKLEFT | TF_ACKNOW);
1724 		}
1725 		if (thflags & TH_SYN) {
1726 			thflags &= ~TH_SYN;
1727 			th->th_seq++;
1728 			if (th->th_urp > 1)
1729 				th->th_urp--;
1730 			else
1731 				thflags &= ~TH_URG;
1732 			todrop--;
1733 		}
1734 		/*
1735 		 * Following if statement from Stevens, vol. 2, p. 960.
1736 		 */
1737 		if (todrop > tlen ||
1738 		    (todrop == tlen && !(thflags & TH_FIN))) {
1739 			/*
1740 			 * Any valid FIN must be to the left of the window.
1741 			 * At this point the FIN must be a duplicate or out
1742 			 * of sequence; drop it.
1743 			 */
1744 			thflags &= ~TH_FIN;
1745 
1746 			/*
1747 			 * Send an ACK to resynchronize and drop any data.
1748 			 * But keep on processing for RST or ACK.
1749 			 */
1750 			tp->t_flags |= TF_ACKNOW;
1751 			todrop = tlen;
1752 			tcpstat.tcps_rcvduppack++;
1753 			tcpstat.tcps_rcvdupbyte += todrop;
1754 		} else {
1755 			tcpstat.tcps_rcvpartduppack++;
1756 			tcpstat.tcps_rcvpartdupbyte += todrop;
1757 		}
1758 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1759 		th->th_seq += todrop;
1760 		tlen -= todrop;
1761 		if (th->th_urp > todrop)
1762 			th->th_urp -= todrop;
1763 		else {
1764 			thflags &= ~TH_URG;
1765 			th->th_urp = 0;
1766 		}
1767 	}
1768 
1769 	/*
1770 	 * If new data are received on a connection after the
1771 	 * user processes are gone, then RST the other end.
1772 	 */
1773 	if ((so->so_state & SS_NOFDREF) &&
1774 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1775 		tp = tcp_close(tp);
1776 		tcpstat.tcps_rcvafterclose++;
1777 		rstreason = BANDLIM_UNLIMITED;
1778 		goto dropwithreset;
1779 	}
1780 
1781 	/*
1782 	 * If segment ends after window, drop trailing data
1783 	 * (and PUSH and FIN); if nothing left, just ACK.
1784 	 */
1785 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1786 	if (todrop > 0) {
1787 		tcpstat.tcps_rcvpackafterwin++;
1788 		if (todrop >= tlen) {
1789 			tcpstat.tcps_rcvbyteafterwin += tlen;
1790 			/*
1791 			 * If a new connection request is received
1792 			 * while in TIME_WAIT, drop the old connection
1793 			 * and start over if the sequence numbers
1794 			 * are above the previous ones.
1795 			 */
1796 			if (thflags & TH_SYN &&
1797 			    tp->t_state == TCPS_TIME_WAIT &&
1798 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1799 				tp = tcp_close(tp);
1800 				goto findpcb;
1801 			}
1802 			/*
1803 			 * If window is closed can only take segments at
1804 			 * window edge, and have to drop data and PUSH from
1805 			 * incoming segments.  Continue processing, but
1806 			 * remember to ack.  Otherwise, drop segment
1807 			 * and ack.
1808 			 */
1809 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1810 				tp->t_flags |= TF_ACKNOW;
1811 				tcpstat.tcps_rcvwinprobe++;
1812 			} else
1813 				goto dropafterack;
1814 		} else
1815 			tcpstat.tcps_rcvbyteafterwin += todrop;
1816 		m_adj(m, -todrop);
1817 		tlen -= todrop;
1818 		thflags &= ~(TH_PUSH | TH_FIN);
1819 	}
1820 
1821 	/*
1822 	 * If last ACK falls within this segment's sequence numbers,
1823 	 * record its timestamp.
1824 	 * NOTE:
1825 	 * 1) That the test incorporates suggestions from the latest
1826 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1827 	 * 2) That updating only on newer timestamps interferes with
1828 	 *    our earlier PAWS tests, so this check should be solely
1829 	 *    predicated on the sequence space of this segment.
1830 	 * 3) That we modify the segment boundary check to be
1831 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1832 	 *    instead of RFC1323's
1833 	 *        Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1834 	 *    This modified check allows us to overcome RFC1323's
1835 	 *    limitations as described in Stevens TCP/IP Illustrated
1836 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1837 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1838 	 */
1839 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1840 	    SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1841 					+ ((thflags & TH_SYN) != 0)
1842 					+ ((thflags & TH_FIN) != 0)))) {
1843 		tp->ts_recent_age = ticks;
1844 		tp->ts_recent = to.to_tsval;
1845 	}
1846 
1847 	/*
1848 	 * If a SYN is in the window, then this is an
1849 	 * error and we send an RST and drop the connection.
1850 	 */
1851 	if (thflags & TH_SYN) {
1852 		tp = tcp_drop(tp, ECONNRESET);
1853 		rstreason = BANDLIM_UNLIMITED;
1854 		goto dropwithreset;
1855 	}
1856 
1857 	/*
1858 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1859 	 * flag is on (half-synchronized state), then queue data for
1860 	 * later processing; else drop segment and return.
1861 	 */
1862 	if (!(thflags & TH_ACK)) {
1863 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1864 		    (tp->t_flags & TF_NEEDSYN))
1865 			goto step6;
1866 		else
1867 			goto drop;
1868 	}
1869 
1870 	/*
1871 	 * Ack processing.
1872 	 */
1873 	switch (tp->t_state) {
1874 	/*
1875 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1876 	 * ESTABLISHED state and continue processing.
1877 	 * The ACK was checked above.
1878 	 */
1879 	case TCPS_SYN_RECEIVED:
1880 
1881 		tcpstat.tcps_connects++;
1882 		soisconnected(so);
1883 		/* Do window scaling? */
1884 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1885 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1886 			tp->snd_scale = tp->requested_s_scale;
1887 			tp->rcv_scale = tp->request_r_scale;
1888 		}
1889 		/*
1890 		 * Make transitions:
1891 		 *      SYN-RECEIVED  -> ESTABLISHED
1892 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1893 		 */
1894 		tp->t_starttime = ticks;
1895 		if (tp->t_flags & TF_NEEDFIN) {
1896 			tp->t_state = TCPS_FIN_WAIT_1;
1897 			tp->t_flags &= ~TF_NEEDFIN;
1898 		} else {
1899 			tp->t_state = TCPS_ESTABLISHED;
1900 			tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1901 			    tcp_timer_keep);
1902 		}
1903 		/*
1904 		 * If segment contains data or ACK, will call tcp_reass()
1905 		 * later; if not, do so now to pass queued data to user.
1906 		 */
1907 		if (tlen == 0 && !(thflags & TH_FIN))
1908 			tcp_reass(tp, NULL, NULL, NULL);
1909 		/* fall into ... */
1910 
1911 	/*
1912 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1913 	 * ACKs.  If the ack is in the range
1914 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1915 	 * then advance tp->snd_una to th->th_ack and drop
1916 	 * data from the retransmission queue.  If this ACK reflects
1917 	 * more up to date window information we update our window information.
1918 	 */
1919 	case TCPS_ESTABLISHED:
1920 	case TCPS_FIN_WAIT_1:
1921 	case TCPS_FIN_WAIT_2:
1922 	case TCPS_CLOSE_WAIT:
1923 	case TCPS_CLOSING:
1924 	case TCPS_LAST_ACK:
1925 	case TCPS_TIME_WAIT:
1926 
1927 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1928 			if (TCP_DO_SACK(tp))
1929 				tcp_sack_update_scoreboard(tp, &to);
1930 			if (tlen != 0 || tiwin != tp->snd_wnd) {
1931 				tp->t_dupacks = 0;
1932 				break;
1933 			}
1934 			tcpstat.tcps_rcvdupack++;
1935 			if (!tcp_callout_active(tp, tp->tt_rexmt) ||
1936 			    th->th_ack != tp->snd_una) {
1937 				tp->t_dupacks = 0;
1938 				break;
1939 			}
1940 			/*
1941 			 * We have outstanding data (other than
1942 			 * a window probe), this is a completely
1943 			 * duplicate ack (ie, window info didn't
1944 			 * change), the ack is the biggest we've
1945 			 * seen and we've seen exactly our rexmt
1946 			 * threshhold of them, so assume a packet
1947 			 * has been dropped and retransmit it.
1948 			 * Kludge snd_nxt & the congestion
1949 			 * window so we send only this one
1950 			 * packet.
1951 			 */
1952 			if (IN_FASTRECOVERY(tp)) {
1953 				if (TCP_DO_SACK(tp)) {
1954 					/* No artifical cwnd inflation. */
1955 					tcp_sack_rexmt(tp, th);
1956 				} else {
1957 					/*
1958 					 * Dup acks mean that packets
1959 					 * have left the network
1960 					 * (they're now cached at the
1961 					 * receiver) so bump cwnd by
1962 					 * the amount in the receiver
1963 					 * to keep a constant cwnd
1964 					 * packets in the network.
1965 					 */
1966 					tp->snd_cwnd += tp->t_maxseg;
1967 					tcp_output(tp);
1968 				}
1969 			} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1970 				tp->t_dupacks = 0;
1971 				break;
1972 			} else if (++tp->t_dupacks == tcprexmtthresh) {
1973 				tcp_seq old_snd_nxt;
1974 				u_int win;
1975 
1976 fastretransmit:
1977 				if (tcp_do_eifel_detect &&
1978 				    (tp->t_flags & TF_RCVD_TSTMP)) {
1979 					tcp_save_congestion_state(tp);
1980 					tp->t_flags |= TF_FASTREXMT;
1981 				}
1982 				/*
1983 				 * We know we're losing at the current
1984 				 * window size, so do congestion avoidance:
1985 				 * set ssthresh to half the current window
1986 				 * and pull our congestion window back to the
1987 				 * new ssthresh.
1988 				 */
1989 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1990 				    tp->t_maxseg;
1991 				if (win < 2)
1992 					win = 2;
1993 				tp->snd_ssthresh = win * tp->t_maxseg;
1994 				ENTER_FASTRECOVERY(tp);
1995 				tp->snd_recover = tp->snd_max;
1996 				tcp_callout_stop(tp, tp->tt_rexmt);
1997 				tp->t_rtttime = 0;
1998 				old_snd_nxt = tp->snd_nxt;
1999 				tp->snd_nxt = th->th_ack;
2000 				tp->snd_cwnd = tp->t_maxseg;
2001 				tcp_output(tp);
2002 				++tcpstat.tcps_sndfastrexmit;
2003 				tp->snd_cwnd = tp->snd_ssthresh;
2004 				tp->rexmt_high = tp->snd_nxt;
2005 				if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
2006 					tp->snd_nxt = old_snd_nxt;
2007 				KASSERT(tp->snd_limited <= 2,
2008 				    ("tp->snd_limited too big"));
2009 				if (TCP_DO_SACK(tp))
2010 					tcp_sack_rexmt(tp, th);
2011 				else
2012 					tp->snd_cwnd += tp->t_maxseg *
2013 					    (tp->t_dupacks - tp->snd_limited);
2014 			} else if (tcp_do_limitedtransmit) {
2015 				u_long oldcwnd = tp->snd_cwnd;
2016 				tcp_seq oldsndmax = tp->snd_max;
2017 				tcp_seq oldsndnxt = tp->snd_nxt;
2018 				/* outstanding data */
2019 				uint32_t ownd = tp->snd_max - tp->snd_una;
2020 				u_int sent;
2021 
2022 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
2023 
2024 				KASSERT(tp->t_dupacks == 1 ||
2025 					tp->t_dupacks == 2,
2026 				    ("dupacks not 1 or 2"));
2027 				if (tp->t_dupacks == 1)
2028 					tp->snd_limited = 0;
2029 				tp->snd_nxt = tp->snd_max;
2030 				tp->snd_cwnd = ownd +
2031 				    (tp->t_dupacks - tp->snd_limited) *
2032 				    tp->t_maxseg;
2033 				tcp_output(tp);
2034 
2035 				/*
2036 				 * Other acks may have been processed,
2037 				 * snd_nxt cannot be reset to a value less
2038 				 * then snd_una.
2039 				 */
2040 				if (SEQ_LT(oldsndnxt, oldsndmax)) {
2041 				    if (SEQ_GT(oldsndnxt, tp->snd_una))
2042 					tp->snd_nxt = oldsndnxt;
2043 				    else
2044 					tp->snd_nxt = tp->snd_una;
2045 				}
2046 				tp->snd_cwnd = oldcwnd;
2047 				sent = tp->snd_max - oldsndmax;
2048 				if (sent > tp->t_maxseg) {
2049 					KASSERT((tp->t_dupacks == 2 &&
2050 						 tp->snd_limited == 0) ||
2051 						(sent == tp->t_maxseg + 1 &&
2052 						 tp->t_flags & TF_SENTFIN),
2053 					    ("sent too much"));
2054 					KASSERT(sent <= tp->t_maxseg * 2,
2055 					    ("sent too many segments"));
2056 					tp->snd_limited = 2;
2057 					tcpstat.tcps_sndlimited += 2;
2058 				} else if (sent > 0) {
2059 					++tp->snd_limited;
2060 					++tcpstat.tcps_sndlimited;
2061 				} else if (tcp_do_early_retransmit &&
2062 				    (tcp_do_eifel_detect &&
2063 				     (tp->t_flags & TF_RCVD_TSTMP)) &&
2064 				    ownd < 4 * tp->t_maxseg &&
2065 				    tp->t_dupacks + 1 >=
2066 				      iceildiv(ownd, tp->t_maxseg) &&
2067 				    (!TCP_DO_SACK(tp) ||
2068 				     ownd <= tp->t_maxseg ||
2069 				     tcp_sack_has_sacked(&tp->scb,
2070 							ownd - tp->t_maxseg))) {
2071 					++tcpstat.tcps_sndearlyrexmit;
2072 					tp->t_flags |= TF_EARLYREXMT;
2073 					goto fastretransmit;
2074 				}
2075 			}
2076 			goto drop;
2077 		}
2078 
2079 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2080 		tp->t_dupacks = 0;
2081 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2082 			/*
2083 			 * Detected optimistic ACK attack.
2084 			 * Force slow-start to de-synchronize attack.
2085 			 */
2086 			tp->snd_cwnd = tp->t_maxseg;
2087 			tp->snd_wacked = 0;
2088 
2089 			tcpstat.tcps_rcvacktoomuch++;
2090 			goto dropafterack;
2091 		}
2092 		/*
2093 		 * If we reach this point, ACK is not a duplicate,
2094 		 *     i.e., it ACKs something we sent.
2095 		 */
2096 		if (tp->t_flags & TF_NEEDSYN) {
2097 			/*
2098 			 * T/TCP: Connection was half-synchronized, and our
2099 			 * SYN has been ACK'd (so connection is now fully
2100 			 * synchronized).  Go to non-starred state,
2101 			 * increment snd_una for ACK of SYN, and check if
2102 			 * we can do window scaling.
2103 			 */
2104 			tp->t_flags &= ~TF_NEEDSYN;
2105 			tp->snd_una++;
2106 			/* Do window scaling? */
2107 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2108 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
2109 				tp->snd_scale = tp->requested_s_scale;
2110 				tp->rcv_scale = tp->request_r_scale;
2111 			}
2112 		}
2113 
2114 process_ACK:
2115 		acked = th->th_ack - tp->snd_una;
2116 		tcpstat.tcps_rcvackpack++;
2117 		tcpstat.tcps_rcvackbyte += acked;
2118 
2119 		if (tcp_do_eifel_detect && acked > 0 &&
2120 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2121 		    (tp->t_flags & TF_FIRSTACCACK)) {
2122 			/* Eifel detection applicable. */
2123 			if (to.to_tsecr < tp->t_rexmtTS) {
2124 				++tcpstat.tcps_eifeldetected;
2125 				tcp_revert_congestion_state(tp);
2126 				if (tp->t_rxtshift == 1 &&
2127 				    ticks >= tp->t_badrxtwin)
2128 					++tcpstat.tcps_rttcantdetect;
2129 			}
2130 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2131 			/*
2132 			 * If we just performed our first retransmit,
2133 			 * and the ACK arrives within our recovery window,
2134 			 * then it was a mistake to do the retransmit
2135 			 * in the first place.  Recover our original cwnd
2136 			 * and ssthresh, and proceed to transmit where we
2137 			 * left off.
2138 			 */
2139 			tcp_revert_congestion_state(tp);
2140 			++tcpstat.tcps_rttdetected;
2141 		}
2142 
2143 		/*
2144 		 * If we have a timestamp reply, update smoothed
2145 		 * round trip time.  If no timestamp is present but
2146 		 * transmit timer is running and timed sequence
2147 		 * number was acked, update smoothed round trip time.
2148 		 * Since we now have an rtt measurement, cancel the
2149 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2150 		 * Recompute the initial retransmit timer.
2151 		 *
2152 		 * Some machines (certain windows boxes) send broken
2153 		 * timestamp replies during the SYN+ACK phase, ignore
2154 		 * timestamps of 0.
2155 		 */
2156 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2157 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2158 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2159 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2160 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2161 
2162 		/*
2163 		 * If no data (only SYN) was ACK'd,
2164 		 *    skip rest of ACK processing.
2165 		 */
2166 		if (acked == 0)
2167 			goto step6;
2168 
2169 		/* Stop looking for an acceptable ACK since one was received. */
2170 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
2171 
2172 		if (acked > so->so_snd.ssb_cc) {
2173 			tp->snd_wnd -= so->so_snd.ssb_cc;
2174 			sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2175 			ourfinisacked = TRUE;
2176 		} else {
2177 			sbdrop(&so->so_snd.sb, acked);
2178 			tp->snd_wnd -= acked;
2179 			ourfinisacked = FALSE;
2180 		}
2181 		sowwakeup(so);
2182 
2183 		/*
2184 		 * Update window information.
2185 		 * Don't look at window if no ACK:
2186 		 * TAC's send garbage on first SYN.
2187 		 */
2188 		if (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2189 		    (tp->snd_wl1 == th->th_seq &&
2190 		     (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2191 		      (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)))) {
2192 			/* keep track of pure window updates */
2193 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2194 			    tiwin > tp->snd_wnd)
2195 				tcpstat.tcps_rcvwinupd++;
2196 			tp->snd_wnd = tiwin;
2197 			tp->snd_wl1 = th->th_seq;
2198 			tp->snd_wl2 = th->th_ack;
2199 			if (tp->snd_wnd > tp->max_sndwnd)
2200 				tp->max_sndwnd = tp->snd_wnd;
2201 			needoutput = TRUE;
2202 		}
2203 
2204 		tp->snd_una = th->th_ack;
2205 		if (TCP_DO_SACK(tp))
2206 			tcp_sack_update_scoreboard(tp, &to);
2207 		if (IN_FASTRECOVERY(tp)) {
2208 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2209 				EXIT_FASTRECOVERY(tp);
2210 				needoutput = TRUE;
2211 				/*
2212 				 * If the congestion window was inflated
2213 				 * to account for the other side's
2214 				 * cached packets, retract it.
2215 				 */
2216 				if (!TCP_DO_SACK(tp))
2217 					tp->snd_cwnd = tp->snd_ssthresh;
2218 
2219 				/*
2220 				 * Window inflation should have left us
2221 				 * with approximately snd_ssthresh outstanding
2222 				 * data.  But, in case we would be inclined
2223 				 * to send a burst, better do it using
2224 				 * slow start.
2225 				 */
2226 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2227 					   tp->snd_max + 2 * tp->t_maxseg))
2228 					tp->snd_cwnd =
2229 					    (tp->snd_max - tp->snd_una) +
2230 					    2 * tp->t_maxseg;
2231 
2232 				tp->snd_wacked = 0;
2233 			} else {
2234 				if (TCP_DO_SACK(tp)) {
2235 					tp->snd_max_rexmt = tp->snd_max;
2236 					tcp_sack_rexmt(tp, th);
2237 				} else {
2238 					tcp_newreno_partial_ack(tp, th, acked);
2239 				}
2240 				needoutput = FALSE;
2241 			}
2242 		} else {
2243 			/*
2244 			 * Open the congestion window.  When in slow-start,
2245 			 * open exponentially: maxseg per packet.  Otherwise,
2246 			 * open linearly: maxseg per window.
2247 			 */
2248 			if (tp->snd_cwnd <= tp->snd_ssthresh) {
2249 				u_int abc_sslimit =
2250 				    (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2251 				     tp->t_maxseg : 2 * tp->t_maxseg);
2252 
2253 				/* slow-start */
2254 				tp->snd_cwnd += tcp_do_abc ?
2255 				    min(acked, abc_sslimit) : tp->t_maxseg;
2256 			} else {
2257 				/* linear increase */
2258 				tp->snd_wacked += tcp_do_abc ? acked :
2259 				    tp->t_maxseg;
2260 				if (tp->snd_wacked >= tp->snd_cwnd) {
2261 					tp->snd_wacked -= tp->snd_cwnd;
2262 					tp->snd_cwnd += tp->t_maxseg;
2263 				}
2264 			}
2265 			tp->snd_cwnd = min(tp->snd_cwnd,
2266 					   TCP_MAXWIN << tp->snd_scale);
2267 			tp->snd_recover = th->th_ack - 1;
2268 		}
2269 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2270 			tp->snd_nxt = tp->snd_una;
2271 
2272 		/*
2273 		 * If all outstanding data is acked, stop retransmit
2274 		 * timer and remember to restart (more output or persist).
2275 		 * If there is more data to be acked, restart retransmit
2276 		 * timer, using current (possibly backed-off) value.
2277 		 */
2278 		if (th->th_ack == tp->snd_max) {
2279 			tcp_callout_stop(tp, tp->tt_rexmt);
2280 			needoutput = TRUE;
2281 		} else if (!tcp_callout_active(tp, tp->tt_persist)) {
2282 			tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur,
2283 			    tcp_timer_rexmt);
2284 		}
2285 
2286 		switch (tp->t_state) {
2287 		/*
2288 		 * In FIN_WAIT_1 STATE in addition to the processing
2289 		 * for the ESTABLISHED state if our FIN is now acknowledged
2290 		 * then enter FIN_WAIT_2.
2291 		 */
2292 		case TCPS_FIN_WAIT_1:
2293 			if (ourfinisacked) {
2294 				/*
2295 				 * If we can't receive any more
2296 				 * data, then closing user can proceed.
2297 				 * Starting the timer is contrary to the
2298 				 * specification, but if we don't get a FIN
2299 				 * we'll hang forever.
2300 				 */
2301 				if (so->so_state & SS_CANTRCVMORE) {
2302 					soisdisconnected(so);
2303 					tcp_callout_reset(tp, tp->tt_2msl,
2304 					    tcp_maxidle, tcp_timer_2msl);
2305 				}
2306 				tp->t_state = TCPS_FIN_WAIT_2;
2307 			}
2308 			break;
2309 
2310 		/*
2311 		 * In CLOSING STATE in addition to the processing for
2312 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2313 		 * then enter the TIME-WAIT state, otherwise ignore
2314 		 * the segment.
2315 		 */
2316 		case TCPS_CLOSING:
2317 			if (ourfinisacked) {
2318 				tp->t_state = TCPS_TIME_WAIT;
2319 				tcp_canceltimers(tp);
2320 				tcp_callout_reset(tp, tp->tt_2msl,
2321 					    2 * tcp_msl, tcp_timer_2msl);
2322 				soisdisconnected(so);
2323 			}
2324 			break;
2325 
2326 		/*
2327 		 * In LAST_ACK, we may still be waiting for data to drain
2328 		 * and/or to be acked, as well as for the ack of our FIN.
2329 		 * If our FIN is now acknowledged, delete the TCB,
2330 		 * enter the closed state and return.
2331 		 */
2332 		case TCPS_LAST_ACK:
2333 			if (ourfinisacked) {
2334 				tp = tcp_close(tp);
2335 				goto drop;
2336 			}
2337 			break;
2338 
2339 		/*
2340 		 * In TIME_WAIT state the only thing that should arrive
2341 		 * is a retransmission of the remote FIN.  Acknowledge
2342 		 * it and restart the finack timer.
2343 		 */
2344 		case TCPS_TIME_WAIT:
2345 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2346 			    tcp_timer_2msl);
2347 			goto dropafterack;
2348 		}
2349 	}
2350 
2351 step6:
2352 	/*
2353 	 * Update window information.
2354 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2355 	 */
2356 	if ((thflags & TH_ACK) &&
2357 	    acceptable_window_update(tp, th, tiwin)) {
2358 		/* keep track of pure window updates */
2359 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2360 		    tiwin > tp->snd_wnd)
2361 			tcpstat.tcps_rcvwinupd++;
2362 		tp->snd_wnd = tiwin;
2363 		tp->snd_wl1 = th->th_seq;
2364 		tp->snd_wl2 = th->th_ack;
2365 		if (tp->snd_wnd > tp->max_sndwnd)
2366 			tp->max_sndwnd = tp->snd_wnd;
2367 		needoutput = TRUE;
2368 	}
2369 
2370 	/*
2371 	 * Process segments with URG.
2372 	 */
2373 	if ((thflags & TH_URG) && th->th_urp &&
2374 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2375 		/*
2376 		 * This is a kludge, but if we receive and accept
2377 		 * random urgent pointers, we'll crash in
2378 		 * soreceive.  It's hard to imagine someone
2379 		 * actually wanting to send this much urgent data.
2380 		 */
2381 		if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2382 			th->th_urp = 0;			/* XXX */
2383 			thflags &= ~TH_URG;		/* XXX */
2384 			goto dodata;			/* XXX */
2385 		}
2386 		/*
2387 		 * If this segment advances the known urgent pointer,
2388 		 * then mark the data stream.  This should not happen
2389 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2390 		 * a FIN has been received from the remote side.
2391 		 * In these states we ignore the URG.
2392 		 *
2393 		 * According to RFC961 (Assigned Protocols),
2394 		 * the urgent pointer points to the last octet
2395 		 * of urgent data.  We continue, however,
2396 		 * to consider it to indicate the first octet
2397 		 * of data past the urgent section as the original
2398 		 * spec states (in one of two places).
2399 		 */
2400 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2401 			tp->rcv_up = th->th_seq + th->th_urp;
2402 			so->so_oobmark = so->so_rcv.ssb_cc +
2403 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2404 			if (so->so_oobmark == 0)
2405 				sosetstate(so, SS_RCVATMARK);
2406 			sohasoutofband(so);
2407 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2408 		}
2409 		/*
2410 		 * Remove out of band data so doesn't get presented to user.
2411 		 * This can happen independent of advancing the URG pointer,
2412 		 * but if two URG's are pending at once, some out-of-band
2413 		 * data may creep in... ick.
2414 		 */
2415 		if (th->th_urp <= (u_long)tlen &&
2416 		    !(so->so_options & SO_OOBINLINE)) {
2417 			/* hdr drop is delayed */
2418 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2419 		}
2420 	} else {
2421 		/*
2422 		 * If no out of band data is expected,
2423 		 * pull receive urgent pointer along
2424 		 * with the receive window.
2425 		 */
2426 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2427 			tp->rcv_up = tp->rcv_nxt;
2428 	}
2429 
2430 dodata:							/* XXX */
2431 	/*
2432 	 * Process the segment text, merging it into the TCP sequencing queue,
2433 	 * and arranging for acknowledgment of receipt if necessary.
2434 	 * This process logically involves adjusting tp->rcv_wnd as data
2435 	 * is presented to the user (this happens in tcp_usrreq.c,
2436 	 * case PRU_RCVD).  If a FIN has already been received on this
2437 	 * connection then we just ignore the text.
2438 	 */
2439 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2440 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2441 		/*
2442 		 * Insert segment which includes th into TCP reassembly queue
2443 		 * with control block tp.  Set thflags to whether reassembly now
2444 		 * includes a segment with FIN.  This handles the common case
2445 		 * inline (segment is the next to be received on an established
2446 		 * connection, and the queue is empty), avoiding linkage into
2447 		 * and removal from the queue and repetition of various
2448 		 * conversions.
2449 		 * Set DELACK for segments received in order, but ack
2450 		 * immediately when segments are out of order (so
2451 		 * fast retransmit can work).
2452 		 */
2453 		if (th->th_seq == tp->rcv_nxt &&
2454 		    LIST_EMPTY(&tp->t_segq) &&
2455 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2456 			if (DELAY_ACK(tp)) {
2457 				tcp_callout_reset(tp, tp->tt_delack,
2458 				    tcp_delacktime, tcp_timer_delack);
2459 			} else {
2460 				tp->t_flags |= TF_ACKNOW;
2461 			}
2462 			tp->rcv_nxt += tlen;
2463 			thflags = th->th_flags & TH_FIN;
2464 			tcpstat.tcps_rcvpack++;
2465 			tcpstat.tcps_rcvbyte += tlen;
2466 			ND6_HINT(tp);
2467 			if (so->so_state & SS_CANTRCVMORE) {
2468 				m_freem(m);
2469 			} else {
2470 				lwkt_gettoken(&so->so_rcv.ssb_token);
2471 				ssb_appendstream(&so->so_rcv, m);
2472 				lwkt_reltoken(&so->so_rcv.ssb_token);
2473 			}
2474 			sorwakeup(so);
2475 		} else {
2476 			if (!(tp->t_flags & TF_DUPSEG)) {
2477 				/* Initialize SACK report block. */
2478 				tp->reportblk.rblk_start = th->th_seq;
2479 				tp->reportblk.rblk_end = th->th_seq + tlen +
2480 				    ((thflags & TH_FIN) != 0);
2481 			}
2482 			thflags = tcp_reass(tp, th, &tlen, m);
2483 			tp->t_flags |= TF_ACKNOW;
2484 		}
2485 
2486 		/*
2487 		 * Note the amount of data that peer has sent into
2488 		 * our window, in order to estimate the sender's
2489 		 * buffer size.
2490 		 */
2491 		len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2492 	} else {
2493 		m_freem(m);
2494 		thflags &= ~TH_FIN;
2495 	}
2496 
2497 	/*
2498 	 * If FIN is received ACK the FIN and let the user know
2499 	 * that the connection is closing.
2500 	 */
2501 	if (thflags & TH_FIN) {
2502 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2503 			socantrcvmore(so);
2504 			/*
2505 			 * If connection is half-synchronized
2506 			 * (ie NEEDSYN flag on) then delay ACK,
2507 			 * so it may be piggybacked when SYN is sent.
2508 			 * Otherwise, since we received a FIN then no
2509 			 * more input can be expected, send ACK now.
2510 			 */
2511 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2512 				tcp_callout_reset(tp, tp->tt_delack,
2513 				    tcp_delacktime, tcp_timer_delack);
2514 			} else {
2515 				tp->t_flags |= TF_ACKNOW;
2516 			}
2517 			tp->rcv_nxt++;
2518 		}
2519 
2520 		switch (tp->t_state) {
2521 		/*
2522 		 * In SYN_RECEIVED and ESTABLISHED STATES
2523 		 * enter the CLOSE_WAIT state.
2524 		 */
2525 		case TCPS_SYN_RECEIVED:
2526 			tp->t_starttime = ticks;
2527 			/*FALLTHROUGH*/
2528 		case TCPS_ESTABLISHED:
2529 			tp->t_state = TCPS_CLOSE_WAIT;
2530 			break;
2531 
2532 		/*
2533 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2534 		 * enter the CLOSING state.
2535 		 */
2536 		case TCPS_FIN_WAIT_1:
2537 			tp->t_state = TCPS_CLOSING;
2538 			break;
2539 
2540 		/*
2541 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2542 		 * starting the time-wait timer, turning off the other
2543 		 * standard timers.
2544 		 */
2545 		case TCPS_FIN_WAIT_2:
2546 			tp->t_state = TCPS_TIME_WAIT;
2547 			tcp_canceltimers(tp);
2548 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2549 				    tcp_timer_2msl);
2550 			soisdisconnected(so);
2551 			break;
2552 
2553 		/*
2554 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2555 		 */
2556 		case TCPS_TIME_WAIT:
2557 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2558 			    tcp_timer_2msl);
2559 			break;
2560 		}
2561 	}
2562 
2563 #ifdef TCPDEBUG
2564 	if (so->so_options & SO_DEBUG)
2565 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2566 #endif
2567 
2568 	/*
2569 	 * Return any desired output.
2570 	 */
2571 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2572 		tcp_output(tp);
2573 	return;
2574 
2575 dropafterack:
2576 	/*
2577 	 * Generate an ACK dropping incoming segment if it occupies
2578 	 * sequence space, where the ACK reflects our state.
2579 	 *
2580 	 * We can now skip the test for the RST flag since all
2581 	 * paths to this code happen after packets containing
2582 	 * RST have been dropped.
2583 	 *
2584 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2585 	 * segment we received passes the SYN-RECEIVED ACK test.
2586 	 * If it fails send a RST.  This breaks the loop in the
2587 	 * "LAND" DoS attack, and also prevents an ACK storm
2588 	 * between two listening ports that have been sent forged
2589 	 * SYN segments, each with the source address of the other.
2590 	 */
2591 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2592 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2593 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2594 		rstreason = BANDLIM_RST_OPENPORT;
2595 		goto dropwithreset;
2596 	}
2597 #ifdef TCPDEBUG
2598 	if (so->so_options & SO_DEBUG)
2599 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2600 #endif
2601 	m_freem(m);
2602 	tp->t_flags |= TF_ACKNOW;
2603 	tcp_output(tp);
2604 	return;
2605 
2606 dropwithreset:
2607 	/*
2608 	 * Generate a RST, dropping incoming segment.
2609 	 * Make ACK acceptable to originator of segment.
2610 	 * Don't bother to respond if destination was broadcast/multicast.
2611 	 */
2612 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2613 		goto drop;
2614 	if (isipv6) {
2615 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2616 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2617 			goto drop;
2618 	} else {
2619 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2620 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2621 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2622 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2623 			goto drop;
2624 	}
2625 	/* IPv6 anycast check is done at tcp6_input() */
2626 
2627 	/*
2628 	 * Perform bandwidth limiting.
2629 	 */
2630 #ifdef ICMP_BANDLIM
2631 	if (badport_bandlim(rstreason) < 0)
2632 		goto drop;
2633 #endif
2634 
2635 #ifdef TCPDEBUG
2636 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2637 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2638 #endif
2639 	if (thflags & TH_ACK)
2640 		/* mtod() below is safe as long as hdr dropping is delayed */
2641 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2642 			    TH_RST);
2643 	else {
2644 		if (thflags & TH_SYN)
2645 			tlen++;
2646 		/* mtod() below is safe as long as hdr dropping is delayed */
2647 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2648 			    (tcp_seq)0, TH_RST | TH_ACK);
2649 	}
2650 	return;
2651 
2652 drop:
2653 	/*
2654 	 * Drop space held by incoming segment and return.
2655 	 */
2656 #ifdef TCPDEBUG
2657 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2658 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2659 #endif
2660 	m_freem(m);
2661 	return;
2662 }
2663 
2664 /*
2665  * Parse TCP options and place in tcpopt.
2666  */
2667 static void
2668 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn)
2669 {
2670 	int opt, optlen, i;
2671 
2672 	to->to_flags = 0;
2673 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2674 		opt = cp[0];
2675 		if (opt == TCPOPT_EOL)
2676 			break;
2677 		if (opt == TCPOPT_NOP)
2678 			optlen = 1;
2679 		else {
2680 			if (cnt < 2)
2681 				break;
2682 			optlen = cp[1];
2683 			if (optlen < 2 || optlen > cnt)
2684 				break;
2685 		}
2686 		switch (opt) {
2687 		case TCPOPT_MAXSEG:
2688 			if (optlen != TCPOLEN_MAXSEG)
2689 				continue;
2690 			if (!is_syn)
2691 				continue;
2692 			to->to_flags |= TOF_MSS;
2693 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2694 			to->to_mss = ntohs(to->to_mss);
2695 			break;
2696 		case TCPOPT_WINDOW:
2697 			if (optlen != TCPOLEN_WINDOW)
2698 				continue;
2699 			if (!is_syn)
2700 				continue;
2701 			to->to_flags |= TOF_SCALE;
2702 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2703 			break;
2704 		case TCPOPT_TIMESTAMP:
2705 			if (optlen != TCPOLEN_TIMESTAMP)
2706 				continue;
2707 			to->to_flags |= TOF_TS;
2708 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2709 			to->to_tsval = ntohl(to->to_tsval);
2710 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2711 			to->to_tsecr = ntohl(to->to_tsecr);
2712 			/*
2713 			 * If echoed timestamp is later than the current time,
2714 			 * fall back to non RFC1323 RTT calculation.
2715 			 */
2716 			if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2717 				to->to_tsecr = 0;
2718 			break;
2719 		case TCPOPT_SACK_PERMITTED:
2720 			if (optlen != TCPOLEN_SACK_PERMITTED)
2721 				continue;
2722 			if (!is_syn)
2723 				continue;
2724 			to->to_flags |= TOF_SACK_PERMITTED;
2725 			break;
2726 		case TCPOPT_SACK:
2727 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2728 				continue;
2729 			to->to_nsackblocks = (optlen - 2) / 8;
2730 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2731 			to->to_flags |= TOF_SACK;
2732 			for (i = 0; i < to->to_nsackblocks; i++) {
2733 				struct raw_sackblock *r = &to->to_sackblocks[i];
2734 
2735 				r->rblk_start = ntohl(r->rblk_start);
2736 				r->rblk_end = ntohl(r->rblk_end);
2737 			}
2738 			break;
2739 #ifdef TCP_SIGNATURE
2740 		/*
2741 		 * XXX In order to reply to a host which has set the
2742 		 * TCP_SIGNATURE option in its initial SYN, we have to
2743 		 * record the fact that the option was observed here
2744 		 * for the syncache code to perform the correct response.
2745 		 */
2746 		case TCPOPT_SIGNATURE:
2747 			if (optlen != TCPOLEN_SIGNATURE)
2748 				continue;
2749 			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2750 			break;
2751 #endif /* TCP_SIGNATURE */
2752 		default:
2753 			continue;
2754 		}
2755 	}
2756 }
2757 
2758 /*
2759  * Pull out of band byte out of a segment so
2760  * it doesn't appear in the user's data queue.
2761  * It is still reflected in the segment length for
2762  * sequencing purposes.
2763  * "off" is the delayed to be dropped hdrlen.
2764  */
2765 static void
2766 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2767 {
2768 	int cnt = off + th->th_urp - 1;
2769 
2770 	while (cnt >= 0) {
2771 		if (m->m_len > cnt) {
2772 			char *cp = mtod(m, caddr_t) + cnt;
2773 			struct tcpcb *tp = sototcpcb(so);
2774 
2775 			tp->t_iobc = *cp;
2776 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2777 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2778 			m->m_len--;
2779 			if (m->m_flags & M_PKTHDR)
2780 				m->m_pkthdr.len--;
2781 			return;
2782 		}
2783 		cnt -= m->m_len;
2784 		m = m->m_next;
2785 		if (m == 0)
2786 			break;
2787 	}
2788 	panic("tcp_pulloutofband");
2789 }
2790 
2791 /*
2792  * Collect new round-trip time estimate
2793  * and update averages and current timeout.
2794  */
2795 static void
2796 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2797 {
2798 	int delta;
2799 
2800 	tcpstat.tcps_rttupdated++;
2801 	tp->t_rttupdated++;
2802 	if (tp->t_srtt != 0) {
2803 		/*
2804 		 * srtt is stored as fixed point with 5 bits after the
2805 		 * binary point (i.e., scaled by 8).  The following magic
2806 		 * is equivalent to the smoothing algorithm in rfc793 with
2807 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2808 		 * point).  Adjust rtt to origin 0.
2809 		 */
2810 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2811 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2812 
2813 		if ((tp->t_srtt += delta) <= 0)
2814 			tp->t_srtt = 1;
2815 
2816 		/*
2817 		 * We accumulate a smoothed rtt variance (actually, a
2818 		 * smoothed mean difference), then set the retransmit
2819 		 * timer to smoothed rtt + 4 times the smoothed variance.
2820 		 * rttvar is stored as fixed point with 4 bits after the
2821 		 * binary point (scaled by 16).  The following is
2822 		 * equivalent to rfc793 smoothing with an alpha of .75
2823 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2824 		 * rfc793's wired-in beta.
2825 		 */
2826 		if (delta < 0)
2827 			delta = -delta;
2828 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2829 		if ((tp->t_rttvar += delta) <= 0)
2830 			tp->t_rttvar = 1;
2831 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2832 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2833 	} else {
2834 		/*
2835 		 * No rtt measurement yet - use the unsmoothed rtt.
2836 		 * Set the variance to half the rtt (so our first
2837 		 * retransmit happens at 3*rtt).
2838 		 */
2839 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2840 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2841 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2842 	}
2843 	tp->t_rtttime = 0;
2844 	tp->t_rxtshift = 0;
2845 
2846 	/*
2847 	 * the retransmit should happen at rtt + 4 * rttvar.
2848 	 * Because of the way we do the smoothing, srtt and rttvar
2849 	 * will each average +1/2 tick of bias.  When we compute
2850 	 * the retransmit timer, we want 1/2 tick of rounding and
2851 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2852 	 * firing of the timer.  The bias will give us exactly the
2853 	 * 1.5 tick we need.  But, because the bias is
2854 	 * statistical, we have to test that we don't drop below
2855 	 * the minimum feasible timer (which is 2 ticks).
2856 	 */
2857 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2858 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2859 
2860 	/*
2861 	 * We received an ack for a packet that wasn't retransmitted;
2862 	 * it is probably safe to discard any error indications we've
2863 	 * received recently.  This isn't quite right, but close enough
2864 	 * for now (a route might have failed after we sent a segment,
2865 	 * and the return path might not be symmetrical).
2866 	 */
2867 	tp->t_softerror = 0;
2868 }
2869 
2870 /*
2871  * Determine a reasonable value for maxseg size.
2872  * If the route is known, check route for mtu.
2873  * If none, use an mss that can be handled on the outgoing
2874  * interface without forcing IP to fragment; if bigger than
2875  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2876  * to utilize large mbufs.  If no route is found, route has no mtu,
2877  * or the destination isn't local, use a default, hopefully conservative
2878  * size (usually 512 or the default IP max size, but no more than the mtu
2879  * of the interface), as we can't discover anything about intervening
2880  * gateways or networks.  We also initialize the congestion/slow start
2881  * window to be a single segment if the destination isn't local.
2882  * While looking at the routing entry, we also initialize other path-dependent
2883  * parameters from pre-set or cached values in the routing entry.
2884  *
2885  * Also take into account the space needed for options that we
2886  * send regularly.  Make maxseg shorter by that amount to assure
2887  * that we can send maxseg amount of data even when the options
2888  * are present.  Store the upper limit of the length of options plus
2889  * data in maxopd.
2890  *
2891  * NOTE that this routine is only called when we process an incoming
2892  * segment, for outgoing segments only tcp_mssopt is called.
2893  */
2894 void
2895 tcp_mss(struct tcpcb *tp, int offer)
2896 {
2897 	struct rtentry *rt;
2898 	struct ifnet *ifp;
2899 	int rtt, mss;
2900 	u_long bufsize;
2901 	struct inpcb *inp = tp->t_inpcb;
2902 	struct socket *so;
2903 #ifdef INET6
2904 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2905 	size_t min_protoh = isipv6 ?
2906 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2907 			    sizeof(struct tcpiphdr);
2908 #else
2909 	const boolean_t isipv6 = FALSE;
2910 	const size_t min_protoh = sizeof(struct tcpiphdr);
2911 #endif
2912 
2913 	if (isipv6)
2914 		rt = tcp_rtlookup6(&inp->inp_inc);
2915 	else
2916 		rt = tcp_rtlookup(&inp->inp_inc);
2917 	if (rt == NULL) {
2918 		tp->t_maxopd = tp->t_maxseg =
2919 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2920 		return;
2921 	}
2922 	ifp = rt->rt_ifp;
2923 	so = inp->inp_socket;
2924 
2925 	/*
2926 	 * Offer == 0 means that there was no MSS on the SYN segment,
2927 	 * in this case we use either the interface mtu or tcp_mssdflt.
2928 	 *
2929 	 * An offer which is too large will be cut down later.
2930 	 */
2931 	if (offer == 0) {
2932 		if (isipv6) {
2933 			if (in6_localaddr(&inp->in6p_faddr)) {
2934 				offer = ND_IFINFO(rt->rt_ifp)->linkmtu -
2935 					min_protoh;
2936 			} else {
2937 				offer = tcp_v6mssdflt;
2938 			}
2939 		} else {
2940 			if (in_localaddr(inp->inp_faddr))
2941 				offer = ifp->if_mtu - min_protoh;
2942 			else
2943 				offer = tcp_mssdflt;
2944 		}
2945 	}
2946 
2947 	/*
2948 	 * Prevent DoS attack with too small MSS. Round up
2949 	 * to at least minmss.
2950 	 *
2951 	 * Sanity check: make sure that maxopd will be large
2952 	 * enough to allow some data on segments even is the
2953 	 * all the option space is used (40bytes).  Otherwise
2954 	 * funny things may happen in tcp_output.
2955 	 */
2956 	offer = max(offer, tcp_minmss);
2957 	offer = max(offer, 64);
2958 
2959 	rt->rt_rmx.rmx_mssopt = offer;
2960 
2961 	/*
2962 	 * While we're here, check if there's an initial rtt
2963 	 * or rttvar.  Convert from the route-table units
2964 	 * to scaled multiples of the slow timeout timer.
2965 	 */
2966 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2967 		/*
2968 		 * XXX the lock bit for RTT indicates that the value
2969 		 * is also a minimum value; this is subject to time.
2970 		 */
2971 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2972 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2973 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2974 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2975 		tcpstat.tcps_usedrtt++;
2976 		if (rt->rt_rmx.rmx_rttvar) {
2977 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2978 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2979 			tcpstat.tcps_usedrttvar++;
2980 		} else {
2981 			/* default variation is +- 1 rtt */
2982 			tp->t_rttvar =
2983 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2984 		}
2985 		TCPT_RANGESET(tp->t_rxtcur,
2986 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2987 			      tp->t_rttmin, TCPTV_REXMTMAX);
2988 	}
2989 
2990 	/*
2991 	 * if there's an mtu associated with the route, use it
2992 	 * else, use the link mtu.  Take the smaller of mss or offer
2993 	 * as our final mss.
2994 	 */
2995 	if (rt->rt_rmx.rmx_mtu) {
2996 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2997 	} else {
2998 		if (isipv6)
2999 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
3000 		else
3001 			mss = ifp->if_mtu - min_protoh;
3002 	}
3003 	mss = min(mss, offer);
3004 
3005 	/*
3006 	 * maxopd stores the maximum length of data AND options
3007 	 * in a segment; maxseg is the amount of data in a normal
3008 	 * segment.  We need to store this value (maxopd) apart
3009 	 * from maxseg, because now every segment carries options
3010 	 * and thus we normally have somewhat less data in segments.
3011 	 */
3012 	tp->t_maxopd = mss;
3013 
3014 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
3015 	    ((tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3016 		mss -= TCPOLEN_TSTAMP_APPA;
3017 
3018 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3019 		if (mss > MCLBYTES)
3020 			mss &= ~(MCLBYTES-1);
3021 #else
3022 		if (mss > MCLBYTES)
3023 			mss = mss / MCLBYTES * MCLBYTES;
3024 #endif
3025 	/*
3026 	 * If there's a pipesize, change the socket buffer
3027 	 * to that size.  Make the socket buffers an integral
3028 	 * number of mss units; if the mss is larger than
3029 	 * the socket buffer, decrease the mss.
3030 	 */
3031 #ifdef RTV_SPIPE
3032 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
3033 #endif
3034 		bufsize = so->so_snd.ssb_hiwat;
3035 	if (bufsize < mss)
3036 		mss = bufsize;
3037 	else {
3038 		bufsize = roundup(bufsize, mss);
3039 		if (bufsize > sb_max)
3040 			bufsize = sb_max;
3041 		if (bufsize > so->so_snd.ssb_hiwat)
3042 			ssb_reserve(&so->so_snd, bufsize, so, NULL);
3043 	}
3044 	tp->t_maxseg = mss;
3045 
3046 #ifdef RTV_RPIPE
3047 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3048 #endif
3049 		bufsize = so->so_rcv.ssb_hiwat;
3050 	if (bufsize > mss) {
3051 		bufsize = roundup(bufsize, mss);
3052 		if (bufsize > sb_max)
3053 			bufsize = sb_max;
3054 		if (bufsize > so->so_rcv.ssb_hiwat) {
3055 			lwkt_gettoken(&so->so_rcv.ssb_token);
3056 			ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3057 			lwkt_reltoken(&so->so_rcv.ssb_token);
3058 		}
3059 	}
3060 
3061 	/*
3062 	 * Set the slow-start flight size depending on whether this
3063 	 * is a local network or not.
3064 	 */
3065 	if (tcp_do_rfc3390)
3066 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3067 	else
3068 		tp->snd_cwnd = mss;
3069 
3070 	if (rt->rt_rmx.rmx_ssthresh) {
3071 		/*
3072 		 * There's some sort of gateway or interface
3073 		 * buffer limit on the path.  Use this to set
3074 		 * the slow start threshhold, but set the
3075 		 * threshold to no less than 2*mss.
3076 		 */
3077 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3078 		tcpstat.tcps_usedssthresh++;
3079 	}
3080 }
3081 
3082 /*
3083  * Determine the MSS option to send on an outgoing SYN.
3084  */
3085 int
3086 tcp_mssopt(struct tcpcb *tp)
3087 {
3088 	struct rtentry *rt;
3089 #ifdef INET6
3090 	boolean_t isipv6 =
3091 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3092 	int min_protoh = isipv6 ?
3093 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3094 			     sizeof(struct tcpiphdr);
3095 #else
3096 	const boolean_t isipv6 = FALSE;
3097 	const size_t min_protoh = sizeof(struct tcpiphdr);
3098 #endif
3099 
3100 	if (isipv6)
3101 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3102 	else
3103 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3104 	if (rt == NULL)
3105 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3106 
3107 	return (rt->rt_ifp->if_mtu - min_protoh);
3108 }
3109 
3110 /*
3111  * When a partial ack arrives, force the retransmission of the
3112  * next unacknowledged segment.  Do not exit Fast Recovery.
3113  *
3114  * Implement the Slow-but-Steady variant of NewReno by restarting the
3115  * the retransmission timer.  Turn it off here so it can be restarted
3116  * later in tcp_output().
3117  */
3118 static void
3119 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3120 {
3121 	tcp_seq old_snd_nxt = tp->snd_nxt;
3122 	u_long ocwnd = tp->snd_cwnd;
3123 
3124 	tcp_callout_stop(tp, tp->tt_rexmt);
3125 	tp->t_rtttime = 0;
3126 	tp->snd_nxt = th->th_ack;
3127 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3128 	tp->snd_cwnd = tp->t_maxseg;
3129 	tp->t_flags |= TF_ACKNOW;
3130 	tcp_output(tp);
3131 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3132 		tp->snd_nxt = old_snd_nxt;
3133 	/* partial window deflation */
3134 	if (ocwnd > acked)
3135 		tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3136 	else
3137 		tp->snd_cwnd = tp->t_maxseg;
3138 }
3139 
3140 /*
3141  * In contrast to the Slow-but-Steady NewReno variant,
3142  * we do not reset the retransmission timer for SACK retransmissions,
3143  * except when retransmitting snd_una.
3144  */
3145 static void
3146 tcp_sack_rexmt(struct tcpcb *tp, struct tcphdr *th)
3147 {
3148 	uint32_t pipe, seglen;
3149 	tcp_seq nextrexmt;
3150 	boolean_t lostdup;
3151 	tcp_seq old_snd_nxt = tp->snd_nxt;
3152 	u_long ocwnd = tp->snd_cwnd;
3153 	int nseg = 0;		/* consecutive new segments */
3154 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3155 
3156 	tp->t_rtttime = 0;
3157 	pipe = tcp_sack_compute_pipe(tp);
3158 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3159 	    (!tcp_do_smartsack || nseg < MAXBURST) &&
3160 	    tcp_sack_nextseg(tp, &nextrexmt, &seglen, &lostdup)) {
3161 		uint32_t sent;
3162 		tcp_seq old_snd_max;
3163 		int error;
3164 
3165 		if (nextrexmt == tp->snd_max)
3166 			++nseg;
3167 		tp->snd_nxt = nextrexmt;
3168 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3169 		old_snd_max = tp->snd_max;
3170 		if (nextrexmt == tp->snd_una)
3171 			tcp_callout_stop(tp, tp->tt_rexmt);
3172 		error = tcp_output(tp);
3173 		if (error != 0)
3174 			break;
3175 		sent = tp->snd_nxt - nextrexmt;
3176 		if (sent <= 0)
3177 			break;
3178 		if (!lostdup)
3179 			pipe += sent;
3180 		tcpstat.tcps_sndsackpack++;
3181 		tcpstat.tcps_sndsackbyte += sent;
3182 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3183 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt))
3184 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3185 	}
3186 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3187 		tp->snd_nxt = old_snd_nxt;
3188 	tp->snd_cwnd = ocwnd;
3189 }
3190